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ABSTRACT

Learning jointly from images and texts using contrastive pre-training has emerged
as an effective method to train large-scale models with a strong grasp of seman-
tic image concepts. For instance, CLIP (Radford et al., 2021), pre-trained on a
large corpus of web data, excels in tasks like zero-shot image classification, ob-
ject detection, geolocalization, and more. These contrastive models embed input
images and texts into a shared representational space. Recently, it was claimed
that models like CLIP show a modality gap, where image and text embeddings
occupy disjoint areas in the representational space. Previous studies attribute this
gap to factors like data artifacts (mismatched pairs), model architecture artifacts
(the cone effect), and the nature of the loss landscape (getting stuck in local min-
ima). We demonstrate that, even after accounting for these factors, and even when
using the same modality, the contrastive loss actually creates a gap during train-
ing. As a result, we propose renaming this phenomenon the contrastive gap. We
show that the contrastive gap is exacerbated by training with small batch sizes in
high-dimensional spaces, causing embeddings of each modality to occupy small
disjoint portions of the latent space. Our experiments show that minimizing the
contrastive gap via the addition of uniformity and alignment terms optimizes the
representational space and conveys better performance on downstream tasks such
as image-text retrieval, zero-shot image classification, and multi-modal arithmetic.

1 INTRODUCTION

Multi-modal models map inputs from different modalities into a unified representational space, such
that semantically similar inputs from different modalities map to nearby points in the representa-
tional space. This can be practically useful because it allows transfer between modalities, but it is
also more consistent with the human sensory experience, which collects information across many
modalities to better understand the world. In the context of learning from paired images and text,
CLIP (Contrastive Language Image Pre-training) (Radford et al., 2021) establishes a strong proof-
of-concept for this reasoning. CLIP’s multi-modal contrastive loss allows the model to predict the
text associated with an image and vice versa. CLIP scales this approach to a very large dataset of
400M image-caption pairs, learning embeddings that cover a wide variety of visual concepts appli-
cable to many downstream tasks.

But, while CLIP is powerful, it suffers from a modality gap (Liang et al., 2022), wherein image em-
beddings reside in a space disjoint from that of the text embeddings. This phenomenon is also seen
in multi-modal contrastive models in other domains such as medical images (Zhang et al., 2021),
videos (Xu et al., 2021), amino acid sequencing (https://github.com/MicPie/clasp)
and brain decoding (Luo et al., 2024). Prior work has shown that performance on downstream tasks
improves when we minimize this gap, which can be achieved by simply shifting one modality’s
embeddings in CLIP space to change the size of the gap (Liang et al., 2022) through projection
(transforming the embeddings through some projection operation) (Zhou et al., 2023), or through
fine-tuning (Oh et al., 2023). Recent work has additionally shown that learning latent spaces of
visual embeddings via alignment with human similarity judgments improves downstream task per-
formance (Muttenthaler et al., 2023). Similarly, work relating CLIP embeddings to human brain
data found that representations that had reduced the gap between modalities also led to improved
downstream model performance (Luo et al., 2024). Therefore, analyzing and closing this gap is a
promising direction to improve upon the strong representational capacity of CLIP and its variants.
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In this paper, we conducted a comprehensive study of what causes the modality gap and simple ways
to close it. We make the following contributions:

• It’s not a modality gap. After summarizing the common purported causes of the modality
gap, we perform comprehensive experiments that show that accounting for these factors
does not close the gap, suggesting that the present understanding of modality gap may be
flawed.

• It’s a contrastive gap. We present experiments that demonstrate that the gap is a byproduct
of a high dimensional CLIP space, combined with contrastive loss that encourages CLIP
embeddings to occupy a lower dimensional manifold relative to the latent space.

• The contrastive gap can be closed. We show that simply fine-tuning CLIP by adding
a factor for uniformity and alignment can reduce the size of the gap by distributing the
embeddings more uniformly throughout CLIP’s latent space.

• Closing the contrastive gap improves downstream performance. Finally, we present
experiments to show that closing the contrastive gap, and thereby creating more aligned
and uniformly distributed representations, creates a representational space that is better
for downstream tasks, including image-text retrieval, zero-shot image classification, and
multi-modal embedding arithmetic.

2 BACKGROUND

A multi-modal contrastive model learns a representational space in which semantically paired sam-
ples from different modalities (positive pairs, e.g., an image and its associated caption) are closer
together in the latent space compared to other randomly chosen pairs (negative pairs, e.g., an image
and the caption associated with another randomly chosen image). Contrastive learning was origi-
nally developed for the unimodal setting to learn self-supervised representations. One such popular
model is SimCLR (Chen et al., 2020), which uses the NT-Xent (Normalized Temperature-scaled
Cross entropy) loss to efficiently learn robust image representations. The NT-Xent loss is differ-
ent from previous contrastive learning methods as it does not need explicit negative samples. The
NT-Xent loss works by treating samples other than the positive pair in a training mini-batch as soft-
negatives, pushing them away from the positives. Unlike previous contrastive methods, the NT-Xent
loss also normalizes the embeddings to lie on a unit hypersphere in the representational space.

Wang & Isola (2020) introduced uniformity and alignment factors as desirable properties of the
representational space and showed that the NT-Xent loss optimizes the uniformity and alignment
properties in the limit of infinite negative samples, which is equivalent to infinite batch size for
NT-Xent loss.

Many models have been recently proposed that generalize the contrastive loss to the multi-modal
setting (Zhang et al., 2021; Jia et al., 2021; Radford et al., 2021). Before these, several works
have explored the integration of different modalities using contrastive and triplet losses. Wang
et al. (2018) uses a two-branch neural network architecture with a bidirectional retrieval ranking
loss to learn joint embeddings for images and text. Wang et al. (2018) also included neighborhood-
preserving constraints, sampling mini-batches such that they contained multiple positive matches for
a given target, in order to properly capture the many-to-many relationships between images and texts
(i.e multiple images matching one text sequence or vice versa). Mahajan et al. (2019) employs joint
Wasserstein autoencoders to align multi-modal embeddings in a shared latent space. Further, Lee
et al. (2018) proposes a stacked cross-attention mechanism to discover fine-grained correspondences
between image regions and words for more accurate image-text matching. However, CLIP stands
out from these approaches due to its simplicity and scalability. While prior work requires complex
architectures and sampling strategies, CLIP uses a simple contrastive loss and random mini-batch
sampling from a vast dataset (400M image-text pairs). CLIP’s approach circumvents the requirement
for complex architectures and additional loss terms, yet achieves strong zero-shot results on many
standard image benchmarks. CLIP’s efficiency and ability to generalize across tasks have led to its
widespread adoption across a wide range of applications.

While CLIP has demonstrated remarkable advances in zero-shot learning and cross-modal tasks,
Liang et al. (2022) observed that a modality gap appears in many models that use multi-modal con-
trastive learning. There have since been several attempts to close the gap while monitoring its effects
on downstream task performance. Liang et al. (2022) show that altering the gap by simply trans-
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lating the embeddings of one modality onto the other can positively impact zero-shot classification
performance. Further, Oh et al. (2023) attribute the modality gap to the absence of hard-negatives in
a training mini-batch and synthetically generated hard-negative samples from existing data points,
showing that training with the hard-negatives improves representational quality. In this work, we
frame the gap between the multi-modal embeddings as a problem of low uniformity and show that
by simply optimizing for more alignment and uniformity (properties known to be desirable in uni-
modal contrastive learning), we can significantly reduce the size of the gap, while increasing the
quality of the representations learned.

2.1 CONTRASTING IMAGES AND TEXT USING CLIP LOSS

CLIP is an example of a contrastive model that learns image and text embeddings. CLIP loss (LCLIP
) is based on the multi-class N-pair loss that was first introduced in Sohn (2016). This loss has been
termed as the NT-Xent loss (Chen et al., 2020) and has also been used in prior works (Wu et al.,
2018; van den Oord et al., 2019). While NT-Xent loss is designed to work on data points from a
single modality, LCLIP is adapted to work on two different modalities of data.

In our scenario, the multi-modal dataset contains N images and corresponding captions. We obtain
image embeddings EI

j ∈ Rd by passing image Ij through the image encoder. Similarly, we pro-
duce the text embedding ET

j ∈ Rd by passing caption Tj through the text encoder. CLIP aims to
bring image embeddings and their corresponding caption embeddings closer together in CLIP la-
tent space (CLIP space) by increasing the similarity (inner product ⟨., .⟩) between the corresponding
embeddings. The image and text embeddings are normalized to lie on a unit hypersphere in Rd.

The full CLIP loss is:

LCLIP = − 1

2N

N∑
j=1

log

[
exp (⟨EI

j , E
T
j ⟩/τ)∑N

k=1 exp (⟨EI
j , E

T
k ⟩/τ)

]
− 1

2N

N∑
k=1

log

[
exp (⟨EI

k , E
T
k ⟩/τ)∑N

j=1 exp (⟨EI
j , E

T
k ⟩/τ)

]
(1)

Where the left term contrasts images with the texts (
∑N

k=1 in the denominator loops over text
embeddings as negatives for the jth image) and the right term contrasts texts to images (

∑N
j=1

in the denominator loops over image embeddings as negatives for the kth text). τ represents the
temperature parameter (τ = 0.01 at the end of CLIP pre-training).

3 THE GAP IN MULTI-MODAL CONTRASTIVE LEARNING

Though CLIP effectively associates images with related texts, it also creates representational spaces
with a modality gap, a phenomenon that has generated some interest. Liang et al. (2022) attributes
this modality gap to two independent factors. First, they describe the cone effect of deep neural
networks, in which different random initializations cause the embeddings of two encoders to occupy
two non-overlapping narrow cones in CLIP space. Second, they note the existence of mismatched
pairs in the dataset, where the pairing of images and captions is incorrect for some data points.
Shi et al. (2023) studied the gap in three dimensions and attributed it to conflicting uniformity and
alignment terms in the contrastive loss, claiming that this leads to the existence of local minima that
encourage the gap. Further, (Oh et al., 2023; Liang et al., 2022) show that the modality gap persists
even after fine-tuning. In our first experiment in Section 3.2, we will show that these factors cannot
fully account for the modality gap by simulating an ideal scenario where all of the above factors are
controlled for, but the gap still exists at the end of training. The goal of this work is to suggest that the
modality gap is not caused by trying to align different modalities in a unified representational space,
but instead arises as a consequence of the contrastive training that is used to align both modalities.
We therefore suggest that the term contrastive gap better describes the underlying phenomenon.
We define the contrastive gap as the separation between the embeddings produced by two encoders
trained using a multimodal contrastive loss (Equation 1). This gap occurs because the embeddings
from the two encoders arrange as two disjoint clusters within the shared representational space.
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At initialization After 25 epochs
Centroid distance 0.01 0.34
Linear separability acc. 0.52 1.00
Contrastive loss 3.42 0.00

Table 1: Modality gap persists even when all factors are controlled for: Modality gap metrics
and CLIP loss values before and after training CLIP from scratch in ideal dataset conditions. At
initialization: Distance between image and text centroids is almost zero and the embeddings are
not linearly separable, meaning that there is no modality gap. After training: Centroid distance
increases slightly, but the text and image embeddings are perfectly linearly separable. Thus, the
modality gap is created by the contrastive loss.

3.1 MEASURING THE GAP

To show that we have closed the gap between the embeddings of the two encoders, we must first find
a way to quantify the gap. We introduce the following two metrics to measure the size and severity
of the gap:

Distance between modality centroids (from Liang et al. (2022)) Given N images and N captions,
we denote the centroid of the image embeddings as CI = 1/N

∑N
j=1 E

I
j , and similarly for the

centroid of the text embeddings. We compute the distance between centroids as ∥CI − CT ∥2: this
distance can vary from 0 to 2, with 0 distance meaning there is no gap between the embeddings.

Linear Separability (from Shi et al. (2023)) is the percentage of image and text embeddings that
can be distinguished by a linear classifier operating in CLIP space. We used 80% of the dataset to
train a linear model to classify CLIP embeddings as originating from either ”image” or ”text” input.
We then tested the performance of the classifier on the remaining 20% of the dataset and reported
the accuracy. If a set of embeddings are 100% linearly separable, this means that the space occupied
by each modality is completely disjoint, with a clear gap between the embeddings. Conversely, 50%
linear separability means that the image and text embeddings are overlapping in CLIP space; i.e.
there is no gap between the embeddings.

3.2 THE MODALITY GAP PERSISTS EVEN WHEN ALL FACTORS ARE CONTROLLED FOR

We now systematically remove the factors commonly known to contribute to the modality gap. We
started with the default CLIP architecture and used the MSCOCO (Lin et al., 2014) dataset. We
created an idealized scenario where:

1. There is only one modality. We replaced the text encoder in CLIP with another copy of the
image encoder and trained the model on pairs of images instead of text-image pairs. Thus,
for this experiment, the CLIP encoders are identical image encoders with different random
initializations.

2. Embeddings from the two image encoders occupy the same cone at initialization. In our
setup, after we initialize the two image encoders, we computed a fixed transformation ma-
trix that translates the embeddings of the second image encoder to overlap with those of
the first image encoder (following Liang et al. (2022)). Thus, the second encoder’s embed-
dings are translated to occupy the same narrow cone as the first encoder’s embeddings at
initialization. This way, there is no modality gap at initialization.

3. There are no mismatched pairs. The positive pairs in our constructed dataset are actually
identical images. This eliminated the possibility that there would be mismatched pairs in
the dataset.

We ran this experiment on the full MS COCO training set. We used a batch size of 64, and the
default CLIP dimensionality of 512D (i.e. Image embeddings, EI ∈ R512). We trained the model
for 25 epochs and noted the final training loss value as close to zero.

We observe in Table 1 that even when the dataset is idealized and almost trivial to optimize on, and
the model is initialized without a gap, after training to zero loss the CLIP embeddings are perfectly
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(a) Epoch 0
I → T accuracy: 0.0

(b) Epoch 37
I → T accuracy: 0.0

(c) Epoch 150
I → T accuracy: 0.1

(d) Epoch 275
I → T accuracy: 0.87

Figure 1: Visualizing the training stages of 3D CLIP on 1000 image-text pairs from MS COCO. Red
points are image embeddings, and blue points are text embeddings. I → T accuracy represents the
text retrieval accuracies. The embeddings are initialized to reside in separate cones due to the cone
effect. They then form arcs, eventually merge together as rings, and spread out to fill the sphere.

linearly separable. Thus, there is a contrastive gap that is created as a byproduct of the contrastive
loss, even when the two encoders learn to align the same modality, with overlapping initializations
and no mismatched pairs.

3.3 VISUALIZING THE GAP IN 3D CLIP

We further investigate the persistence of the gap in CLIP space by training CLIP in 3-dimensional
space. Surprisingly, in this lower-dimensional setting, we found that the contrastive gap can be
closed even in a non-idealized setting (similar to typical CLIP training). To illustrate this, we vi-
sualized the training process using 1,000 randomly sampled image-text pairs from the MS COCO
dataset in Figure 1. This finding suggests that closing the contrastive gap may be easier in lower-
dimensional spaces vs. in high-dimensional spaces.

We report the text-retrieval accuracies in Figure 1 which shows how accurately we can retrieve an
image’s caption using the image’s embedding and comparing it against all the caption embeddings
in the dataset. We see that points on the 3D sphere are best aligned when they are evenly distributed
on the sphere (as evidenced by the very high text-retrieval accuracy when Figure 1d). Therefore,
we speculate that it is desirable to close the contrastive gap and to distribute the embeddings more
uniformly on the unit sphere in Rd.

3.4 WHY DOES THE CONTRASTIVE LOSS INDUCE A GAP?

In Section 3.2, we observed that the contrastive gap persists even when training CLIP on idealized
conditions. We speculate that this is because of the small value of the learned temperature parameter
τ = 0.01 in CLIP. As shown by Wang & Liu (2021b), when the temperature approaches zero, the
contrastive loss becomes a triplet loss with a margin of zero. This means that the loss only focuses on
the nearest negative sample within the batch: Once the similarity between a positive pair is greater
than that between the positive and the nearest negative sample, the loss stops pushing the positive
pair closer together. Wang & Liu (2021b) uses the following approximation to illustrate this point:

lim
τ→0+

− log

[
exp(si,i/τ)∑M

k=1 exp(s(i,k)/τ)

]

= lim
τ→0+

1

τ
max[smax − si,i, 0]

(2)

Where s(i,i) is the similarity between the ith sample and its positive pair, s(i,k) is the similarity
between the ith sample and the kth sample (forming a negative pair), and smax is the similarity
between the ith sample and the nearest negative pair to the ith sample (i.e, the maximum of all the
negative similarities). While a reasonable idea would be to increase the temperature to close the gap
between embeddings, this requires manual hand-tuning for each downstream task (Oh et al., 2023;
Al-Jaff, 2023), and introduces a trade-off between uniformity and alignment (Wang & Liu, 2021a).
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Figure 2: Interplay between batch size, CLIP dimensionality, and size of the contrastive gap. Points
trend downwards towards the right (as batch size increases) and are more red (lower CLIP dimen-
sionalities) towards the bottom. This indicates that large batch sizes and smaller CLIP dimensional-
ities lead to smaller contrastive gaps.

Further, Udandarao (2022) shows that increasing temperature to close the gap between embeddings
could degrade the quality of the representational space and hurt downstream task performance.

3.5 INTERPLAY BETWEEN DIMENSIONALITY AND BATCH SIZE IN CLIP

Referring to Equation 2, one way to reduce the gap would be to increase smax which would push
negative samples closer to the positive pair. This, in turn, would force the loss to increase s(i,i),
potentially closing the gap. Following this reasoning, we can analyze how dimensionality and batch
size might influence the contrastive gap by considering their impact on smax:

1. Increasing batch size adds more negative samples to the mini-batch, which raises the
chance of having more similar negative samples. Let smmax represent the maximum sim-
ilarity to a negative pair for a batch size of m. If we increase the batch size to m + 1,
we have smmax ≤ sm+1

max , as the additional negative sample can only increase or maintain
the maximum similarity. As a result, increasing batch size is likely to increase smax and
thereby reduce the contrastive gap.

2. Increasing dimensionality of CLIP expands the space in which the embeddings are po-
sitioned, represented by a unit hypersphere. As dimensionality increases, the distance be-
tween randomly selected points on the unit sphere converges to

√
2, and most points start

to get far apart (Blum et al., 2020). This means that in higher dimensions, smax tends to de-
crease. Consequently, increasing CLIP dimensionality is likely to increase the contrastive
gap.

We empirically demonstrate in Figure 2 how the interplay between CLIP dimensionality and batch
size affects the contrastive gap. Our findings confirm that smaller batch sizes and higher dimension-
alities are associated with a larger contrastive gap. This helps explain why the contrastive gap is so
common in multi-modal contrastive models: They are trained with relatively small batch sizes in
very high-dimensional spaces.

Wang & Isola (2020) show that the uni-modal contrastive loss, in the limit of infinite batch size,
asymptotically optimizes for two properties: uniformity and alignment. In the next section, we adapt
these properties to multi-modal contrastive learning and incorporate them into our loss function to
reduce the contrastive gap without needing to increase batch size.

4 MULTIMODAL UNIFORMITY AND ALIGNMENT

We now introduce the concepts of uniformity and alignment in the representational space. Unifor-
mity refers to the property of the embeddings being uniformly distributed throughout the contrastive

6
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latent space. Alignment refers to the positive pairs being close together (aligned) in the latent space.
To study the effects of closing the contrastive gap, we adapt the uniformity and alignment properties
from Wang & Isola (2020) to the multi-modal contrastive space as follows:

Uniformity for Image space : LI
Uniform = log

 1

N

N∑
j=1

N∑
k=1

exp (−2∥EI
j − EI

k∥2)

 (3)

We define the uniformity for text space (LT
Uniform) similarly. Finally, the total LUniform term is:

LUniform =
1

2
(LT

Uniform + LI
Uniform) (4)

LI
Uniform and LT

Uniform each encourage the uniformity within the image and text embeddings respec-
tively. i.e., LUniform only encourages intra-modality uniformity. The original multi-modal contrastive
loss (Equation 1) does not have any such term that constrains embeddings within each modality to
be far apart. Instead, the denominators in Equation 1 only push negative text samples away from the
positive image sample and vice versa.

To enforce a stronger constraint on the uniformity between negative image and text samples, we also
introduce a cross-modality uniformity term:

Cross-modality uniformity : LXUniform = log

 1

N

N∑
j=1

N∑
k=1,k ̸=j

exp (−2∥EI
j − ET

k ∥2)

 (5)

Finally, to better align positive image-text pairs in CLIP space, we adapt the alignment term to the
multi-modal setting:

LAlign =
1

N

N∑
j=1

(∥EI
j − ET

j ∥2) (6)

Uniformity and alignment properties have been shown to be desirable properties in the uni-modal
contrastive space (Wang & Isola, 2020). We validate the desirability of these two properties in the
multi-modal setting. In prior works evaluating the multi-modal contrastive representational space us-
ing alignment and uniformity properties, Goel et al. (2022) and Oh et al. (2023) used cross-modality
uniformity to measure uniformity in the latent space (after fine-tuning with their proposed m2-mix
loss). Meanwhile, Al-Jaff (2023) explored explicitly training multi-modal models using LUniform
(i.e., only the intra-modality uniformity term) and LAlign. In our work, we combine both the intra-
modality and cross-modality uniformity terms to encourage more uniformity in the latent space and
reduce the size of the contrastive gap.

5 EXPERIMENTS

We studied the effects of reducing the contrastive gap in CLIP space by optimizing for uniformity
and alignment of the latent space. We fine-tuned a pre-trained CLIP model by adding the LUniform,
LXUniform, and LAlign terms to the original CLIP loss (LCLIP, Equation 1). Additionally, we compared
to the m2-mix loss from Oh et al. (2023). The m2-mix loss requires that we generate synthetic hard
negatives by interpolating (mixing) between the image and text embeddings. These newly generated
synthetic samples are used as in place of the original in-batch negatives. For each of the experiments,
we also compared the performance of fine-tuned CLIP with the original pre-trained CLIP model
from OpenAI (we termed this as OpenAI-Pretrained).

We demonstrate the effects of fine-tuning pre-trained CLIP on the following losses:

• LCLIP: The default CLIP loss
• LCUA: LCLIP + LUniform + LAlign

7
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(a) Linear Separability Accuracy vs. CLIP dimension-
ality.

(b) Distance between image and text centroids vs.
CLIP dimensionality.

Figure 3: Contrastive gap metrics after fine-tuning with the different losses for different CLIP di-
mensionalities.

• LCUAXU: LCLIP + LUniform + LAlign + LXUniform
• Lm2-CLIP: Lm2-mix + LCLIP
• Lm2-CUAXU: Lm2-mix + LCLIP + LUniform + LAlign + LXUniform

Hyperparameters Overview For our experiments, we fine-tuned the CLIP model made available
by Radford et al. (2021). We studied the effects of fine-tuning over various sizes of CLIP space (Rd,
d ∈ [32, 64, 128, 512]). We adjusted the dimensionality of CLIP by randomly re-initializing the final
linear projection layer. For all our experiments, we fixed the temperature (τ ) parameter to 0.01, as τ
converges to this value after CLIP pre-training. We fine-tuned on the MS COCO (Lin et al., 2014)
dataset for 9 epochs. Additionally, to provide a stronger proof-of-concept of our proposed methods,
we fine-tuned two 128-dimensional models using LCLIP and LCUAXU on the much larger Conceptual
Captions (Sharma et al., 2018) dataset and report the values of all metrics in Figure 10 in Appendix
A.5. We list all hyperparameter settings in the Appendix B.3.

5.1 EFFECTS OF THE NEW LOSSES ON THE SIZE OF THE CONTRASTIVE GAP

First we explore the contrastive gap metrics after fine-tuning on the new losses. We compute the gap
metrics on the MS COCO validation dataset (5k image-caption pairs). We use the first of the five
captions available per image in MS COCO. Figure 3a shows the linear separability accuracy and
Figure 3b shows the distance between centroids vs. CLIP dimensionality for each of the different
losses. Firstly, we observe that the contrastive gap is larger in OpenAI’s pretrained CLIP than in all
of our fine-tuned baselines, as evidenced by the larger distance between image and text centroids
in Figure 3b. Next, we observe that LCUA, LCUAXU, and Lm2-CUAXU have lower measures of both
the metrics of the contrastive gap when compared to LCLIP and OpenAI’s pretrained CLIP. This
indicates that the size of the gap is much smaller with uniformity and alignment terms included. The
differences in the size of the contrastive gap are more pronounced in higher CLIP dimensionalities.
These results support our claim that increasing uniformity and alignment in CLIP space reduces the
size of the contrastive gap. Further, it appears that directly optimizing for uniformity and alignment
may lead to smaller contrastive gaps, compared to learning with synthetic hard negatives, as done in
Oh et al. (2023).

5.2 EFFECTS OF THE NEW LOSSES ON IMAGE-TEXT RETRIEVAL

Next, we evaluated the quality of the representational space after reducing the contrastive gap. We
measured the image-text retrieval performance on ECCV-Captions dataset. The MS COCO dataset
has many missing correspondences between images and captions: While one caption has only one
matching image, that same caption could be a equally plausible description for another image in
the dataset, and vice versa. The presence of these false negatives lead to a misrepresentation of the
image-text retrieval performance if measured directly on MS COCO: We give examples in Figure 9
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Figure 4: mAP@R for fine-tuned CLIP on dif-
ferent losses on the ECCV-Captions dataset.

Figure 5: Average zero-shot classification accu-
racies for fine-tuned CLIP on the different losses.

in Appendix A.3. We also show the Top5 image and text retrieval accuracies as measured directly
on the MS COCO dataset in Figure 8 in Appendix A.3.

ECCV-Captions extends the MS COCO dataset by adding the missing image-caption correspon-
dences using human and machine annotators. We report the mAP@R metric for average image-text
recalls in Figure 4. mAP@R is more aligned to humans than TopK Recall, and is therefore the
metric recommended by Chun et al. (2022). Figure 4 shows that LCUAXU slightly outperforms other
baselines. However, we find that LCUA gives worse retrieval performance than LCLIP . The reduced
contrastive gap in the representational space (in the case of LCUAXU) might lead to more accurate
image-text correspondences. However, it is important to optimize for cross-modality uniformity,
and therefore drive negative image-text pairs further apart, to perform well in the image-text re-
trieval task (as evidenced by the poor performance of LCUA). Additionally, we see that fine-tuning
on MS COCO generally improves performance of all baselines over OpenAI’s pretrained CLIP.

5.3 ZERO-SHOT TRANSFER

We evaluate our fine-tuned CLIP models on 13 standard image-classification datasets (listed in the
Appendix A.4). We also describe the details of the evaluation strategy in A.4. Figure 5 shows
the average zero-shot accuracies across all the datasets for each of the losses and dimensionalities.
CLIP losses with alignment/uniformity consistently outperform the default CLIP loss, and XUni-
form adds additional benefit. Thus, we argue that representational spaces with smaller contrastive
gaps (as learned by models fine-tuned with added LCUA and LCUAXU) appear to correlate with higher
performance for the zero-shot transfer task. We reason that a smaller contrastive gap likely leads
to a better representation of “concepts” within images, which benefits zero-shot classification and
average image-text retrieval performances.

We note that fine-tuning CLIP on any of the losses on the MS COCO dataset reduces the average
zero-shot transfer performance compared to OpenAI’s pretrained CLIP on the datasets we tested.
MS COCO is a much smaller dataset than the one OpenAI’s CLIP was pretrained on, covering fewer
visual concepts. Fine-tuning CLIP on MS COCO shifts the model’s representational space to fit MS
COCO’s distribution. This can lead to a loss of generalization to the datasets we tested. Despite
this limitation, our experiments show that LCAUXU outperforms LCLIP on average zero-shot image
classification when fine-tuned on the same MS COCO dataset. We hypothesize that LCUAXU’s ability
to reduce the contrastive gap by encouraging better uniformity and alignment in the representational
space leads to more generalization capability, even when fine-tuning on smaller datasets.

9
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(a) SIMAT Score vs CLIP dimensionality
for the different losses.

(b) Multi-modal arithmetic: Given an in-
put image and a text transformation (“Cat”
→ “Elephant”), LCLIP model retrieves incor-
rect image in this example, whereas LCUAXU
model retrieves the correct image.

Figure 6: Multi-modal arithmetic evaluation of models fine-tuned with the different losses.

5.4 MULTIMODAL ARITHMETIC

A high-quality multi-modal representational space should have consistent structural representations
across the learned modalities. We used SIMAT (Semantic IMage Transformation) (Couairon et al.,
2022) to evaluate such relationship consistencies between CLIP image and text embeddings. SIMAT
computes a new image representation after transforming it with text delta vectors and retrieves the
closest image to the transformed embedding. (i.e., EI

target = EI
input + λ(̇ET

target − ET
input)).

Figure 6a shows SIMAT scores across the different loss functions. LCUA and LCUAXU result in
increased SIMAT scores, indicating that the added uniformity and alignment terms result in a more
interpretable mapping between modalities. We also observe that all fine-tuned baselines (Except
LCLIP at 512D) perform much better in the multimodal arithmetic task than OpenAI’s pretrained
CLIP. Notably, the difference in SIMAT scores between LCLIP and the modified losses becomes
more pronounced as CLIP dimensionality increases. We see a similar trend in Figures 3a and 3b,
where LCUA and LCUAXU lead to representational spaces with significantly lower contrastive gap than
in LCLIP , especially in higher dimensionalities. Figure 6b illustrates the multi-modal arithmetic task.

From these empirical findings, we conclude that having a smaller contrastive gap is well correlated
with higher performance on the multi-modal arithmetic task. Our results suggest that closing the
contrastive gap by fine-tuning with added uniformity/alignment terms could benefit applications
that rely on the geometric structure and consistent arithmetic properties in the latent space.

6 CONCLUSIONS

We studied the representations of multi-modal contrastive learning and the contrastive gap. Our
analysis showed that controlling for the reasons thought to cause the gap does not close it. Thus, this
is not a modality gap. We instead proposed the term contrastive gap to describe this phenomenon.

We investigated the relationship between dimensionality and batch size, concluding that the con-
trastive gap is exacerbated by small batch sizes in high dimensional CLIP space. To reduce the gap,
we proposed adding uniformity and alignment terms to the CLIP loss. Our results demonstrated
that directly optimizing for uniformity and alignment in the latent space significantly reduces the
gap. Moreover, we found that closing the gap through fine-tuning with LCUAXU improved average
image-text retrieval and zero-shot image classification performances, suggesting that reducing the
contrastive gap could lead CLIP to develop a more accurate understanding of concepts in images.
Further, the new losses also improved multi-modal arithmetic performance, suggesting that the new
representational space could have more consistent geometric structure.

While our experiments focused on fine-tuning on MS COCO, we hope to expand our scope and train
CLIP models from scratch to better understand the impact of uniformity and alignment at scale.
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7 REPRODUCIBILITY STATEMENT

We now highlight our efforts to ensure the reproducibility of our results. We included the code we
used to produce our results in the supplemental materials section of this submission. Further, we
specify the hyperparameters used in our experiments in Section 5 and in the Appendix B.3. We
also specify the compute hardware we used for our experiments in the Appendix B.2. Moreover, we
use publicly available model architectures, and we specify the sources of their implementations in
the text whenever applicable. Finally, we use freely available datasets for all our experiments, and
specify the dataset details in Section 5 and in the Appendix (A.4, B.1)

REFERENCES

Mohammad Al-Jaff. Messing With The Gap: On The Modality Gap Phenomenon In Multimodal
Contrastive Representation Learning. PhD thesis, Uppsala University, November 2023.

Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of data science. Cambridge
University Press, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for
Contrastive Learning of Visual Representations, June 2020. URL http://arxiv.org/abs/
2002.05709. arXiv:2002.05709 [cs, stat].

Sanghyuk Chun, Wonjae Kim, Song Park, Minsuk Chang, and Seong Joon Oh. ECCV Caption:
Correcting False Negatives by Collecting Machine-and-Human-verified Image-Caption Associ-
ations for MS-COCO. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
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A APPENDIX

A.1 MOTIVATION BEHIND TRAINING CLIP IN 3D

We train CLIP in 3D in Section 3.3 to better visualize the persistence of the gap on the 3D hy-
persphere. Our study builds on the work in Shi et al. (2023), where the authors also studied the
behaviour of CLIP loss by visualizing training on a 3D sphere. The authors devised this proof of
concept experiment to show that the CLIP loss induces a gap even in low dimensional space without
external factors coming from the dataset or neural network architecture. They randomly generated
1,000 points on the 3D sphere and trained with a batch size of 10, learning rate of 0.01, using the
SGD optimization algorithm. The parameter space for the SGD optimization algorithm was the eu-
clidean coordinate space of the generated points. This allowed the algorithm to directly optimize the
positions of the points to reduce the CLIP loss.

Their experiment highlights that the modality gap can arise even in low-dimensional spaces and
without any external factors from the dataset or neural network architecture, but can eventually be
closed after a large number of training steps.

Shi et al. (2023), we studied the behaviour of CLIP loss when we reduce the CLIP dimensionality
from 512D to 3D. We extended the proof-of-concept experiment done by Shi et al. (2023) by

• Using Real Data: We sampled 1,000 image-text pairs from the MS-COCO dataset rather
than using synthetic points. This way, we can better capture the nuances of a real-world
data distribution.

• Optimizing with CLIP architecture: In the original experiment by Shi et al. (2023), the
authors bypassed the neural network entirely by directly optimizing the positions of points
in a 3D Euclidean space. However, in our modified experiment, we utilized the CLIP model
to project image and text representations into a 3D space (by adjusting the output projection
layer from 512D to 3D). By doing so, we could examine how the CLIP model and its loss
function behave together, allowing us to assess the impact of both the neural network and
the loss function in a more realistic setting.

We visualize the results of our 3D experiment in Section 3.3 of the main text.
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A.2 MEASURING DISTRIBUTION OF EMBEDDINGS ON THE CLIP HYPERSPHERE

We showed in Section 5.1 of the main text the effects of the various new losses on the size of the con-
trastive gap between image and text embeddings. Here, we evaluate the distribution of embeddings
across latent space dimensions by applying Principal Component Analysis (PCA) and analyzing the
explained variance ratios (Holland, 2008)

PCA is a dimensionality reduction technique that summarizes the data into a smaller set of principal
components (PCs). The explained variance ratio indicates how much of the original data’s variance is
captured, or “explained”, by each PC. By examining the cumulative PCA explained variance curve,
we can assess how well the embeddings are spread across the dimensions of the unit hypersphere in
CLIP space. Ideally, if the embeddings are uniformly distributed across all dimensions—indicating
high uniformity—the cumulative PCA explained variance curve will form a straight line. Figure
7 shows the cumulative PCA explained variances for the three different losses for CLIP space in
R, d ∈ [32, 64, 128].

(a) 32D CLIP (b) 64D CLIP (c) 128D CLIP

Figure 7: PCA explained variances for each CLIP dimensionality after fine-tuning

From the figure, we see that LCUAXU has the lowest cumulative variance across all the principle
components for all the three dimensionalities of CLIP space tested. This indicates that the the
uniformity terms help to distribute the embeddings along more dimensions in the contrastive latent
space in Rd, across a wide range of d’s

A.3 IMAGE-TEXT RETRIEVAL PERFORMANCES

Figure 8 shows the image and text retrieval accuracies for MS COCO validation set after fine-tuning
CLIP on the different losses. As described in the main text in Section 5.2, MS COCO dataset has
many false negatives, which may misrepresent the retrieval performance of the models. We explain
this issue in more detail here.

We speculate that smaller contrastive gap leads to better representation of “concepts” within images.
However, in image-retrieval and text-retrieval tasks, the model needs to precisely match the caption
to the exact ground truth image. Even if the model retrieves an image with the correct concepts, it
will be considered incorrect if it does not match the exact ground truth image. Figure 9 demonstrates
this, illustrating two examples where models fine-tuned with both LCLIP and LCUAXU retrieves the
“wrong” caption for the input image. We observe that even though the retrieved captions do not
match the ground truth captions exactly, they are not necessarily wrong, as they encapsulate the
correct concepts that are present in the images.

The ECCV-Caption dataset accounts for these false negatives. Therefore, we use ECCV-Caption to
measure image-text retrieval performance of our fine-tuned models in Section 5.2.

A.4 ZERO SHOT TRANSFER DATASETS

We evaluate our fine-tuned CLIP models on the standard image-classification datasets outlined in
Table 2. To test the zero-shot transfer capabilities of our CLIP models, we adopt the evaluation
strategy of Goel et al. (2022), which is also recommended by Radford et al. (2021): We generate
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(a) Top5 Image Retrieval Accuracy (T → I) vs CLIP
dimensionality.

(b) Top5 Image Retrieval Accuracy (I → T ) vs CLIP
dimensionality.

Figure 8: Image and text retrieval accuracies for different CLIP dimensionalities.

(a) Ground Truth Caption: Three stuffed animals
are sitting on a bed.
Retrieved Caption using LCLIP : This is a picture of
four stuffed animals.
Retrieved Caption using LCUAXU: Two teddy bears
are seated with the other stuffed animals.

(b) Ground Truth Caption: A black fluffy cat sitting
on top of a computer keyboard.
Retrieved Caption using LCLIP : A cat looking up at
the television that has something interesting on it.
Retrieved Caption using LCUAXU: Gray and white cat
sitting next to open laptop.

Figure 9: Illustrating two instances where models fine-tuned with both LCLIP and LCUAXU make a
mistake in retrieving the nearest caption for a given image.

prompts using the class names to form sentences like “a photo of a {class name}”, “A sketch of a
{class name}”, etc. We then pass these sentences through the text encoder to get prompt embed-
dings. We average all the prompt embeddings to get a class embedding for each class. Finally, to
classify an image, we pass the input image through the image encoder and obtain its image embed-
ding. We then determine the predicted class by finding the class embedding closest to the image
embedding using cosine similarity.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dataset Classes Test size Evaluation metric
CIFAR-10 10 10,000 Accuracy
CIFAR-100 100 10,000 Accuracy
SUN397 397 19,850 Accuracy
Pascal VOC 2007 20 4,952 11-Point mAP
Oxford-IIIT Pets 37 3,669 Mean Per Class
Caltech-101 102 6,085 Mean Per Class
ImageNet 1000 50,000 Accuracy
ImageNet-V2 1000 10,000 Accuracy
ImageNet-Sketch 1000 50,000 Accuracy
ImageNet-A 200 7,500 Accuracy
ImageNet-R 200 30,000 Accuracy
ImageNet-O 200 2,000 Accuracy
ObjectNet 113 50,000 Accuracy

Table 2: Datasets evaluated on to test zero-shot image-classification performance of the different
CLIP losses.

Figure 10: Values of all three evaluation metrics: Image-text retrieval (ECCV mAP@R), zero-shot
transfer, and multi-modal arithmetic (SIMAT Score), of 128-dimensional CLIP models fine-tuned
with LCLIP and LCUAXU. The model fine-tuned with LCUAXU consistently outperforms that fine-tuned
with LCLIP .

A.5 EVALUATING ON CONCEPTUAL CAPTIONS DATASET

In order to provide a stronger proof-of-concept of our approach, we evaluated our proposed method
on the significantly larger conceptual captions dataset (Sharma et al., 2018). In our experiment,
we were able to access about 2.2 million image-caption pairs through image urls specified by the
dataset. We fine-tuned two models, one with default CLIP loss, and another with our proposed
CUAXU loss. We show in Figure 10 that the CLIP model fine-tuned with CUAXU loss outperforms
the model fine-tuned with default CLIP loss across all the three metrics we measured.
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Hyperparameter Value
Image encoder ViT/B-32
Text Encoder Transformer (same as in 3)

Embedding dimensions [32, 64 ,128, 512]
Temperature 0.01

Epochs 9
Batch size 64

Learning rate 1e-6
Adam beta1 0.9
Adam beta2 0.99

Adam weight decay 0.1
Scheduler None

Table 3: Hyperparameters used for fine-tuning the CLIP models.

B EXPERIMENTAL SETUP

B.1 DATASET

We fine-tune on the MS COCO dataset downloaded from (Lin et al., 2014) 1. We use the 2017 split,
with 118k training images, and 5k validation images. Each image has 5 human-generated captions
associated with it. In our experiments, we only take the first caption for each image.

B.2 COMPUTATIONAL RESOURCES USED

For all our training runs, we use NVIDIA RTX A5000 GPUs, and Intel(R) Xeon(R) Silver 4210
CPUs @ 2.20GHz. One run for fine-tuning CLIP from pre-trained weights on MS COCO for 9
epochs needed about 7GB GPU memory, and needed about 3.5 hours to complete (on a single
GPU).

B.3 MODEL ARCHITECTURE AND HYPERPARAMETERS

We fine-tune the pre-trained CLIP model made available by OpenAI from Huggingface (Wolf et al.,
2020)2. We list the model hyperparameters that we use below:

C LIMITATIONS

In this work, we explore the properties of uniformity and alignment in the multi-modal setting, show-
ing that added uniformity and alignment terms help to reduce the contrastive gap. One limitation
of our work is that we show this by fine-tuning CLIP on the MS COCO and Conceptual Captions
datasets. Training CLIP from scratch instead of fine-tuning CLIP may help gain more insights into
how the contrastive loss emerges during training.

1https://cocodataset.org
2https://huggingface.co/docs/transformers/en/model_doc/clip
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