
Under review as a conference paper at ICLR 2021

FACTOREDRL: LEVERAGING FACTORED GRAPHS FOR
DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a simple class of deep reinforcement learning (RL) methods, called
FactoredRL, that can leverage factored environment structures to improve the
sample efficiency of existing model-based and model-free RL algorithms. In
tabular and linear approximation settings, the factored Markov decision process
literature has shown exponential improvements in sample efficiency by leveraging
factored environment structures. We extend this to deep RL algorithms that use
neural networks. For model-based algorithms, we use the factored structure to
inform the state transition network architecture and for model-free algorithms we
use the factored structure to inform the Q network or the policy network architecture.
We demonstrate that doing this significantly improves sample efficiency in both
discrete and continuous state-action space settings.

1 INTRODUCTION

In many domains, the structure of the Markov Decision Process (MDP) is known at the time of
problem formulation. For example, in inventory management, we know the structure of the state
transition: how inventory flows from a vendor, to a warehouse, to a customer (Giannoccaro &
Pontrandolfo, 2002; Oroojlooyjadid et al., 2017). In portfolio management, we know that a certain
asset changes only when the agent buys or sells a corresponding item (Jiang et al., 2017). Similar
structural information is available in vehicle routing, robotics, computing, and many others. Our work
stems from the observation that we can exploit the known structure of a given MDP to learn a good
policy. We build on the Factored MDP literature (Boutilier et al., 1995; Osband & Van Roy, 2014;
Kearns & Singh, 2002; Cui & Khardon, 2016), and propose a factored graph to represent known
relationships between states, actions and rewards in a given problem. We use the factored graphs
to inform the structure of the neural networks used in deep reinforcement learning (RL) algorithms
to improve their sample efficiency. We give literature references and example factor graphs for real
world applications in Appendix A.

Consider a motivational example, where the goal of the agent is to balance multiple independent
cartpoles simultaneously, with each cartpole defined as per OpenAI gym (G. Brockman & Zaremba,
2016). The agent can take a ‘left’ or ‘right’ action on each cartpole, and the state includes the position
and velocity of each cart and each pole. We refer to this as the Multi-CartPole problem.

Both model-based and model-free algorithms treat the state-action space as a single entity, which
makes exploration combinatorially complex. As a consequence, the sample efficiency of RL al-
gorithms degrades exponentially with the number of cartpoles, despite the problem remaining
conceptually simple for a human. By allowing the agent access to the problem’s factored structure (i.e.
each action affects only one cartpole), we bypass the need to learn about each action’s relationship
with the entire state, and instead only need to learn about each action’s relationship with its single,
related cartpole.

We show how to integrate knowledge of the factored graph into both model-based and model-free
deep RL algorithms, and thereby improve sample efficiency. In all cases, we first write down a
factored graph as an adjacency matrix, representing the relationships between state, action, and
reward. From this adjacency matrix, we then define a Factored Neural Network (Factored NN), which
uses input and output masking to reflect the structure of the factored graph.

1

Under review as a conference paper at ICLR 2021

Finally, we show how to integrate this Factored NN into existing deep RL algorithms. For model-
based, we use the Factored NN to learn decomposed state transitions, and then integrate this state
transition model with Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006). For model-free,
we use the Factored NN to learn a decomposed Q-function, and then integrate with DQN (Mnih et al.,
2015). Also for model-free, we use the Factored NN to learn a decomposed policy function, and then
integrate with PPO (Schulman et al., 2017). In all three cases, we demonstrate empirically that these
Factored RL methods (Factored MCTS, DQN, and PPO) are able to achieve better sample efficiency
than their vanilla implementations, on a range of environments.

2 RELATED WORK

Several methods have been proposed that exploit the structural information of a problem in the
Factored MDP literature. Kearns & Koller (1999) propose a method to conduct model-based RL
with a Dynamic Bayesian Network (DBN) (Dean & Kanazawa, 1989) and learn its parameters
based on an extension of the Explicit Explore or Exploit (E3) algorithm (Kearns & Singh, 2002).
Guestrin et al. (2003) propose a linear program and a dynamic program based algorithm to learn
linear value functions in Factored MDPs, and extend it to multi-agent settings (Guestrin et al., 2002).
They exploit the context specific and additive structure in Factored MDP that capture the locality of
influence of specific states and actions. We use the same structures in our proposed algorithms. Cui
& Khardon (2016) propose a symbolic representation of Factored MDPs. Osband & Van Roy (2014)
propose posterior sampling and upper confidence bounds based algorithms and prove that they are
near-optimal. They show that the sample efficiency of the algorithm scales polynomially with the
number of parameters that encode the factored MDP, which may be exponentially smaller than the
full state-action space. Xu & Tewari (2020) extend the results to non-episodic settings and Lattimore
et al. (2016) show similar results for contextual bandits. The algorithms proposed in these prior
works assume a tabular (Cui et al., 2015; Geißer et al.) or linear setting (Guestrin et al., 2003), or
require symbolic expressions (Cui & Khardon, 2016). We extend these ideas to deep RL algorithms
by incorporating the structural information in the neural network.

Li & Czarnecki (2019) propose a factored DQN algorithm for urban driving applications. Our pro-
posed algorithms are similar, but we extend the ideas to model-based algorithms like MCTS (Kocsis
& Szepesvári, 2006), and model-free on-policy algorithms like PPO (Schulman et al., 2017). We also
evaluate our algorithms on a variety of environments which encompass discrete and continuous state-
action spaces. The Factored NN we propose is closely related to Graph Neural Networks (Scarselli
et al., 2008; Zhou et al., 2018), which are deep learning based methods that operate on graph domain
and have been applied to domains such as network analysis (Kipf & Welling, 2016), molecule
design(Liu et al., 2018) and computer vision (Xu et al., 2018). Instead of explicitly embedding the
neighbors of all the nodes with neural networks, we use a single neural network with masking.

NerveNet Wang et al. (2018) addresses the expressiveness of structure in an MDP, similar to our
work. They focus on robotics applications and demonstrate state-action factorization with PPO. In
our work, we additionally demonstrate state transition and state-reward factorization in MCTS and
DQN respectively. In addition, they propose imposing a structure with Graph Neural Networks. In
contrast, we propose using input and output masking without modifying the neural architecture.

Working Memory Graphs Loynd et al. (2020) uses Transformer networks for modeling both factored
observations and dependencies across time steps. However, they only evaluate their method in a grid
world with a single discrete action. In contrast, we demonstrate our methods on multiple environments
and algorithms with factorization in state transition, state-action and state-reward relationships. In
addition, our factored network is a simple extension to the existing network used to solve a problem,
whereas they impose a complex network architecture.

Action masking has been used effectively to improve RL performance in multiple works (Williams &
Zweig, 2016; Williams et al., 2017; Vinyals et al., 2017). We use a similar trick when applying our
Factored NN to policy networks in model-free RL. However, we use both an action mask as well as
a state mask to incorporate factored structure in policy networks. Our state transition networks for
model-based RL also imposes masks on both input and output corresponding to current state-action
and next state respectively. Wu et al. (2018) introduce an action dependent baseline in actor-critic
algorithms, where a separate advantage function is learned for each action. Their method also exploits

2

Under review as a conference paper at ICLR 2021

structure available in the action space. Our method to incorporate structure is orthogonal, as we
modify the policy network in actor-critic methods.

There is also a relationship between our work and the emerging intersection of reinforcement learning
and causal inference, as factored graphs are are a super-set of causal graphs in the MDP setting. Lu
et al. (2018) use the backdoor criterion in causal inference and variational autoencoders. Zhang &
Bareinboim (2019) propose a near-optimal algorithm by taking advantage of causal inference in
non-Markovian dynamic treatment regimes. Both works assume there exist unobserved confounders
in the environment. We instead tackle a different problem where there are no unobserved confounders
and show that there are still benefits to leverage structural information.

3 TERMINOLOGY

We briefly describe terminology used in this paper. We use Directed Acyclic Graphs (DAG) to
represent relationships between the variables. DAGs consist of nodes and edges where the nodes
correspond to random variables X = (X1, ..., Xd) , and a directed edge from variable Xi to Xj

represents that Xi has an effect on Xj (Xi is also called the parent of Xj). Under Markov conditions,
the joint distribution of the variables can be factored as p(X1:d) =

∏d
i=1 p(Xi|PA(Xi)).

Consider a general Markov Decision Process (MDP) defined by (S,A,P, R, ρ0, γ), where S,A
denote the state and action space respectively, P denotes the transition probability, R represents the
reward function, ρ0 and γ represent the initial distribution of the state and discount factor respectively.

In the classic RL setting, one typically assumes each state Sk
t+1 depends on the entire previous states

and actions, i.e.,PA(Sk
t+1) = {{Sk

t }
|S|
k=1, {Ak

t }
|A|
k=1}, where | · | denotes the cardinality of the space,

and PA denotes the parents of a node in a bayesian network. However, in many scenarios, one
component of the action Ak

t may only cause part of the state-space {Sk
t }k∈Ck

to change, where Ck is
the index set of the related states of the kth component of the action. In other words, the parents of each
state may only be a subset of the actions and previous states, i.e., PA(Sk

t+1) $ {{Sk
t }

|S|
k=1, {Ak

t }
|A|
k=1}.

Simplifying the conditional dependencies helps to construct a more accurate model, enabling us to
better decompose the the dynamics and reduce complexity of the learning tasks. We assume the
factored structure of the environment does not change over time.

4 FACTORED NEURAL NETWORK

We introduce Factored Neural Networks (Factored NN), a generic method for using knowledge from
a factored graph to improve neural network predictions. The Factored NN works as follows: we start
with a factored graph represented as an adjacency matrix that tells us which of our inputs influence
which of our outputs. Then, we predict each output one at a time while masking all the inputs that are
irrelevant for the particular output according to our factored graph. We refer to the unmodified neural
network as Ordinary NN.

Figure 1 gives an example. From the factored graph on the left, we observe that output o1 only
depends on input i1, and output o2 depends on both inputs. An Ordinary NN takes (i1, i2) as
input and outputs (o1, o2) in one go. The Factored NN instead predicts o1 and o2 separately using
knowledge of the factored graph. When predicting o1, it masks out i2 and only considers relevant
input i1. When predicting o2, it does not mask any inputs. Then o1 and o2 are combined into one
vector so that the output form of the Factored NN is of the same form as with an Ordinary NN, so
backpropagation can be done as normal.

Below, we show how to use the Factored NN in both model-based and model-free RL algorithms,
using the same underlying factored structure but varying which elements of (S,A, R) to take as
input/output depending on the algorithm. Using the Multi-Cartpole environment as an example,
Figure 2 illustrates how a factored graph informs the Factored NN for learning decomposed state
transitions, decomposed reward functions, or decomposed policy functions. The following sections
discuss the applications of these to MCTS, DQN, and PPO respectively.

The factored structure of an environment has to be manually specified. While this may seem
challenging for well established benchmarks, for a real life application we still need to define the

3

Under review as a conference paper at ICLR 2021

Factored Graph

i1

i2

o1

o2

Input Output

(1) Ordinary Neural Network

[i1, i2] NN [o1, o2]

(2) Factored Neural Network

[i1, i2]
Causal
Graph

[i1, 0]

[i1, i2]

NN

NN

[o1, _]

[_, o2]

[o1, o2]

mask

mask

Figure 1: Illustration of Factored NN. Given the factored graph on the left, the Ordinary NN takes
all the inputs and produce the corresponding outputs whereas the Factored NN masks out irrelevant
input dimensions when predicting each output dimension, concatenating the outputs at the end.

MDP with state, actions and reward. Adding factorization information is relatively easy for a domain
expert familiar with the details of the problem. Appendix A shows examples factored graphs for a
few real world applications.

(a) Factored Graph

S0
t

A0
t

S0
t+1

A0
t+1

R0
t+1

S1
t

A1
t

S1
t+1

A1
t+1

R1
t+1

Rt+1

t t+ 1

(b) Factored MCTS

S0
t

A0
t

S0
t+1

A0
t+1

R0
t+1

S1
t

A1
t

S1
t+1

A1
t+1

R1
t+1

Rt+1

t t+ 1

(c) Factored DQN

S0
t

A0
t

S0
t+1

A0
t+1

R0
t+1

S1
t

A1
t

S1
t+1

A1
t+1

R1
t+1

Rt+1

t t+ 1

(d) Factored PPO

S0
t

A0
t

S0
t+1

A0
t+1

R0
t+1

S1
t

A1
t

S1
t+1

A1
t+1

R1
t+1

Rt+1

t t+ 1

Figure 2: (a): Factored Graph for Multi-Cartpole with 2 cartpoles. Sk
t , A

k
t , R

k
t for k ∈ {0, 1}

represent the state vector, action, and reward for each individual cartpole. (b)-(d): Graphical
representation of Factored NN applications, in MCTS, DQN and PPO respectively. In each case, the
input variables into the Factored NN are in blue and the outputs of the factored NN are in green.

5 FACTORED MCTS

In model-based RL, an environment model uses the current state and chosen actions to predict the
next state, reward, and whether the episode is done or not. The more accurate the environment model,
the better it can plan and the higher the rewards it can achieve - ways of improving the accuracy of
environment models are therefore of interest to all model-based RL algorithms.

In order to learn an environment model more efficiently, we can construct a Factored NN that
predicts next state given current state and action, according to the underlying factored structure
of the problem. Taking Multi-Cartpole with factored graph displayed in Figure 2 as an example,
the transition probability can be factored as p(st+1|st,at) =

∏d
k=1 p(s

k
t+1|skt , akt), where d is the

number of cartpoles, skt and akt represent the state vector and the action taken for the kth cartpole. This
efficiently reduces the complexity from a modeling perspective. The Factored NN takes input (st,at),

4

Under review as a conference paper at ICLR 2021

decomposes accordingly and returns st+1 as output. Figure 2b gives a graphical representation of
Factored MCTS.

We can fold this Factored NN into model-based RL algorithms anywhere we use an environment
model. In this work, we demonstrate using Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári,
2006) with a learned model. We implement MCTS by iterating between: 1) learning the parameters
of the environment model with a gradient-based approach from existing observations; and 2) acting
in the world by rolling out samples from the environment model and picking the best action using
tree search.

6 FACTORED DQN

Model-free algorithms do not use an environment model, but rather directly learn a Q-value or policy.
We can still use a Factored NN to obtain better sample efficiency, simply by specifying the relevant
parts of (S,A, R) as input/output.

In the case of DQN, we need to learn a Q-value given the current state and action and update it with:

Q(st, at)←− Q(st, at) + α[R(st, at) + γmax
a′

Q(st, a
′)−Q(st, at)] (1)

When the state and action space is high-dimensional, estimating Q-value becomes computationally
expensive. Adhering to the underlying factored structure, we can decompose the Q-value with
Factored NN. Taking Multi-Cartpole as an illustrating example, the total reward is the summation
of the individual rewards: R(st,at) =

∑d
k=1R(s

k
t , a

k
t), where R(s, a) is the reward function. We

can break down the Q-value in the same way as the factored structure does not change across the
episode: Q(st,at) =

∑d
k=1Q(skt , a

k
t). The Factored NN takes the state-action pair (st,at) as the

input, decomposes it into individual state-action pair (skt , a
k
t) for each cartpole, predicts individual

Q-value Q(skt , a
k
t) and combines them into the final Q(st,at) which can then be updated with (1).

Figure 2c gives an illustration of Factored DQN.

7 FACTORED PPO

Finally, we can also integrate the Factored NN into model-free algorithms that directly do policy
optimization. In this work, we show how to do this with PPO (Schulman et al., 2017), an actor-critic
algorithm where a policy network determines the action based on the state, and a value network
predicts the episode return from the current state.

The policy network π(at|st) directly optimizes the best action at given the current state st. The
factored structure can be used to reduce the complexity of a problem by decomposing the conditional
distribution π(at|st) accordingly. We can then apply the Factored NN to the policy network, by
mapping only the structurally related states to the actions. In the Multi-Cartpole example, π(at|st) =∏d

k=1 π(a
k
t |skt). Factored NN takes the entire state st as input, decomposes into each individual state

skt and predicts its corresponding action akt for each cartpole k. See Figure 2d for an illustration.

8 EXPERIMENTS

We show experimental results for Factored MCTS, DQN, and PPO on a variety of simulation
environments. In all experiments, we first define a factored graph representing the relationships
among a given problem’s (S,A, R), then leverage that graph in a Factored NN to learn a policy with
either MCTS, DQN, or PPO. The results below compare these FactoredRL algorithms with their
vanilla counterparts. All experiments use the same hyper-parameters for Factored NN and Ordinary
NN, they are reported in Appendix C. Each experiment is run on 5 different seeds.

8.1 FACTORED MCTS EXPERIMENTS

We experiment with Factored MCTS on two environments: Multi-Cartpole and Taxi. We chose these
environments because we can easily decompose their state transitions, and they involve discrete
actions which MCTS requires.

5

Under review as a conference paper at ICLR 2021

Multi-Cartpole Experiments: We first test using a Factored NN with MCTS on the Multi-Cartpole
environment. In this environment, the agent balances multiple independent cartpoles at once, where a
single cartpole is defined as per OpenAI gym (G. Brockman & Zaremba, 2016).

The state size is 4 multiplied by the number of cartpoles, as each cartpole has a state of size 4
representing its position, velocity and angle. The action taken by the agent is a binary vector
representing the direction of force applied to each cartpole. The reward given to the agent is the sum
of rewards for each cartpole, receiving 1/(Number of Cartpoles) if a cartpole is upright, and 0 if not.

The factored structure for this environment that we leverage in the Factored NN is that the state
transitions for each cartpole are independent.

The results are displayed in Figure 3a and b. For both cases we consider, i.e. 4, and 8 cartpoles,
incorporating the factored structure into the problem via the Factored NN leads to superior model
prediction error and environment reward. In terms of sample efficiency, we find that Factored NN
achieves the final score of the Ordinary NN in 25% and 10% of the time for 4 and 8 cartpoles
respectively.

Factored Factored Factored

Factored

(a)

Factored

(b)

Factored

(c)

Figure 3: Environment model prediction loss (first row) and game score (second row) for each of the
environments. Columns a and b represent environments with 4 and 8 cartpoles respectively. Column
c shows the results for the Taxi environment. The solid lines show the average over 5 random seeds
and the shaded area shows ± 1 standard deviation.

Taxi Experiments: We also test Factored MCTS on a simplified version of the Taxi environ-
ment (G. Brockman & Zaremba, 2016). In this environment there is a taxi and a passenger, and the
goal is for the taxi to pick up the passenger and drop him off at a specified location. 1

The state is given by the location of the taxi, the passenger, and the target location. The action taken
by the agent is a discrete action to move up, down, left, right, or to pick up or drop off the passenger.
A positive reward is given if the agent drops off the passenger in the correct location; a negative
reward is given every timestep and if the taxi tries to dropoff or pickup a passenger illegally.

The factored structure for this environment that we leverage in the Factored NN is that the destination
never changes and the location of the taxi and passenger only depends on a subset of actions.

The results are displayed in Figure 3c. As with the Multi-Cartpole experiments, incorporating the
factored structure into the problem via the Factored NN leads to superior model prediction error and
environment reward. In terms of sample efficiency, we find that Factored NN achieves the final score
of the Ordinary NN in 60% of the time.

1To make the environment solvable in a reasonable amount of time using MCTS, we simplified the problem
slightly by having the taxi always begin with the customer onboard and within a certain distance of its destination.

6

Under review as a conference paper at ICLR 2021

8.2 FACTORED DQN EXPERIMENTS

We experiment with Factored DQN on two environments: Bitflip, and Multi-Cartpole. We chose
these environments because factored structure in these two environments allow us to decompose
Q-values (which we cannot do in the Taxi environment), and DQN requires discrete actions.

BitFlip Experiments: Our BitFlip problem formulation is inspired from the example introduced
by Andrychowicz et al. (2017). In this environment, the agent tries to flip bits (0 or 1) in a vector to
match the values of a target vector of bits.

The state is given by two sets of n bits, where one set consists of current n bits and another set
consists of n target bits (2n state). The action taken by the agent at each timestep is a discrete binary
vector a of size n where ai = 0, 1 means no flip and flip on the i-th current bit (2n possible actions).
The reward given to the agent is −1 for each flipped bit and a positive reward of 2 for each flipped bit
matched to a target bit. This environment is episodic and it ends if it reaches the maximum number
of time steps (= 3n) or if current bits are same as target bits.

Factored NN uses the independence of the reward corresponding to each bit to estimate the respective
Q-value of each bit flip. The final Q value is the sum of Q-values for each bit. Note that only sum
of independent rewards are available during training time, which differentiates the problem from
solving each sub-problem independently.

The results are displayed in Figure 4a. For all cases we consider, i.e., 2, 4, and 8 bits, incorporating
the factored structure into the problem via the Factored NN leads to superior environment reward. In
terms of sample efficiency, Factored NN achieves the asymptotic performance of the ordinary NN in
10% of the time in the 8 bit case. The results for 2 and 4 bits are presented in Appendix D

Multi-Cartpole Experiments: We also test Factored DQN on the Multi-Cartpole environment, with
the same problem statement described in Section 8.1. Factored NN leverages the information that the
reward for one cartpole is independent from other cartpoles. Again, note that only sum of independent
rewards are available during training time.

The results are displayed in Figure 4b and 4c, for environments with 4 and 8 cartpoles, respectively.
Factored DQN is superior in terms of mean episodic rewards. The performance gap is bigger when
as we increase the number of cartpoles because the number of outputs of the Q-function grows
exponentially. Factored NN reduces the complexity by estimating the Q-value of each cartpole
independently. In terms of sample efficiency, Factored NN achieves asymptotic performance within
300000 timesteps while NN suffers from high-dimensional state-action pairs and does not improve
its performance within 1 million timesteps.

Factored

(a)

Factored

(b)

Factored

(c)

Figure 4: DQN with Factored NN vs. NN performance on Bitflip (a) and Multi-Cartpole (b, c). The
solid lines show the average over 5 random seeds and the shaded area shows ± 1 standard deviation.

8.3 FACTORED PPO EXPERIMENTS

We experiment with Factored PPO on five environments: Bitflip, Multi-Cartpole, Half-Cheetah, Ant,
and Humanoid. We chose these environments to evaluate on both discrete and continuous state-action
spaces. We do not evaluate on Taxi because it has only one set of actions that are not separable by
factored structure of a policy network.

Bitflip & Multi-Cartpole Experiments: We first test using a Factored NN with PPO on the Bitflip
and Multi-Cartpole environments. These have the same setup described in Sections 8.1 and 8.2.

7

Under review as a conference paper at ICLR 2021

For BitFlip, we map the action of flipping a bit to the state of the corresponding bit, the rest of the
state is masked out. For Multi-Cartpole, we map the action of controlling each cartpole with the state
of the corresponding cartpole, masking out the state of other cartpoles.

We show a subset of the results in Figure 5, and the rest are given in Appendix E. For both environ-
ments, Factored PPO outperforms its vanilla implementation with respect to environment reward
over the training period. In terms of sample efficiency, Factored NN achieves the final score of the
Ordinary NN in 46% of the time for BitFlip with 8 bits; in 32% and 22% of the time for 4 and 8
cartpoles respectively.

Robotics Experiments: We also test Factored PPO on three continuous control robotics envi-
ronments: Ant, Half-Cheetah, and Humanoid with a horizon of 1000 steps, as defined in PyBul-
let (Coumans & Bai, 2016)2. In these environments, the agent controls the robot joints, and its goal is
to walk upright.

The state for each of these environments is slightly different, but in general state consists of joint
angle and angular velocity as well as global state such as robot position and contact force with the
ground. The action taken by the agent controls each joint torque. HalfCheetah, Ant and Humanoid
have 6, 8 and 17 joints respectively. The reward given to the agent is positive if the robot is upright
and moving. There is negative reward for using electricity and if the robot falls or tangles its legs.
The Factored NN leverages the structure that the state of each robot joint maps only to the respective
joint actions.

The results are displayed in Figure 6, which shows the training curves for the baseline PPO and
Factored PPO. In terms of sample efficiency, Factored PPO reaches the final episode reward of
baseline PPO in 35%, 61% and 64% of the time for HalfCheetah, Ant and Humanoid respectively. We
observe similar results when we remove the critic in PPO, and report detailed results in Appendix E.

500000 1000000
Timestep

4

5

6

7

Ep
iso

de
 R

ew
ar

d

PPO: BitFlip (8 bits)

PPO
Factored PPO

(a)

0 2000000 4000000
Timestep

25

50

75

100

125

150

175

200

Ep
iso

de
 R

ew
ar

d

PPO: Multi-CartPole (4 cartpoles)

PPO
Factored PPO

(b)

0.0 0.5 1.0
Timestep 1e7

25

50

75

100

125

150

175

Ep
iso

de
 R

ew
ar

d
PPO: Multi-CartPole (8 cartpoles)

PPO
Factored PPO

(c)

Figure 5: PPO with Factored NN vs. Ordinary NN performance on multi BitFlip with 8 bits (a), 4 (b)
and 8 (c) cartpoles. The solid lines show the average over 5 random seeds and the shaded area shows
± 1 standard deviation.

0 1 2
Timestep 1e7

1000

500

0

500

1000

Ep
iso

de
 R

ew
ar

d

PPO: Half-Cheetah

PPO
Factored PPO

(a)

0.0 0.5 1.0 1.5
Timestep 1e7

400

500

600

700

Ep
iso

de
 R

ew
ar

d

PPO: Ant

PPO
Factored PPO

(b)

0 1 2
Timestep 1e7

0

200

400

600

800

1000

Ep
iso

de
 R

ew
ar

d

PPO: Humanoid

PPO
Factored PPO

(c)

Figure 6: PPO with Factored NN vs. Ordinary NN performance on Half Cheetah (a), Ant (b), and
Humanoid (c). The solid lines show the average over 5 random seeds and the shaded area shows ± 1
standard deviation.

2The open source PyBullet environments are slightly different from the MuJoCo counterparts - the converged
episode rewards differ. PyBullet emulates physics accurately, and is as challenging to solve as MuJoCo.

8

Under review as a conference paper at ICLR 2021

9 CONCLUSION AND FUTURE WORK

We demonstrate how to exploit factored structural knowledge in both model-based and model-free
RL. We leverage this factored structure through a Factored Neural Network (Factored NN), which
uses input and output masking to reflect the factored graph. In model-based RL, we show how to use
a Factored NN to learn a state transition model, which can then be integrated into algorithms like
MCTS. In model-free RL, we show how to use a Factored NN to learn a factored Q function which
can be integrated into DQN, and we also show how to use a Factored NN to learn a factored policy
function for use in PPO. Our method can be easily generalized to other model-based and model-free
algorithms with the same idea. We have tested our FactoredRL approach on both continuous and
discrete state-action spaces including bitflip, cartpole, taxi, and robotics environments, which show
improved sample efficiency relative to vanilla algorithms.

The contribution of this work is in tying together factored graphs and deep reinforcement learning,
showing that factored structure can improve the performance of RL algorithms. The theoretical
properties of Factored NN, scalability to high dimensional inputs such as images, and alternative
methods for incorporating factored structure into RL are interesting directions of future work.
Critically, in this work we take as given access to an accurate factored graph, specified manually ex
ante. In many environments, doing so is either time consuming, inaccurate, or outright infeasible.
In future work, we will focus on factored graph discovery in online, RL settings, where the agent’s
actions affect the distribution of data and therefore the quality of the learned graph.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in neural information processing systems, pp. 5048–5058, 2017.

Bharathan Balaji, Jordan Bell-Masterson, Enes Bilgin, Andreas Damianou, Pablo Moreno Garcia,
Arpit Jain, Runfei Luo, Alvaro Maggiar, Balakrishnan Narayanaswamy, and Chun Ye. Orl:
Reinforcement learning benchmarks for online stochastic optimization problems. arXiv preprint
arXiv:1911.10641, 2019.

Jonathan Bassen, Bharathan Balaji, Michael Schaarschmidt, Candace Thille, Jay Painter, Dawn
Zimmaro, Alex Games, Ethan Fast, and John C Mitchell. Reinforcement learning for the adaptive
scheduling of educational activities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pp. 1–12, 2020.

Craig Boutilier, Richard Dearden, Moises Goldszmidt, et al. Exploiting structure in policy construc-
tion. In IJCAI, volume 14, pp. 1104–1113, 1995.

Sandeep Chinchali, Pan Hu, Tianshu Chu, Manu Sharma, Manu Bansal, Rakesh Misra, Marco Pavone,
and Sachin Katti. Cellular network traffic scheduling with deep reinforcement learning. In AAAI,
pp. 766–774, 2018.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. GitHub repository, 2016.

Janos Csirik, David S Johnson, Claire Kenyon, James B Orlin, Peter W Shor, and Richard R Weber.
On the sum-of-squares algorithm for bin packing. Journal of the ACM (JACM), 53(1):1–65, 2006.

Hao Cui and Roni Khardon. Online symbolic gradient-based optimization for factored action mdps.
In IJCAI, pp. 3075–3081, 2016.

Hao Cui, Roni Khardon, Alan Fern, and Prasad Tadepalli. Factored mcts for large scale stochastic
planning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation. Compu-
tational intelligence, 5(2):142–150, 1989.

Francesco Fraternali, Bharathan Balaji, Dhiman Sengupta, Dezhi Hong, and Rajesh K Gupta. Ember:
energy management of batteryless event detection sensors with deep reinforcement learning. In
Proceedings of the 18th Conference on Embedded Networked Sensor Systems, pp. 503–516, 2020.

9

Under review as a conference paper at ICLR 2021

L. Pettersson J. Schneider J. Schulman J. Tang G. Brockman, V. Cheung and W. Zaremba. Openai
gym. 2016.

Florian Geißer, David Speck, and Thomas Keller. Trial-based heuristic tree search for mdps with
factored action spaces.

Ilaria Giannoccaro and Pierpaolo Pontrandolfo. Inventory management in supply chains: a rein-
forcement learning approach. International Journal of Production Economics, 78(2):153–161,
2002.

Joren Gijsbrechts, Robert N Boute, Jan A Van Mieghem, and Dennis Zhang. Can deep reinforcement
learning improve inventory management? performance on dual sourcing, lost sales and multi-
echelon problems. Performance on Dual Sourcing, Lost Sales and Multi-Echelon Problems (July
29, 2019), 2019.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored mdps. In
Advances in neural information processing systems, pp. 1523–1530, 2002.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution algorithms
for factored mdps. Journal of Artificial Intelligence Research, 19:399–468, 2003.

Varun Gupta and Ana Radovanovic. Online stochastic bin packing. arXiv preprint arXiv:1211.2687,
2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pp. 1861–1870, 2018.

Victoria J Hodge, Richard Hawkins, and Rob Alexander. Deep reinforcement learning for drone
navigation using sensor data. Neural Computing and Applications, pp. 1–19, 2020.

Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning framework for the
financial portfolio management problem. arXiv preprint arXiv:1706.10059, 2017.

Michael Kearns and Daphne Koller. Efficient reinforcement learning in factored mdps. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99, pp.
740–747, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232, 2002.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Finnian Lattimore, Tor Lattimore, and Mark D Reid. Causal bandits: Learning good interventions via
causal inference. In Advances in Neural Information Processing Systems, pp. 1181–1189, 2016.

Changjian Li and Krzysztof Czarnecki. Urban driving with multi-objective deep reinforcement learn-
ing. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 359–367. International Foundation for Autonomous Agents and Multiagent Systems,
2019.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning, pp. 3053–3062, 2018.

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph variational
autoencoders for molecule design. In Advances in neural information processing systems, pp.
7795–7804, 2018.

Ricky Loynd, Roland Fernandez, Asli Celikyilmaz, Adith Swaminathan, and Matthew Hausknecht.
Working memory graphs. In ICML 2020, July 2020.

10

Under review as a conference paper at ICLR 2021

Chaochao Lu, Bernhard Schölkopf, and José Miguel Hernández-Lobato. Deconfounding reinforce-
ment learning in observational settings. arXiv preprint arXiv:1812.10576, 2018.

Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang, Ryan
Marcus, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan, et al. Park: An open platform for
learning-augmented computer systems. Advances in Neural Information Processing Systems, 32:
2494–2506, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Afshin Oroojlooyjadid, MohammadReza Nazari, Lawrence Snyder, and Martin Takáč. A deep q-
network for the beer game: A deep reinforcement learning algorithm to solve inventory optimization
problems. arXiv preprint arXiv:1708.05924, 2017.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. In
Advances in Neural Information Processing Systems, pp. 604–612, 2014.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nazneen N Sultana, Hardik Meisheri, Vinita Baniwal, Somjit Nath, Balaraman Ravindran, and
Harshad Khadilkar. Reinforcement learning for multi-product multi-node inventory management
in supply chains. arXiv preprint arXiv:2006.04037, 2020.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle
Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. Starcraft ii: A
new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In International Conference on Learning Representations, 2018.

Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep reinforcement learning for building hvac control. In
Proceedings of the 54th Annual Design Automation Conference 2017, pp. 1–6, 2017.

Jason D Williams and Geoffrey Zweig. End-to-end lstm-based dialog control optimized with
supervised and reinforcement learning. arXiv preprint arXiv:1606.01269, 2016.

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. Hybrid code networks: practical and
efficient end-to-end dialog control with supervised and reinforcement learning. arXiv preprint
arXiv:1702.03274, 2017.

Cathy Wu, Aboudy Kreidieh, Kanaad Parvate, Eugene Vinitsky, and Alexandre M Bayen. Flow:
Architecture and benchmarking for reinforcement learning in traffic control. arXiv preprint
arXiv:1710.05465, pp. 10, 2017.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. arXiv preprint arXiv:1803.07246, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Ziping Xu and Ambuj Tewari. Near-optimal reinforcement learning in factored mdps: Oracle-efficient
algorithms for the non-episodic setting. arXiv preprint arXiv:2002.02302, 2020.

11

Under review as a conference paper at ICLR 2021

Yunan Ye, Hengzhi Pei, Boxin Wang, Pin-Yu Chen, Yada Zhu, Ju Xiao, and Bo Li. Reinforcement-
learning based portfolio management with augmented asset movement prediction states. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1112–1119, 2020.

Liang Yu, Yi Sun, Zhanbo Xu, Chao Shen, Dong Yue, Tao Jiang, and Xiaohong Guan. Multi-agent
deep reinforcement learning for hvac control in commercial buildings. IEEE Transactions on
Smart Grid, 2020.

Junzhe Zhang and Elias Bareinboim. Near-optimal reinforcement learning in dynamic treatment
regimes. In Advances in Neural Information Processing Systems, pp. 13401–13411, 2019.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

Paul Zipkin. Old and new methods for lost-sales inventory systems. Operations Research, 56(5):
1256–1263, 2008.

12

Under review as a conference paper at ICLR 2021

APPENDIX

A EXAMPLES OF FACTORED GRAPHS IN REAL WORLD APPLICATIONS

There are many real world RL applications where we can leverage the knowledge of a factored graph.
Application domains include supply chain (Sultana et al., 2020), portfolio management (Ye et al.,
2020), industrial control (Wei et al., 2017), robotics (Haarnoja et al., 2018), cellular networks (Chin-
chali et al., 2018), online education (Bassen et al., 2020), Internet of Things (Fraternali et al., 2020)
and many more (Wu et al., 2017; Mao et al., 2019). Below we include a few examples of RL
applications where we can employ our factored RL approach.

A.1 OPERATIONS RESEARCH

Many problems in operations research, and especially supply chain, are natural environments for
the use of factored graphs. This is because the historical dominant techniques, Linear and Dynamic
Programming, require us to articulate problem structure in the form of a model to be solved, and this
problem structure can easily be expressed in factored graphs as well. Two canonical problems with
wide-ranging industrial applications can demonstrate this. First, there is the Bin Packing problem
(Csirik et al., 2006; Gupta & Radovanovic, 2012; Balaji et al., 2019), which has industrial counterparts
in truck packing and virtual machine packing, among others. In an RL formulation, the state is given
by the amount filled in each bin, the dimensions of a new item to be packed, and the action is to
place the new item in one of the bins, with a reward function for minimizing waste. The factored
graph structure is key in this problem in the following way: The state of each bin in timestep t+1 is
a function only of the same bin in timestep t, and the action at time t, meaning that RL can ignore
spurious relationships between bin levels in predicting the state transition. Figure 7 depicts the
factored graph.

Binpacking Factored Graph

1st Bin Level
S0t

2nd Bin Level
S1t

Place in 1st Bin

A0t

Place in 2nd Bin

A1t

t t+1

1st Bin Level
S0t+1

2nd Bin Level
S1t+1

Place in 1st Bin

A0t+1

Place in 2nd Bin

A1t+1

Rt+1

R0t+1

R1t+1

New Item
Dimensions

S2t

New Item
Dimensions

S2t+1

Figure 7: Bin Packing Factored Graph

Second, there is the Newsvendor problem (Balaji et al., 2019; Zipkin, 2008; Gijsbrechts et al., 2019),
which has a common industrial counterpart in purchase ordering decisions (e.g. from a retailer to
a vendor). In an RL formulation, the state is given by the economic parameters of the item to be
ordered, the inventory on-hand, and the inventory to-arrive from the vendor in timesteps t+1, t+2, etc.,

13

Under review as a conference paper at ICLR 2021

the action is how much of the item to order, and the reward is a function of inventory on-hand and
customer demand. The factored graph structure in this problem is especially helpful for simplifying
the dynamics of the inventory to-arrive, since this is a linear pipeline from the vendor to the agent, i.e.
the inventory that will arrive at t+1 is the same as inventory in the previous period that will arrive at
t+2. Figure 8 depicts the factored graph.

Inventory
Onhand

S1t

Inventory To
Arrive in t+1

S2t

Quantity to Buy

from Vendor
At

t t+1

Inventory
Onhand

S1t+1

Newsvendor Factored Graph

Customer
Demand

S0t

Inventory To
Arrive in t+2

S3t

Customer
Demand

S0t+1

Inventory To
Arrive in t+1

S2t+1

Inventory To
Arrive in t+2

S3t+1

Rt+1

Figure 8: Newsvendor Factored Graph

A.2 ROBOTICS

In robotics, the state may be high-dimensional, but the subspaces of the state may evolve independently
of others, and only depend on a low dimensional subspace of the previous state. We have included
examples of Ant, Half-Cheetah, and Humanoid in the paper with factor graph given in appendix A.4,
where the transition dynamics of a robot’s arms may be reasonably assumed to be independent of the
transition dynamics of its legs. A similar example, we can use factored graphs for drone control with
deep RL (Hodge et al., 2020).

A.3 INDUSTRIAL CONTROL

It is common in industrial control to have several components that work together to accomplish a
goal. For example in HVAC (short for heating, ventilation and air conditioning) control, the building
is divided into zones each of which is controlled by a set of damper, fan and heating element (Yu
et al., 2020). All the zones need to work in concert with a central air handler unit that supplies cold
air. The state in this problem is the temperature of individual zones, the supply air temperature and
weather conditions. The action is to set the controls of each zone. The reward is to ensure thermal
comfort with minimal energy use. A state-action factored graph can be used inform the RL agent that

14

Under review as a conference paper at ICLR 2021

Drone Control Factored Graph

Motor 1
Speed, PID

Config
S0t

Motor 2
Speed, PID

Config
S1t

Control Speed

of Motor 1
A0t

Control Speed

of Motor 2
A1t

t t+1

Motor 1
Speed, PID

Config
S0t+1

Motor 2
Speed, PID

Config
S1t+1

Control Speed

of Motor 1
A0t+1

Control Speed

of Motor 2
A1t+1

Rt+1

Drone
Heading,
Coords,
Altitude

S2t

Drone
Heading,
Coords,
Altitude
S2t+1

Figure 9: Drone Control Factored Graph

control of each zone is independent of each other. The reward function can also be factorized as the
thermal comfort in each zone is measured independently. Figure 10 depicts the factored graph.

HVAC Factored Graph

Zone 1
Temperature

S0t

Zone 1 HVAC

Control
A0t

t t+1

Zone 1
Temperature

S0t+1

Zone 1 HVAC

Control
A0t+1

R0t+1

Zone 2
Temperature

S0t

Zone 2 HVAC

Control
A0t

Zone 2
Temperature

S0t+1

Zone 2 HVAC

Control
A0t+1

R1t+1

Rt+1

Figure 10: HVAC Control Factored Graph

15

Under review as a conference paper at ICLR 2021

A.4 PORTFOLIO MANAGEMENT

These problems (e.g. Ye et al. (2020)) generally have states of the form [stock of asset A, stock
of asset B, . . .] and action spaces of the form [buy/sell of asset A, buy/sell of asset B, . . .]. In this
scenario we have important prior knowledge about the factor graph, for example we know that the
sub-action of buying/selling asset A will not influence the sub-state stock of asset B. The method
would allow us to incorporate this prior knowledge into our RL Agent and improve performance.
Figure 11 depicts the factored graph.

Stock of
Asset A

S0t

Buy or
Sell Asset A

A0t

t t+1

Stock of
Asset A

S0t+1

Buy or
Sell Asset A

A0t+1

Portfolio Management Factored Graph

R0t+1

Stock of
Asset B

S0t

Buy or
Sell Asset B

A0t

Stock of
Asset B

S0t+1

Buy or
Sell Asset B

A0t+1

R1t+1

Rt+1

Figure 11: Portfolio Management Factored Graph

B FACTORED GRAPHS OF ENVIRONMENTS USED IN EVALUATION

B.1 MULTIPLE-CARTPOLE

Let pit, v
i
t and θit represent the position, velocity and angle for cart i at time t and let Ai

t, R
i
t represent

the force and reward for cart i at time t, then the factored graph for this environment can be resepented
by

B.2 BITFLIP

Define Si
t to be the bit at position i at time t, define Ai

t to be the action of whether to flip the i-th bit
at time t and let Ri

t represents whether the i-th bit equals to the i-th bit of the target bits. Then the
factored graph for this environment can be resepented by

B.3 TAXI

Define ptaxit , pdest.t , ppasst to be the location of the taxi, target destination and passenger at time t
respectively, let amove

t , apickt , adropt to be the action of moving (up, down, left, right), picking up and
dropping off passengers at time t. Then the factored graph for this environment can be resepented by

B.4 ROBOTICS

Define sglobal to be the global features of the robot (e.g., position, contact force) and define sit to be
the state of joint i at time t. The action for each joint is denoted by ait. Here we show only 3 actions

16

Under review as a conference paper at ICLR 2021

[p0t , v
0
t , θ

0
t]

A0
t

[p0t+1, v
0
t+1,

θ0t+1

A0
t+1

R0
t+1

[p1t , v
1
t , θ

1
t]

A1
t

[p1t+1, v
1
t+1,

θ1t+1

A1
t+1

R1
t+1

Rt+1

t
t+ 1

Cartpole 0

Cartpole 1

S0
t

A0
t

S1
t+1

A0
t+1

R0
t+1

S1
t

A1
t

S1
t+1

A1
t+1

R1
t+1

Rt+1

t t+ 1

Bit 0

Bit 1

ppas.t

pdest.t

ptaxi.t

amove
t

apickt

adropt

ppas.t+1

pdest.t+1

ptaxi.t+1

t t+ 1

for simplicity, the graph scales similarly as we add more joints (e.g. 17 joints for the humanoid case).
The factored graph for this environment can be represented by

17

Under review as a conference paper at ICLR 2021

s0t

s1t

s2t

sglobalt

a0t

a1t

a2t

s0t+1

s1t+1

s2t+1

sglobalt+1

t t+ 1

C HYPERPARAMETERS

Below we provide the hyperparameters used for each experiment.

Table 1: Hyperparameters used for Factored MCTS Cart Pole experiments

Hyperparameter Value
MCTS rollouts 50 (for 2 and 4 replicas), 200 (for 8 replicas)

Gamma 0.9
UCB Constant 6.4

Batch size 64
Learning rate 0.0005

Horizon 2
Warm up steps 100
Hidden layers [100, 100]
Hidden layers 1000000

Table 2: Hyperparameters used for Factored MCTS Taxi experiments

Hyperparameter Value
MCTS rollouts 200

Gamma 0.9
UCB Constant 6.4

Batch size 16
Learning rate 0.0005

Horizon 5
Warm up steps 10000
Hidden layers [100, 100]
Hidden layers 1000000

For PPO, we used the Ray RLlib library Liang et al. (2018). We use the default hyper-parameters in
the library unless specified below. We use the hyper-parameter variable names as used in the library
for ease of replicability. If some of the hyper-parameter names are unclear, please refer to the RLlib
documentation for details.

18

Under review as a conference paper at ICLR 2021

Table 3: Hyperparameters used for Factored DQN experiments

Hyperparameter Value (Bitflip / Multi-Cartpole)
Gamma 0.99
Horizon 3n (n: # of bits) / 200

Train batch size 128
Learning rate 0.001
Initial epsilon 0.3
Target epsilon 0.05 / 0.2

Target network update frequency 10 timesteps
Max time steps 20000
Hidden layers [64, 64, 64]

Table 4: Hyperparameters used for Half-Cheetah Factored PPO experiments. We tuned the hyper-
parameters to ensure convergence and improve sample efficiency.

Hyperparameter Value
gamma 0.99
horizon 1000
kl_coeff 1.0

num_sgd_iter 32
sgd_minibatch_size 1024

train_batch_size 16384
Learning rate 0.0003
Hidden layers [256, 256]

GAE True
vf_loss_coeff 0.5

grad_clip 0.5
clip_param 0.2

Table 5: Hyperparameters used for Humanoid Factored PPO experiments.

Hyperparameter Value
gamma 0.995
horizon 1000
kl_coeff 1.0

num_sgd_iter 20
sgd_minibatch_size 1000

train_batch_size 25000
Learning rate 0.0005
Hidden layers [256, 256]

lambda 0.95
clip_param 0.2

GAE True

19

Under review as a conference paper at ICLR 2021

Table 6: Hyperparameters used for Ant Factored PPO experiments.

Hyperparameter Value
gamma 0.995
horizon 1000
kl_coeff 1.0

num_sgd_iter 20
sgd_minibatch_size 8192

train_batch_size 40000
Learning rate 0.0001
Hidden layers [256, 256]

clip_param 0.2
GAE True

observation_filter MeanStdFilter

Table 7: Hyperparameters used for Humanoid Factored PPO experiments.

Hyperparameter Value
gamma 0.995
horizon 1000
kl_coeff 1.0

num_sgd_iter 20
sgd_minibatch_size 1024

train_batch_size 10000
Learning rate 0.0001
Hidden layers [256, 256]

lambda 0.95
clip_param 0.2

GAE True
clip_actions True

normalize_actions True

Table 8: Hyperparameters used for Multi-Cartpole (8 cartpoles) Factored PPO experiments.

Hyperparameter Value
gamma 0.995
horizon 1000
kl_coeff 1.0

num_sgd_iter 5
sgd_minibatch_size 1000

train_batch_size 25000
Learning rate 0.0005

Max episode steps 1000
Hidden layers [256, 256]

GAE True

20

Under review as a conference paper at ICLR 2021

Table 9: Hyperparameters used for rest of the Factored PPO experiments, including robotics experi-
ments which exclude GAE.

Hyperparameter Value
gamma 0.995
horizon 1000
kl_coeff 1.0

num_sgd_iter 20
sgd_minibatch_size 1000

train_batch_size 25000
Learning rate 0.0005

Max episode steps 1000
Hidden layers [256, 256]

21

Under review as a conference paper at ICLR 2021

D ADDITIONAL DQN EXPERIMENTS

We compared Factored DQN with DQN on the BitFlip and Multi-Cartpole environments across
various number of bits and cartpoles. We find that the Factored DQN consistently outperforms DQN
and the performance gap is larger when the environment is harder.

Factored

(a)

Factored

(b)

Factored

(c)

Factored

(d)

Factored

(e)

Factored

(f)

Figure 12: DQN vs Factored DQN performance on Bitflip (a,b,c) and Multi-Cartpole (d,e,f). The
solid lines show the average over 5 random seeds and the shaded area shows ± 1 standard deviation.

22

Under review as a conference paper at ICLR 2021

E ADDITIONAL PPO EXPERIMENTS

We also compared PPO with Factored NN vs. with an ordinary NN on the BitFlip and multi-Cartpole
environments with the results shown below. We find that the Factored NN algorithms perform better
and that the difference increases the more complex the environment is.

Factored

100000 200000 300000
Timestep

2.2

2.4

2.6

2.8

3.0

Ep
iso

de
 R

ew
ar

d

PPO: BitFlip (4 bits)

PPO
Factored PPO

0 1000000 2000000
Timestep

100

120

140

160

180

200

Ep
iso

de
 R

ew
ar

d

PPO: Multi-CartPole (2 cartpoles)

PPO
Factored PPO

Figure 13: PPO with Factored NN vs. NN performance on Bit Flip with 2 (left) and 4 (middle) bits
as well as Multi-CartPole with 2 poles (right). The solid lines show the average over 5 random seeds
and the shaded area shows ± 1 standard deviation.

In addition, we report PPO results when we disable the generalized advantage estimation (GAE) Schul-
man et al. (2015) (Critic) and when we disable the critic altogether (without Critic).

Factored Factored Factored

Figure 14: PPO (without a critic) with Factored NN vs. NN performance on Bit Flip with 2 (left), 4
(middle) and 8 (right) bits. The solid lines show the average over 5 random seeds and the shaded area
shows ± 1 standard deviation.

Factored Factored Factored

Figure 15: PPO (with a critic) with Factored NN vs. NN performance on Bit Flip with 2 (left), 4
(middle) and 8 (right) bits. The solid lines show the average over 5 random seeds and the shaded area
shows ± 1 standard deviation.

23

Under review as a conference paper at ICLR 2021

Factored Factored Factored

Figure 16: PPO (without a critic) with Factored NN vs. NN performance on multi Cart Pole with 2
(left), 4 (middle) and 8 (right) cartpoles. The solid lines show the average over 5 random seeds and
the shaded area shows ± 1 standard deviation.

Factored Factored Factored

Figure 17: PPO (with a critic) with Factored NN vs. NN performance on multi Cart Pole with 2 (left),
4 (middle) and 8 (right) cartpoles. The solid lines show the average over 5 random seeds and the
shaded area shows ± 1 standard deviation.

Factored Factored Factored

Figure 18: PPO with Factored NN vs. NN performance on Half Cheetah (left), Ant (middle), and
Humanoid (right). The solid lines show the average over 5 random seeds and the shaded area shows
± 1 standard deviation.

Factored Factored Factored

Figure 19: PPO with Factored NN vs. NN performance on Half Cheetah (left), Ant (middle), and
Humanoid (right). The solid lines show the average over 5 random seeds and the shaded area shows
± 1 standard deviation.

24

	Introduction
	Related Work
	Terminology
	Factored Neural Network
	Factored MCTS
	Factored DQN
	Factored PPO
	Experiments
	Factored MCTS Experiments
	Factored DQN Experiments
	Factored PPO Experiments

	Conclusion and Future Work
	Examples of Factored Graphs in Real World Applications
	Operations Research
	Robotics
	Industrial Control
	Portfolio Management

	Factored Graphs of Environments Used in Evaluation
	Multiple-Cartpole
	Bitflip
	Taxi
	Robotics

	Hyperparameters
	Additional DQN Experiments
	Additional PPO Experiments

