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Abstract

We show that variational learning naturally in-
duces an adaptive label smoothing where label
noise is specialized for each example. Such label-
smoothing is useful to handle examples with la-
beling errors and distribution shifts, but designing
a good adaptivity strategy is not always easy. We
propose to skip this step and simply use the natu-
ral adaptivity induced during the optimization of
a variational objective. We show empirical results
where a variational algorithm called IVON out-
performs traditional label smoothing and yields
adaptivity strategies similar to those of an exist-
ing approach. By connecting Bayesian methods
to label smoothing, our work provides a new way
to handle overconfident predictions.

1. Introduction

Adaptive strategies to Label Smoothing (LS) (Szegedy et al.,
2016) aim to adapt the label noise according to the type
of data example. Such adaptation can be more effective in
practice than its traditional counterpart where the label noise
is the same for all examples. Adaptation is useful to handle
examples that may have labeling errors, distribution shift,
or calibration issues. For such cases, the effectiveness of
adaptation has been extensively studied, for example, see
Ghoshal et al. (2021); Lee et al. (2022) for generalization
improvements, Zhang et al. (2021); Ko et al. (2023) for mis-
labelled examples, Park et al. (2023) for miscalibration, and
Xu et al. (2024) for out-of-distribution detection. Adaptivity
is useful for label smoothing to handle all such cases.

One major problem with adaptive label smoothing is that
it is not easy to design a good adaptivity strategy. For
example, a simple approach is to adapt the label noise by
using model’s predictions but there are many ways to do this,
for examples, Park et al. (2023) set the noise based on the
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Figure 1. Given a regular 6 digit (top) and an atypical one (bottom),
Label Smoothing (LS) assigns the same label noise to both (gray
bars) while variational learning assigns higher noise to the atypical
example (red bars). Adaptivity naturally arises due to the posterior.

logits, Zhang et al. (2021); Ko et al. (2023) use the predictive
probabilities (obtained with softmax), while Lee et al. (2022)
use their entropy. All of these are reasonable ideas but the
choice of a good strategy for a given problem is not always
straightforward. A strategy that reduces miscalibration may
not be most effective for handling outliers or mislabeling.
Focusing on one issue at a time has given rise to a lot of
ad-hoc and heuristic strategies, and, despite their usefulness,
designing an adaptive strategy for a task in hand remains
tricky. Our goal here is to simplify the process by presenting
and analyzing algorithms that naturally induce adaptivity.

We show that variational learning naturally induces an adap-
tive label smoothing. The smoothing arises due to the use
of the expectation of the loss in the variational objective,
taken with respect to the posterior distribution. The ex-
pectation gives rise to a label noise (among other types of
noises) which is customized for each example through its
features. Our key contribution is to derive the exact form of
the label noise (Eq. 10) for many problems and study their
behavior. We show extensive empirical results analyzing the
label noise induced by Improved Variational Online Newton
(IVON) (Shen et al., 2024). We show the following:

1. Variational learning assigns higher noise to atypical or
ambiguous examples (Fig. 1 and Fig. 3).

2. IVON’s adaptive label noise behaves similarly to the
proposal of Zhang et al. (2021).

3. IVON consistently outperforms Label Smoothing in
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presence of labeling errors, giving up to 9% accuracy
boost for pair-flip noise (Fig. 5) and sometimes even
around 50% for data-dependent noise (Fig. 6).

Our work connects label smoothing literature to Bayesian
methods, thereby providing a new way to handle overconfi-
dent predictions in deep learning.

2. Label Smoothing and Adaptivity Strategies

Label Smoothing (LS) is a simple technique where the true
label vector y, (length K) are replaced by a smoothed ver-
sion. In its simplest form, a convex combination is used
where the smoothed labels are defined as

yi=(1-a)y; +ou, ey

for some scalar o € (0, 1) with u as a vector of 1/K with
K being the number of classes. This simple technique is
effective to penalize overconfident predictions because the
noise a(u — y;) reduces the importance of the label during
training (Pereyra et al., 2017a). Multiple works have studied
its effectiveness, for example, to improve calibration and
representation (Miiller et al., 2019), to favor flatter solutions
(Damian et al., 2021), and improve robustness to mislabelled
data (Lukasik et al., 2020; Liu, 2021) due to its connections
to loss correction (Patrini et al., 2017). Despite its simplicity,
LS has clear practical advantages.

Adaptive label smoothing aims to inject noise according to
the type of data example, for example, during learning, we
may want to inject a noise to get the smoothed label

Yijg = Yi T €ife- 2

The noise €;|; depend on the model parameter 6; at iteration
t, and can be varied according the model’s opinion regarding
the relevance of the examples. Adaptive label smoothing
uses additive noise to reweigh examples during training.
Many studies have shown the effectiveness of the adaptive
noise, which ranges from improvements in generalization
(Ghoshal et al., 2021; Lee et al., 2022), robustness to misla-
beled data (Zhang et al., 2021; Ko et al., 2023), improving
calibration (Park et al., 2023) and out-of-distribution (OOD)
detection (Xu et al., 2024). By adapting label noise, such
methods aim to down-weight the problematic examples.

While adaptivity is desirable, it also requires additional
effort to design a good strategy to adapt. Each specific issues
may require a different type of noise, for instance, what
works to reduce miscalibration, may not be most effective
for handling OOD detection or mislabling. Focusing on one
issue or strategy at a time has given rise to a lot of ad-hoc
and heuristic strategies, and, despite their usefulness, clarity
of good ways to design adaptive strategy is lacking.

The simplest approach is to adapt by using the model pre-
dictions based on the logits f;(6;), but there are many ways

to use them. Zhang et al. (2021) use the following update
for each example ¢ in the epoch ¢

u=> S0, 3)

where S|[f] vector (length K) with j’th entry defined as

S;[f] = ISL )
Dk €k
The noise injected by this method is
€ = a(a—y;), ()

where u is the normalized u. A similar rule is used by
Ko et al. (2023). Instead of directly using the logits, Lee
et al. (2022) use them to adjust a. They do so by using the
entropy of the model-output distribution, assigning a smaller
smoothing to high entropy samples and larger smoothing
to low entropy samples. Another approach by Park et al.
(2023) decrease the label noise linearly as the logit f;(6;)
increase. There are multiple ways to use predictions but the
choice of a good strategy for a given problem is not always
straightforward.

Intuitively, using model’s predictions makes sense because
predictions can tell us about the relevance of examples. Re-
gions where model is inaccurate may also contain examples
that need special attention but also those that are impos-
sible to predict. Some works have explored this from the
Bayesian viewpoint, although only using the posterior over
the labels. For example, Pereyra et al. (2017b) motivate
adaptive smoothing using Bayes error rate, which implies
larger smoothing to example that lie near the decision bound-
ary. Similarly, Ghoshal et al. (2021) use a PAC-Bayes bound
to motivate adaptivity. However, there are no approaches
investigating the effectiveness of posterior over 8.

In this paper, we show that directly learning the posterior
using a variational method natural yields an adaptive label
noise. Adaptivity introduced in this fashion directly takes
various causes of uncertainty, some of which are then han-
dled through the label noise. The uncertainty in parameter
have other desired effect that are often missed when only
focusing on the label noise. In our context, this can simplify
the design of adaptive label smoothing or may even allow us
to entirely skip the step. We will now discuss the adaptive
label noise induced by variational learning.

3. Variational Learning Induces Adaptive LS

Variational learning aims to optimize for distribution over
parameters € which is fundamentally different from tradi-
tional deep learning where we minimize empirical risk,

N
(o) = Zéiw) +Ro(), (6)
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with loss ¢;(0) for the 7’th example in the training dataset.
The regularizer R (#) is often implicitly defined through
various training choices, such as, weight-decay, initializa-
tion, and architecture design. In contrast, variational learn-
ing aims to find a distribution ¢(#) € Q which minimizes

N
L(q) = ZEq [£:(0)] + Dy [q(0) | p(8)]. (D)

The second term is the Kullback-Leibler (KL) Divergence
where the p(6) x exp(—Ro(80)) can be defined implicitly
similar to deep learning. Throughout, we will set ¢(8) to
take Gaussian forms and show that, despite their differences,
variational learning can be implicitly seen as minimizing
a noisy version of Eq. 6. Existing works have studied the
weight-noise (Zhang et al., 2018; Khan et al., 2018) but our
goal here is to specifically study its effect on label noise.

3.1. A Simple Example: Logistic Regression

We start with logistic regression where we can write a closed-
form expression for the adaptive label noise. The result
extends to all loss functions using generalized linear model.
We will consider all such extensions (including neural net-
works) afterwards. For now, we consider a loss function for
binary labels y; € {0, 1} with model output f;(8),

(:(8) = ~yifi(8) +10g (14 7@) . (8)

In logistic regression, we have f;(0) = ¢, 6 where ¢; €
R is the feature vector. For simplicity, let us assume
1

Ro(8) = 3|6]| to be a quadratic regularizer. For such

a model, we can solve Eq. 6 with gradient descent (GD),

N
01 = (1= pt)0: — Z ¢ [o(fi(01) =il (9)

i=1

The result is obtained by simply taking the derivative of
Eq. 8 which gives rise to o(f) = 1/(1 +e~f), a binary ver-
sion of the softmax function from Eq. 4. We will now show
that, by choosing the family Q appropriately, variational
learning can be seen as GD with label noise.

We choose the distribution ¢;(8) at iteration ¢ to take a Gaus-
sian form with mean 6, and covariance set to the identity,

q:(6) = N(6]6:, 1),

and perform GD to minimize the variational objective in
Eq. 7, now denoted as £(0;), with respect to ;. Below is a
formal statement of the result.

Theorem 1 A gradient update 0;1+ = 0, — p;Vo, L(6}) is
equivalent to the gradient update in Eq. 9 where the label
y; are replaced by y; + €;; with noise defined as

€ilr = 0 (fi(0r)) — Eq,[0(£i(0))]. (10)

Noise magnitude |&|

Sigmoid

mean of q¢(f;)

Figure 2. We plot label noise magnitude ¢;); from Eq. 12 by vary-
ing the mean f;}; of g:(fi) while fixing its variance to 1. The noise
is large around O (but not at 0) with large peaks on both sides.

The proof is in the App. B.1.

The result shows that the GD steps to optimize Eq. 7 are
equivalent to those to optimize Eq. 6 but with a noisy label.
The noise is adaptive and depends on where the Gaussian
distribution is located. To show this, we derive the distribu-
tion over f; = d)l—-rO, which takes a Gaussian form:

a(f:) = N(fil fuger b7 1) (11)

where we denote f;; = ¢ZT 6;. The label noise then is
simply the difference between the sigmoid o (f;;) of the
mean f;; and mean of o( f;) with respect to g;(f;), that is

€ije = o(firr) — Eq, [o(fi)], (12)

where the form is similar to the noise of Zhang et al. (2021)
in Eq. 5. Fig. 2 plots the magnitude of this quantity as a
function of the mean f;; but fixing the variance ¢;r ¢, =1.
We see the noise to be large whenever f;; around 0, with
the maximum in areas slightly away from it. The o ( f) is flat
far away from 0 and uncertainty in ¢; is amplified around 0,
which makes the difference large around O (but not at 0).

The other factor that affects the noise is the feature ¢;.
Inputs with larger features induce larger variance. When the
features are normalized, this is unlikely to have an effect,
but this is important for the neural networks case where
features are learned.

The two factors explain why we would expect high label
noise for atypical or ambiguous examples. This is because
the predictive distribution ¢( f;|;) is close to 0 and may also
have a higher variance. An alternate way to understand the
impact of the two factors is to use a Taylor’s approximation
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at a sample e ~ N/(0, 1),

€t = o(fire) — o(fae + [l @sll2e) = Ul(fz‘\t)(‘i’jﬁbi)lm&
(13)
We again see the two factors: one is o’ (f) (which peaks
around 0) and the other is the feature norm. Note that this
approximation does not get better for larger number of sam-
ples, but it roughly captures the behavior away from 0.

3.2. Generalized Linear Model (GLM)

The result generalizes to any loss function derived using
exponential-family distribution, for instance, the following
generalization of Eq. 8

0:(0) = —y £:(0) + A(£:(8)), (14)

where A(f) is a convex function called the log-partition
function. The regularizer can also be a general convex
function. For such models, we can derive the label noise
following almost the same procedure as in the previous
section. Due to its similarity, we omit the derivation and
only give the final form of the noise,

€l = A'(£i(0,)) — Eq, [A'(£:(6))]. (15)

Essentially, we replace the o(f) by the derivative A’(f).
For logistic regression, A(f) = log(1 + ), derivative of
which is o(f) and we recover the result in Eq. 10. We can
extend this result to multiclass classification by considering
A(f) = log Zkl,(:l ef*, derivative of which is the softmax
function defined in Eq. 4. Similarly to the binary case, we
expect uncertainty in ¢; to be amplified near the boundary.
The label noise is therefore low for examples where softmax
yields probabilities close to O or 1.

In App. A, we show a variational-learning algorithm called
Variational Online Newton (VON) algorithm (Khan et al.,
2018) that can be seen as a noisy-label version of Newton’s
method. It induces more adaptive noises because it learns
the covariance 3J; for a Gaussian form g;.

3.3. Neural Network training with IVON

We will now show that the label noise expression have simi-
lar form for the neural network case, but to derive them we
need to use Taylor’s approximation. Essentially, the form of
the expression then is similar to Eq. 13 there the adaptive
nature should roughly stay the same. We validate these
findings later through numerical experiments.

We will illustrate the derivation for the binary case which
can then be extended to other case as we did in previous
section. Taylor’s approximations is required because the
gradient of /;, shown below,

Ve (0) =V fi(0:) [o(fi(6r)) — vil,

replaces the ¢, term in Eq. 9 by V f;(6;). As aresult, we
cannot simply move the expectation over ¢; to derive the
label noise as we did in Eq. 20. However, we can simplify
these by using Taylor’s approximation.

We show this by using a single-sample Ot(l) ~ q; Monte-
Carlo approximation (multiple samples can also be used),

E,, [V£(0)] = V(65" [o(£:(0")) — il -

Then, we do the following two approximations where we
use Taylor’s expansion but ignore the second-order terms,

o(£i(0)) ~ o (fi(8)) + o' (f:(8.))V £:(6.) (8" — 6,)
V1i(0) = V1i(6:)

With these approximations, we can write,
By, [VE:(0)] = V(1) [0(fi(01) — (yi + €ipr)]

where the noise takes a very similar form to Eq. 13,
i~ o (i(8:)V i(8)Z, e (16)

where e is a sample from a standard normal distribution.
The derivation generalizes to all GLM losses by replacing
o(-) by A’(-). It also extends to variational GD and VON.

In practice, neural networks are trained with Adam-style
algorithm. In our experiments, we will use an Adam-like
version of VON, called IVON, which is recently proposed
by Shen et al. (2024). The key different to VON is that
it estimates a diagonal covariance by using an Adam-like
preconditioning update; a pseudo-code is added in Alg. 1.
The diagonal covariance is estimated through the scale vec-
tor. We will use the label noise expression given in Eq. 16
where X, is replaced by the diagonal covariance estimated
by IVON. Note that variational learning for neural neworks
with IVON introduces many other noise other than label
noise, for instance, the noise is introduced in the features
V f(60), as shown above. We will analyze only the label
noise but the performance is affected by other noises too.

In our experiments, we also compare to Sharpness-Aware
Minimization (SAM) (Foret et al., 2021) which has a vari-
ational interpretation (Mollenhoff & Khan, 2023) and has
been shown to perform well with mislabelled data. Using
our techniques, it is possible to derive the label noise of
SAM but the expression would be similar to the one derived
here. The difficulty with SAM is that we need to tune the
‘size’ of adversarial perturbation, often denoted by a scalar
p, while IVON can automatically estimate it using the pos-
terior variance. In our experiments, we show that IVON
performs comparably to SAM with a highly tuned p, and it
does not need to set any such hyperparameters.
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Figure 3. Label noise assigned by IVON and LS in MNIST dataset. Examples are ordered according to IVON’s noise, and highest and
lowest noise examples are visualized. We see that high noise is assigned to atypical examples while low noise is assigned to regular ones.
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Figure 4. Smoothed label comparison among IVON, LS and Online Label Smoothing (OLS) in CIFAR-10. IVON has a similar adaptive
label smoothing effect as OLS. « is the smoothing rate defined in Eq. 1. Y-axis is in the log scale.

4. Experiments

We do extensive experiments to show adaptive label noise
via variational learning and its benefits. In Sec. 4.1, we
show that IVON adapts the label noise for each example,
and generally assigns higher noise magnitude to ambiguous
ones. In Sec. 4.2, we show that IVON’s smoothed labels are
similar to an existing adaptive smoothing method (Zhang
etal., 2021). In Sec. 4.3, we show that IVON consistently
outperforms LS when datasets have labeling errors in vari-
ous settings. Additional experiments are reported in App. C,
and experiment details are reported in App. D.

4.1. IVON’s Adaptive Label Noise

We demonstrate [IVON label noise’s adaptivity on MNIST
dataset (LeCun & Cortes, 2010). We plot IVON’s label
noise distribution in Fig. 3, which shows that IVON adds
different label noise on each example whereas traditional
Label Smoothing defines a uniformly distributed noise for
all. By further visualizing the data, we see that IVON in-
duces stronger noise to unclear examples, which prevent
models from being overconfident in these datapoints.

4.2. Comparisons to Existing Adaptive LS Strategies

In this section, we show that IVON’s label smoothing is sim-
ilar to an adaptive method called Online Label Smoothing

(OLS) (Zhang et al., 2021). In the CIFAR-10 and CIFAR-
100 dataset (Krizhevsky & Hinton, 2009), we compare the
smoothed labels of IVON with traditional LS (Szegedy et al.,
2016) and Online Label Smoothing (OLS) (Zhang et al.,
2021). OLS adjusts the label noise according to the model’s
predictions, as described in Sec. 2. Fig. 4 shows the CIFAR-
10 results, and CIFAR-100 results are in App. C.1. IVON
has surprisingly similar smoothed label distributions as the
OLS in both datasets, while IVON tends to induce stronger
label noises. Variational learning’s adaptive label smoothing
is similar to existing work’s, without needing any additional
effort to design or estimate the adaptive label noise.

4.3. Comparisons on Datasets with Labeling Errors

We compare IVON to Label Smoothing (LS) (Szegedy et al.,
2016) and SAM (Foret et al., 2021) in presence of labeling
errors, and the results show that IVON consistently outper-
forms LS in various settings. To find the best performance
of the baselines, we tune several LS’s smoothing rates « (de-
fined in Eq. 1), and various SAM’s adversarial perturbation
size p (discussed in Sec. 3.3). We conduct studies on bench-
mark datasets with synthetic noise, where the noise level
can be adjusted. We also designed a specific scenario where
labeling errors are dependent on the classes in Sec. 4.3.2. In
App. C.3, we evaluate on datasets with natural noise, where
the noise level is fixed and unknown. For synthetic noise
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Figure 5. Results on CIFAR-100 with symmetric noisy labels. Top: IVON outperforms Label Smoothing (LS) with different smoothing
rates . Down: IVON has comparable results with SAM peak performances, while SAM is sensitive to the choice of perturbation p.
Accuracy improvements are shown in blue. Results are reported over 5 random seeds.

experiments, we use the CIFAR-10 and CIFAR-100 datasets
(Yu et al., 2019). For natural noise experiments in App. C.3,
we use the benchmark Clothing1M (Xiao et al., 2015). All
datasets include a clean test set.

4.3.1. SYNTHETIC NOISY DATASETS

We consider two commonly used corruptions (Patrini et al.,
2017; Li et al., 2019; Yu et al., 2019): Symmetric flipping
and Pair flipping. In symmetric flipping, a true label is re-
placed by a randomly generated class with a probability. In
pair flipping, it tries to mimic real world mistakes for simi-
lar classes, where a true label is replaced by the next class
with a probability. For training dataset, we use previous
work’s (Yu et al., 2019) code to generate noisy labels. More
experiment details are in App. D.2.

In CIFAR-100, Fig. 5 shows that IVON outperforms Label
Smoothing and SAM in different scenarios. We also observe
that SAM is sensitive to the choice of p, while IVON does
not need to tune any hyperparameters to perform well. More
experiment results in CIFAR-10 and the comparison with
fixed diagonal variance are in App. C.2.

4.3.2. DATA DEPENDENT LABELING ERRORS

In this section, we try to understand the adaptivity of these
methods in the data-dependent noisy dataset. When each
class has different noise levels, we expect LS will fail since it
adds uniform noises to all classes, while IVON’s adaptivity
makes it stand. The experiment setting is in App. D.3.

The experiment results are in Fig. 6. IVON outperforms

LS and SAM in all noise levels. Meanwhile, IVON can
learn in very noisy scenarios x = {0.4, 0.5} while baselines
can only reach around 10% accuracy. The results support
our claim that adaptive label noise induced by variational
learning is more effective than traditional label smoothing.

CIFAR-10 data dependent noise
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40%/
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—/— SAM
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Figure 6. Results for CIFAR-10 with data dependent noise. IVON
outperforms LS and SAM in all noise levels. Furthermore, IVON
can learn extremely noisy scenario, while LS and SAM cannot.

5. Conclusion

In this paper, we show that variational learning induces an
adaptive label smoothing similar to an existing adaptive
approach (Zhang et al., 2021) but does not require any addi-
tional effort to design. We derive the exact form for simple
models and extend them to neural networks. We empirically
confirm the effectiveness of noise, showing that the IVON
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method consistently performs better than LS, and compara-
bly to SAM, without requiring hyperparameters to achieve
desired smoothing. Our work suggests that Bayesian frame-
works are naturally suitable for label noise. Specifically, we
believe that variational learning algorithms, such as IVON,
provide a flexible framework to further add noise to handle
both the abnormalities and typicalities in the data.
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A. Generalized Linear Model with Newton’s Method

We now discuss the Newton’s method and show that a specific variational-learning algorithm can be seen as a noisy-label
version of Newton’s method. Here, we find that the form of the noise has exactly same form as Eq. 15 but the distribution ¢,
has a flexible covariance which improves the adaptivity of the label noise.

We consider the following Newton’s update,
— 71 —
011 =0, — [V?0(6,)] ~ VI(6,) (17)

which is commonly used for generalized linear models. As shown by Khan & Rue (2023), the update can be seen as a
special case of a Variational Online Newton (VON) algorithm (Khan et al., 2018) to learn a full Gaussian with covariance
X,

qt(0) == N(0|0t, Ef)

The VON updates are given as follows,

0,1 =0,— Pt2t+1eq [VZ(O)]

_ (18)
S = (1= p)S " + piEq, [V20(0)).

Setting p; = 1 yields a Newton-like update where gradients V¢ and Hessian V?2/ are replaced by their terms where
expectations are taken, namely, E,, [V/] and E,, [V2/]. Similarly to the previous cases, the label noise in VON arises due to
the expectation of the gradient, while expectation of the Hessian gives rise to other types of noise.

As shown in in App. B.2, the VON updates in Eq. 18 are equivalent to Newton’s update in Eq. 17 where labels are replaced
by the noisy ones with noise shown in Eq. 15. The proof technique relies on comparing the form of the surrogates for the
two algorithms. Even though the noise has the same form, there is an important difference here. Essentially, the Gaussian g;
now is more flexible because its covariance 3; is not fixed but learned using the Hessian. As a result the distribution over f;
now has adaptive variances,

a(f;) = N(fil fiper &1 Zey). (19)

Therefore, now both the location and spread of the Gaussians are changed for each example, and they both contribute to the
adaptivity. The result shows that second-order methods yield more adaptive label noise than first order methods, and are
expected to perform better in practice. We will later present experiments that support this finding.

B. Derivations

B.1. Proof of the Logistic Regression’s Noise

Proof: The gradient of the expected loss in Eq. 7 can be simplified to take a form very similar to the one in Eq. 9,
Vo, Eq,[(i(0)] = Vo, En(ejon) [li(0: + €)]

= ]E./\/'(e|0,1) [V@tfi(et -+ e)] (20)
= ¢; [Eq,[0(fi(9))] — yi]

The gradient of KL also simplifies to

Dy [0(6) [ p(8)] —E, [bg ggm _ 110]? + const.

Using these, we can write the GD to minimize Eq. 7 as
N
011 = (1= p)B: — pr Y_ i [Eo, [0(£:(0))] — i,
i=1

which has a similar form as Eq. 9 but with one difference: o(f;(6)) are replaced by their expectation over ¢ (highlighted in
red). By adding and subtracting o (f;(0;)), we can rewrite the update as Eq. 9 which has the label noise defined in Eq. 10. B

9
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B.2. Derivation of GLM with Newton’s method

Newton’s update shown in Eq. 17 is equivalent to the following surrogate minimization,
_ 1 _
011 = argmin 0"V, + 50— 0,)"V%(6,)(0 - 8,). 21)
This can be verified by simply taking the derivative of the above objective and setting it to zero. We will now show that the

VON update give rise to a similar surrogate but where the gradient and Hessian are replaced by their expected values.

To do so, we use the result of Khan et al. (2019) who show that each step of VON algorithm can be seen as inference on a
linear model. Essentially, the VON update can be expressed as follows (see Nickl et al. (2024, App. C.3) for a derivation):

N

- (0T Ey, [~ VL (0)+V2£:(0)6,]— 20T E,, [V2£:(6)]0

q+1(0) < ¢ (6)" ptHeP( Eq, [~ V£:(8)+V74:(0)6,]— 56 Ey, [V2£:(6)]0)
=1

N (22)

1
x (@) [[e " (6724, [VE:(0))+5(0-6,)TE,, [V24:(6)](6-6,))

=1

i

where we subtracted 8, E,, [V?/;(0)]6; and completed the square. This is a constant which is absorbed in the normalizing
constant of ¢, 1. From here, we can simply match the mode 6, of ¢, to the mode of the right hand side. For p; = 1,
this gives us the following minimization problem to recover 0y 1:

011 = argmin 0K, [VI(0)] + %(0 —0,)"E,,[V?0(0)](6 — 6,). (23)

This shows that, for p, = 1, VON updates can be seen as Newton step where gradient and Hessian are replaced by their
expected values. The proof is identical to the one shown in the main tex, therefore we omit it.

Theorem 2 For the loss function of Eq. 8, the VON update in Eq. 18 with p; = 1 is equivalent to Newton’s update in Eq. 17
but where the label y; are replaced by y; + €;; with noise defined as

Eijt = O (fi|t) — Enrejo,n) [U (fit + ey ¢;Et¢¢>] ) (24

and the Hessian V2((8,) is replaced by its noisy version E,, [V2£(8)).

10
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B.3. IVON pseudo code
The pseudo-code is given in Alg. 1.

Algorithm 1 Improved Variational Online Newton (IVON) (Shen et al., 2024).
Require: Learning rates {o }, weight-decay 6 > 0.

Require: Momentum parameters 51, 32 € [0, 1).
Require: Hessian init iy > 0.
Init: m < (NN-weights), h < hg, g+ 0, A+ N.
Init: o + 1/y/A(h+9).
Optional: oy < (ho + d)ay forall ¢.
1: fort=1,2,...do
2: g+« VI(0), where 8 ~ ¢
3 h+g- (6—m)/o?
4 g+ fig+(1-51)g
5: h ¢ foh+ (1 - f2)h+1(1 - B2)%(h — h)%/(h +6)
6: g« g/(1-p])
70 m<+ m—a(g+om)/(h+9)
8: o<+ 1/\/A(h+9)
9: end for
10: return m, o

C. Additional Experiments
C.1. Comparisons on CIFAR-100 Smoothed Label Distributions

In Fig. 7, we visualize the label noise distributions of IVON (Shen et al., 2024), traditional LS (Szegedy et al., 2016) and
Online Label Smoothing (OLS) (Zhang et al., 2021).

CIFAR-100 Class 3 CIFAR-100 Class 21 CIFAR-100 Class 66
10° 100
o LS
% OLS - a=0.5
§10_2 = VON 102
el
[
S O O O
8
€104 1074
(%2}
3 24 28 44 56 57 62 74 82 99 11 12 19 21 30 52 57 60 92 93 1 26 34 46 53 56 66 74 79 93
Classes Classes Classes

Figure 7. Smoothed label comparison among IVON, LS and Online Label Smoothing (OLS) in CIFAR-100. Results are similar to
CIFAR-10 results in Fig. 4. Y-axis is in the log scale. We randomly pick 10 classes for CIFAR-100 due to image size limit.
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C.2. Synthetic Noisy Datasets: More Experiments

In CIFAR-10, Fig. 8 shows similar trends as CIFAR-100 results in Fig. 5. Meanwhile, we test the effectiveness of flexible
3, by comparing it with the fixed diagonal variance. Fig. 9 shows that learned 3; consistently outperforms fixed 3; in
three noisy datasets. The experiment results demonstrate the importance of flexible 3, as stated in App. A.

—Oo— Label Smoothing —— SAM — IVON
20% symmetric noise 40% symmetric noise 20% pairflip noise
90% 4.83%1 ————————- - 80%‘ 6.7%1 -—=——" T X 90% 7.8%1 ————o_____
3 /D/O’M Ji
o
e
§ 80% 50% 80% O 5
<
0, 0, 0,
0% 0.1 03 05 0.7 09 2tk 0.1 03 05 0.7 0.9 o 0.1 03 05 0.7 0.9
a a a
20% symmetric noise 40% symmetric noise 20% pairflip noise
90% f 80% 90%(
>
(&}
o
§ 80% 50% 80%
<
709 209 709
O/00.01 0.10 0.20 0A’O.Ol 0.10 0.20 0/00.01 0.10 0.20
4 P P

Figure 8. Results on CIFAR-10 with symmetric noisy labels over 5 random seeds, which is similar to CIFAR-100 results in Fig. 5.

Symmetric 20% Symmetric 40% Pairflip 20%
Learned Variance —
Fixed Variance ol s -
70%-
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2 e i e Ll Bl
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(e
Q
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________ ia
M= e = m
———e—-
0,
40% 2e-05 5e-05 le-04 2e-04

Fixed Diagonal Variance

Figure 9. In synthetic noisy datasets of CIFAR-100, we test IVON with multiple fix diagonal variance ;. The fixed diagonal X is worse
than learned diagonal variance in all datasets.
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C.3. Uncontrolled Noisy Datasets
We now report results on Clothing1M (Xiao et al., 2015), a large-scale dataset that features natural label noise from the web

and consists of 1 million images across 14 categories. We conduct experiments by using ResNet-50 as the model.

—o— Label Smoothing —— SAM — IVON
/A

70% —
1.0%} -——

65%1

Accuracy

60%

0.0 0.3 0.6 0.9 0.010.10 0.20 0.50
a P

Figure 10. Clothing 1M experiment result is similar to synthetic noisy datasets reported in Sec. 4.3.1. Results are reported over 5 seeds.

The results on Clothing1M, illustrated in Fig. 10, demonstrate that IVON outperforms Label Smoothing and is comparable
to SAM. This experiment shows that IVON’s performance is consistent in the large scale dataset.

C.4. Hessian Initialization

We analyze how Hessian initialization hg of IVON affects the accuracy. The results are in Fig. 11. IVON’s accuracy can only
vary by up to 10% when the Hessian is bigger than 0.05, and this variation is less sensitive compared to SAM’s sensitivity to
p, as shown in Fig. 8, Fig. 5 and Fig. 10.

CIFAR-100 IVON with different Hessian Initialization

70%

60%

50%

Accuracy

40%

30% —(— Symmetric 20% Noise
—O— Symmetric 40% Noise
—O— Pairflip 20% Noise

20%
® 0.050.10 0.20 0.50 0.80 1.00

Hessian Initialization

Figure 11. Results for IVON on CIFAR-100 with multiple Hessian initializations. IVON’s accuracy is consistent when having different
Hessian initializations.

D. Experiment details
D.1. Experiment Details of Sec. 4.1 and Sec. 4.2

In Fig. 3, we test IVON on a 3-layers convolutional neural networks. In Fig. 4, we do experiments on ResNet-34 model. We
uses the PyTorch implementation verison' of Online Label Smoothing (Zhang et al., 2021).

'https://github.com/ankandrew/online-label-smoothing-pt

13


https://github.com/ankandrew/online-label-smoothing-pt

Variational Learning Induces Adaptive Label Smoothing

D.2. Experiments on Synthetic Noisy Datasets

For pairflip setting in CIFAR-10, the classes flipping order is: AIRPLANE — AUTOMOBILE — BIRD — CAT — DEER
— DOG — FROG — HORSE — SHIP — TRUCK — AIRPLANE. In CIFAR-10 experiments, we train a ResNet 34 for
200 epochs with batch size set to 50 and weight decay set to 0.001. For SAM and LS, we set initial learning rate as 0.05 and
reduce it by 0.1 at 100 epoch and 150 epoch, following hyper-parameters from previous papers. For IVON (Shen et al.,
2024), we follow the original paper to set initial learning rate as 0.2 and anneal the learning rate to zero with a cosine
schedule after a linear warmup phase over 5 epochs. We set momentum to 0.9 for all methods, and hessian momentum Ss
to 1 — e~®, hessian initial hg to 0.9, scaling parameter A to the number of training data for IVON. For SAM, we follow
the original paper (Foret et al., 2021) and choose best neighborhood size p from [0.01,0.05,0.1,0.2,0.5]. In CIFAR-100
experiments, we tune the hyperparamters to the best for each method. The hyperparameters are specified in Table 1.

In Fig. 9, we fix the Hessian of IVON by setting 82 = 1 in Line 5 of Alg. 1. Therefore, standard deviation o defined in Line
8 is fixed since Hessian h is fixed.

Table 1. Hyperparamters of each method for CIFAR-100. We denote learning rate as Ir, Hessian Initialization as Hessian init.

Symmetric 20%  Symmetric 40%  Pairflip 20%

Weight decay 2e-4 2e-4 Se-4
LS (Szegedy et al., 2016) Ir 0.1 0.1 0.1
SAM (Foret et al., 2021) 1Ir 0.05 0.1 0.1
IVON (Shen et al., 2024) Ir 0.8 0.8 0.5
IVON (Shen et al., 2024) Hessian init 0.2 0.2 0.5

D.3. Data Dependent Labeling Errors Setting

First, we create a new transition matrix P of noisy label y’ = Py, where y,y’ € RX, P € REXK_ We inject difference
noise level to each class, so the noise level of each class is different:

Pi=1—(k+pBi)iec[l,K] (25)

where £ is the starting noise level and [ is the increase factor. Afterwards, we give the same transition probability to the rest

of the wrong classes:

K+ pBi . o,
Pij= g7 bi€LKLi# ] (26)

In experiments, we follow the hyperparameters in CIFAR-10 synthetic noise experiment from Sec. 4.3.1. For LS, we run
smoothing rate {0,0.1,0.3,0.5,0.7,0.9} and report the best accuracy. For SAM, we run p for {0, 0.05,0.1,0.15,0.2,0.5}
and report the best accuracy. The experiment results are reported for k = {0.1 ~ 0.5} and 8 = 0.05.

D.4. Clothing 1M Details

The noisy labels in ClothinglM (Xiao et al., 2015) are derived from the text surrounding the images on the web. In
constructing the dataset, noisy labels are assigned to images based on this contextual text.
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