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Abstract

Theorem proving in Lean 4 offers a promising avenue for advancing the reasoning
capabilities of large language models. Evaluating current provers is crucial, as
many achieve near-perfect accuracy on existing benchmarks such as MiniF2F [6],
highlighting the need for novel evaluation tasks. We introduce VERIBENCH-FTP,
a benchmark designed to assess formal theorem proving in Lean 4 through code
verification. The task requires models to generate proofs for theorems that capture
key aspects of program verification. Our benchmark consists of 857 theorems
derived from 140 problems across five difficulty levels: 56 HumanEval problems,
41 foundational programming exercises, 10 classical algorithms, 28 security-critical
programs adapted from real-world vulnerabilities, and 5 problems from the Python
standard library. On our benchmark, Goedel-Prover V2-8B [3] achieves 39.56%
Pass@32, highlighting the difficulty of the tasks. VERIBENCH-FTP provides
a rigorous alternative to existing datasets, enabling more realistic evaluation of
formal provers in Lean 4. VERIBENCH-FTP translates “theorem-proving ability”
into a measurable route toward trustworthy code, advancing progress toward secure,
dependable software infrastructure.

1 Introduction

Large language models (LLMs) have demonstrated remarkable success in automated theorem proving
(ATP), achieving near-saturation performance on established mathematical benchmarks like MiniF2F
[6] and ProofNet [7]. This progress signals a new frontier in formal reasoning [5]. However,
this success also masks a critical gap: the predominant focus on competition-style mathematics
leaves the capabilities of these models on software verification—a domain with profound real-world
implications—largely untested. The saturation of existing benchmarks necessitates new, more
challenging datasets that evaluate a different, and arguably more practical kind of reasoning.

We introduce VERIBENCH-FTP, a new benchmark in Lean 4 designed specifically for formal
code verification. The dataset contains 857 theorems derived from 140 problems spanning five
categories: HumanEval puzzles, foundational exercises, classical algorithms, real-world security
vulnerabilities, and selected Python standard library programs. Each theorem captures correctness
or safety properties of Lean functions corresponding to Python code, pushing models to reason
about invariants, algorithmic behavior, and bug-prone implementations. On this benchmark, state-
of-the-art provers—including DeepSeek-Prover and Claude with Draft Sketch Prove (DSP) [8]
pipelines—achieve only 18–28% pass@1 accuracy, underscoring both the novelty and difficulty of
the task. By shifting the focus from competition math to program reasoning, VERIBENCH-FTP
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offers a complementary and realistic testbed for advancing the capabilities of next-generation theorem
provers.

Our contributions are:

1. Realistic proving challenges. We release 857 theorems from a diverse set of 140 problems
across five splits (HumanEval, Easy, CS, Security, RealCode), targeting correctness and
safety properties.

2. Establish strong baselines and headroom. We conduct a thorough empirical evaluation of
state-of-the-art provers, revealing their significant limitations (<40% pass@32) and exposing
a critical gap between mathematical and formal code-reasoning capabilities.

3. Broaden the evaluation landscape. We broaden the evaluation landscape for automated
reasoning by establishing formal software verification as a vital, complementary domain to
traditional mathematical benchmarks.

2 Related Work

Formal theorem proving Benchmarks in Lean Recent works have proposed benchmarks for
automated theorem proving in Lean, covering competition problems, undergraduate math, and large-
scale formalizations. MINIF2F [6] provides a formal-to-formal benchmark of 488 competition
problems from AMC, AIME, and IMO, split evenly between validation and test sets. FIMO [14]
contains 149 Lean 3 problems formalized from IMO statements using GPT-4 and human verification.
ProofNet [7] contributes 371 undergraduate-level theorem statements in Lean 3. PutnamBench [15]
comprises 657 college-level mathematics problems across algebra, analysis, geometry, combinatorics,
probability, and set theory, derived from the William Lowell Putnam Mathematical Competition.
LeanDojo [16] extracts proofs directly from Lean’s mathlib [17] and introduces a test set to evaluate
retrieval-augmented provers. Recently, MathOlympiadBench [3] formalizes 360 Olympiad-level
problems from Compfiles [19] and the IMOSL Lean 4 repository [20]. FormalMATH [4] offers 5,560
formalized problems from high school competitions and undergraduate mathematics. ProverBench
[1] introduces 325 problems, including 15 AIME-style statements and additional problems from
tutorials spanning high school to undergraduate mathematics.

Formal Benchmarks for Code Generation Recent benchmarks such as Verina [22] (189 Lean
tasks jointly testing specification, code, and machine-checked proofs) and CLEVER [23] (161 Lean
problems requiring both formal specifications and verified implementations) evaluate LLM-based
code generation in Lean. The closest work to ours is VERIBENCH [9], a benchmark designed to
evaluate the code verification capabilities of llms, requiring them to generate complete Lean 4 artifacts
from reference Python programs or their docstrings. We used the VERIBENCH dataset in our data
collection process. However, the VERIBENCH paper does not address theorem proving and our
benchmark includes a larger set of problems. VERIBENCH-FTP provides a distinct platform for
evaluating proof writing in Lean through code verification tasks that differ from existing benchmarks.

3 VeriBench-FTP

Overview. VERIBENCH-FTP is a benchmark designed to assess the theorem proving capabilities
of large language models in Lean 4, specifically in the context of code verification. The theorems in
our benchmark aim to verify one or more properties of a Lean function that corresponds to a Python
implementation, ensuring that the function behaves as intended. In contrast to benchmarks such as
MiniF2F [6], which focus primarily on mathematical problems formalized from competition-level
tasks, VERIBENCH-FTP offers a complementary perspective by evaluating proof generation in Lean
for code verification.

Concretely, VERIBENCH-FTP consists of 857 theorems divided into five subsets:

1. HumanEval – 387 theorems from 56 programming puzzles [18];
2. EasySet – 278 theorems extracted from 41 introductory logic and programming tasks;
3. CSSet – 68 theorems drawn from 10 classical data-structure and algorithm problems;
4. SecuritySet – 112 theorems taken from 28 examples of buffer overflows, privilege escalation,

and race condition labs based on real code;
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5. RealCodeSet – 12 theorems extracted from 5 Python standard library programs, used to test
model performance on production-grade code.

This design covers a spectrum of tasks, from simple correctness theorems to more complex invariants,
algorithmic properties, and real-world code verification.

Construction. To construct the benchmark, we based our work on VERIBENCH files, specifically
the gold Lean implementation of their theorems [9]. The files contain unproved theorems with a set
of definitions, examples, and variable declarations. The theorems in the files are generally unproved
and contain the sorry symbol.

The construction process is divided into two phases. We extracted the theorems from the original files
and isolate them. For each theorem, we kept only the necessary definitions and declarations, removing
other theorems, examples, and comments. Our goal was to assume a minimal context to make the
evaluation efficient and the data as clear as possible. A final human verification was performed. We
formatted all the theorems uniformly, ensuring that each theorem ends with := sorry on the same
line as the final tokens of the example.

Finally, we compiled the entire dataset in Lean using Mathlib and Aesop as the only imports, to
ensure that our benchmark is syntactically correct.

Examples. We provide some examples from the dataset; more examples can be found in Ap-
pendix A.
def myAdd : Nat →Nat →Nat := Nat.add
infixl:65 "++ "=> myAdd
def Pre (a b : Nat) : Prop := (0 ≤a) ∧(0 ≤b)
def right_identity_prop (n : Nat) : Prop := myAdd n 0 = n

theorem right_identity_thm (n : Nat) : right_identity_prop n := sorry

Listing 1: Example theorem statement from the VERIBENCH-FTP EasySet dataset.

open List
def min3 (a b c : Nat) : Nat :=
min (min a b) c

def editDistanceAux [DecidableEq α] : List α→List α→Nat
| [], [] => 0
| [], ys => ys.length
| xs, [] => xs.length
| x :: xs, y :: ys =>
if x = y then
editDistanceAux xs ys

else
1 + min3
(editDistanceAux xs (y :: ys))
(editDistanceAux (x :: xs) ys)
(editDistanceAux xs ys)

def editDistance [DecidableEq α] (s1 s2 : List α) : Nat :=
editDistanceAux s1 s2

def Pre {α : Type*} (s1 s2 : List α) : Prop := True
def reflexivity_prop {α : Type*} [DecidableEq α] (s : List α) : Prop := editDistance s s = 0

theorem reflexivity_thm {α : Type*} [DecidableEq α] (s : List α) : reflexivity_prop s := sorry

Listing 2: Example theorem statement from the VERIBENCH-FTP CS Set dataset.

4 Evaluation

Models and Lean Compilation We evaluated three approaches: Aesop (a search-based ATP) [21],
dedicated provers with prompting, and DSP (Draft–Sketch–Prove) using Claude models [10]. Panto-
graph [12] was used as the Lean interface to check code (see Appendix C for details).

Results The results in Tables 1 and 2 show that the models struggle to resolve most of the challenges,
even with Pass@32. The best model achieved 28.94% on Pass@1 and 39.56% on Pass@32. Overall,
the prover models outperformed the combination of Claude and DSP. Among DeepSeek models, V2
outperformed V1.5-RL, which outperformed SFT, with minor differences. This ranking is consistent
with the results reported on MiniF2F for the same models [6].
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Performance varies across splits. As expected, the Easy set achieved the highest success rates, as it
contains comparatively simpler problems. In contrast, the Advanced CS set includes highly challeng-
ing questions. None of the models proved any theorems on real code problems (see Appendix B for
an example).

Model + Prompting Easy CS Real HE Security Pass@1

Aesop 45/278 6/68 0/12 53/387 9/112 113/857
13.19%

Claude-3.5 Sonnet v1
(2024-06-20) + DSP 31/278 0/68 0/12 14/387 0/112 45/857

5.25%
Claude-3.7 Sonnet
(2025-02-19) + DSP 81/278 2/68 0/12 67/387 6/112 156/857

18.2%
DeepSeek-ProverV1.5-SFT
[2]+ prompting 59/278 2/68 0/12 57/387 15/112 133/857

15.55%
DeepSeek-ProverV2-7B
[1]+ prompting 114/278 6/68 0/12 85/387 43/112 248/857

28.94%
STP [13]
+ prompting 69/278 3/68 0/12 71/387 21/112 164/857

19.13%
Goedel-Prover V2-8B
[3] + prompting 109/278 9/68 0/12 76/387 31/112 225/857

26.25%
Table 1: Performance of different models on VERIBENCH theorem-proving tasks. The table shows
results for LLMs evaluated under the Draft–Sketch–Prove (DSP) protocol (+DSP) [8], dedicated
provers with a single prompt (+prompting), and Aesop (Traditional search-based ATP) [21]. All
results are reported at pass@1. VERIBENCH-FTP splits : Easy Set (Easy), CS Set (CS), Real Python
Code (Real), HumanEval Set (HE), Security Set (Security).

Model Easy CS Real HE Security Pass@32

DeepSeek-ProverV1.5-SFT 130/278 9/68 0/12 105/387 56/112 300/857
35.00%

DeepSeek-ProverV1.5-RL 132/278 8/68 0/12 107/387 57/112 304/857
35.47%

DeepSeek-ProverV2-7B 144/278 9/68 0/12 113/387 66/112 332/857
38.74%

STP 139/278 9/68 0/12 113/387 59/112 320/857
37.34%

Goedel-Prover V2-8B 156/278 9/68 0/12 113/387 61/112 339/857
39.56%

Table 2: Performance of various LLMs on VERIBENCH-FTP at pass@32. VERIBENCH-FTP splits :
Easy Set (Easy), CS Set (CS), Real Python Code (Real), HumanEval Set (HE), Security Set (Security).

5 Discussion, Limitations, and Future Work

While VERIBENCH-FTP provides a novel testbed for theorem proving in code verification, it also
has several limitations. First, the dataset is derived from a fixed set of problems, many of which
are relatively short programs; this limits coverage of larger-scale software verification tasks such
as modular reasoning, concurrency, or higher-order specifications. Second, our current evaluation
focuses on pass@k accuracy with Lean compilation, which, while rigorous, does not fully capture
proof quality, proof length, or generalization to novel proof styles.

These limitations suggest several promising directions for future work. Expanding the dataset to
include larger and more diverse codebases—such as system libraries or verified kernels—would
provide a stronger measure of scalability. Integrating richer property types, including temporal

4



logic and probabilistic guarantees, could more closely reflect real-world verification needs. Finally,
community-driven contributions and standardized leaderboards will be essential to track progress and
stimulate advances in this emerging intersection of formal verification and AI.
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A Dataset examples

def gcd_fun (a b : Nat) : Nat :=
if b = 0 then a else gcd_fun b (a % b)

termination_by b
decreasing_by
have h : b > 0 := Nat.pos_of_ne_zero (by assumption)
have : a % b < b := Nat.mod_lt a h
exact this

def myGcd : Nat →Nat →Nat
| 0, b => b
| a, 0 => a
| a + 1, b + 1 =>
if a < b then
myGcd (a + 1) (b - a)

else
myGcd (a - b) (b + 1)

def Pre (a b : Nat) : Prop := True
def gcd_self_prop (a : Nat) : Prop := gcd_fun a a = a

theorem gcd_self_thm (a : Nat) : gcd_self_prop a := sorry

Listing 3: Example theorem statement from the VERIBENCH-FTP HumanEval Set.

structure ProgramSpec where
name : String
description : String
deriving Repr, DecidableEq

structure SafeProgramExecution where
prog : String
args : List String
deriving Repr, DecidableEq

def program_whitelist : List ProgramSpec := [
{ name := "cat", description := "Safe file reading" },
{ name := "ls", description := "Safe directory listing" },
{ name := "echo", description := "Safe text output" },
{ name := "wc", description := "Safe word/line counting" }

]
def is_program_whitelisted (prog_name : String) : Bool :=
program_whitelist.any (fun spec => spec.name = prog_name)

def tokenize_arguments (args : String) : List String :=
if args.trim.isEmpty then []
else args.splitOn ""|>.filter (· ̸="")

def execute_program_safe (prog_name : String) (args : String) : Option SafeProgramExecution :=
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if is_program_whitelisted prog_name then
let user_args := tokenize_arguments args
some { prog := prog_name, args := user_args }

else
none

def Pre (_ _ : String) : Prop := True
def whitelist_enforcement_prop (prog_name : String) (args : String) : Prop :=
(∃ exec, execute_program_safe prog_name args = some exec) →is_program_whitelisted prog_name = true

theorem whitelist_enforcement_thm (prog_name : String) (args : String) : whitelist_enforcement_prop
prog_name args := sorry

Listing 4: Example theorem statement from the VERIBENCH-FTP Security dataset.

def bisect_right
{α γ}
(a : Array α)
(x : γ)
(lo : Nat := 0)
(hi? : Option Nat := none)
(key?: Option (α →γ) := none)
[LT γ] [DecidableRel (· < ·: γ→γ→Prop)]
[Coe αγ] [Inhabited α] :
Nat := Id.run do

let hi := hi?.getD a.size
match key? with
| none =>
let mut loM := lo
let mut hiM := hi
while loM < hiM do
let mid := (loM + hiM) / 2
let y : γ:= (↑(a[mid]!) : γ)
if x < y then
hiM := mid

else
loM := mid + 1

return loM
| some key =>
let mut loM := lo
let mut hiM := hi
while loM < hiM do
let mid := (loM + hiM) / 2
let y := key (a[mid]!)
if x < y then
hiM := mid

else
loM := mid + 1

return loM
def insort_right

{α γ}
(a : Array α)
(x : α)
(lo : Nat := 0)
(hi? : Option Nat := none)
(key?: Option (α →γ) := none)
[LT γ] [DecidableRel (· < ·: γ→γ→Prop)]
[Coe αγ] [Inhabited α] :
Array α:= Id.run do

let idx :=
match key? with
| none => bisect_right a ((↑x : γ)) lo hi? (key? := none)
| some key => bisect_right a (key x) lo hi? (key? := some key)

let left := a.extract 0 idx
let right := a.extract idx a.size
return left ++ #[x] ++ right

def defaultProj {α : Type u} {γ : Type v} [Coe αγ] : α→γ:=
fun a => (↑a : γ)

def Proj {α : Type u} {γ : Type v} (key? : Option (α →γ)) [Coe αγ] : α→γ:=
key?.elim defaultProj id

def SortedSlice {α : Type u} {γ : Type v}
(a : Array α) (lo hi : Nat) (proj : α→γ)
[LE γ] [DecidableRel (· ≤·: γ→γ→Prop)] [Inhabited α] : Prop :=

∀i j, lo ≤i →i ≤j →j < hi →proj (a[i]!) ≤proj (a[j]!)
def Pre {α : Type u} {γ : Type v}

(a : Array α) (lo hi : Nat) (key? : Option (α →γ))
[LE γ] [DecidableRel (· ≤·: γ→γ→Prop)] [Coe αγ] [Inhabited α] : Prop :=

lo ≤hi ∧hi ≤a.size ∧SortedSlice a lo hi (Proj key?)

theorem insort_preserves_sorted_slice
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{α γ}
[LT γ] [DecidableRel (· < ·: γ→γ→Prop)]
[LE γ] [DecidableRel (· ≤·: γ→γ→Prop)]
[Coe αγ] [Inhabited α]
(a : Array α) (xα : α) (lo : Nat) (hi? : Option Nat) (key? : Option (α →γ))
(hpre : Pre a lo (hi?.getD a.size) key?) :
let x := match key? with | none => (↑xα : γ) | some key => key xα
let i := bisect_right a x lo hi? key?
let a’ := insort_right a xα lo hi? key?;
SortedSlice a’ lo (i+1) (Proj key?) ∧
SortedSlice a’ (i+1) (hi?.getD a.size + 1) (Proj key?) := sorry

Listing 5: Example theorem statement from the VERIBENCH-FTP Real code dataset.

B Failed Proof Example from the Real Code Split

The example in Listing 5 illustrates a theorem from the Real Code split. The context of the theorem
provides a function bisect_right, which finds the position where a new element should be inserted
into a sorted array. The function insort_right then inserts the element at the appropriate position.
Additional helper functions introduce the projection concept, used to compute the metric for compar-
ing elements in the array. The theorem to be proved states that if we insert an element at position i,
the two resulting slices (before and after i) must remain sorted.

We provide two proof attempts generated by Goedel-Prover V2-8B [3]. In the first attempt (Fig-
ure 6), the errors stem from the model’s use of undefined constants (SortedSlice.not_gt,
SortedSlice.ge). In the second attempt (Figure 7), the prover applies simp without making
progress.
theorem insort_preserves_sorted_slice

{α γ}
[LT γ] [DecidableRel (· < ·: γ→γ→Prop)]
[LE γ] [DecidableRel (· ≤·: γ→γ→Prop)]
[Coe αγ] [Inhabited α]
(a : Array α) (xα : α) (lo : Nat) (hi? : Option Nat) (key? : Option (α →γ))
(hpre : Pre a lo (hi?.getD a.size) key?) :
let x := match key? with | none => (↑xα : γ) | some key => key xα
let i := bisect_right a x lo hi? key?
let a’ := insort_right a xα lo hi? key?;
SortedSlice a’ lo (i+1) (Proj key?) ∧
SortedSlice a’ (i+1) (hi?.getD a.size + 1) (Proj key?) := by
cases key?
case none =>
let x := (↑xα : γ)
let i := bisect_right a x lo hi? none
constructor
·refine SortedSlice.not_gt; dsimp only [SortedSlice, Prod]; intro j h1 h2 h3; exact ?_
have h4 := SortedSlice.not_gt a’ lo i j h1 (Nat.succ_le_of_lt h2) h3
exact Nat.succ_le_succ (by simpa [SortedSlice.not_gt] using h4)

·exact SortedSlice.ge a’ hi? (Nat.succ_le_of_lt hi!) h1
case some k =>
have := hpre.2
simp only [Pre, Pi.lt_def, Decidable.lt_iff_le_not_le] at this
constructor
·exact SortedSlice.gt a’ lo (i+1) k (fun j hj => this.1 j hj) (by simp only [true_and, SortedSlice.

gt])
·exact SortedSlice.ge a’ hi? (Nat.succ_le_of_lt hi!) h1

Listing 6: Example proof of a statement from the VERIBENCH-FTP Real Code dataset, generated by
Goedel-Prover V2-8B. The function declarations providing context have been removed for clarity.

theorem insort_preserves_sorted_slice
{α γ}
[LT γ] [DecidableRel (· < ·: γ→γ→Prop)]
[LE γ] [DecidableRel (· ≤·: γ→γ→Prop)]
[Coe αγ] [Inhabited α]
(a : Array α) (xα : α) (lo : Nat) (hi? : Option Nat) (key? : Option (α →γ))
(hpre : Pre a lo (hi?.getD a.size) key?) :
let x := match key? with | none => (↑xα : γ) | some key => key xα
let i := bisect_right a x lo hi? key?
let a’ := insort_right a xα lo hi? key?;
SortedSlice a’ lo (i+1) (Proj key?) ∧
SortedSlice a’ (i+1) (hi?.getD a.size + 1) (Proj key?) := by

intro x i a’
match hi? with
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| none =>
dsimp [i]
match key? with
| none =>
dsimp [insort_right, Array.extract]
simp
constructor
exact fun _ _ _ => le_trans (le_of_lt <| List.find?_lt _ _ _) i.prop

| some key =>
dsimp [insort_right, Array.extract]
simp [show x = fun a →key a from rfl]
constructor
intro i’ j’ hi’ hj’ ij’
simp at ij’
cases hi’, hj’
exact rfl
constructor
·rintro i’ j’ <hi’, hj’> ij’
simp at ij’
cases hi’, hj’
simp [proj]

·exact fun i’ j’ ij’ => i’.prop
| some hi =>
dsimp [insort_right, Array.extract]
simp
constructor
·intro i’ j’ hi’ hj’ ij’
refine List.find?_le_of_le _ <i’.prop, ij’>
intro x hx
exact lt_of_lt_of_le ij’ (hi x).prop hx

·intro i’ j’ hi’ hj’ ij’
simp at ij’
cases hi’, hj’
exact rfl

Listing 7: Example proof of a statement from the VERIBENCH-FTP Real Code dataset, generated by
Goedel-Prover V2-8B. The function declarations providing context have been removed for clarity.

C Models

We evaluated three approaches: Aesop (a search-based ATP) [21], dedicated provers with prompting,
and DSP (Draft–Sketch–Prove) using Claude models [10]. For dedicated provers, we used sampling
parameters temperature=1 and top_p=0.95.

• DeepSeek-Prover-V1.5-SFT and DeepSeek-Prover-V1.5-RL: Trained on proofs collected
via expert iteration over a combination of public datasets [2].

• DeepSeek-Prover-V2: Trained using curriculum reinforcement learning, leveraging subgoal
data extracted with DeepSeek-V3 [11] [1].

• Godel-Prover-V2: A family of models trained with scaffolded data synthesis, a self-
correction loop, and model averaging [3]. In our evaluation, we used the variant without the
self-correction loop. We employed the 7B model.

• STP: A model trained with self-play while simultaneously training a prover–conjecturer
(generator of new statements)[13].

• Claude Series: We evaluated three models from the Claude Sonnet release. These were
used with the DSP approach, which first drafts an informal solution, then generates a proof
sketch, and finally attempts a complete proof [10].

D Prompts

We used vanilla prompts for provers and a chat-template prompt when required by the model. For
Claude + DSP evaluation, we employed specific prompts for sketching and drafting.
Complete the following Lean 4 code:

‘‘‘lean4
{}
‘‘‘

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan
outlining the main proof steps and strategies.
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The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the
construction of the final formal proof.

Listing 8: Prompt for evaluating LLM provers with chat templates.

Complete the following Lean 4 code :

‘‘‘lean4

Listing 9: Prompt for evaluating LLM provers without chat templates.

Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal
proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:

Informal:
(*### Problem

Prove that for any natural number n, n + 0 = n.

### Solution

Consider any natural number n. From properties of addition, adding zero does not change its values. Thus,
n + 0 = n.*)

Informal:
(*### Problem

Prove that for any natural number n, n + (m + 1) = (n + m) + 1.

### Solution

Consider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the
same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)

Informal:
(*### Problem

Prove that for any natural number n and m, n + m = m + n.

### Solution

Consider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of
addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m +

(n + 1). Thus, by induction, n + m = m + n, qed.*)

Informal:
(*### Problem

### Solution

Listing 10: Prompt template for the drafting phase using the DSP framework.

Translate the informal solution into a sketch in the formal Lean 4 proof. Add <TODO_PROOF_OR_HAMMER> in
the formal sketch whenever possible. <TODO_PROOF_OR_HAMMER> will be used to call a automated theorem
prover or tactic in Lean 4. Do not use any lemmas.Provide only one theorem in your formal sketch.
Here are some examples:

Informal:
(*### Problem

Prove that for any natural number n, n + 0 = n.

### Solution

Consider any natural number n. From properties of addition, adding zero does not change its values. Thus,
n + 0 = n.*)

Formal:
import Mathlib.Data.Nat.Basic
import Aesop

theorem n_plus_zero_normal : ∀n : Nat, n + 0 = n := by
-- We have the fact of addition n + 0 = n, use it to show left and right are equal.
have h_nat_add_zero: ∀n : Nat, n + 0 = n := <TODO_PROOF_OR_HAMMER>
-- Combine facts with to close goal
<TODO_PROOF_OR_HAMMER>

Informal:
(*### Problem
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Prove that for any natural number n, n + (m + 1) = (n + m) + 1.

### Solution

Consider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the
same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)

Formal:
import Mathlib.Data.Nat.Basic
import Aesop

theorem plus_n_Sm_proved_formal_sketch : ∀n m : Nat, n + (m + 1) = (n + m) + 1 := by
-- We have the fact of addition n + (m + 1) = (n + m) + 1, use it to show left and right are equal.
have h_nat_add_succ: ∀n m : Nat, n + (m + 1) = (n + m) + 1 := <TODO_PROOF_OR_HAMMER>
-- Combine facts to close goal
<TODO_PROOF_OR_HAMMER>

Informal:
(*### Problem

Prove that for any natural number n and m, n + m = m + n.

### Solution

Consider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of
addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m +

(n + 1). Thus, by induction, n + m = m + n, qed.*)

Formal:
import Mathlib.Data.Nat.Basic
import Aesop

theorem add_comm_proved_formal_sketch : ∀n m : Nat, n + m = m + n := by
-- Consider some n and m in Nats.
intros n m
-- Perform induction on n.
induction n with
| zero =>
-- Base case: When n = 0, we need to show 0 + m = m + 0.
-- We have the fact 0 + m = m by the definition of addition.
have h_base: 0 + m = m := <TODO_PROOF_OR_HAMMER>
-- We also have the fact m + 0 = m by the definition of addition.
have h_symm: m + 0 = m := <TODO_PROOF_OR_HAMMER>
-- Combine facts to close goal
<TODO_PROOF_OR_HAMMER>

| succ n ih =>
-- Inductive step: Assume n + m = m + n, we need to show succ n + m = m + succ n.
-- By the inductive hypothesis, we have n + m = m + n.
have h_inductive: n + m = m + n := <TODO_PROOF_OR_HAMMER>
-- 1. Note we start with: Nat.succ n + m = m + Nat.succ n, so, pull the succ out from m + Nat.succ n

on the right side from the addition using addition facts Nat.add_succ.
have h_pull_succ_out_from_right: m + Nat.succ n = Nat.succ (m + n) := <TODO_PROOF_OR_HAMMER>
-- 2. then to flip m + S n to something like S (n + m) we need to use the IH.
have h_flip_n_plus_m: Nat.succ (n + m) = Nat.succ (m + n) := <TODO_PROOF_OR_HAMMER>
-- 3. Now the n & m are on the correct sides Nat.succ n + m = Nat.succ (n + m), so let’s use the def

of addition to pull out the succ from the addition on the left using Nat.succ_add.
have h_pull_succ_out_from_left: Nat.succ n + m = Nat.succ (n + m) := <TODO_PROOF_OR_HAMMER>
-- Combine facts to close goal
<TODO_PROOF_OR_HAMMER>

Informal:
(*### Problem

{nl_problem}

### Solution

{nl_solution}*)

Formal:

### Problem

### Solution

Listing 11: Prompt template for sketch generation using the DSP framework.
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