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Abstract: The scale and diversity of demonstration data required for imitation
learning is a significant challenge. We present EgoMimic, a full-stack frame-
work that scales manipulation through egocentric-view human demonstrations.
EgoMimic achieves this through: (1) an ergonomic human data collection system
using the Project Aria glasses, (2) a low-cost bimanual manipulator that minimizes
the kinematic gap to human data, (3) cross-domain data alignment techniques, and
(4) an imitation learning architecture that co-trains on hand and robot data. Com-
pared to prior works that only extract high-level intent from human videos, our ap-
proach treats human and robot data equally as embodied demonstration data and
learns a unified policy from both data sources. EgoMimic achieves significant im-
provement on a diverse set of long-horizon, single-arm and bimanual manipulation
tasks over state-of-the-art imitation learning methods and enables generalization
to entirely new scenes. Finally, we show a favorable scaling trend for EgoMimic,
where adding 1 hour of additional hand data is significantly more valuable than 1
hour of additional robot data. Videos available at ego-mimic.github.io

1 Introduction

End-to-end imitation learning has shown remarkable performance in learning complex manipulation
tasks, but it remains brittle when facing new scenarios and tasks. Drawing on the recent success of
Computer Vision and Natural Language Processing, we hypothesize that for learned policies to
achieve broad generalization, we must dramatically scale up the training data size. While these
adjacent domains benefit from Internet-sourced data, robotics lacks such an equivalent.

To scale up data for robotics, there have been recent advances in data collection systems. For exam-
ple, ALOHA [1, 2] and GELLO [3] are intuitive leader-follower controls for collecting teleoperated
data. Other works have opted to develop hand-held grippers to collect data without a robot [4].
Despite these advances, data collected via these systems still require specialized hardware and ac-
tive effort in providing demonstrations. We hypothesize that a key step for achieving Internet-scale
robot data is passive data collection. Just as the Internet was not built for curating data to train large
vision and language models, an ideal robot data system should allow users to generate sensorimotor
behavior data without intending to do so.

Human videos, especially those captured from an egocentric perspective, present an ideal source of
data for passive data scalability. This data aligns closely with robot data, as it provides an egocentric
camera for vision, 3D hand tracking for actions, and onboard SLAM for localization. The advent of
consumer-grade devices capable of capturing such data, including Extended Reality (XR) devices
and camera-equipped “smart glasses”, opens up unprecedented opportunities for passive data col-
lection at scale. While recent works have begun to leverage human video data, their approaches are
limited to extracting high-level intent information from videos to build planners that guide low-level
conditional policies [5, 6]. As a result, these systems remain constrained by the performance of
low-level policies, which are typically trained solely on teleoperation data.
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Figure 1: EgoMimic enables anyone to collect human demonstrations for imitation learning, simply by wearing
a pair of Project Aria glasses [7]. Aria glasses record egocentric vision paired with hand tracking, which we
use to augment our robot training data. When combined, it can boost task performance by 34-228% and enable
generalization to new objects or even scenes.

We argue that to truly scale robot performance with human data, we should not consider human
videos as an auxiliary data source that requires separate handling. Instead, we should exploit the
inherent similarities between egocentric human data and robot data to treat them as equal parts
in a continuous spectrum of embodied data sources. Learning seamlessly from both data sources
will require full-stack innovation, from data collection systems that unify data from both sources to
imitation learning architectures that can enable such cross-embodied policy learning.

To this end, our work treats human data as a first-class data source for robot manipulation. We
believe our system is a key step towards using passive data from wearable smart glasses to train
manipulation policies. We present EgoMimic (Fig. 1), a framework to collect data and co-train
manipulation policies from both human egocentric videos and teleoperated robot data consisting of:

(i) A system to collect human data built on Project Aria glasses [7] that capture egocentric video, 3D
hand tracking, and device SLAM. This rich information allows us to transform human egocentric
data into a format compatible with robot imitation learning.

(ii) A capable yet low-cost bimanual robot that minimizes the kinematic and camera-to-camera gap
to human data. In particular, we minimize the camera-to-camera device gap (FOV, dynamic ranges,
etc) between human and robot data by using Project Aria glasses as the main robot sensor.

(iii) To mitigate differences in data distributions, we normalize and align action distributions be-
tween human and robots. Further, we minimize the appearance gap between human arm and robot
manipulator via visual masking.

(iv) A unified imitation learning architecture that co-trains on hand and robot data with a common
vision encoder and policy network. Despite distinct action spaces for human and robot, our model
enforces a shared representation to enable performance scaling with human data, outperforming
existing methods that treat hand and robot data separately.

We empirically evaluate EgoMimic on three challenging long-horizon manipulation tasks in the
real world: continuous object-in-bowl, clothes folding, and grocery packing (Fig. 5). Our results
demonstrate that EgoMimic significantly enhances task performance across all scenarios, with rel-
ative improvements of up to 200%. Notably, we observe that EgoMimic exhibits generalization to
objects and scenes encountered exclusively in human data. Finally, we analyze the scaling proper-
ties of EgoMimic, and found learning from an additional hour of hand data significantly outperforms
training from an additional hour of robot data.

2 Related Works

Imitation Learning: Imitation Learning (IL) has been used to perform diverse and contact-rich
manipulation tasks [8, 9, 10]. Recent advancements in IL have led to the development of pixel-to-
action IL models, which directly map raw visual inputs to low-level robot control [1, 11]. These
visual IL models have demonstrated impressive reactive policies [12, 5]. Scaling these models has
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displayed strong generalization in works such as RT1 and RT2 [13, 14]. However, these methods
remain labor and resource-intensive, for instance RT1 required 17 months of data collection and
13 robots [13]. Our work proposes a learning framework that takes advantage of scalable human
demonstrations, which has the potential to be larger and more diverse than any dataset consisting of
robot demonstrations alone.

Learning from Video Demonstrations: To satisfy the data requirements of pixel to action IL algo-
rithms, many recent works leverage human data because it is highly scalable. Human data is used
at different levels of abstraction, where some works use human videos from internet-scale datasets
to pretrain visual representations [15, 16, 17]. Other works use human videos to more explicitly un-
derstand scene dynamics through point track prediction [18, 19], intermediate state hallucination in
pixel space [6, 20], or affordance prediction [21]. And finally, recent works use hand trajectory pre-
diction as a proxy for predicting robot actions [5]. While these approaches leverage hand data, they
often have separate modules to process hand and robot data. Instead, by fully leveraging the rich
information provided by Aria glasses including on-board SLAM, our method is able to unify and
treat human and robot data as equals and co-train from both data sources with a single end-to-end
policy.

Data Collection Systems: Various methods have been used to scale robot data. Low-cost devices
such as the Space Mouse offer sensitive and fine-grained teleoperation of robotic manipulators [22,
10, 23, 11, 24]. Further works improve intuitive control through virtual reality systems such as the
VR headset [25, 26, 27, 28, 29]. Recent systems like ALOHA and GELLO increase ergonomics
for low-cost and fine-grained bimanual manipulation tasks through a leader-follower teleoperation
interface [1, 3] or exoskeletons [30, 31]. Other works attempt to collect human demonstrations with
rich information like 3D action tracking, but existing systems face tradeoffs. Those which leverage
rich information are either not portable (e.g., static camera [32, 5, 33, 34]) or ergonomic (e.g., require
a hand-held gripper [4, 35] or body-worn camera [36, 37]), which prevent the passive scalability of
the data collection system. Along these lines, our approach captures egocentric video and 3D hand
tracking data, but via the ergonomic form factor of Project Aria Glasses [7]. This system has the
potential to passively scale [38], as adoption of similar consumer-grade devices continue to rise.

Cross-embodiment Policy Learning: Advances in cross-embodiment learning show that large
models trained on datasets with diverse robot embodiments are more generalizable [39]. Some
approaches aim to bridge the embodiment gap through observation reprojection [40], action abstrac-
tions [41], and policies conditioned on embodiment [42]. Recent works view cross-embodiment
learning as a domain adaptation problem [43]. Our work argues that human data should be treated
as another embodiment in transfer learning.

3 EgoMimic

We aim to develop a unified framework that can simultaneously train on egocentric human and robot
data. While many works have tackled aspects of this problem, we innovate across the full stack from
human and robot data collection, to algorithmic improvements.

3.1 Data Collection Systems and Hardware Design

Aria glasses for egocentric demonstration collection. An ideal system for human data needs to
capture rich information about the scene, while remaining passively scalable. Such a system should
be wearable, ergonomic, capture a wide FOV, track hand positions, device pose, and more.

EgoMimic fills this gap by building on top of the Project Aria glasses [7]. Aria glasses are head-
worn devices for capturing multimodal egocentric data. The device assumes an ergonomic glasses
form factor that weighs only 75g, permitting long wearing time and passive data collection. Our
work leverages the front-facing wide-FoV RGB camera for visual observation and two mono-color
scene cameras for device pose and hand tracking (See Fig. 2 for sample data). In particular, the
side-facing scene cameras track hand poses even when they move out of the main RGB camera’s
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view, significantly mitigating the challenges posed by humans’ natural tendency to move their head
and gaze ahead of their hands during sequential manipulation tasks.

Further, there are large scale data collection efforts underway with Project Aria [44, 45], and the de-
vices are made available broadly to the academic community through an active research partnership
program. In the future, our system can enable users to seamlessly merge data they collect with these
large datasets. Ultimately, we present a system that enables passive yet feature-rich data collection
to help scale up robot manipulation.

Figure 2: Our system uses Aria glasses to capture Ego-
centric RGB and uses its side SLAM cameras to local-
ize the device and track hands. The robot consists of
two Viper X arms with Intel RealSense wrist cameras.
Our robot uses identical Aria glasses as the main vision
sensor to help minimize the camera-to-camera gap.

Low-cost bimanual manipulator. To effec-
tively utilize egocentric human data, a robot
manipulator should be capable of moving in
ways that resemble human arm movements.
Prior works often rely on table-mounted manip-
ulators such as the Franka Emika Panda [46].
While these systems are capable, they differ
significantly from human arms in terms of kine-
matics. Moreover, their substantial weight and
inertia necessitate slow, cautious movements
due to safety concerns, largely preventing them
from performing manipulation tasks at speeds
comparable to humans. In response to these
limitations, we have purpose-built a biman-
ual manipulator that is lightweight, agile, and
cost-effective. Drawing inspiration from the
ALOHA system [1], our robot setup comprises
two 6-DoF ViperX arms mounted in an inverted
configuration on a height-adjustable rig as the
torso (Fig 2), kinematically mimicking the upper body of a human. The ViperX arms are lean and
relatively similar in size to human arms, contributing to their enhanced agility. The entire rig can be
assembled for less than $1,000 excluding the ViperX arms (the BOM will be made available). We
also built a leader robot rig to collect teleoperation data, similar to ALOHA [1].

Further, as our method jointly learns visual policies from human egocentric and robot data, it is
essential to align the visual observation space. Thus in addition to alignment through data post-
processing (Sec. 3.2), we directly match the camera hardware by using a second pair of Aria glasses
as the main sensor for the robot, which we have mounted directly to the top of the torso at a location
similar to that of human eyes (Fig 2). This enables us to mitigate the observation domain gap
associated with the camera devices, including FOVs, exposure levels, and dynamic ranges.

3.2 Data Processing and Domain Alignment

To train unified policies from both human and robot data, EgoMimic bridges three key human-robot
gaps: (1) unifying action coordinate frames, (2) aligning action distributions, and (3) mitigating
visual appearance gaps.

Raw data streams. We stream raw sensor data from the hardware setup as described in Sec. 3.1.
Aria glasses worn by the human and robot generate ego-centric RGB image streams. In addition,
the robot generates two wrist camera streams. For proprioception, we leverage the Aria Machine
Perception Service (MPS) [47] to estimate poses of both hands Hp ∈ SE(3) × SE(3). Robot
proprioception data includes both its end effector poses Rp ∈ SE(3) × SE(3) and joint positions
Rq ∈ R2×7 (including the gripper jaw position). We in addition collect joint-space actions Raq ∈
R2×7 for teleoperated robot data.

Unifying human-robot data coordinate frames. Robot action and proprioception data typically
use fixed reference frames (e.g., camera or robot base frame). However, egocentric hand data from
moving cameras breaks this assumption. To unify the reference frames for joint policy learning,
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we transform both human hand and robot end effector trajectories into camera-centered stable ref-
erence frames. Following the idea of predicting action chunks [11, 1], we aim to construct action
chunks apt:t+h for both human hand and robot end effector. To simplify the notation, we describe
the single-arm case that generalizes to both arms. The raw trajectory is a sequence of 3D poses
[pFt

t , pFt+1
t+1 , ...pFt+h

t+h ], where Fi denotes the coordinate frame of the camera when estimating pi.
Fi remains fixed for the robot but changes constantly for human egocentric data. Our goal is to
construct apt:t+h by transforming each position in the trajectory into the observation camera frame
Ft. This allows the policy to predict actions without considering future camera movements. For
human data, we use the MPS visual-inertial SLAM to obtain the Aria glasses pose TW

Fi
∈ SE(3) in

the world frame and transform the action trajectory:

Hapi = [(TW
Ft

)−1TW
Fi

pFi
i for i ∈ [t, t+ 1, ..., t+ h]]

A sample trajectory is visualized in Fig. 2 (top-left). Robot data is transformed similarly using the
fixed camera frame estimated by hand-eye calibration. By creating a unified reference frame, we
enable the policy to learn from action supervisions regardless of whether they originate from human
videos or teleoperated demonstrations.

Figure 3: a) Action normalization: The pose distribu-
tions are different between hand and robot data, specif-
ically in the y (left-right) dimension. We apply Gaus-
sian normalization individually to the hand and robot
pose data before feeding them to the model. b) Visual
masking: To help bridge the appearance gap of human
and and the robot arm, we apply a black mask to the
hand and robot via SAM, then overlay a red line onto
the image.

Aligning human-robot pose distributions.
Despite aligning hand and robot data via hard-
ware design and data processing, we still ob-
serve differences in the distributions of hand
and robot end effector poses in the demonstra-
tions collected. These discrepancies arise from
biomechanical differences, task execution vari-
ations, and measurement precision disparities
between human and robotic systems. With-
out mitigating this gap, the policy tends to
learn separate representations for the two data
sources [48, 49], preventing performance scal-
ing with human data. To address this, we apply
Gaussian normalization individually to end ef-
fector (hand) poses and actions from each data
source, as shown in Fig. 3. Echoing [49], we
found this simple technique to be empirically
effective (Sec. 4.2), though we plan to explore
alternatives such as action quantization [13] in
the future.

Bridging visual appearance gaps. Despite
aligning sensor hardware for capturing robot and human data, there still exists a large visual ap-
pearance gap between human hands and robots. Previous works have acknowledged this gap and
attempt to occlude or remove the manipulator in visual observation [50], [51]. We follow similar
ideas and mask out both the hand and the robot via SAM [52] and overlay a red line to indicate
end-effector directions (Fig 3). We project the robot end-effector and human hand pose to pixel
frame to generate the SAM point prompts.

3.3 Training Human-Robot Joint Policies

Existing approaches often opt for hierarchical architectures, where a high-level policy trained on
human data conditions a low-level policy outputting robot actions [5, 6]. However, this approach is
inherently limited by the performance of the low-level policy, which does not directly benefit from
large-scale human data. To address this limitation, we propose a simple architecture (illustrated in
Fig. 4) that learns from unified data and promotes shared representation. Our model builds upon
ACT [1], but the design is general and can be applied to other transformer based imitation learning
algorithms.
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Figure 5: We evaluate EgoMimic across three real world, long-horizon manipulation tasks. See Sec. 4.1 for
description.

Figure 4: Architecture of the joint human-robot policy
learning framework. The model processes normalized
hand and robot data through shared vision and ACT en-
coders, outputting pose predictions for both human and
robot data, and joint actions for robot data. The frame-
work uses masked images to mitigate human-robot ap-
pearance gaps and incorporates wrist camera views for
the robot.

A critical challenge in this unified approach is
the choice of the robot action space. While
the robot end-effector poses are more seman-
tically similar to human hand pose than robot-
joint positions, it is difficult to control our robot
with end-effector poses via a cartesian-based
controller (e.g., differential IK) because the 6
DoF ViperX arms offer low solution redun-
dancy. Empirically, we found that robots often
encounter singularities or non-smooth solutions
in a trajectory. Consequently, we opt for joint-
space control, but leverage pose space predic-
tion to learn joint human-robot representation.

Specifically, all parameters in the policy are
shared besides the two shallow input and out-
put heads. The input heads transform the visual and proprioceptive embeddings before passing to
the policy transformer. The policy transformer processes these features, and the two output heads
transform the transformer’s latent output into either pose or joint space predictions. The pose loss
supervises both human and robot data via Hap and Rap, whereas the joint action loss only super-
vises robot data Raq . Since the two branches are separated by only one linear layer, we effectively
force the model to learn joint representations for both domains.

4 Experiments

We aim to validate three key hypotheses. H1: EgoMimic is able to leverage human data to boost in-
domain performance for complex manipulation tasks. H2: Human data helps EgoMimic generalize
to new objects and scenes. H3: Given sufficient initial robot data, it is more valuable to collect
additional human data than additional robot data.

4.1 Experiment Setup

Tasks. We select a set of long-horizon real-world tasks to evaluate our claims. Our tasks require
precise alignment, complex motions, and bimanual coordination (Fig. 5).

Continuous Object-in-Bowl: The robot picks a small plush toy (about 6cm long), places it in a bowl,
picks up the bowl to dump the object onto the table, and repeats continuously for 40 seconds. We
randomly choose from a set of 3 bowls and 5 toys which were randomly positioned on the table
within a 45cm x 60cm range. The task stress-tests precise manipulation, spatial generalization, and
robustness in long-horizon execution. We award Pts each time the toy is placed in a bowl, or the
bowl is emptied. We perform 45 total evaluation rollouts across 9 bowl-toy-position combinations.

Laundry: A bimanual task that requires the robot to fold a t-shirt placed with random pose in a 90cm
× 60cm range and a rotation range of ±30 deg. The robot must use both arms to fold the right side
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Table 1: Quantitative results for 3 real-world tasks. We report task suc-
cess rates (%) and performance scores (pts) for all tasks and bag grab-
bing rate for the Groceries tasks. (0% H) = No Human Data

Method Bowl Laundry Groceries
Pts Pts SR Pts SR Open Bag

ACT [1] 39 82 55% 82 22% 54%
Mimicplay [5] 71 78 50% 53 8% 40%
EgoMimic (0% H) 68 104 73% 92 28% 60%
EgoMimic 128 114 88% 110 30% 70%

Table 2: Ablations - We ablate our
method and report final task per-
formance on Object-in-Bowl.

Method Pts
EgoMimic 128
w/o Line 112
w/o Line and Mask 95
w/o Action Norm 79
w/o Hand Data 68

sleeve, the left side sleeve, then the whole shirt in half. We award Pts for each of these stages, and
calculate Success Rate (SR) based as the percentage of runs where all stages were successful. We
perform 40 total evaluation rollouts across 8 shirt-position combinations.

Groceries: The robot fills a grocery bag with 3 packs of chips. It uses its left arm to grab the top
side of the bag handle to create an opening, then uses the right arm to pick the chip packs and places
them into the bag. The task requires high-precision manipulation (picking up a deformable bag
handle) and robustness in long-horizon rollout. We award Pts for picking the handle and for each
pack placed in the grocery bag. We report SR as the percentage of runs where all three packs were
successfully placed in the bag, and Open Bag as the percentage of runs where the handle of the
bag was grasped, which is a difficult stage of this task. We perform 50 evaluations across 10 bag
positions.

For Continuous Object-in-Bowl we collect 1 hour of human data and 2 hours robot data. For the
other tasks we collect 1.5 hours of hand data and 5 hours of robot data.

Baselines. To evaluate that EgoMimic can improve in-domain success rate by leveraging human
data, we benchmark against ACT [1], a state-of-the-art imitation learning algorithm. Further, we
compare against Mimicplay [5], a recent state-of-the-art method that learns planners from human
data to guide low-level policies, to show that our unified architecture learns more effectively from
human and robot data. For fair comparisons, we implement Mimicplay with the same Transformer
backbone as our method, and we removed goal conditioning because EgoMimic is designed for
single-task policies. Since EgoMimic contains architectural changes to ACT, namely the simulta-
neous joint and pose action prediction, we also benchmark against EgoMimic (0% Human). This
helps us conclude that improvements come from leveraging human data rather than the architecture.

Figure 6: We highlight EgoMimic’s success, as well
as failure modes, for instance (e) failure to correctly
align with the toy, (f) failure to grasp the bag’s handle,
or (g) policy only grabs 1 side of the shirt. EgoMimic
reduces the frequency of these failure modes, improv-
ing success rates by 8-33% over the baselines.

Figure 7: Evaluation Results on Policy Generaliza-
tion. (a) We evaluate the policy on the laundry task
using unseen shirt colors and report the success rate
for each method. (b) We test the policy on the Object-
in-Bowl task in unseen scenes.
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4.2 Results

EgoMimic improves in-domain task performance. Across all tasks we observed a relative im-
provement in score of 34-228%, and an improvement in absolute task success rate from 8-33% over
ACT. Our largest improvement is on the Cont. Object-in-Bowl task, in which we yield a 228% im-
provement in task score over ACT. We observe the baselines often miss the toy or bowl by a few
inches, which seems to indicate that our use of hand data helps the policy precisely reach the toy.
We show qualitative results in Fig. 6.

To ensure this increase was due to leveraging hand data rather than architectural changes, we com-
pare to EgoMimic (0% human), and find we improve score by 10-88% and success rate by 2-15%.

EgoMimic enables generalization to new objects and even scenes. We evaluate our method on
two domain shifts: attempting to fold shirts of an unseen color, and performing the Cont. Object-in-
Bowl task in an entirely different scene. As shown in Fig. 7, we observe that ACT struggles on shirts
of unseen colors (25% SR) whereas EgoMimic fully retains its performance (85% SR). Surprisingly,
by learning from human data in a new scene (unseen background and lighting), EgoMimic is able
to generalize to this new environment without any additional robot data, scoring 63 points. In
contrast, Mimicplay, which had access to the same information but instead leverages a hierarchical
framework for using hand data only scored 4 points. This suggests that our architecture promotes
joint hand-robot representation, whereas hierarchical architectures pose a generalization bottleneck.

Figure 8: Scaling robot vs. human data. EgoMimic
trained on 2 hours robot data + 1 hour hand data (Blue)
strongly outperforms ACT [1] trained on 3 hours of
robot data (Orange).

Scaling human vs. robot data. To investi-
gate the scaling effect of human and robot data
sources on performance, we conducted addi-
tional data collection for the Cont. Object-in-
bowl task. As illustrated in Fig. 7, EgoMimic
trained on 2 hours of robot data and 1 hour
of human data significantly outperforms ACT
trained on 3 hours of robot data (128 vs 74
points). Notably, one hour of human data
yields 1400 demonstrations, compared to only
135 demonstrations from an hour of robot data.
These results demonstrate EgoMimic’s ability
to effectively leverage the efficiency of human
data collection, leading to a more pronounced
scaling effect that substantially boosts task performance beyond what is achievable with robot data
alone. We note that EgoMimic at 2 hours of robot data outperforms ACT at 2 hours of robot data,
so some improvement is attributed to architecture.

Ablation studies. We ablate our approach to demonstrate the importance of each design decision
on the Object-in-Bowl task (Table 2). First, removing action normalization results in a 38% drop in
task score. This highlights the importance of action distribution alignment for co-training. Next, we
ablate away the visual techniques, specifically masking out the hand and robot, as well as drawing the
red overlay on the image. Removing these components resulted in 13 and 26% drops respectively.
Finally, EgoMimic trained without any hand data, yields a large 47% drop, which highlights how
effective hand-robot co-training is on our stack.

5 Conclusions

We presented EgoMimic, a framework to co-train manipulation policies from human egocentric
videos and teleoperated robot data. By leveraging Project Aria glasses, a low-cost bimanual robot
setup, cross-domain alignment techniques, and a unified policy learning architecture, EgoMimic
improves over state-of-the-art baselines on real-world tasks, shows generalization to new scenes,
and has favorable scaling properties. Overall, we believe our work opens up exciting new venues of
research on scaling robot data via passive data collection.
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