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ABSTRACT

We formalize and extend existing definitions of backdoor-based watermarks and
adversarial defenses as interactive protocols between two players. The existence of
these schemes is inherently tied to the learning tasks for which they are designed.
Our main result shows that for almost every learning task, at least one of the two –
a watermark or an adversarial defense – exists. The term “almost every” indicates
that we also identify a third, counterintuitive but necessary option, i.e., a scheme we
call a transferable attack. By transferable attack, we refer to an efficient algorithm
computing queries that look indistinguishable from the data distribution and fool
all efficient defenders. To this end, we prove the necessity of a transferable attack
via a construction that uses a cryptographic tool called homomorphic encryption.
Furthermore, we show that any task that satisfies our notion of a transferable
attack implies a cryptographic primitive, thus requiring the underlying task to be
computationally complex. These two facts imply an “equivalence” between the
existence of transferable attacks and cryptography. Finally, we show that the class
of tasks of bounded VC-dimension has an adversarial defense, and a subclass of
them has a watermark.

1 INTRODUCTION

A company invested considerable resources to train a new classifier f . They want to open-source
f but also ensure that if someone uses f , it can be detected in a black-box manner. In other words,
they want to embed a watermark into f .1 Alice, an employee, is in charge of this project. Bob, a
member of an AI Safety team, has a different task. His goal is to make f adversarially robust, i.e.,
to ensure it is hard to find queries that appear unsuspicious but cause f to make mistakes. Alice,
after many unsuccessful approaches, reports to her boss that it might be inherently impossible to
create a black-box watermark in f that cannot be removed. After a similar experience, Bob reports to
his boss that, due to the sheer number of possible modes of attack, he was only able to produce an
ever-growing, ‘ugly’ defense.

One day, after discussing their respective projects, Alice and Bob realized that their projects are
intimately connected. Alice said that her idea was to plant a backdoor in f , creating fA, so she
could later craft queries with a hidden trigger that activates the backdoor, causing fA to misclassify,
while remaining indistinguishable from standard queries. By sending these tailored queries in a
black-box manner to a party suspected of using fA, she can detect whether fA is being used based on
the responses triggered by her backdoor. But Bob realized that his defenses were trying to render
such a situation impossible. One of his ideas for defense was to take f and then “smooth” its outputs
to obtain fB , aiming for robustness against attacks. Bob noticed that this procedure removes some of
the backdoor-based watermarks that Alice came up with. Conversely, Alice noticed that any f with a
watermark that is difficult to remove implies that some models are inherently difficult to make robust.
Alice and Bob realized that their challenges are two sides of the same coin: the impossibility of one
task guarantees the success of the other.

1Note that they want to watermark the model itself, not its outputs.
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1.1 CONTRIBUTIONS

This paper initiates a formal study of the above observation that backdoor-based watermarks and
adversarial defenses span all possible scenarios. By scenarios, we refer to learning tasks that f is
supposed to solve.

Our main contribution is:

We prove that almost every learning task has at least one of the two:
A Watermark or an Adversarial Defense.

To do that, we formalize and extend existing definitions of watermarks and adversarial defenses,
frame Alice and Bob’s dynamic as a formal game, and show that this game is guaranteed to have at
least one winner. Along the way to proving the main result, we identify a potential reason why this
fact was not discovered earlier. There is also a third, counterintuitive but necessary option, i.e., there
are tasks with neither a Watermark nor an Adversarial Defense.

Imagine that Alice plays the following game. The game is played with respect to a specific learning
task L = (D, h), where D is the data distribution and h is the ground truth. Alice sends queries
to a player and receives their responses. She wins if the responses have a lot of errors and if the
player cannot distinguish them from the queries from D. Importantly, whether she wins the game
depends on how much compute and data Alice and the player have. If Alice wins the game against
any player having the same amount of resources as her, then we call Alice’s queries a Transferable
Attack. Intuitively, the harder a query becomes, the easier it is to distinguish it from queries from D.
But this seems to indicate that it is hard to design Transferable Attacks.

However, we provably show:

• An example of a Transferable Attack defined as above. Interestingly, the example uses tools
from the field of cryptography, namely Fully Homomorphic Encryption (FHE) (Gentry,
2009). Notably, a Transferable Attack rules out Watermarks and Adversarial Defenses, thus
constituting the third necessary option.

• That every Transferable Attack implies a certain cryptographic primitive, i.e., access to sam-
ples from the underlying task is enough to build essential parts of encryption systems. Thus,
every task with a Transferable Attack has to be complex in the computational complexity
theory sense.

Finally, we complement the above results with instantiations of Watermarks and Adversarial Defenses:

• We show the existence of an Adversarial Defense for all learning tasks with bounded
Vapnik–Chervonenkis (VC) dimension, thereby ruling out Transferable Attacks in this
regime.

• We give an example of a black-box Watermark for a class of learning tasks with bounded
VC-dimension. Notably, in this case, both a Watermark and an Adversarial Defense exist.

2 RELATED WORK

This paper lies at the intersection of machine learning theory, interactive proof systems, and cryptog-
raphy. We review recent advances and related contributions from these areas that closely align with
our research.

Interactive Proof Systems in Machine Learning. Interactive Proof Systems (Goldwasser & Sipser,
1986) have recently gained considerable attention in machine learning for their ability to formalize and
verify complex interactions between agents, models, or even human participants. A key advancement
in this area is the introduction of Prover-Verifier Games (PVGs) (Anil et al., 2021), which employ a
game-theoretic approach to guide learning agents towards decision-making with verifiable outcomes.
Building on PVGs, Kirchner et al. (2024) enhance this framework to improve the legibility of Large
Language Models (LLMs) outputs, making them more accessible for human evaluation. Similarly,
Wäldchen et al. (2024) apply the prover-verifier setup to offer interpretability guarantees for classifiers.
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Alice verifies
if f was stolen

Bob proves
innocence

x

f

y

(a)

A Watermark is an efficient algo-
rithm that computes a low-error clas-
sifier f and a set of queries x such
that (fast) defenders are unable to
find low-error answers y nor distin-
guish x from the data distribution.

Alice verifies
robustness

Bob proves
defense

x

f

b

(b)

An Adversarial Defense is an effi-
cient algorithm that computes a low-
error classifier f and a detection bit
b, such that (fast) adversaries are un-
able to find queries x, which look
indistinguishable from the data dis-
tribution and where f is incorrect.

Alice verifies
transferability

Bob proves
defendability

x

y

(c)

A Transferable Attack is an effi-
cient algorithm that computes queries
x that look indistinguishable from the
data distribution, and that fool all ef-
ficient defenders.

Figure 1: Schematic overview of the interaction structure, along with short, informal versions of
our definitions of (a) Watermark (Definition 1), (b) Adversarial Defense (Definition 2), and (c)
Transferable Attack (Definition 3), with (c) tied to cryptography (see Section 5).

Extending these concepts, self-proving models Amit et al. (2024) introduce generative models that
not only produce outputs but also generate proof transcripts to validate their correctness. In the
context of AI safety, scalable debate protocols (Condon et al., 1993; Irving et al., 2018; Brown-Cohen
et al., 2023) leverage interactive proof systems to enable complex decision processes to be broken
down into verifiable components, ensuring reliability even under adversarial conditions.

Overall, these developments highlight the emerging role of interactive proof systems in addressing key
aspects of AI Safety, such as interpretability, verifiability, and alignment. While current research pre-
dominantly focuses on applying this framework to improve these safety attributes, our approach takes
an orthogonal direction by examining the feasibility of properties related to adversarial robustness
and backdoor-based watermarks.

Planting Undetectable Backdoors. A key related work is presented by Goldwasser et al. (2022),
which demonstrates how a learner can plant undetectable backdoors in any classifier, allowing hidden
manipulation of the model’s output with minimal perturbation of the input. These backdoors are
activated by specific “triggers”, which are subtle changes to the input that cause the model to
misclassify any input with the trigger applied, while maintaining its expected behavior on regular
inputs. The authors propose two frameworks. The first utilizes digital signature schemes (Gold-
wasser et al., 1985) that make backdoored models indistinguishable from the original model to any
computationally-bounded observer. The second involves Random Fourier Features (RFF) (Rahimi &
Recht, 2007), which ensures undetectability even with full transparency of the model’s weights and
training data.

In a concurrent and independent work, Christiano et al. (2024) introduce a defendability framework
that formalizes the interaction between an attacker planting a backdoor and a defender tasked with
detecting it. The attacker modifies a classifier to alter its behavior on a trigger input while leaving
other inputs unaffected. The defender then attempts to identify this trigger during evaluation, and
if successful with high probability, the function class is considered defendable. The authors show
an equivalence between their notion of defendability (in a computationally unbounded setting) and
Probably Approximately Correct (PAC) learnability, and thus the boundedness of the VC-dimension
of a class. In computationally bounded cases, they propose that efficient defendability serves as an
important intermediate concept between efficient learnability and obfuscation. A major difference
between our work and that of Christiano et al. (2024), is that in their approach, the attacker chooses
the distribution, whereas we keep the distribution fixed. This makes defendability in their model
harder since the attacker has more control. However, in their framework, the backdoor trigger x∗
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is sampled ∼ D, so the attacker does not influence it. In contrast, our model allows the attacker
to choose specific x’s, making defendability easier in this regard. Thus, the definitions are a priori
incomparable. A second major difference is that our main result holds for all learning tasks, while
their contributions hold only for restricted classes. This makes defendability in their model harder
since the attacker has more control. However, in their framework, the backdoor trigger x∗ is sampled
∼ D, so the attacker does not influence it. In contrast, our model allows the attacker to choose
specific x’s, making defendability easier in this regard. Thus, the definitions are a priori incomparable.
However, there are many interesting connections. Computationally unbounded defendability is shown
to be equivalent to PAC learnability, while we, in a similar spirit, show an Adversarial Defense for
all tasks with bounded VC-dimension. They show that efficient PAC learnability implies efficient
defendability, and we show that the same fact implies an efficient Adversarial Defense. Using
cryptographic tools, they show that the class of polynomial-size circuits is not efficiently defendable,
while we use different cryptographic tools to give a Transferable Attack, which rules out a Defense.

Backdoor-Based Watermarks. In black-box settings, where model auditors lack access to internal
parameters, watermarking methods often involve embedding backdoors during training. Techniques
by Adi et al. (2018) and Zhang et al. (2018) use crafted input patterns as triggers linked to specific
outputs, enabling ownership verification by querying the model with these specific inputs. Advanced
methods by Merrer et al. (2017) utilize adversarial examples, which are perturbed inputs that yield
predefined outputs. Further enhancements by Namba & Sakuma (2019) focus on the robustness of
watermarks, ensuring the watermark remains detectable despite model alterations or attacks.

In the domain of Natural Language Processing (NLP), backdoor-based watermarks have been studied
for Pre-trained Language Models (PLMs), as exemplified by works such as (Gu et al., 2022; Peng
et al., 2023) and (Li et al., 2023). These approaches embed backdoors using rare or common
word triggers, ensuring watermark robustness across downstream tasks and resistance to removal
techniques like fine-tuning or pruning. However, it is important to note that these lines of research
are predominantly empirical, with limited theoretical exploration.

Adversarial Robustness. As we emphasize, the study of backdoors is closely related to adversarial
robustness, which focuses on improving model resilience to adversarial inputs. The extensive
literature in this field includes key contributions such as adversarial training (Madry et al., 2018),
which improves robustness by training on adversarial examples, and certified defenses (Raghunathan
et al., 2018), which offer provable guarantees against adversarial attacks by ensuring prediction
stability within specified perturbation bounds. Techniques like randomized smoothing (Cohen
et al., 2019) extend these robustness guarantees. Notably, Goldwasser et al. (2022) show that
some undetectable backdoors can, in fact, be removed by randomized smoothing, highlighting the
intersection of adversarial robustness and backdoor methods.

3 WATERMARKS, ADVERSARIAL DEFENSES AND TRANSFERABLE ATTACKS

In this section, we outline interactive protocols between a verifier and a prover. Each protocol is
designed to address specific tasks such as watermarking, adversarial defense, and transferable attacks.
We first introduce the preliminaries before detailing the properties that each protocol must satisfy.

3.1 PRELIMINARIES

Discriminative Learning Task. For n ∈ N, we define [n] :=
{
0, 1, . . . , n − 1

}
. A learning

task L is a pair (D, h) of a distribution D, supp(D) ⊆ X (the input space), and a ground truth map
h : X → Y ∪ {⊥}, where Y is a finite space of labels and ⊥ represents a situation where h is not
defined. To every f : X → Y , we associate err(f) := Ex∼D[f(x) ̸= h(x)]. We implicitly assume
h does not map to ⊥ on supp(D). This definition of ⊥ is introduced for generality, as it becomes
relevant in adversarial scenarios where samples may lie outside supp(D).
For q ∈ N,x ∈ X q,y ∈ Yq , we define

err(x,y) :=
1

q

∑
i∈[q]

1{h(xi )̸=yi,h(xi) ̸=⊥},

4
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which means that we count (x, y) ∈ X × Y as an error if h is well-defined on x and h(x) ̸= y.

Advantage and Indistinguishability: For an algorithm A (also known as the distinguisher) and two
distributions D0,D1, consider the following game between a sender and the distinguisher:

1. The sender samples a bit b ∼ U({0, 1}) and then draws a random sample x ∼ Db.

2. A receives x and outputs b̂ := A(x) ∈ {0, 1}. A wins if b̂ = b.

We say that δ ∈ (0, 12 ) is the advantage of A for distinguishing D0 from D1 if:
Pb∼U({0,1}),x∼Db

[A(x) = b] = 1
2 + δ. For a class of algorithms, we say that the two distribu-

tions D0 and D1 are δ-indistinguishable if for any algorithm in the class, its advantage is at most
δ.

3.2 DEFINITIONS

In our protocols, Alice (A, verifier) and Bob (B, prover) engage in interactive communication, with
distinct roles depending on the specific task. Each protocol is defined with respect to a learning task
L = (D, h), an error parameter ε ∈

(
0, 12

)
, and time bounds TA and TB. A scheme is successful if the

corresponding algorithm satisfies the desired properties with high probability, and we denote the set
of such algorithms by SCHEME(L, ε, TA, TB), where SCHEME refers to WATERMARK, DEFENSE,
or TRANSFATTACK.

Definition 1 (Watermark, informal).
An algorithm AWATERMARK, running in time TA, implements
a watermarking scheme for the learning task L with er-
ror parameter ϵ > 0, if an interactive protocol in which
AWATERMARK computes a classifier f : X → Y and a sequence
of queries x ∈ X q, and a prover B outputs y = B(f,x) ∈
Yq , satisfies the following properties: Alice

(runs in TA)
Bob

(runs in TB)

x

f

y

Figure 2: Schematic overview of
the interaction between Alice and
Bob in Watermark (Definition 1).

1. Correctness: f has low error, i.e., err(f) ≤ ϵ.
2. Uniqueness: There exists a prover B, running in

time bounded by TA, which provides low-error
answers, such that err(x,y) ≤ 2ϵ.

3. Unremovability: For every prover B running in time TB, it holds that err(x,y) > 2ϵ.

4. Undetectability: For every prover B running in time TB, the advantage of B in distin-
guishing the queries x generated by AWATERMARK from random queries sampled from Dq is
small.

Note that, due to uniqueness, we require that any defender, who did not use f and trained a model
fScratch, must be accepted as a distinct model. This requirement is essential, as it mirrors real-world
scenarios where independent models could have been trained within the given time constraint TA.
Additionally, the property enforces that any successful Watermark must satisfy the condition that
Bob’s time is strictly less than TA, i.e., TB < TA.

Definition 2 (Adversarial Defense, informal).
An algorithm BDEFENSE, running in time TB, implements an
adversarial defense for the learning task L with error param-
eter ϵ > 0, if an interactive protocol in which BDEFENSE

computes a classifier f : X → Y , a verifier A replies
with x = A(f), where x ∈ X q, and BDEFENSE outputs
b = BDEFENSE(f,x) ∈ {0, 1}, satisfies the following proper-
ties:

Alice
(runs in TA)

Bob
(runs in TB)

x

f

b

Figure 3: Schematic overview of
the interaction between Alice and
Bob in Adversarial Defense (Defi-
nition 2).

1. Correctness: f has low error, i.e., err(f) ≤ ϵ.
2. Completeness: When x ∼ Dq , then b = 0.

3. Soundness: For every A running in time TA,
we have err(x, f(x)) ≤ 7ϵ or b = 1.
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The key requirement for a successful defense is the ability to detect when it is being tested. To bypass
the defense, an attacker must provide samples that are both adversarial, causing the classifier to make
mistakes, and indistinguishable from samples drawn from the data distribution D.

Definition 3 (Transferable Attack, informal).
An algorithm ATRANSFATTACK, running in time TA, imple-
ments a transferable attack for the learning task L with er-
ror parameter ϵ > 0, if an interactive protocol in which
ATRANSFATTACK computes x ∈ X q and B outputs y =
B(x) ∈ Yq satisfies the following properties:

Alice
(runs in TA)

Bob
(runs in TB)

x

y

Figure 4: Schematic overview of
the interaction between Alice and
Bob in Adversarial Defense (Defi-
nition 3).

1. Transferability: For every prover B running in
time TA, we have err(x,y) > 2ϵ.

2. Undetectability: For every prover B running in
time TB, the advantage of B in distinguishing
the queries x generated by ATRANSFATTACK from
random queries sampled from Dq is small.

Verifiability of Watermarks. For a watermarking scheme AWATERMARK, if the unremovability
property holds with a stronger guarantee, i.e., much larger than 2ϵ, then AWATERMARK could determine
whether B had stolen f . To achieve this, AWATERMARK runs, after completing its interaction with B,
the procedure guaranteed by uniqueness to obtain y′. It then verifies whether y and y′ differ for
many queries. If this condition is met, AWATERMARK concludes that B had stolen f .2 Alternatively,
if unremovability holds with 2ϵ, as originally defined, the test described above may fail. In this
scenario, we consider an external party overseeing the interaction, potentially with knowledge of
the distribution and h, who can directly compute the necessary errors to make a final decision. This
setup is similar to the use of human judgment oracles in (Brown-Cohen et al., 2023). An interesting
direction for future work would be to explore cases where the parties have access to restricted
versions of error oracles. While this is beyond the scope of this work, we outline potential avenues
for addressing this in Appendix E.

4 MAIN RESULT

We are ready to state an informal version of our main theorem. Please refer to Theorem 5 for the
details and full proof. The key idea is to define a zero-sum game between A and B, where the actions
of each player are the possible algorithms or circuits that can be implemented in the given time bound.
Zero-sum games are not a modeling choice but a proof strategy, as they allow us to analyze the
complementary nature of attacks on watermarks and adversarial defenses with clean mathematical
guarantees. Specifically, the unique value of a zero-sum game eliminates concerns about equilibrium
selection. Notably, this game is finite, but there are exponentially many such actions for each player.
We rely on some key properties of such large zero-sum games (Lipton & Young, 1994b; Lipton et al.,
2003) to argue about our main result. The formal statement and proof is deferred to Appendix D.

Theorem 1 (Main Theorem, informal). For every learning task L and ϵ ∈
(
0, 12

)
, T ∈ N, where a

learner exists that runs in time T and, with high probability, learns f satisfying err(f) ≤ ϵ, at least
one of these three exists:

WATERMARK
(
L, ϵ, T, T 1/

√
log(T )

)
,

DEFENSE
(
L, ϵ, T 1/

√
log(T ), O(T )

)
,

TRANSFATTACK
(
L, ϵ, T, T

)
.

Proof (Sketch). The intuition of the proof relies on the complementary nature of Definitions 1 and 2.
Specifically, every attempt to remove a fixed Watermark can be transformed to a potential Adversarial

2Observe that this test would not work, if there were many valid labels for a given input, i.e., a situation often
encountered in large language models.
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Defense, and vice versa. We define a zero-sum game G between watermarking algorithms A and
algorithms attempting to remove a watermark B. The use of a zero-sum game ensures that the value
of the game is unique, allowing us to focus on the interplay between watermarking and adversarial
defenses without ambiguity about equilibrium selection. The actions of each player are the class
of algorithms that they can run in their respective time bounds, and the payoff is determined by the
probability that the errors and rejections meet specific requirements. According to Nash’s theorem,
there exists a Nash equilibrium for this game, characterized by strategies ANASH and BNASH. This
equilibrium framework simplifies the analysis since Nash equilibria are well-studied and provide
tractable guarantees for two-player zero-sum games.

A careful analysis shows that depending on the value of the game, we have a Watermark, an
Adversarial Defense, or a Transferable Attack. In the first case, where the expected payoff at the
Nash equilibrium is greater than a threshold, we show there is an Adversarial Defense. We define
BDEFENSE as follows. BDEFENSE first learns a low-error classifier f , then sends f to the party that is
attacking the Defense, then receives queries x, and simulates (y, b) = BNASH(f,x). The bit b = 1 if
BNASH thinks it is attacked. Finally, BDEFENSE replies with b′ = 1 if b = 1, and if b = 0 it replies with
b′ = 1 if the fraction of queries on which f(x) and y differ is high. Careful analysis shows BDEFENSE

is an Adversarial Defense. In the second case, where the expected payoff at the Nash equilibrium is
below the threshold, we have either a Watermark or a Transferable Attack. The reason that there are
two cases is due to the details of the definition of G. Full proof can be found in Appendix D.

Our Definitions 1, 2, 3 and Theorem 1 are phrased with respect to a fixed learning task, while
VC-theory takes an alternate viewpoint that tries to show guarantees on the risk (mostly sample
complexity-based) for any distribution. However, for DNNs and other modern architectures, moving
beyond classical VC-theory is necessary (Zhang et al., 2021; Nagarajan & Kolter, 2019). In our
case, due to the requirements of our schemes (e.g., unremovability and undetectability), it may not be
feasible to achieve a formalization that applies to all distributions, as in classical VC-theory. We end
this section with the following observation.
Fact 1 (Transferable Attacks are disjoint from Watermarks and Adversarial Defenses). For ev-
ery learning task L and ϵ ∈

(
0, 12

)
, T ∈ N, if TRANSFATTACK

(
L, ϵ, T, T

)
exists, then neither

WATERMARK (L, ϵ, T, o(T )) nor DEFENSE (L, ϵ, T, T ) exists.

This result follows straightforwardly from rephrasing the Definitions 1 to 3. Indeed, a Transferable
Attack is a strong notion of an attack, so it rules out a Defense. Secondly, a Transferable Attack
against defenders running in time T rules out a Watermark, since it is in conflict with uniqueness.

5 TRANSFERABLE ATTACKS ARE “EQUIVALENT” TO CRYPTOGRAPHY

In this section, we show that tasks with Transferable Attacks exist. To construct such examples, we
use cryptographic tools. But importantly, the fact that we use cryptography is not coincidental. As a
second result of this section, we show that every learning task with a Transferable Attack implies a
certain cryptographic primitive. One can interpret this as showing that Transferable Attacks exist only
for complex learning tasks, in the sense of computational complexity theory. The two results together
justify, why we can view Transferable Attacks and the existence of cryptography as “equivalent”.

5.1 A CRYPTOGRAPHY-BASED TASK WITH A TRANSFERABLE ATTACK

Next, we give an example of a cryptography-based learning task with a Transferable Attack. The
following is an informal statement of the first theorem of this section. The formal version (Theorem 7)
is given in Appendix G.
Theorem 2 (Transferable Attack for a Cryptography-based Learning Task, informal). There exists a
learning task Lcrypto with a distribution D and hypothesis classH, and A such that for all ϵ if h is
sampled fromH then

A ∈ TRANSFATTACK

(
(D, h) , ϵ, TA ≈

1

ϵ
, TB =

1

ϵ2

)
.

Moreover, the learning task is such that for every ϵ, ≈ 1
ϵ time (and ≈ 1

ϵ samples) is enough, and ≈ 1
ϵ

samples (and in particular time) is necessary to learn a classifier of error ϵ.
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Notably, the parameters are set so that A (the party computing x) has less time than B (the party
computing y), specifically ≈ 1/ϵ compared to 1/ϵ2. Furthermore, because of the encryption scheme,
this is a setting where a single input maps to multiple outputs, which deviates away from the setting
of classification learning tasks considered in Theorem 1.
Proof (Sketch). We start with a definition of a learning task that will be later augmented with a
cryptographic tool to produce Lcrypto.

Lines on Circle Learning Task L◦ (Figure 5). Consider a binary classification task L◦, where
the input space is defined as X = {x ∈ R2 | ∥x∥2 = 1}, representing points on the unit circle. The
hypothesis class is given by H = {hw | w ∈ R2, ∥w∥2 = 1}, where each hypothesis is defined as
hw(x) := sgn(⟨w, x⟩). The data distribution D is uniform on X , i.e., D = U(X ). Additionally, let
Bw(α) := {x ∈ X | |∡(x,w)| ≤ α} denote the set of points within an angular distance up to α to w.

Fully Homomorphic Encryption (FHE) (Appendix F). FHE (Gentry, 2009) allows for computa-
tion on encrypted data without decrypting it. An FHE scheme allows to encrypt x via an efficient
procedure ex = FHE.ENC(x), so that later, for any algorithm C, it is possible to run C on x ho-
momorphically. More concretely, it is possible to produce an encryption of the result of running C
on x, i.e., eC,x := FHE.EVAL(C, ex). Finally, there is a procedure FHE.DEC that, when given a
secret key sk, can decrypt eC,x, i.e., y := FHE.DEC(sk, eC,x), where y is the result of running C on
x. Crucially, encryptions of any two messages are indistinguishable for all efficient adversaries.

Cryptography-based Learning Task Lcrypto (Figure 5). Lcrypto is derived from Lines on Circle
Learning Task L◦. Let w ∈ X . We define the distribution as an equal mixture of two parts D =
1
2DCLEAR + 1

2DENC. The first part, i.e.,DCLEAR, is equal to x ∼ U(X ) with label y = hw(x). The sec-
ond part, i.e.,DENC, is equal to x′ ∼ U(X ), y′ = hw(x

′), (x, y) = (FHE.ENC(x′), FHE.ENC(y′)),
which can be thought of as DCLEAR under an encryption. See Figure 5 for a visual representation.

h

hA

≈ ϵ

Learning Task Lcrypto with distributionD = 1
2DCLEAR + 1

2DENC :

1. x ∼ U(X ), b ∼ Ber(1/2), where U(X ) is the uniform distri-
bution on the circle

2. If b = 0:
Return (x, h(x))

3. Else:
Return (FHE.ENC(x), FHE.ENC(h(x)))

Alice
(runs in TA ≈ 1/ϵ)

Bob
(runs in TB = 1/ϵ2)

x

y

Figure 5: The left part of the figure represents a Lines on Circle Learning Task L◦ with a ground truth
function denoted by h. On the right, we define a cryptography-augmented learning task derived from
L◦. In its distribution, a “clear” or an “encrypted” sample is observed with equal probability. Given
their respective times, both A and B are able to learn a low-error classifier hA, hB respectively, by
learning only on the clear samples. A is able to compute a Transferable Attack by computing an
encryption of a point close to the decision boundary of her classifier hA.

Transferable Attack (Figure 5). Consider the following attack strategy A. First, A collects
O(1/ϵ) samples from the distribution DCLEAR and learns a classifier hAw′ ∈ H that is consistent with
these samples. Since the VC-dimension ofH is 2, the hypothesis hAw′ has error at most ϵ with high
probability.3 Next, A samples a point xBND uniformly at random from a region close to the decision

3A can also evaluate hA
w′ homomorphically (i.e., run FHE.EVAL) on FHE.ENC(x) to obtain FHE.ENC(y)

of error ϵ on DENC also. This means that A is able to learn a low-error classifier on D.
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boundary of hAw′ , i.e., xBND ∼ U(Bw′(ϵ)). Finally, with equal probability, A sets as an attack x
either FHE.ENC(xBND) or a uniformly random point DCLEAR = U(X ). We claim that x4 satisfies the
properties of a Transferable Attack.

Since hAw′ has low error with high probability, xBND is a uniformly random point from an arc
containing the boundary of hw (see Figure 5). The running time of B is upper-bounded by 1/ϵ2,
meaning it can only learn a classifier with error ⪆ 10ϵ2 (see Lemma 3 for details). B’s can only learn
(Lemma 3) a classifier of error, ⪆ 10ϵ2. Taking these two facts together, we expect B to misclassify
x′ with probability ≈ 1

2 ·
10ϵ2

ϵ = 5ϵ > 2ϵ, where the factor 1
2 takes into account that we send an

encrypted sample only half of the time. This implies transferability.

Note that x is encrypted with the same probability as in the original distribution because we send
FHE.ENC(xBND) and a uniformly random x ∼ DCLEAR = U(X ) with equal probability. Crucially,
FHE.ENC(xBND) is indistinguishable, for efficient adversaries, from FHE.ENC(x) for any other
x ∈ X . This follows from the security of the FHE scheme. Consequently, undetectability holds.

Note 1. We want to emphasize that it is crucial (for our construction) that the distribution has both
an encrypted (DENC) and an unencrypted part (DCLEAR). If there was no DCLEAR, then A would not
be able to generate FHE.ENC(xBND). The properties of the FHE would allow A to learn a low-error
classifier hAw′ but only under the FHE encryption. Although A can produce encryptions of points
of her choice, she knows w′ only under encryption, so she does not know which point to encrypt! If
there was no DENC, then everything would happen in the clear and so B would be able to distinguish
x’s that appear too close to the boundary.

5.2 TASKS WITH TRANSFERABLE ATTACKS IMPLY CRYPTOGRAPHY

In this section, we show that a Transferable Attack for any task implies a cryptographic primitive.

5.2.1 EFID PAIRS

In cryptography, an EFID pair (Goldreich, 1990) is a pair of distributions D0,D1, that are Efficiently
samplable, statistically Far, and computationally Indistinguishable. By a seminal result (Goldreich,
1990), we know that the existence of EFID pairs is equivalent to the existence of Pseudorandom
Generators (PRG). A PRG is an efficient algorithm which stretches short seeds into longer output
sequences such that the output distribution on a uniformly chosen seed is computationally indistin-
guishable from a uniform distribution. Together with what is known about PRGs, this implies that
EFID pairs can be used for tasks in cryptography, including encryption and key generation (Goldreich,
1990).

For two time bounds T, T ′ we call a pair of distributions (D0,D1) a (T, T ′) EFID pair if (i)D0,D1 are
samplable in time T , (ii) D0,D1 are statistically far, (iii) D0,D1 are indistinguishable for algorithms
running in time T ′.

5.2.2 TASKS WITH TRANSFERABLE ATTACKS IMPLY EFID PAIRS

The second result of this section shows that any task with a Transferable Attack implies the existence
of a type of EFID pair. The proof is deferred to Appendix H.
Theorem 3 (Tasks with Transferable Attacks imply EFID pairs, informal). For every ϵ, T, T ′ ∈
N, T ≤ T ′, every learning task L if there exists A ∈ TRANSFATTACK

(
L, ϵ, T, T ′

)
and there exists

a learner running in time T that, with high probability, learns f such that err(f) ≤ ϵ, then there
exists a (T, T ′) EFID pair.

6 TASKS WITH WATERMARKS AND ADVERSARIAL DEFENSES

In this section, we give examples of tasks with Watermarks and Adversarial Defenses. In the first
example, we show that hypothesis classes of bounded VC-dimension have Adversarial Defenses
against all attackers. The second example is a learning task of bounded VC-dimension that has

4In this proof sketch, we have q = 1, i.e., A sends only one x to B. This is not true for the formal scheme.
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Alice

B
o
b

Bob

A
lic
e

Alice

B
o
b

Figure 6: Overview of the taxonomy of learning tasks, illustrating the presence of Watermarks,
Adversarial Defenses, and Transferable Attacks for learning tasks of bounded VC dimension. The
axes represent the time bound for the parties in the corresponding schemes. The blue regions depict
positive results, the red negative, and the gray regimes of parameters which are not of interest. See
Lemma 1 and 2 for details about blue regions. The curved line represents a potential application of
Theorem 1, which says that at least one of the three points should be blue.

a Watermark, which is secure against fast adversaries. These lemmas demonstrate why the upper
bounds on the running time of A and B are crucial parameters. Lemmas are proven in the appendix.

The first lemma relies heavily on a result from Goldwasser et al. (2020). The authors give a defense
against arbitrary examples in a transductive model with rejections. In contrast, our model does not
allow rejections, but we do require indistinguishability. Careful analysis leads to the following result.
Lemma 1 (Adversarial Defense for bounded VC-Dimension, informal). Let d ∈ N and H be a
binary hypothesis class on input space X of VC-dimension bounded by d. There exists an algorithm
B such that for every ϵ ∈

(
0, 18

)
, D over X and h ∈ H we have

B ∈ DEFENSE

(
(D, h), ϵ, TA =∞, TB = poly

(
d

ϵ

))
.

Note that, by the PAC learning bound, this is a setting of parameters, where B has enough time to
learn a classifier of error ϵ. By slightly abusing the notation, we write TA = ∞, meaning that the
defense is secure against all adversaries regardless of their running time.
Lemma 2 (Watermark for bounded VC-Dimension against fast Adversaries, informal). For every
d ∈ N there exists a distribution D and a binary hypothesis classH of VC-dimension d there exists
A such that for any ϵ ∈

(
10000
d2 , 18

)
if h ∈ H is taken uniformly at random fromH then

A ∈ WATERMARK

(
(D, h), ϵ, TA = O

(
d

ϵ

)
, TB =

d

100

)
.

Note that the setting of parameters is such that A can learn (with high probability) a classifier of error
ϵ, but B is not able to learn a low-error classifier in its allotted time t. This contrasts with Lemma 5,
where B has enough time to learn. This is the regime of interest for Watermarks, where the scheme is
expected to be secure against fast B’s.

7 IMPLICATIONS FOR AI SAFETY

In contrast to years of adversarial robustness research (Carlini, 2024), we conjecture that for discrimi-
native learning tasks encountered in safety-critical regimes, an Adversarial Defense will exist in the
future. Three pieces of evidence support this contrarian belief. (i) Theorem 1, (ii) in the security-
critical scenarios for Watermarks, the security should hold even against strong defenders, i.e., TB
approaching TA. In this regime, we believe an analog of Theorem 8 can be shown for Watermarks,
given the similarity between the unremovability (Definition 1) and transferability (Definition 3)
property. (iii) Transferable Attacks imply cryptography (Theorem 8), which we suspect is rare in
practical scenarios.

10
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A ADDITIONAL METHODS IN RELATED WORK

This section provides an overview of the main areas relevant to our work: Watermarking techniques,
adversarial defenses, and transferable attacks on Deep Neural Networks (DNNs). Each subsection
outlines important contributions and the current state of research in these areas, offering additional
context and details beyond those covered in the main body

A.1 WATERMARKING

Watermarking techniques are crucial for protecting the intellectual property of machine learning
models. These techniques can be broadly categorized based on the type of model they target. We
review watermarking schemes for both discriminative and generative models, with a primary focus
on discriminative models, as our work builds upon these methods.

A.1.1 WATERMARKING SCHEMES FOR DISCRIMINATIVE MODELS

Discriminative models, which are designed to categorize input data into predefined classes, have
been a major focus of watermarking research. The key approaches in this domain can be divided into
black-box and white-box approaches.

Black-Box Setting. In the black-box setting, the model owner does not have access to the internal
parameters or architecture of the model, but can query the model to observe its outputs. This setting
has seen the development of several watermarking techniques, primarily through backdoor-like
methods.

Adi et al. (2018) and Zhang et al. (2018) proposed frameworks that embed watermarks using
specifically crafted input data (e.g., unique patterns) with predefined outcomes. These watermarks
can be verified by feeding these special inputs into the model and checking for the expected outputs,
thereby confirming ownership.

Another significant contribution in this domain is by Merrer et al. (2017), who introduced a method
that employs adversarial examples to embed the backdoor. Adversarial examples are perturbed inputs
that cause the model to produce specific outputs, thus serving as a watermark.

Namba & Sakuma (2019) further enhanced the robustness of black-box watermarking schemes by
developing techniques that withstand various model modifications and attacks. These methods ensure
that the watermark remains intact and detectable even when the model undergoes transformations.

Provable undetectability of backdoors was achieved in the context of classification tasks by Gold-
wasser et al. (2022). Unfortunately, it is known ((Goldwasser et al., 2022)) that some undetectable
watermarks are easily removed by simple mechanisms similar to randomized smoothing (Cohen et al.,
2019).

The popularity of black-box watermarking is due to its practical applicability, as it does not require
access to the model’s internal workings. This makes it suitable for scenarios where models are
deployed as APIs or services. Our framework builds upon these black-box watermarking techniques.

White-Box Setting. In contrast, the white-box setting assumes that the model owner has full access
to the model’s parameters and architecture, allowing for direct examination to confirm ownership.
The initial methodologies for embedding watermarks into the weights of DNNs were introduced
by Uchida et al. (2017) and Nagai et al. (2018). Uchida et al. (2017) presented a framework for
embedding watermarks into the model weights, which can be examined to confirm ownership.

An advancement in white-box watermarking is provided by Darvish Rouhani et al. (2019), who
developed a technique to embed an N -bit (N ≥ 1) watermark in DNNs. This technique is both data-
and model-dependent, meaning the watermark is activated only when specific data inputs are fed into
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the model. For revealing the watermark, activations from intermediate layers are necessary in the
case of white-box access, whereas only the final layer’s output is needed for black-box scenarios.

Our work does not focus on white-box watermarking techniques. Instead, we concentrate on exploring
the interaction between backdoor-like watermarking techniques, adversarial defenses, and transferable
attacks. Overall, watermarking through backdooring has become more popular due to its applicability
in the black-box setting.

A.1.2 WATERMARKING SCHEMES FOR GENERATIVE MODELS

Watermarking techniques for generative models have attracted considerable attention with the advent
of Large Language Models (LLMs) and other advanced generative models. This increased interest
has led to a surge in research and diverse contributions in this area.

Backdoor-Based Watermarking for Pre-trained Language Models. In the domain of Natural
Language Processing (NLP), backdoor-based watermarks have been increasingly studied for Pre-
trained Language Models (PLMs), as exemplified by works such as (Gu et al., 2022) and (Li et al.,
2023). These methods leverage rare or common word triggers to embed watermarks, ensuring that
they remain robust across downstream tasks and resilient to removal techniques like fine-tuning or
pruning. While these approaches have demonstrated promising results in practical applications, they
are primarily empirical, with theoretical aspects of watermarking and robustness requiring further
exploration.

Watermarking the Output of LLMs. Watermarking the generated text of LLMs is critical for
mitigating potential harms. Significant contributions in this domain include (Kirchenbauer et al.,
2023), who proposed a watermarking framework that embeds signals into generated text that are
invisible to humans but detectable algorithmically. This method promotes the use of a randomized set
of “green” tokens during text generation, and detects the watermark without access to the language
model API or parameters.

Kuditipudi et al. (2023) introduced robust distortion-free watermarks for language models. Their
method ensures that the watermark does not distort the generated text, providing robustness against
various text manipulations while maintaining the quality of the output.

Zhao et al. (2023a) presented a provable, robust watermarking technique for AI-generated text. This
approach offers strong theoretical guarantees for the robustness of the watermark, making it resilient
against attempts to remove or alter it without significantly changing the generated text.

However, Zhang et al. (2023) highlighted vulnerabilities in these watermarking schemes. Their
work demonstrates that current watermarking techniques can be effectively broken, raising important
considerations for the future development of robust and secure watermarking methods for LLMs.

Image Generation Models. Various watermarking techniques have been developed for image
generation models to address ethical and legal concerns. Fernandez et al. (2023) introduced a method
combining image watermarking with Latent Diffusion Models, embedding invisible watermarks in
generated images for future detection. This approach is robust against modifications such as cropping.
Wen et al. (2023b) proposed Tree-Ring Watermarking, which embeds a pattern into the initial noise
vector during sampling, making the watermark robust to transformations like convolutions and
rotations. Jiang et al. (2023) highlighted vulnerabilities in watermarking schemes, showing that
human-imperceptible perturbations can evade watermark detection while maintaining visual quality.
Zhao et al. (2023c) provided a comprehensive analysis of watermarking techniques for Diffusion
Models, offering a recipe for efficiently watermarking models like Stable Diffusion, either through
training from scratch or fine-tuning. Additionally, Zhao et al. (2023b) demonstrated that invisible
watermarks are vulnerable to regeneration attacks that remove watermarks by adding random noise
and reconstructing the image, suggesting a shift towards using semantically similar watermarks for
better resilience.

Audio Generation Models. Watermarking techniques for audio generators have been developed
for robustness against various attacks. Erfani et al. (2017) introduced a spikegram-based method,
embedding watermarks in high-amplitude kernels, robust against MP3 compression and other attacks
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while preserving quality. Liu et al. (2023) proposed DeAR, a deep-learning-based approach resistant
to audio re-recording (AR) distortions.

A.2 ADVERSARIAL DEFENSE

The field of adversarial robustness has a rich and extensive literature (Szegedy et al., 2014; Gilmer
et al., 2018; Raghunathan et al., 2018; Wong & Kolter, 2018; Engstrom et al., 2017). Adversarial
defenses are essential for ensuring the security and reliability of machine learning models against
adversarial attacks that aim to deceive them with carefully crafted inputs.

For discriminative models, there has been significant progress in developing adversarial defenses.
Techniques such as adversarial training (Madry et al., 2018), which involves training the model on
adversarial examples, have shown promise in improving robustness. Certified defenses (Raghunathan
et al., 2018) provide provable guarantees against adversarial attacks, ensuring that the model’s
predictions remain unchanged within a specified perturbation bound. Additionally, methods like
randomized smoothing (Cohen et al., 2019) offer robustness guarantees.

A particularly relevant work for our study is (Goldwasser et al., 2020), which considers a different
model for generating adversarial examples. This approach has significant implications for the
robustness of watermarking techniques in the face of adversarial attacks.

In the context of Large Language Models (LLMs), there is a rapidly growing body of research focused
on identifying adversarial examples (Zou et al., 2023; Carlini et al., 2023; Wen et al., 2023a). This
research is closely related to the notion of jailbreaking (Andriushchenko et al., 2024; Chao et al.,
2023; Mehrotra et al., 2024; Wei et al., 2023), which involves manipulating models to bypass their
intended constraints and protections.

A.3 TRANSFERABLE ATTACKS AND TRANSDUCTIVE LEARNING

Transferable attacks refer to adversarial examples that are effective across multiple models. Moreover,
transductive learning has been explored as a means to enhance adversarial robustness, and since our
Definition 3 captures some notion of transductive learning in the context of Transferable Attacks, we
highlight significant contributions in these areas.

Adversarial Robustness via Transductive Learning. Transductive learning (Gammerman et al.,
1998) has shown promise in improving the robustness of models by utilizing both training and test
data during the learning process. This approach aims to make models more resilient to adversarial
perturbations encountered at test time.

One significant contribution is by Goldwasser et al. (2020), which explores learning guarantees in the
presence of arbitrary adversarial test examples, providing a foundational framework for transductive
robustness. Another notable study by Chen et al. (2021) formalizes transductive robustness and
proposes a bilevel attack objective to challenge transductive defenses, presenting both theoretical and
empirical support for transductive learning’s utility.

Additionally, Montasser et al. (2022) introduce a transductive learning model that adapts to pertur-
bation complexity, achieving a robust error rate proportional to the VC dimension. The method by
Wu et al. (2020) improves robustness by dynamically adjusting the network during runtime to mask
gradients and cleanse non-robust features, validated through experimental results. Lastly, Tramer
et al. (2020) critique the standard of adaptive attacks, demonstrating the need for specific tuning to
effectively evaluate and enhance adversarial defenses.

Transferable Attacks on DNNs. Transferable attacks exploit the vulnerability of models to adver-
sarial examples that generalize across different models. For discriminative models, significant works
include Liu et al. (2016), which investigates the transferability of adversarial examples and their
effectiveness in black-box attack scenarios, (Xie et al., 2018), who propose input diversity techniques
to enhance the transferability of adversarial examples across different models, and (Dong et al.,
2019), which presents translation-invariant attacks to evade defenses and improve the effectiveness of
transferable adversarial examples.
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In the context of generative models, including large language models (LLMs) and other advanced
generative architectures, relevant research is rapidly emerging, focusing on the transferability of
adversarial attacks. This area is crucial as it aims to understand and mitigate the risks associated with
adversarial examples in these powerful models. Notably, Zou et al. (2023) explored universal and
transferable adversarial attacks on aligned language models, highlighting the potential vulnerabilities
and the need for robust defenses in these systems.

Undetectability Unremovability Uniqueness

Goldwasser et al. (2022) " robust to some
smoothing attacks "(E)

C
la

ss
ifi

ca
tio

n

Adi et al. (2018); Zhang et al. (2018) "(E) % "(E)

Merrer et al. (2017) "(E) robust to fine tunning
attacks "(E)

Christ et al. (2023); Kuditipudi et al. (2023) " % "
Zhao et al. (2023a) % robust to edit

distance attacks only "

L
L

M
s

Tiffany Hsu (2023) "(E) % "

Kirchenbauer et al. (2023) % % "

Table 1: Overview of properties across various watermarking schemes. The symbol " denotes
properties with formal guarantees or where proof is plausible, whereas % indicates the absence
of such guarantees. Entries marked with "(E) represent properties observed empirically; these
lack formal proof in the corresponding literature, suggesting that deriving such proof may present
substantial challenges. The LLM watermarking schemes refer to those applied to text generated by
these models.

B PRELIMINARIES

Learning. For a set Ω, we write ∆(Ω) to denote the set of all probability measures defined on the
measurable space (Ω,F), where F is some fixed σ-algebra that is implicitly understood. We denote
by X the domain and by Y the label space. A model is a function f : X → Y .
Definition 4 (Learning task). For a fixed X ,Y a learning task is an element of ∆

(
∆(X )× YX

)
.

We will often use L to denote a learning task.

For a distributionD ∈ ∆(X ) and a ground truth h : X → Y , we define an error of f as errD,h(f) :=
Ex∼D[f(x) ̸= h(x)], where the index of err will often be understood implicitly and omitted in
notation. For D ∈ ∆(X ), h : X → Y we define an example oracle Ex(D, h) as an oracle that
samples x ∼ D and returns (x, h(x)).

Communication. When Ex(D, h) generates (x, h(x)) it is encoded as a bit-string of some length.
For a message spaceM a representation class over (X ,Y) is a mapping R :M→ YX .

Computation. Let U be a universal Turing Machine.

B.1 DISCUSSION

Definition 4 models a learner’s prior knowledge of the learning task as a distribution over pairs (D, h),
i.e. over pairs of distributions over the domain X and ground truths h : X → Y . It can be viewed as
a generalization of, for instance, PAC-Bayes, where priors are distributions over hypothesis spaces.
For us prior knowledge (what we call a learning task) is a distribution over not only hypotheses but
also distributions themselves. Note that we consider a realizable scenario as there is a fixed ground
truth. We could have considered a more general case, i.e. agnostic learning, where a learning task
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would be an element of ∆(∆(X × Y)). We chose the former for simplicity and we believe most of
the results would generalize to the agnostic case.

When Ex(D, h) generates (x, h(x)) it is encoded is some form, e.g. x ∈ {0, 1}n, but importantly n
is not a parameter that the learner can control, i.e. the encoding is fixed. This precludes thinking of n
as a security parameter that the watermarking party can increase to boost the security.

C FORMAL DEFINITIONS

Definition 5 (Succinct Circuits). LetC be a circuit of widthw and depth d. We will denote size(C) :=
w · d. We say that C is succinctly representable if there exists a circuit of size 100 log(size(C))5

that accepts as input i ∈ [w], j, j1, j2 ∈ [d], g ∈ [O(1)], where g represents a gate from a universal
constant-sized gate set, and returns 0 or 1, depending if g appears in location (i, j) in C and if it is
connected to gates in locations (i− 1, j1) and (i− 1, j2).

We are ready to state formal versions of our main definitions.

Definition 6 (Watermark). Let L = (D, h) be a learning task. Let T, t, q ∈ N, ϵ ∈
(
0, 12

)
, l, c, s ∈

(0, 1), s < c, where t bounds the running time of B, and T the running time of A, q the number of
queries, ϵ the risk level, c probability that uniqueness holds, s probability that unremovability and
undetectability holds, l the learning probability.

We say that a succinctly representable circuit AWATERMARK of size T implements a watermarking
scheme for L, denoted by AWATERMARK ∈ WATERMARK(L, ϵ, q, T, t, l, c, s), if an interactive protocol
in which AWATERMARK computes (f,x), f : X → Y,x ∈ X q, and B outputs y = B(f,x),y ∈ Yq

satisfies the following

• Correctness (f has low error). With probability at least l

err(f) ≤ ϵ.

• Uniqueness (models trained from scratch give low-error answers). There exists a succinctly
representable circuit B of size T such that with probability at least c

err(x,y) ≤ 2ϵ.

• Unremovability (fast B gives high-error answers). For every succinctly representable
circuit B of size at most t we have that with probability at most s

err(x,y) ≤ 2ϵ.

• Undetectability (fast B cannot detect that they are tested). Distributions Dq and x ∼
AWATERMARK are s

2 -indistinguishable for a class of succinctly representable circuits B of size
at most t.

Definition 7 (Adversarial Defense). Let L = (D, h) be a learning task. Let T, t, q ∈ N, ϵ ∈(
0, 12

)
, l, c, s ∈ (0, 1), s < c, where t bounds the running time of A, and T the running time of B,

q the number of queries, ϵ the error parameter, c the completeness, s the soundness, l the learning
probability.

We say that a succinctly representable circuit BDEFENSE of size T implements an adversarial defense
for L, denoted by BDEFENSE ∈ DEFENSE(L, ϵ, q, t, T, l, c, s), if an interactive protocol in which
BDEFENSE computes f : X → Y , A replies with x = A(f),x ∈ X q, and BDEFENSE outputs
b = BDEFENSE(f,x), b ∈ {0, 1} satisfies the following.

• Correctness (f has low error). With probability at least l

err(f) ≤ ϵ.
5Constant 100 is chosen arbitrarily. One often considers circuits representable by polylog-sized circuits.

But for us, the constants play a role and this is why we formulate Definition 5.
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• Completeness (if x came from the right distribution BDEFENSE does not signal it is attacked).
When x ∼ Dq then with probability at least c

b = 0.

• Soundness (fast attacks creating x on which f makes mistakes are detected). For every
succinctly representable circuit A of size at most t we have that with probability at most s,

err(x, f(x)) > 7ϵ and b = 0.

Definition 8 (Transferable Attack). Let L = (D, h) be a learning task. Let T, t, q ∈ N, ϵ ∈(
0, 12

)
, c, s ∈ (0, 1), where T bounds the running time of A and B, q the number of queries, ϵ the

error parameter, c the transferability probability, s the undetectability probability.

We say that a succinctly representable circuit A running in time T is a transferable adversarial attack,
denoted by ATRANSFATTACK ∈ TRANSFATTACK(L, ϵ, q, T, t, c, s), if an interactive protocol in which
ATRANSFATTACK computes x ∈ X q , and B outputs y = B(x),y ∈ Yq satisfies the following.

• Transferability (fast provers return high error answers). For every succinctly representable
circuit B of size at most t we have that with probability at least c

err(x,y) > 2ϵ.

• Undetectability (fast provers cannot detect that they are tested). Distributions x ∼ Dq and
x := ATRANSFATTACK are s

2 -indistinguishable for a class of succinctly representable circuits
B of size at most t.

D MAIN THEOREM

Before proving our main theorem we recall a result from Lipton & Young (1994a) about simple
strategies for large zero-sum games.

Game theory. A two-player zero-sum game is specified by a payoff matrix G. G is an r × c matrix.
MIN, the row player, chooses a probability distribution p1 over the rows. MAX, the column player,
chooses a probability distribution p2 over the columns. A row i and a column j are drawn from
p1 and p2 and MIN pays Gij to MAX. MIN tries to minimize the expected payment; MAX tries to
maximize it.

By the Min-Max Theorem, there exist optimal strategies for both MIN and MAX. Optimal means that
playing first and revealing one’s mixed strategy is not a disadvantage. Such a pair of strategies is also
known as a Nash equilibrium. The expected payoff when both players play optimally is known as the
value of the game and is denoted by V(G).
We will use the following theorem from Lipton & Young (1994a), which says that optimal strategies
can be approximated by uniform distributions over sets of pure strategies of size O(log(c)).
Theorem 4 (Lipton & Young (1994a)). Let G be an r × c payoff matrix for a two-player zero-sum
game. For any η ∈ (0, 1) and k ≥ log(c)

2η2 there exists a multiset of pure strategies for the MIN (row
player) of size k such that a mixed strategy p1 that samples uniformly from this multiset satisfies

max
j

∑
i

p1(i)Gij ≤ V(G) + η(Gmax − Gmin),

where Gmax,Gmin denote the maximum and minimum entry of G respectively. The symmetric result
holds for the MAX player.

Succinct Representations. Before we prove the main theorem we give a short discussion about
why we consider succinctly representable circuits. Additionally, we require that the algorithms A
and B in all the schemes to be succinctly representable, meaning their code should be much smaller
than their running time. This requirement forbids a trivial way to circumvent learning by hard-coding
ground-truth classifier in the description of the Watermark or Adversarial Defense algorithms.6

6It is known in certain prover-verifier games to verify classification, described by Anil et al. (2021), this
situation leads to undesirable equilibria, which is dubbed as the “trivial verifier” failure mode.
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Additionally, the succinct representation of algorithms is also in accordance with how learning takes
place in practice, for instance, consider DNNs and learning algorithms for those DNNs. The code
representing gradient descent algorithms is almost always much shorter than the time required for
the optimization of weights. For instance, a provable neural network model that learns succinct
algorithms is described by Goel et al. (2022).

We are ready to prove our main theorem.
Theorem 5. For every learning task L = (D, h); and ϵ ∈ (0, 12 ), T, q ∈ N, such that there exists a

succinctly representable circuit of size T
1

210
√

log(T ) that learns L up to error ϵ with probability 1− 1
48 ,

at least one of

WATERMARK

(
L, ϵ, q, T, T

1

210
√

log(T ) , l =
10

24
, c =

21

24
, s =

19

24

)
,

DEFENSE

(
L, ϵ, q, T

1

210
√

log(T ) , 2T, l = 1− 1

48
, c =

13

24
, s =

11

24

)
,

TRANSFATTACK

(
L, ϵ, q, T, T, c = 3

24
, s =

19

24

)
exists.

Proof of Theorem 5. Let L =
(
D, h

)
be a learning task. Let T, q, C ∈ N, ϵ ∈

(
0, 12

)
.

Let CandidateW be a set of T
1

210
√

log(T ) -sized succinctly representable circuits computing (f,x),

where f : X → Y . Similarly, let CandidateD be a set of T
1

210
√

log(T ) -sized succinctly representable
circuits accepting as input (f,x) and outputting (y, b), where y ∈ Yq, b ∈ {0, 1}. We interpret
CandidateW as candidate algorithms for a watermark, and CandidateD as candidate algorithms for
attacks on watermarks.

Define a zero-sum game G between (A,B) ∈ CandidateW × CandidateD. The payoff is given by

G(A,B) =
1

2
P(f,x):=A,(y,b):=B

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b = 1

]
+

1

2
Pf :=A,x∼Dq,(y,b):=B

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b = 0

)]
,

where A tries to minimize and B maximize the payoff.

Applying Theorem 4 to G with η = 2−5 we get two probability distributions, p over a multiset of
pure strategies in CandidateW and r over a multiset of pure strategies in CandidateD that lead to a
2−5-approximate Nash equilibrium.

The size k of the multisets is bounded

k ≤ 26 log (|CandidateW|)

≤ 26 log

2
100 log

(
T

1

210
√

log(T )

) Because of the number of possible succinct circuits

≤ 213 log

(
T

1

210
√

log(T )

)
≤ 23

√
log (T ). (1)

Next, observe that the mixed strategy corresponding to the distribution p can be represented by a
succinct circuit of size

k · 100 log
(
T

1

210
√

log(T )

)
≤ k

23

√
log(T ), (2)

because we can create a circuit that is a collection of k circuits corresponding to the multiset of p,

where each one is of size 100 log

(
T

1

210
√

log(T )

)
. Combining equation 1 and equation 2 we get that
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the size of the circuit succinctly representing the strategy p is bounded by

k

23

√
log(T )

≤ 23
√

log (T ) · 1
23

√
log(T )

≤ log(T ).

This implies that p can be implemented by a T -sized succinctly representable circuit. The same hold
for r. Let’s call the strategy corresponding to p, ANash, and the strategy corresponding to r, BNash.

Consider cases:

Case G(ANASH,BNASH) ≥ 19
24 . Define BDEFENSE to work as follows:

1. Simulate f := L, where L is a succinctly representable circuit of size T
1

210
√

log(T ) , such that

P
[
err(f) ≤ ϵ

]
≥ 1− 1

48
.

2. Send f to A.

3. Receive x from A.

4. Simulate (y, b) := BNASH(f,x).

5. Return b′ = 1 if b = 1 or d(f(x),y) > 3ϵq and b′ = 0 otherwise,

where d(·, ·) is the Hamming distance. Note that BDEFENSE runs in time 2T and not T because it first
simulates L and then simulates BNASH.

We claim that

BDEFENSE ∈ DEFENSE

(
L, ϵ, q, T

1

210
√

log(T ) , 2T, l = 1− 1

48
, c =

13

24
, s =

11

24

)
. (3)

Assume towards contradiction that completeness or soundness of BDEFENSE as defined in Definition 7
does not hold.

If completeness of BDEFENSE does not hold, then

Px∼Dq

[
b′ = 0

]
<

13

24
. (4)

Let us compute the payoff of A, which first runs f := L and sets x ∼ Dq, in the game G, when
playing against BNASH

G(A,BNASH)

=
1

2
P(f,x):=A

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=A,
x∼Dq

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]
≤ δ + 1

2
Pf :=L,x∼Dq

[
err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=L,x∼Dq

[
err(x,y) ≤ 2ϵ and b′ = 0

]
Def. of A,BDEFENSE, P

[
err(f) ≤ ϵ

]
≥ 47

48

<
1

48
+

1

2
+

13
24

2
By equation 4

=
38

48
≤ G(ANASH,BNASH),  
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where the contradiction is with the properties of Nash equilibria.

Assume that A breaks the soundness of BDEFENSE, which translates to

Px:=A(f)

[
err(x, f(x)) > 7ϵ and b = 0 and d(f(x),y)) > 3ϵq

]
>

11

24
. (5)

Let A′ first simulate f := L, then runs x := A(f), and returns (f,x). We have
G(A′,BNASH)

=
1

2
P(f,x):=A′

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=A′,x∼Dq

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]
=

1

2
Pf :=L,x=A(f)

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
Pf :=L,x∼Dq

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]
By def. of A′

<
1

2
+

1− 11
24

2
By equation 5

=
37

48
≤ G(ANASH,BNASH),  

where the contradiction is with the properties of Nash equilibria. Thus equation 3 holds.

Case G(ANASH,BNASH) <
19
24 . Consider B that returns (f(x), b) for a uniformly random b. We

have

G(ANASH,B) ≥
(
1− Pf :=ANASH

[
err(f) ≤ ϵ

])
+ Pf :=ANash

[
err(f) ≤ ϵ

]
· 1
2
,

because when x ∼ Dq and err(f) ≤ ϵ the probability that err(x,y) ≤ 2ϵ and b = 0 is 1
2 , and

similarly when x := ANASH then the probability that b = 1 is equal 1
2 . The assumption that

G(ANash,B) < 19
24 and properties of Nash equilibria imply that Pf :=ANash [err(f) ≤ ϵ] ≥ 10

24 . This
implies that correctness holds for ANash with l = 10

24 .

Next, assume towards contradiction that unremovability of ANASH does not hold, i.e., there is B
running in time t such that P

[
err(x,y) ≤ 2ϵ

]
> 19

24 . Consider B′ that on input (f,x) returns
(B(f,x), 0). Then by definition of G, G(ANASH,B

′) > 19
24 , which is a contradiction  .

Next, assume towards contradiction that undetectability of ANASH does not hold, i.e., there exists B
such that it distinguishes x ∼ Dq from x := ANASH with probability higher than 19

24 . Consider B′

that on input (f,x) returns (f(x),B(f,x)).7 Then by definition of G, G(ANASH,B
′) > 19

24 , which is
a contradiction  

There are two further subcases. If ANASH satisfies uniqueness then

ANASH ∈ WATERMARK

(
L, ϵ, q, T, T

1

210
√

log(T ) , l =
10

24
, c =

21

24
, s =

19

24

)
.

If ANASH does not satisfy uniqueness, then, by definition, every succinctly representable circuit B of
size T satisfies err(x,y) ≤ 2ϵ with probability at most 21

24 . Consider the following A. It computes
(f,x) := ANash , ignores f and sends x to B. By the assumption that uniqueness is not satisfied
for ANASH we have that transferability of Definition 3 holds for A with c = 3

24 . Note that B in the
transferable attack does not receive f but it makes it no easier for it to satisfy the properties. Note
that undetectability still holds with the same parameter. Thus

ANASH ∈ TRANSFATTACK

(
L, ϵ, q, T, T, c = 3

24
, s =

19

24

)
.

7Formally B receives as input (f,x) and not only x.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E BEYOND CLASSIFICATION

Inspired by Theorem 2, we conjecture a possibility of generalizing our results to generative learning
tasks. Instead of a ground truth function, one could consider a ground truth quality oracle Q, which
measures the quality of every input and output pair. This model introduces new phenomena not
present in the case of classification. For example, the task of generation, i.e., producing a high-quality
output y on input x, is decoupled from the task of verification, i.e., evaluating the quality of y as
output for x. By decoupled, we mean that there is no clear formal reduction from one task to the
other. Conversely, for classification, where the space of possible outputs is small, the two tasks are
equivalent. Without going into details, this decoupling is the reason why the proof of Theorem 1 does
not automatically transfer to the generative case.

This decoupling introduces new complexities, but it also suggests that considering new definitions
may be beneficial. For example, because generation and verification are equivalent for classification
tasks, we allowed neither A nor B access to h, as it would trivialize the definitions. However, a
modification of the Definition 6 (Watermark), where access to Q is given to B could be investigated
in the generative case. Interestingly, such a setting was considered in (Zhang et al., 2023), where
access to Q was crucial for mounting a provable attack on “all” strong watermarks. As we alluded to
earlier, Theorem 2 can be seen as an example of a task, where generation is easy but verification is
hard – the opposite to what Zhang et al. (2023) posits.

We hope that careful formalizations of the interaction and capabilities of all parties might give
insights into not only the schemes considered in this work, but also problems like weak-to-strong
generalization (Burns et al., 2024) or scalable oversight (Brown-Cohen et al., 2023).

F FULLY HOMOMORPHIC ENCRYPTION (FHE)

We include a definition of fully homomorphic encryption based on the definition from Goldwasser
et al. (2013). The notion of fully homomorphic encryption was first proposed by Rivest, Adleman and
Dertouzos Rivest et al. (1978) in 1978. The first fully homomorphic encryption scheme was proposed
in a breakthrough work by Gentry in 2009 Gentry (2009). A history and recent developments on fully
homomorphic encryption is surveyed in (Vaikuntanathan, 2011).

F.1 PRELIMINARIES

We say that a function f is negligible in an input parameter λ, if for all d > 0, there exists K such
that for all λ > K, f(λ) < λ−d. For brevity, we write: for all sufficiently large λ, f(λ) = negl(λ).
We say that a function f is polynomial in an input parameter λ, if there exists a polynomial p such
that for all λ, f(λ) ≤ p(λ). We write f(λ) = poly(λ). A similar definition holds for polylog(λ). For
two polynomials p, q, we say p ≤ q if for every λ ∈ N, p(λ) ≤ q(λ).
When saying that a Turing machine A is p.p.t. we mean that A is a non-uniform probabilistic
polynomial-time machine.

F.2 DEFINITIONS

Definition 9 (Goldwasser et al. (2013)). A homomorphic (public-key) encryption scheme FHE is a
quadruple of polynomial time algorithms (FHE.KEYGEN, FHE.ENC, FHE.DEC, FHE.EVAL) as
follows:

• FHE.KEYGEN(1λ) is a probabilistic algorithm that takes as input the security parameter 1λ
and outputs a public key pk and a secret key sk.

• FHE.ENC(pk, x ∈ {0, 1}) is a probabilistic algorithm that takes as input the public key pk
and an input bit x and outputs a ciphertext ψ.

• FHE.DEC(sk, ψ) is a deterministic algorithm that takes as input the secret key sk and a
ciphertext ψ and outputs a message x∗ ∈ {0, 1}.
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• FHE.EVAL(pk, C, ψ1, ψ2, . . . , ψn) is a deterministic algorithm that takes as input the public
key pk, some circuit C that takes n bits as input and outputs one bit, as well as n ciphertexts
ψ1, . . . , ψn. It outputs a ciphertext ψC .

Compactness: For all security parameters λ, there exists a polynomial p(·) such that for all input
sizes n, for all x1, . . . , xn, for all C, the output length of FHE.EVAL is at most p(n) bits long.
Definition 10 (C-homomorphism, Goldwasser et al. (2013)). Let C = {Cn}n∈N be a class of
boolean circuits, where Cn is a set of boolean circuits taking n bits as input. A scheme FHE is
C-homomorphic if for every polynomial n(·), for every sufficiently large security parameter λ, for
every circuit C ∈ Cn, and for every input bit sequence x1, . . . , xn, where n = n(λ),

P

 (pk, sk)← FHE.KEYGEN(1λ);
ψi ← FHE.ENC(pk, xi) for i = 1 . . . n;
ψ ← FHE.EVAL(pk,C, ψ1, . . . , ψn) :

FHE.DEC(sk, ψ) ̸= C(x1, . . . , xn)

 = negl(λ),

where the probability is over the coin tosses of FHE.KEYGEN and FHE.ENC.
Definition 11 (Fully homomorphic encryption). A scheme FHE is fully homomorphic if it is
homomorphic for the class of all arithmetic circuits over GF(2).
Definition 12 (Leveled fully homomorphic encryption). A leveled fully homomorphic encryption
scheme is a homomorphic scheme where FHE.KEYGEN receives an additional input 1d and the
resulting scheme is homomorphic for all depth-d arithmetic circuits over GF(2).
Definition 13 (IND-CPA security). A scheme FHE is IND-CPA secure if for any p.p.t. adversary A,∣∣∣ P [(pk, sk)← FHE.KEYGEN(1λ) : A(pk, FHE.ENC(pk, 0)) = 1

]
+

− P
[
(pk, sk)← FHE.KEYGEN(1λ) : A(pk, FHE.ENC(pk, 1)) = 1

] ∣∣∣ = negl(λ).

We now state the result of Brakerski, Gentry, and Vaikuntanathan (Brakerski et al., 2012) that shows
a leveled fully homomorphic encryption scheme based on a standard assumption in cryptography
called Learning with Errors (Regev, 2005):
Theorem 6 (Fully Homomorphic Encryption, definition from Goldwasser et al. (2013)). Assume
that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate shortest
vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor in the
worst case. Then, for every n and every polynomial d = d(n), there is an IND-CPA secure d-
leveled fully homomorphic encryption scheme where encrypting n bits produces ciphertexts of length
poly(n, λ, d1/ϵ), the size of the circuit for homomorphic evaluation of a function f is size(Cf ) ·
poly(n, λ, d1/ϵ) and its depth is depth(Cf ) · poly(log n, log d).

G TRANSFERABLE ATTACKS EXIST

Learning Theory Preliminaries. For the next lemma, we will consider a slight generalization of
learning tasks to the case where there are many valid outputs for a given input. This can be understood
as the case of generative tasks. We call a function h : X × Y → {0, 1} an error oracle for a learning
task (D, h) if the error of f : X → Y is defined as

err(f) := Ex∼D[h(x, f(x))],

where the randomness of expectation includes the potential randomness of f . We assume that all
parties have access to samples (x, y) ∈ X × Y , where x ∼ D and y ∈ Y is some y such that
h(x, y) = 0.

The following learning task will be crucial for our construction.
Definition 14 (Lines on a Circle Learning Task L◦). The input space is X = {x ∈ R2 | ∥x∥2 = 1},
and the output space Y = {−1,+1}. The hypothesis class isH = {hw | w ∈ R2, ∥w∥2 = 1}, where
hw(x) := sgn(⟨w, x⟩). Let D = U(X ) and L = (D,H). Note thatH has VC-dimension equal to 2
so L is learnable to error ϵ with O( 1ϵ ) samples.

Moreover, define Bw(α) := {x ∈ X | |∡(x,w)| ≤ α}.
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Lemma 3 (Learning lower bound for L◦). Let L be a learning algorithm for L◦ (Definition 14) that
uses K samples and returns a classifier f . Then

Pw∼U(X ),f←L

[
Px∼U(X )[f(x) ̸= hw(x)] ≤

1

2K

]
≤ 3

100
.

Proof. Consider the following algorithm A. It first simulates L on K samples to compute f . Next, it
performs a smoothing of f , i.e., computes

fη(x) :=

{
+1, if Px′∼U(Bx(2πη))[f(x

′) = +1] > Px′∼U(Bx(2πη))[f(x
′) = −1]

−1, otherwise.

Note that if err(f) ≤ η for a ground truth hw then for every x ∈ X\Bx(2πη) we have fη(x) = hw(x).
This implies that A can be adapted to an algorithm that with probability 1 finds w′ such that
|∡(w,w′)| ≤ err(f).

Assuming towards contradiction that the statement of the lemma does not hold it means that there is
an algorithm using K samples that with probability 3

100 locates w up to angle 1
2K .

Consider any algorithm A using K samples. Probability that A does not see any sample in Bw(2πη)
is at least

(1− 4η)
K ≥

(
(1− 4η)

1
4η

)4ηK
≥
(

1

2e

)4ηK

,

which is bigger than 1− 3
100 if we set η = 1

2K . But note that if there is no sample in Bw(2πη) then
A cannot locate w up to η with certainty. This proves the lemma.

Lemma 4 (Boosting for L◦). Let η, ν ∈ (0, 14 ), L be a learning algorithm for (D,H) that uses K
samples and outputs f : X → {−1,+1} such that with probability δ

Pw∼U(X ),x∼U(Bw(2πη))[f(x) ̸= hw(x)] ≤ ν. (6)

Then there exists a learning algorithm L′ that uses max
(
K, 9η

)
samples such that with probability

δ − 1
1000 returns f ′ such that

Pw∼U(X ),x∼U(X )[f
′(x) ̸= hw(x)] ≤ 4ην.

Proof. Let L′ first draws max
(
K, 9η

)
samples Q and defines g : X → {−1,+1,⊥} as, g maps to

−1 the smallest continuous interval containing all samples from Q with label −1. Similarly g maps
to +1 the smallest continuous interval containing all samples from Q with label +1. The intervals are
disjoined by construction. Unmapped points are mapped to ⊥. Next, L′ simulates L with K samples
and gets a classifier f that with probability δ satisfies the assumption of the lemma. Finally, it returns

f ′(x) :=

{
g(x), if g(x) ̸=⊥
f(x), otherwise.

Consider 4 arcs defined as the 2 arcs constituting Bw(2πη) divided into 2 parts each by the line
{x ∈ R2 | ⟨w, x⟩ = 0}. Let E be the event that some of these intervals do not contain a sample from
Q. Observe that

P[E] ≤ 4(1− η)
9
η ≤ 1

1000
.

By the union bound with probability δ − 1
1000 , f satisfies equation 6 and E does not happen. By

definition of f ′ this gives the statement of the lemma.

Theorem 7 (Transferable Attack for a Cryptography based Learning Task). There exists a polynomial
p such that for every polynomial r ≥ p8 and for every sufficiently large security parameter λ ∈ N
there exists a family of distributions Dλ = {Dk

λ}k, hypothesis class of error oracles Hλ = {hkλ}k,
distribution DL over k such that the following conditions are satisfied.

8This is only a formal requirement so that the interval (1/r(λ), 1/p(λ)) is non-empty.
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1. There exists A such that for all ϵ ∈
(

1
r(λ) ,

1
p(λ)

)
if k ∼ DL then

A ∈ TRANSFATTACK
( (
Dk

λ, h
k
λ

)
, ϵ, q =

16

ϵ
, T =

103

ϵ1.3
, t =

1

ϵ2
, c = 1− 1

10
, s = negl(λ)

)
.

2. There exists a learner L such that for every ϵ ∈
(

1
r(λ) ,

1
p(λ)

)
, with probability 1− 1

10 over
the choice of k and the internal randomness of L, L returns a classifier of error at most ϵ.
Additionally, L runs in time 103

ϵ1.3 and uses 900
ϵ samples.

3. For every ϵ ∈
(

1
r(λ) ,

1
p(λ)

)
, every learner L using at most 1

ϵ samples (and in particular
time) the probability over the choice of k and the internal randomness of L that it returns a
classifier of error at most ϵ is smaller than 1

10 .

Next, we give a formal proof.

Proof. The learning task is based on L◦ from Definition 14.

Setting of Parameters for FHE. Let FHE be a fully homomorphic encryption scheme from
Theorem 6. We will use the scheme for constant leveled circuits d = O(1). Let s(n, λ) be the
polynomial bounding the size of the encryption of inputs of length n with λ security as well as
bounding size of the circuit for holomorphic evaluation, which is guaranteed to exist by Theorem 6.
Let β ∈ (0, 1) and p be a polynomial such that

s(nβ , λ, d) ≤ (n · p(λ))0.1, (7)

which exist because s is a polynomial. Let λ ∈ N and n := p1/β(λ)9 for the length of inputs in the
FHE scheme. Observe

s(n, λ, d)) ≤ (p(λ) · p(λ))0.1 By equation 7

≤ 1

ϵ0.2
By ϵ ∈

(
1

r(λ)
,

1

p(λ)

)
. (8)

Learning Task. We will omit λ from indexes of D,D and h for simplicity of notation. Let
D = {D(pk,sk)}(pk,sk),H = {h(pk,sk,w)}(pk,sk,w) indexed by valid public/secret key pairs of FHE and
w ∈ X , with X as in Definition 14. Let DL over (pk,sk, w) be equal to FHE.KEYGEN(1λ)×U(X ).
For a valid (pk,sk) pair we define D(pk,sk) as the result of the following process: x ∼ D = U(X ),
with probability 1

2 return (0, x, pk) and with probability 1
2 return (1, FHE.ENC(pk, x), pk), where

the first element of the triple describes if the x is encrypted or not. x is represented as a number
∈ (0, 1) using n bits.10

For a valid (pk,sk) pair and w ∈ X we define h(pk,sk,w)((b, x, pk), y) as a result of the following
process: if b = 0 return 1hw(x)=y , otherwise let xDEC ← FHE.DEC(sk, x), yDEC ← FHE.DEC(sk, y)
and if xDEC, yDEC ̸=⊥ (decryption is succesful) return 1hw(xDEC)=yDEC

and return 1 otherwise.

Note 2 (Ω( 1ϵ )-sample learning lower bound.). Note, that by construction any learner usingK samples
for learning task {D(pk,sk)}(pk,sk), {h(pk,sk,w)}(pk,sk,w) can be transformed (potentially computationally
inefficiently) into a learner using K samples for the task from Defnition 14 that returns a classifier of
at most the same error. This together with a lower bound for learning from Lemma 3 proves point 3
of the lemma.

9Note that this setting allows to represent points on X up to 2−p1/β(λ) precision and this precision is better
than 1

r(λ)
for every polynomial r for sufficiently large λ. This implies that this precision is enough to allow for

learning up to error ϵ, because of the setting ϵ ≥ 1
q(λ)

.
10Note that the space over which D(pk,sk) is defined on is not X .
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Algorithm 1 TRANSFATTACK(Dk
λ,Hλ, ϵ, λ)

1: Input: Oracle access to a distribution Dk
λ for some Dk

λ ∈ Dλ, the hypothesis classHλ = {hkλ}k,
error level ϵ ∈ (0, 1), and the security parameter λ.

2: N := 900/ϵ, q := 16/ϵ
3: Q = {((bi, xi, pk), yi)}i∈[N ] ∼ (Dk

λ)
N ▷ N i.i.d. samples from Dk

λ

4: QCLEAR = {((b, x, pk), y) ∈ Q : b = 0} ▷ QCLEAR ⊆ Q of unencrypted x’s
5: fw′(·) := sgn(⟨w′, ·⟩)← a line consistent with samples from QCLEAR ▷ fw′ : X → {−1,+1}
6: {x′i}i∈[q] ∼ U(X q)

7: S ∼ U(2[q]) ▷ S ⊆ [q] a uniformly random subset
8: EBND; = ∅
9: for i ∈ [q − |S|] do

10: xBND ∼ U(Bw′(2π(ϵ+ ϵ
100 ))) ▷ xBND is close to the decision boundary of fw′

11: EBND := EBND ∪ {FHE.ENC(pk, xBND)}
12: end for
13: x := {(0, x′i, pk) | i ∈ [q] \ S} ∪ {(1, x′, pk) | x′ ∈ EBND}

14: Return x

Definition of A (Algorithm 1). A draws N samples Q = {((bi, xi, pk), yi)}i∈[N ] for N := 900
ϵ .

Next, A chooses a subset QCLEAR ⊆ Q of samples for which bi = 0. It trains a classifier fw′(·) :=
sgn(⟨w′, ·⟩) on QCLEAR by returning any fw′ consistent with QCLEAR. This can be done in time

N · n ≤ 900

ϵ
· p1/β(λ) ≤ 900

ϵ1.1
(9)

by keeping track of the smallest interval containing all samples in QCLEAR labeled with +1 and then
returning any fw′ consistent with this interval.

Note 3 (O( 1
ϵ1.3 )-time learning upper bound.). First note that A learns well, i.e., with probability at

least 1− 2
(
1− ϵ

100

) 900
ϵ ≥ 1− 1

1000 we have that

|∡(w,w′)| ≤ 2πϵ

100
(10)

Moreover, fw′(x) can be implemented by a circuit Cfw′ that compares x with the endpoints of the
interval. This can be done by a constant leveled circuit. Moreover Cfw′ can be evaluated with
FHE.EVAL in time

size(Cfw′ )s(n, λ, d) ≤ 10n · s(n, λ, d) ≤ 10p1/β(λ)s(n, λ, d) ≤ 10

ϵ0.3
,

where the last inequality follows from equation 8. This implies that A can, in time T , return a
classifier of error ≤ ϵ for (D(pk,sk), h(pk,sk,w)). This proves point 2. of the lemma.

Next, A prepares x as follows. It samples q = 16
ϵ points {x′i}i∈[q] from X uniformly at random. It

chooses a uniformly random subset S ⊆ [q]. Next, A generates q − |S| inputs using the following
process: xBND ∼ U(Bw′(2π(ϵ + ϵ

100 ))) (xBND is close to the decision boundary of fw′), return
FHE.ENC(pk, xBND). Call the set of q − |S| points EBND. A defines:

x := {(0, x′i, pk) | i ∈ [q] \ S} ∪ {(1, x′, pk) | x′ ∈ EBND}.

The running time of this phase is dominated by evaluations of FHE.EVAL, which takes

q · s(n, λ, d) ≤ 16

ϵ
· 1

ϵ0.2
≤ 16

ϵ1.2
, (11)

where the first inequality follows from equation 8. Taking the sum of equation 9 and equation 11 we
get that the running time of A is smaller than the required T = 103/ϵ1.3.
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A constitutes a Transferable Attack. Now, consider B that runs in time t = 1
ϵ2 . By the assumption

t ≤ r(λ), which implies that the security guarantees of FHE hold for B.

We first claim that x is indistinguishable from D(pk,sk) for B. Observe that by construction the
distribution of ratio of encrypted and not encrypted x’s in x is identical to that of D(pk,sk). Moreover,
the distribution of unencrypted x’s is identical to that of D(pk,sk) by construction. Finally, by the IND-
CPA security of FHE and the fact that the running time of B is bounded by q(λ) for some polynomial
q we have that FHE.ENC(pk, xBND) is distinguishable from x ∼ X , FHE.ENC(pk, x) with advantage
at most negl(λ). Thus undetectability holds with near perfect soundness s = 1

2 + negl(λ).

Next, we claim that B can’t return low-error answers on x.

Assume towards contradiction that with probability 5
100

Pw∼U(X ),x∼U(Bw(2πϵ))[f(x) ̸= hw(x)] ≤ 10ϵ. (12)

We can apply Lemma 4 to get that there exists a learner using t+ 9
ϵ samples that with probability 4

100
returns f ′ such that

Pw∼U(X ),x∼U(X )[f
′(x) ̸= hw(x)] ≤ 40ϵ2. (13)

Applying Lemma 3 to equation 13 we know that

40ϵ2 ≥ 1

2(t+ 9
ϵ )
,

which implies

t ≥ 10

ϵ2
,

which is a contradiction with the assumed running time of B. Thus equation 12 does not hold and in
consequence using equation 10 we have that with probability 1− 6

100

Pw∼U(X ),x∼U(Bw′ (2π(ϵ+ ϵ
10 ))

[f(x) ̸= hw(x)] ≥
10

14
· 10ϵ ≥ 7ϵ, (14)

where crucially x is sampled from U(Bw′) and not U(Bw). By Fact 2 we know that |S| ≥ q
3 with

probability at least

1− 2e−
q
72 = 1− 2e−

1
8ϵ ≥ 1− 1

1000
.

Another application of the Chernoff bound and the union bound we get from equation 14 that with
probability at least 1− 1

10 we have that err(x,y) is larger than 2ϵ by the setting of q = 16
ϵ .

Note 4. We want to emphasize that it is crucial (for our construction) that the distribution has both
an encrypted and an unencrypted part.

As mentioned before, if there was no DCLEAR then A would see only samples of the form

(FHE.ENC(x), FHE.ENC(y))

and would not know which of them lie close to the boundary of hw, and so it would not be able to
choose tricky samples. A would be able to learn a low-error classifier, but only under the encryption.
More concretely, A would be able to homomorphically evaluate a circuit that, given a training set
and a test point, learns a good classifier and classifies the test point with it. However, it would not be
able to, with high probability, generate FHE.ENC(x), for x close to the boundary as it would not
know (in the clear) where the decision boundary is.

If there was noDENC then everything would happen in the clear and so B would be able to distinguish
x’s that appear too close to the boundary.

Fact 2 (Chernoff-Hoeffding). Let X1, . . . , Xk be independent Bernoulli variables with parameter p.
Then for every 0 < ϵ < 1

P

[∣∣∣∣∣1k
k∑

i=1

Xi − p

∣∣∣∣∣ > ϵ

]
≤ 2e−

ϵ2k
2
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and

P

[
1

k

k∑
i=1

Xi ≤ (1− ϵ)p

]
≤ e−

ϵ2kp
2 .

Also for every δ > 0

P

[
1

k

k∑
i=1

Xi > (1 + δ)p

]
≤ e−

δ2kp
2+δ

H TRANSFERABLE ATTACKS IMPLY CRYPTOGRAPHY

H.1 EFID PAIRS

The typical way in which security of EFID pairs is defined, e.g., in (Goldreich, 1990), is that they
should be secure against all polynomial-time algorithms. However, for the case of pseudorandom
generators (PRGs), which are known are equivalent to EFIDs pairs, more granular notions of security
were considered. For instance, in (Nisan, 1990) the existence of PRGs secure against time and space
bounded adversaries was considered. In a similar spirit we consider EFID pairs that are secure against
adversaries with a fixed time bound.
Definition 15 (Total Variation). For two distrbutions D0,D1 over a finite domain X we define their
total variation distance as

△(D0,D1) :=
∑
x∈X

1

2
|D0(x)−D1(x)|.

Definition 16 (EFID pairs). For parameters η, δ ∈ (0, 1) we call a pair of distributions (D0,D1) a
(T, T ′, η, δ) EFID pair if

1. D0,D1 are samplable in time T ,

2. △(D0,D1) ≥ η,

3. D0,D1 are δ-indistinguishable for adversaries running in time T ′.

H.2 TRANSFERABLE ATTACKS IMPLY EFID PAIRS

Theorem 8 (Tasks with Transferable Attacks imply EFID pairs). For every ϵ, T, T ′ ∈ N, T ≤ T ′,
every learning task L if there exists A ∈ TRANSFATTACK

(
L, ϵ, q, T, T ′, c, s

)
and there exists a

learner running in time T that, with probability p, learns f such that err(f) ≤ ϵ, then there exists a
(T, T ′, 12 (p+ c− 1− e−

ϵq
3 ), s2 ) EFID pair.

Proof. Let ϵ, T, T ′, q, c, s,L = (D, h) and A be as in the assumption of the theorem. Firstly, define
D0 := Dq, where q is the number of samples A sends in the attack. Secondly, define D1 to be the
distribution of x := A. Note that x ∈ X q .

Observe that D0,D1 are samplable in time T as A runs in time T . Secondly, D0,D1 are s
2 -

indistinguishable for T ′-bounded adversaries by undetectability of A. Finally, the fact that D0,D1

are statistically far follows from transferability. Indeed, the following procedure accepting input
x ∈ X q is a distinguisher:

1. Run the learner (the existence of which is guaranteed by the assumption of the theorem) to
obtain f .

2. y := f(x).

3. If err(x,y) ≤ 2ϵ return 0, otherwise return 1.

If x ∼ D0 = Dq then err(f) ≤ ϵ with probability p. By Fact 2 and the union bound we also
know that err(x,y) ≤ 2ϵ with probability p − e−

ϵq
3 and so, the distinguisher will return 0 with
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probability p − e−
ϵq
3 . On the other hand, if x ∼ D1 = A we know from transferability of A that

every algorithm running in time T ′ will return y such that err(x,y) > 2ϵ with probability at least
c. By the assumption that T ′ ≥ T we know that err(x, f(x)) > 2ϵ with probability at least c also.
Consequently, the distinguisher will return 1 with probability at least c in this case. By the properties
of total variation this implies that△(D0,D1) ≥ 1

2 (p+ c− 1− e−
ϵq
3 ) Summarizing, (D0,D1) is a

(T, T ′, 12 (p+ c− 1− e−
ϵq
3 ), s2 ) EFID pair.

Note 5 (Setting of parameters). Observe that if p ≈ 1, i.e., it is possible to almost surely learn f in
time T such that err(f) ≤ ϵ, c is a constant, q = Ω( 1ϵ ) then△(D0,D1) is a constant.

Note 6. We want to emphasize that our distinguisher crucially uses the error oracle in its last step.
So it is possible that it is not implementable for all time bounds!

I ADVERSARIAL DEFENSES EXIST

Our result is based on (Goldwasser et al., 2020). Before we state and prove our result we give an
overview of the learning model considered in (Goldwasser et al., 2020).

I.1 TRANSDUCTIVE LEARNING WITH REJECTIONS.

In (Goldwasser et al., 2020) the authors consider a model, where a learner L receives a training set
of labeled samples from the original distribution (xD,yD = h(xD)),x ∼ DN ,yD ∈ {−1,+1}N ,
where h is the ground truth, together with a test set xT ∈ X q . Next, L uses (xD,yD,xT ) to compute
yT ∈ {−1,+1,⊔⊓}q , where ⊔⊓ represents that L abstains (rejects) from classifying the corresponding
x.

Before we define when learning is successful, we will need some notation. For q ∈ N,x ∈ X q,y ∈
{−1,+1,⊔⊓}q we define

err(x,y) :=
1

q

∑
i∈[q]

1{
h(xi )̸=yi,yi ̸=⊔⊓,h(xi) ̸=⊥

}, ⊔⊓(y) := 1

q

∣∣∣{i ∈ [q] : yi = ⊔⊓
}∣∣∣ ,

which means that we count (x, y) ∈ X × {−1,+1,⊔⊓} as an error if h is well defined on x, y is not
an abstantion and h(x) ̸= y.

Learning is successful if it satisfies two properties.

• If xT ∼ Dq then with high probability err(xT ,yT ) and ⊔⊓(yT ) are small.

• For every xT ∈ X q with high probability err(xT ,yT ) is small.11

The formal guarantee of a result from Goldwasser et al. (2020) are given in Theorem 9. Let’s call this
model Transductive Learning with Rejections (TLR).

Note the differences between TLR and our definition of Adversarial Defenses. To compare the two
models we associate the learner L from TLR with B in our setup, and the party producing xT with
A in our definition. First, in TLR, B does not send f to A. Secondly, and most importantly, we do
not allow B to reply with rejections (⊔⊓) but instead require that B can “distinguish” that it is being
tested (see soundness of Definition 7). Finally, there are no apriori time bounds on either A or B in
TLR. The models are similar but a priori incomparable and any result for TLR needs to be carefully
analyzed before being used to prove that it is an Adversarial Defense.

I.2 FORMAL GUARANTEE FOR TRANSDUCTIVE LEARNING WITH REJECTIONS (TLR)

Theorem 5.3 from Goldwasser et al. (2020) adapted to our notation reads.

11Note that, crucially, in this case ⊔⊓(yT ) might be very high, e.g., equal to 1.
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Theorem 9 (TLR guarantee (Goldwasser et al. (2020))). For any N ∈ N, ϵ ∈ (0, 1), h ∈ H and
distribution D over X :

PxD,x′
D∼DN

[
∀ xT ∈ XN : err(xT , f(xT )) ≤ ϵ∗ ∧ ⊔⊓ (f (x′D)) ≤ ϵ∗

]
≥ 1− ϵ,

where ϵ∗ =
√

2d
N log (2N) + 1

N log
(
1
ϵ

)
and f = REJECTRON(xD, h(xD),xT , ϵ

∗), where f : X →
{−1,+1,⊔⊓} and d denotes the VC-dimension onH. REJECTRON is defined in Figure 2. in (Gold-
wasser et al., 2020).

REJECTRON is an algorithm that accepts a labeled training set (xD, h(xD)) and a test set xT and
returns a classifier f , which might reject some inputs. The learning is successful if with a high
probability f rejects a small fraction of DN and for every xT ∈ XN the error on labeled x’s in xT is
small.

I.3 ADVERSARIAL DEFENSE FOR BOUNDED VC-DIMENSION

We are ready to state the main result of this section.

Lemma 5 (Adversarial Defense for bounded VC-dimension). Let d ∈ N andH be a binary hypothesis
class on input space X of VC-dimension bounded by d. There exists an algorithm B such that for
every ϵ ∈

(
0, 18

)
, D over X and h ∈ H we have

B ∈ DEFENSE

(
(D, h), ϵ, q = d log2(d)

ϵ3
, t =∞, T = poly

(
d

ϵ

)
, l = 1− ϵ, c = 1− ϵ, s = ϵ

)
.

Proof. The proof is based on an algorithm from Goldwasser et al. (2020).

Construction of B. Let ϵ ∈ (0, 1) and

N :=
d log2(d)

ϵ3
.

Let q := N . First, B, draws N labeled samples (xFRESH, h(xFRESH)). Next, it finds f ∈ H consistent
with them and sends f to A. Importantly this computation is the same as the first step of REJECTRON.

Next, B receives as input x ∈ X q from A. B. Let ϵ∗ :=
√

2d
N log (2N) + 1

N log
(
1
ϵ

)
. Next B runs

f ′ = REJECTRON(xFRESH, h(xFRESH),x, ϵ
∗), where REJECTRON is starting from the second step of

the algorithm (Figure 2 (Goldwasser et al., 2020)). Importantly, for every x ∈ X , if f ′(x) ̸= ⊔⊓ then
f(x) = f ′(x). In words, f ′ is equal to f everywhere where f ′ does not reject.

Finally B returns 1 if ⊔⊓(f ′(x)) > 2
3ϵ, and returns 0 otherwise.

B is a Defense. First, by the standard PAC theorem we have that with probability at least 1 − ϵ,
err(f) ≤ ϵ

2 . This means that correctness holds with probability l = 1− ϵ.
Note that with our setting of N , we have that

ϵ∗ ≤ ϵ

2
.

Theorem 9 guarantees that

• if x ∈ Dq then with probability at least 1− ϵ we have that

⊔⊓(f ′(x)) ≤
ϵ

2
.

which in turn implies that with the same probability B returns b = 0. This implies that
completeness holds with probability 1− ϵ.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• for every x ∈ X q with probability at least 1− ϵ we have that

err(x, f ′(x)) ≤ ϵ

2
.

To compute soundness we want to upper bound the probability that err(x, f(x)) > 2ϵ12

and b = 0. By construction of B if b = 0 then ⊔⊓(f ′(x)) ≤ 2ϵ
3 , which means that with

probability at least 1− ϵ

err(x,y) ≤ 2ϵ

3
+
ϵ

2
< 2ϵ or b = 1.

This translates to soundness holding with s = ϵ.

REJECTRON runs in polynomial time in the number of samples and makes O( 1ϵ ) calls to an Empirical
Risk Minimizer on H (that we assume runs in time polynomial in d), which implies the promised
running time.

J WATERMARKS EXIST

Lemma 6 (Watermark for bounded VC-dimension against fast adversaries). For every d ∈ N there
exists a distribution D and a binary hypothesis classH of VC-dimension d there exists A such that
for any ϵ ∈

(
10000

d , 18
)

if h ∈ H is taken uniformly at random fromH then

A ∈ WATERMARK

(
(D, h), ϵ, q = O

(
1

ϵ

)
, T = O

(
d

ϵ

)
, t =

d

100
, l = 1− 1

100
, c = 1− 2

100
, s =

56

100

)
.

Proof. Let X = N. LetD be the uniform distribution over [N ] forN = 100d2. LetH be the concept
class of functions that have exactly d +1’s in [N ]. NoteH has VC-dimension d. Let h ∈ H be the
ground truth.

Construction of A. A works as follows. It draws n = O
(
d
ϵ

)
samples from D labeled with h.

Let’s call them xTRAIN. Let

A := {x ∈ [N ] : xTRAIN, h(x) = +1}, B := {x ∈ [N ] : x ∈ xTRAIN, h(x) = −1}.
A takes a uniformly random subset Aw ⊆ A of size q. It defines sets

A′ := A \Aw, B
′ := B ∪Aw.

A computes f consistent with the training set {(x,+1) : x ∈ A′} ∪ {(x,−1) : x ∈ B′}. A samples
S ∼ Dq . It defines the watermark to be x := Aw with probability 1

2 and x := S with probability 1
2 .

A sends (f,x) to B. A can be implemented in time O
(
d
ϵ

)
.

A is a Watermark. We claim that (f,x) constitutes a watermark.

It is possible to construct a watermark of prescribed size, i.e., find a subset Aw of a given size, only
if |A| ≥ q. The probability that a single sample from D is labeled +1 is d

N , so by the Chernoff
bound (Fact 2) |A|, |B| > dn

2N ≥ q with probability 1− 1
100 , where we used that n = O

(
d
ϵ

)
, N =

100d2, q = O( 1ϵ ).

Correctness. Let h′(x) := h(x) if x ∈ [N ] \Aw and h′(x) := −h(x) otherwise. Note that h′ has
exactly d− q +1’s in [N ]. By construction, f is a classifier consistent with h′. By the PAC theorem
we know that with probability 1 − 1

100 , f has an error at most ϵ wrt to h′ (because the hypothesis
class of functions with at most d +1’s has a VC dimension of O(d)). h′ differs from h on q points, so

err(f) ≤ ϵ+ q/N = O

(
ϵ+

1

ϵd2

)
= O(ϵ). (15)

with probability 1− 1
100 , which implies that correctness is satisfied with l = 1− 1

100 .

12Note that we measure the error of f not f ′.
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Distinguishing of x and Dq. Note that the distribution of Aw is the same as the distribution of a
uniformly random subset of [N ] of size q (when taking into account the randomness of the choice of
h ∼ U(H)). Observe that the probability that drawing q i.i.d. samples from U([N ]) we encounter
repetitions is at most

1

N
+

2

N
+ · · ·+ q

N
≤ 3q2

N
≤ 1

100
,

because q < d
100 <

√
N

10 . This means that 1
100 is an information-theoretic upper bound on the

distinguishing advantage between x = Aw and Dq .

Moreover, B has access to at most t samples and the probability that the set of samples B draws
from Dt and Aw have empty intersection is at least 1− 1

100 . It is because it is at least (1− t
N )t ≥

(1− 1√
N
)
√

N/10 ≥ 1− 1
100 , where we used that t <

√
N

10 .13

Note that by construction f maps all elements of Aw to −1. The probability over the choice of
F ∼ Dq that F ⊆ h−1({−1}), i.e., all elements of F have true label −1, is at least(

1− d

N

)q

≥ 1− 1

100
.

The three above observations and the union bound imply that the distinguishing advantage for
distinguishing x from Dq of B is at most 4

100 and so the undetectability holds with s = 8
100 .

Unremovability. Assume, towards contradiction with unremovability, that B can find y that with
probability s′ = 1

2 + 6
100 satisfies err(x,y) ≤ 2ϵ. Notice, that err(Aw, f(Aw)) = 1 by construction.

Consider an algorithm A for distinguishing Aw from Dq. Upon receiving (f,x) it first runs y =
B(f,x) and returns 1 iff d(y, f(x)) ≥ q

2 . We know that the distinguishing advantage is at most
1
2 + 4

100 , so

1

2
Px:=Aw

[A(f,x) = 1] +
1

2
Px∼Dq [A(f,x) = 0] ≤ 1

2
+

4

100
.

But also note that

s′ ≤ Px∼A[err(x,y) ≤ 2ϵ]

≤ 1

2
Px:=Aw [d(y, f(x)) ≥ (1− 2ϵ)q] +

1

2
Px∼Dq [d(y, f(x)) ≤ (2ϵ+ err(f))q]

≤ 1

2
Px:=Aw [d(y, f(x)) ≥ q/2] +

1

2
Px∼Dq [d(y, f(x)) ≤ q/2] + 1

100

≤ 1

2
Px:=Aw

[A(f,x) = 1] +
1

2
Px∼Dq [A(f,x) = 0] +

1

100
.

Combining the two above equations we get a contradiction and thus the unremovability holds with
s′ = 1

2 + 6
100 .

Uniqueness. The following B certifies uniqueness. It draws O
(
d
ϵ

)
samples from D, let’s call

them x′TRAIN and trains f ′ consistent with it. By the PAC theorem err(f ′) ≤ ϵ with probability
at least 1 − 1

100 . Next upon receiving x ∈ X q = [N ]q it returns y = f ′(x). By the fact that
x is a random subset of [N ] of size q by the Chernoff bound, the union bound we know that
err(x,y) = err(x, f ′(x)) ≤ 2ϵ with probability at least 1 − 2

100 over the choice of h. This proves
uniqueness.

13If the sets were not disjoint then B could see it as suspicious because f makes mistakes on all of Aw.

35


	Introduction
	Contributions

	Related Work
	Watermarks, Adversarial Defenses and Transferable Attacks
	Preliminaries
	Definitions

	Main Result
	Transferable Attacks are ``equivalent'' to Cryptography
	A Cryptography-based Task with a Transferable Attack
	Tasks with Transferable Attacks imply Cryptography
	EFID pairs
	Tasks with Transferable Attacks imply EFID pairs


	Tasks with Watermarks and Adversarial Defenses
	Implications for AI Safety
	Additional Methods in Related Work
	Watermarking
	Watermarking Schemes for Discriminative Models
	Watermarking Schemes for Generative Models

	Adversarial Defense
	Transferable Attacks and Transductive Learning

	Preliminaries
	Discussion

	Formal Definitions
	Main Theorem
	Beyond Classification
	Fully Homomorphic Encryption (FHE)
	Preliminaries
	Definitions

	Transferable Attacks exist
	Transferable Attacks imply Cryptography
	EFID pairs
	Transferable Attacks imply EFID pairs

	Adversarial Defenses exist
	Transductive learning with rejections.
	Formal guarantee for Transductive Learning with Rejections (TLR)
	Adversarial Defense for bounded VC-dimension

	Watermarks exist

