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ABSTRACT

The predominant success of diffusion models in generative modeling has spurred
significant interest in understanding their theoretical foundations. In this work,
we propose a feature learning framework aimed at analyzing and comparing the
training dynamics of diffusion models with those of traditional classification mod-
els. Our theoretical analysis demonstrates that, under identical settings, diffusion
models, due to the denoising objective, are encouraged to learn more balanced and
comprehensive representations of the data. In contrast, neural networks with a simi-
lar architecture trained for classification tend to prioritize learning specific patterns
in the data, often focusing on easy-to-learn features. To support these theoretical
insights, we conduct several experiments on both synthetic and real-world datasets,
which empirically validate our findings and highlight the distinct feature learning
dynamics in diffusion models compared to classification.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021) have emerged as a powerful class of generative
models for content synthesis and have demonstrated state-of-the-art generative performance in a
variety of domains, such as computer vision (Dhariwal & Nichol, 2021; Peebles & Xie, 2023),
acoustic (Kong et al., 2021; Chen et al., 2021) and biochemical (Hoogeboom et al., 2022; Watson
et al., 2023). Recently, many works have employed (pre-trained) diffusion models to extract useful
representations for tasks other than generative modelling, and demonstrated surprising capabilities in
classical tasks such as image classification with little-to-no tuning (Mukhopadhyay et al., 2023; Xiang
et al., 2023; Li et al., 2023a; Clark & Jaini, 2024; Yang & Wang, 2023; Jaini et al., 2024). Compared
to discriminative models trained with supervised learning, diffusion models not only are able to
achieve comparable recognition performance (Li et al., 2023a), but also demonstrate exceptional
out-of-distribution transferablity (Li et al., 2023a; Jaini et al., 2024) and improved classification
robustness (Chen et al., 2024c).

The significant representation learning power suggests diffusion models are able to extract meaningful
features from training data. Indeed, the core of diffusion models is to estimate the data distribution
through progressively denoising noisy inputs over several iterative steps. This inherently views data
distribution as a composition of multiple latent features and therefore learning the data distribution
corresponds to learning the underlying features. Nevertheless, it remains unclear

how feature learning happens during the training of diffusion models and whether the feature
learning process is different to supervised learning.

Regardless of the ground-breaking success of diffusion models, the theoretical understanding is still
in its infancy. Existing analysis on diffusion models has mostly focused on theoretical guarantees in
terms of distribution estimation and sampling convergence. Several works have derived statistical
estimation errors between distribution generated by diffusion models to ground-truth distribution
(Oko et al., 2023; Zhang et al., 2024; Chen et al., 2023a), showing that diffusion models achieve a
minimax optimal rate under certain assumptions on the true density (Oko et al., 2023; Zhang et al.,
2024). Algorithmically, Li et al. (2023c); Han et al. (2024) study the estimation error of diffusion
models trained with gradient descent using kernel methods. Shah et al. (2023); Gatmiry et al. (2024);
Chen et al. (2024d) introduce algorithms based on diffusion models for learning Gaussian mixture
models. In addition, given access to sufficiently accurate score estimation, Lee et al. (2022; 2023);
Chen et al. (2023b); Li et al. (2023b) prove the convergence guarantees of sampling in (score-based)
diffusion models. Despite showing provable guarantees for diffusion models, existing theories are
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limited to the generative aspects of diffusion models, namely distribution learning and sampling.
To the best of our knowledge, no theoretical analysis is performed to elucidate the feature learning
process in diffusion models.

Notations. We make use of the following notations throughout the paper. We use ∥ · ∥ to de-
note L2 norm for vectors and Frobenius norm for matrices, unless mentioning otherwise. We use
O(·),Ω(·),Θ(·), o(·), ω(·) for the big-O, big-Omega, big-Theta, small-o, small-omega notations. We
write Õ(·) to hid (poly)logarithmic factors and similar notations hold for Ω̃(·) and Θ̃(·). For a binary
condition C, we let 1(C) = 1 if C is true and 1(C) = 0 otherwise.

1.1 OUR MAIN RESULTS

In this work, we develop a theoretical framework that studies feature learning dynamics of diffusion
model and compares with classification. Inspired by the image data structure, we employ a multi-
patch data distribution x = [µy, ξ] for both classification and diffusion model training. We consider
a two-class data setup with y = ±1 as the data label and µ1,µ−1 ∈ Rd are two fixed orthogonal
vectors, i.e., µ1 ⊥ µ−1, representing the signal. On the other hand, ξ is the label-independent noise,
which is randomly sampled from a Gaussian distribution with standard deviation σξ.

Figure 1: Illustration of the ratio of signal learn-
ing to noise learning when varying n · SNR2,
where SNR := ∥µ∥/(σξ

√
d). We show diffu-

sion model tends to study more balanced signal
and noise while classification has a sharp phase
transition and tends to focus on learning either
signal or noise.

In order to elucidate the difference of feature
learning dynamics for the two tasks, we adopt
a two-layer convolutional neural network with
quadratic activation. For diffusion model, we
consider a weight-sharing setting for the first and
second layer, which is commonly considered for
analyzing autoencoders (Nguyen, 2021; Cui &
Zdeborová, 2024). For classification, we fix the
second layer weights to be ±1, following Cao
et al. (2022); Kou et al. (2023). In other words, the
classifier can be viewed as attaching a fixed lin-
ear head to the intermediate layer of the diffusion
model. Given a training dataset of n samples from
the multi-patch data distribution, we use gradient
descent to minimize the empirical logistic loss for
classification and the DDPM loss (Ho et al., 2020)
with expectation over the diffusion noise.

Under the above settings, we investigate the dif-
ferences of feature learning dynamics between
diffusion model and classification. We quantify
the feature learning in terms of signal learning
and noise learning, measured through the align-
ment between the network weights w to the direc-
tions of signal/noise respectively, i.e., |⟨w,µy⟩|,
|⟨w, ξ⟩|. We present the following (informal) results that compare the feature learning trajectories of
the two learning paradigms.

Theorem 1.1 (Informal). Let SNR := ∥µ∥/(σξ

√
d) be the signal-to-noise ratio. We can show

• For diffusion model, |⟨w,µy⟩|, |⟨w, ξ⟩| exhibit linear growth initially and a neural network can
find a stationary point that satisfies |⟨w,µy⟩|/|⟨w, ξ⟩| = Θ(n · SNR2).

• For classification, |⟨w,µy⟩|, |⟨w, ξ⟩| exhibit exponential growth initially and when n · SNR2 ≥
β for some constant β > 1, |⟨w,µy⟩|/|⟨w, ξ⟩| = ω(1), and when n · SNR2 < 1/β,
|⟨w,µy⟩|/|⟨w, ξ⟩| = o(1).

Theorem 1.1 first highlights a difference in the learning speed during the early stage of training, where
the growth rate is quadratic for classification and linear for diffusion model. As a result, the final
learning outcomes can be largely different. Especially in the SNR region where n · SNR2 = Θ(1),
classification tends to be sensitive to the SNR value and will focus on learning either the signal µy or
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the noise ξ. In contrast, diffusion model learns both signal and noise with the same order. Such a
claim is visualized in Figure 1.

We believe our framework represents the first attempt to systematically investigate feature learning
within diffusion models, potentially uncovering novel insights into the less understood properties of
diffusion models, such as the critical window (Sclocchi et al., 2024; Li & Chen, 2024), shape bias
(Jaini et al., 2024), classification robustness (Chen et al., 2024c), among others.

2 PROBLEM SETTING

This section introduces the problem settings for both diffusion model and classification, including the
data model, neural network functions as well as training objectives and algorithm.

Definition 2.1 (Data distribution). Each data sample consists of two patches, as x = [x(1)⊤,x(2)⊤]⊤,
where each patch is generated as follows:

• Sample y ∈ {−1, 1} uniformly with P(y = −1) = P(y = 1) = 1/2.

• Given two orthogonal signal vectors µ1,µ−1, with µ1 ⊥ µ−1, we set x(1) = µy, i.e., x(1) =

µ1 if y = 1 and x(1) = µ−1 if y = −1. For simplicity, we assume ∥µ1∥ = ∥µ−1∥ = ∥µ∥.

• Set x(2) = ξ where ξ ∼ N (0, σ2
ξ (I− µ1µ

⊤
1 ∥µ1∥−2 − µ−1µ

⊤
−1∥µ−1∥−2)).

Such a multi-patch data model mimics the properties of image data where each image is composed of
several patches. Only some patches are relevant to the class label while others become background
noise. The noise patch ξ is generated from the Gaussian distribution such that it is orthogonal to
the signal vectors µ1,µ−1 for simplicity of analysis. This data model has been employed in several
existing works (Cao et al., 2022; Chen et al., 2022; Kou et al., 2023; Allen-Zhu & Li, 2023). A
difference in our model is that we have two signal vectors that are orthogonal, instead of a single
vector with signal patch being yµ as in the previous studies. We also highlight that although we only
consider two patches for simplicity, our analysis can be easily extended to multi-patch data.

Neural network functions. We consider two-layer convolutional-type neural networks for both
diffusion model and classification. For diffusion model, we consider neural network with quadratic
activation and shared first-layer and second-layer weights:

f(W,x) =
[
f1(W,x(1))⊤,f2(W,x(2))⊤

]⊤
∈ R2d,

where fp
(
W,x(p)

)
=

1√
m

m∑
r=1

⟨wr,x
(p)⟩2wr, p = 1, 2

where m denotes the network width and r represents the neuron index. That is, we decouple the
training of neural network at each diffusion time step with separate weight parameters, a strategy also
adopted in (Shah et al., 2023) for simplicity of analysis.

For classification, we consider a similar neural network with quadratic activation where second-layer
weights are fixed to be ±1 (instead of wr):

f(W,x) = F1(W1,x)− F−1(W−1,x),

where Fj(W,x) =
1

m

m∑
r=1

⟨wj,r,x
(1)⟩2 + 1

m

m∑
r=1

⟨wj,r,x
(2)⟩2.

We remark that the use of polynomial activation, such as quadratic, cubic and ReLU with polynomial
smoothing is not uncommon in existing theoretical works (Cao et al., 2022; Jelassi & Li, 2022; Zou
et al., 2023; Huang et al., 2023; Meng et al., 2023). The aim is to better elucidate the separation
between signal and noise learning dynamics in the process of training.

Training objectives and algorithm. For diffusion model, the goal is to estimate the distribution
of input images through the process of gradual denoising. In particular, we employ the objective of
denoising diffusion probabilistic model (DDPM) (Ho et al., 2020). We let x0 = [x(1),x(2)]⊤ ∈ R2d
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to denote input image. For a given diffusion time step t ∈ [0, T ], we sample xt = αtx0 + βtϵt for
ϵt ∼ N (0, I) and some noise schedule coefficients {αt, βt}Tt=0. In this work, we do not make any
assumption over the noise schedule.

The aim is estimate the mean of the posterior distribution of the noise ϵt conditioned on xt. This is
achieved by training a neural network f to predict the noise added at each step t. The DDPM loss is
given by Ex0,ϵt,t∥f(xt)− ϵt∥2 up to some re-scaling (Ho et al., 2020). We consider a finite-sample
setup given by the training images {xi}ni=1 sampled according to Definition 2.1 and thus the empirical
DDPM loss at time step t becomes

LF (Wt) =
1

2n

n∑
i=1

Eϵt,i ∥f(Wt,xt,i)− ϵt,i∥2 =
1

2n

n∑
i=1

Eϵt,i ∥f(Wt, αtx0,i + βtϵt,i)− ϵt,i∥2 ,

where we let x0,i = xi and xt,i = αtx0,i + βtϵt,i. Unlike (Han et al., 2024), where each sample i
is associated with a single noise ϵt,i ∼ N (0, I), we here consider taking the expectation over the
noise distribution, which aligns with the practical setting where multiple noises are sampled for
each input data. We use gradient descent to train diffusion model starting from random Gaussian
initialization w0

r,t ∼ N (0, σ2
0I) as wk+1

r,t = wk
r,t − η∇wr,t

LF (W
k
t ), where we let superscript k to

denote iteration index and subscript r, t to denote neuron index and diffusion timestep respectively.

For classification, we minimize the empirical logistic loss over the training data {xi, yi}ni=1,

LS(W) =
1

n

n∑
i=1

ℓ
(
yif(W,xi)

)
, ℓ(z) = log

(
1 + exp(−z)

)
.

The same as diffusion model, we use gradient descent to train the neural network starting from
random Gaussian initialization w0

j,r ∼ N (0, σ2
0I).

3 MAIN RESULTS

Our main results are based on the following conditions.
Condition 3.1. Suppose the following holds.

1. Dimension d is sufficiently large with d = Ω̃
(
max{∥µ∥2, n2mσ−1

ξ ∥µ∥, n4m2, n4m8σ−2
ξ }

)
.

2. The sample size n and network width m satisfies n,m = Ω̃(1).

3. The standard deviation of initialization σ0 is chosen such that Õ(n2mσ−1
ξ d−1) ≤ σ0 ≤

Õ
(
min{∥µ∥−1, σ−1

ξ d−1/2,m−6d−1/2}
)
.

4. The learning rate η satisfies η ≤ Õ
(
min{m∥µ∥−2, nmσ0σ

−1
ξ d−1/2, nmσ−2

ξ d−1}
)
.

5. The noise coefficients for diffusion model satisfy αt, βt = Θ(1).

Condition 3.1 requires d to be large to ensure learning in an over-parameterized setting. Furthermore,
we only require the network width and sample size to be lower bounded by some logarithmic factors,
in order to achieve certain concentration properties of neurons and samples. The upper bound on
the initialization σ0 is to ensure random initialization does not significantly affect the signal and
noise learning dynamics. The lower bound on σ0 is required to bound the noise inner product at
initialization for properly minimizing the training loss of classification. We can ensure the lower
bound is valid by imposing further conditions on the dimension d. The learning rate η is chosen
sufficiently small for the convergence analysis for the classification. Lastly for diffusion model, we
consider the constant order for αt, βt. We believe that the constant order of αt and βt reflects the
standard practice in diffusion models, such as (Ho et al., 2020). Similar assumptions are commonly
employed to derive learning guarantees for classification (Chatterji & Long, 2021; Cao et al., 2022;
Kou et al., 2023).

Based on Condition 3.1, we present the main results for diffusion model (Theorem 3.1) and classifica-
tion (Theorem 3.2).
Theorem 3.1 (Diffusion model). Under Condition 3.1, along the training trajectory of diffusion
model, there exists a stationary point W∗

t , i.e., ∇wr,tLF (W
∗
t ) = 0 that satisfies (1) ⟨w∗

r,t,µj⟩ =
Θ(⟨w∗

r′,t,µj′⟩), (2) ⟨w∗
r,t, ξi⟩ = Θ(⟨w∗

r′,t, ξi′⟩), and (3) for all j = ±1, r ∈ [m], i ∈ [m],

|⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| = Θ(n · SNR2).
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Theorem 3.1 states that the training of diffusion model encourages performing balanced signal and
noise learning, i.e., the neurons are sharing the same order in the directions of signals and noise.
Notably, the ratio between signal and noise learning is governed by the SNR, with a stationary
magnitude as n · SNR2.

Theorem 3.2 (Classification). Let Tµ = Θ̃(η−1m∥µ∥−2) and Tξ = Θ̃(η−1nmσ−2
ξ d−1) and sup-

pose δ > 0. Under Condition 3.1, there exist two absolute constants C > C > 0 such that with
probability at least 1− δ, it satisfies that:

• When n · SNR2 ≥ C, there exists 0 ≤ k ≤ Tµ such that training loss converges with LS(W
k) ≤

0.1 and
max

r
|⟨wk

j,r,µj⟩| ≥ 2, ∀j = ±1, max
j,r,i

|⟨wk
j,r, ξi⟩| = o(1).

• When n · SNR2 ≤ C, there exists 0 ≤ k ≤ Tξ such that training loss converges with LS(W
k) ≤

0.1 and
max

r
|⟨wk

yi,r, ξi⟩| ≥ 1, ∀i ∈ [n], max
j,r,y

|⟨wk
j,r,µy⟩ = o(1).

Theorem 3.2 establishes a sharp phase transition between signal and noise learning for the case of
classification. The transition is precisely determined by n · SNR2. That is, when n · SNR2 ≥ C for
some constant C > 0, the neural network learns signal to achieve small training loss. On the contrary,
when n · SNR2 ≤ C for some constant C ∈ (0, C), the neural network overfits noise in order to
converge. Using standard techniques, such as in (Cao et al., 2022), we can show signal and noise
learning corresponds to the regime of benign and harmful overfitting respectively. To the best of our
knowledge, this is the first result that shows separation under the constant of n · SNR2.

Diffusion model learns balanced features while classification learn dominant features. Compar-
ing the learning outcomes of diffusion model and classification, we reveal a critical difference that
diffusion model learn more balanced features depending on the SNR conditions, while classification
is prone to learning either signal or noise predominately. This can be best understood in the case of
n · SNR2 = Θ(1). By Theorem 3.2, we have either signal learning or noise dominating the learning
process in classification, while Theorem 3.1 suggests signal and noise learning are in the same order
in diffusion models. The theoretical findings corroborate the empirical observations that the neural
network trained for classification is prone to overly rely on learning a specific pattern that is easier to
learn, a process known as shortcut learning (Geirhos et al., 2020). Meanwhile, diffusion models tend
to learn low-frequency, global patterns (Jaini et al., 2024), which helps to improve the classification
robustness (Chen et al., 2024b;c).

4 PROOF OVERVIEW

In summary, for diffusion model, both the mean-squared loss and the joint training of two layers
impose significant challenges for the analysis. Thus, we decouple the training into two stages,
and characterize the stationary points based on the derived results at the end of first-stage. For
classification, the two-stage analysis is similar as in (Cao et al., 2022; Kou et al., 2023) where the
first stage learns signal or noise vector sufficiently fast and the second stage shows convergence in
the training loss where the learned scale difference in the first stage is maintained. However for
classification analysis, we highlight two critical differences compared to existing works (Cao et al.,
2022; Kou et al., 2023; Meng et al., 2024), i.e., a constant n ·SNR2 condition and quadratic activation.

4.1 DIFFUSION MODEL

We first simplify the DDPM loss by taking the expectation with respect to the added diffusion noise:

LF (Wt) = d+
1

2n

n∑
i=1

2∑
p=1

( 1

m
Eϵt,i

∥∥ m∑
r=1

⟨wr,t,x
(p)
t,i ⟩

2wr,t

∥∥2
︸ ︷︷ ︸

I1

− 4αtβt√
m

m∑
r=1

∥wr,t∥2⟨wr,t,x
(p)
0,i ⟩︸ ︷︷ ︸

I2

)
,

where we recall for p = 1, 2, x(p)
t,i = αtx

(p)
0,i + βtϵ

(p)
t,i , with x

(1)
0,i = µyi

and x
(2)
0,i = ξi and

ϵ
(1)
t,i , ϵ

(2)
t,i ∼ N (0, I). We further simplify I1 in Lemma E.2 (in Appendix). We make several remarks
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in order. First, I1 corresponds to a regularization term that regulates the magnitude of each neuron
as well as the alignment among neurons. I2 corresponds to the main learning term. Second, in the
current setting, when either αt or βt vanishes, the loss is dominated by the regularization term such
that neural network converges towards zero.

First stage. In the first stage, where all the key quantities, including signal and noise inner products,
norm of the weights and cross-neuron inner product remain close to their respective initialization, we
can show the growth of the signal and noise inner products is approximately linear:

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+ 4ηαtβt|Sj |
n
√
m

∥wk
r,t∥2∥µj∥2 + Õ(σ5

0d
2∥µj∥3),

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+
4ηαtβt

n
√
m

∥wk
r,t∥2∥ξi∥2 + Õ(σ5

0σ
3
ξd

7/2),

This allows to simplify the analysis for the initial iterations and we have the following scale at the
end of the first stage.
Lemma 4.1. Under Condition 3.1, there exists an iteration T1 = max{Tµ, Tξ}, where Tµ =

Θ̃(
√
mσ−1

0 d−1∥µ∥−1η−1) and Tξ = Θ̃(n
√
mσ−1

0 σ−1
ξ d−3/2η−1) such that for all k ≤ T1, (1)

|⟨wk
r,t,µj⟩| = Õ(σ0∥µ∥) (2) |⟨wk

r,t, ξi⟩| = Õ(σ0σξ

√
d) and (3) ∥wk

r,t∥2 = Θ(σ2
0d) for all r ∈

[m], j = ±1, i ∈ [n]. for all j = ±1, r ∈ [m], i ∈ [n]. Furthermore, we can show

• ⟨wT1
r,t,µj⟩ = Θ(⟨wT1

r′,t,µj′⟩) ,

• ⟨wT1
r,t, ξi⟩ = Θ(⟨wT1

r′,t, ξi′⟩),

• |⟨wT1
r,t,µj⟩|/|⟨wT1

r,t, ξi⟩| = Θ(n · SNR2) ,

for all j, j′ = ±1, r, r′ ∈ [m], i, i′ ∈ [n].

Lemma 4.1 verifies that at the end of the first stage, due to the linear dynamics, all the key inner
products and norms are still close to their initialization. In the meantime, all the neurons are
concentrated in terms of signal and noise learning and the ratio is precisely determined by n · SNR2.
This is critically different compared to the case of classification where signal and noise inner product
exhibits exponential growth as we show later and thus allows a clear scale difference at the end of the
first stage.

Second stage. The second stage shows that there exists a stationary point such that the relative
scale at the end of the first stage is preserved, namely concentration of neurons ⟨wk

r,t,µj⟩ =

Θ(⟨wk
r′,t,µj′⟩), ⟨wk

r,t, ξi⟩ = Θ(⟨wk
r′,t, ξi′⟩) for all j, j′ = ±1, r, r′ ∈ [m], i, i′ ∈ [n] as well as the

ratio of signal to noise learning respects the order of n · SNR2. Towards this end, we first identify the
required conditions for a stationary point w∗

r,t under the concentration of neurons, which leads to

√
mΘ

(
⟨w∗

r,t,µj⟩5 + ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2 + ⟨w∗
r,t, ξi⟩4⟨w∗

r,t,µj⟩+ ∥w∗
r,t∥4⟨w∗

r,t,µj⟩

+ ⟨w∗
r,t, ξi⟩2∥w∗

r,t∥2⟨w∗
r,t,µj⟩+ ⟨w∗

r,t,µj⟩3∥w∗
r,t∥2∥µj∥2 + ∥w∗

r,t∥4⟨w∗
r,t,µj⟩∥µj∥2

)
= Θ

(
⟨w∗

r,t, ξi⟩⟨w∗
r,t,µj⟩+ ⟨w∗

r,t,µj⟩2 + ∥w∗
r,t∥2∥µj∥2

)
,

√
mΘ

(
⟨w∗

r,t, ξi⟩5 + ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2 + ⟨w∗
r,t,µj⟩4⟨w∗

r,t, ξi⟩+ ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩

+ ⟨w∗
r,t,µj⟩2∥w∗

r,t∥2⟨w∗
r,t, ξi⟩+

1

n
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2∥ξi∥2 +

1

n
∥w∗

r,t∥4⟨w∗
r,t, ξi⟩∥ξi∥2

)
,

= Θ
(
⟨w∗

r,t,µj⟩⟨w∗
r,t, ξi⟩+ ⟨w∗

r,t, ξi⟩2 +
1

n
∥w∗

r,t∥2∥ξi∥2
)
+ Õ(n

√
md−1/2).

We then separately analyze the three SNR conditions: (1) n · SNR2 = Θ(1), (2) n · SNR2 = Ω̃(1)

and (3) n−1 · SNR−2 = Ω̃(1). We show

• When n · SNR2 = Θ(1), |⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| = Θ(1).

• When n · SNR2 = Ω̃(1), Ω(1) = |⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| ≤ Θ(n · SNR2).
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• When n−1 · SNR−2 = Ω̃(1), Ω(1) = |⟨w∗
r,t, ξi⟩|/|⟨w∗

r,t,µj⟩| ≤ Θ(n−1 · SNR−2).

This demonstrates that if n · SNR2 is a constant, then the relative magnitude of signal learning to
noise learning is also a constant. If n · SNR2 is lower bounded by a log order, then the ratio cannot
be larger than the order of n · SNR2. On the other hand, if n−1 · SNR−2 is lower bounded by a
log order, then the ratio cannot be smaller than the order of n · SNR2. This suggests there exists a
stationary point that preserves the scale.

4.2 CLASSIFICATION

Let Sy := {i ∈ [n] : yi = y} for y = ±1 and ℓ′ki = ℓ′
(
yif(W

k,x)
)
. Then we can rewrite the

gradient descent updates in terms of the signal and noise inner products:

⟨wk+1
j,r ,µy⟩ = ⟨wk

j,r,µy⟩ −
η|Sy|
nm

ℓ′ki ⟨wk
j,r,µy⟩jy∥µ∥2 = (1− η|Sy|∥µ∥2

nm
ℓ′ki jy)⟨wk

j,r,µy⟩, (1)

⟨wk+1
j,r , ξi⟩ = ⟨wk

j,r, ξi⟩ −
η

nm
ℓ′ki ⟨wk

j,r, ξi⟩∥ξi∥2jyi −
η

nm

∑
i′ ̸=i

ℓ′ki′ ⟨wk
j,r, ξi′⟩jyi′⟨ξi′ , ξi⟩, (2)

for all j, y = ±1, r ∈ [m], i ∈ [n]. The iterative updates of signal inner product suggests that for
any j = ±1, wj,r specializes the learning of µj because by the fact that ℓ′ki < 0, |⟨wk+1

j,r ,µy⟩| =
(1− η|Sy|∥µ∥2

nm ℓ′ki jy)|⟨wk
j,r,µy⟩| > |⟨wk

j,r,µy⟩| only when j = y. For the noise inner product, the
growth is dominated by the second term where |⟨ξi, ξi′⟩| = Õ(d−1/2)∥ξi∥2 is significantly smaller.
Therefore, we can show |⟨wk+1

j,r , ξi⟩| grows only for j = yi while for j = −yi, the magnitude cannot
increase relative to the scale of initialization. Next, we decompose the analysis into two stages.

First stage. In the first stage before the maximum of signal and noise inner product reaches constant
order, the loss derivatives can be lower bounded by an absolute constant, i.e., |ℓ′ki | ≥ Cℓ, for all
k ≤ T1. As a result, both signal and noise inner product can grow exponentially and the relative
growth rates are precisely characterized by the condition on n · SNR2. A constant order of difference
in the growth rate is sufficient to ensure at the end of first stage, there exists a scale separation in
signal and noise learning, where either signal or noise inner product reaches a constant order.

Different to existing analysis that only shows maximum inner product reaches constant order (Cao
et al., 2022), we also show the average inner product reach constant order at the same time. Such a
stronger result is required for the analysis under the constant order of n · SNR2, which reduces the
required iteration number in the second stage by an order of m.

For the case of signal learning, we can readily obtain the same bound for the average inner product and
maximum inner product based on (1). Nevertheless, this becomes challenging for noise learning due to
the cross term in (2). Thus, we rely on an anti-concentration result that lower bounds the |⟨w0

j,r, ξi⟩|
at initialization, which is sufficient to ensure the sign invariance across the whole optimization
process, i.e., sign(⟨wk

j,r, ξi⟩) = sign(⟨w0
j,r, ξi⟩) for all k. The following lemma provides a formal

characterization at the end of first stage.

Lemma 4.2. Under Condition 3.1: (1) When n · SNR2 = Ω(1), there exists T1 = Θ̃(η−1m∥µ∥−2),
such that 1

m

∑m
r=1 |⟨w

T1
j,r,µj⟩| ≥ 2 for all j = ±1 and maxj,r,i |⟨wT1

j,r, ξi⟩| = o(1). (2) When
n−1 · SNR−2 = Ω(1), there exists T1 = Θ̃(η−1nmσ−2

ξ d−1) such that 1
m

∑m
r=1 |⟨wT1

yi,r, ξi⟩| ≥ 4

for all i ∈ [n] and max j, r, y|⟨wT1
j,r,µy⟩| = o(1).

Second stage. Lemma 4.2 already shows a scale difference in the signal and noise learning. In the
second stage, we follow the standard analysis (Cao et al., 2022; Kou et al., 2023) to show the loss
converges while the scale difference is maintained. Because n ·SNR2 can be a constant, we require to
carefully bound the loss derivatives in the second stage particularly for establishing the upper bound
for |⟨wk

j,r, ξi⟩| when n · SNR2 = Ω(1). The naïve bound maxi |ℓ′ki | ≤ maxi |ℓki | ≤ nLS(W
k) used

in (Cao et al., 2022) no longer works as it introduces an additional factor of n. To provide a tighter
bound, we show the ratio of loss derivatives in the case of n · SNR2 = Ω(1), i.e., |ℓ′ki |/|ℓ′ki′ | ≤ C1

for all i, i′ ∈ [n] with yi = yi′ , k ≥ T1, where C1 > 0 is a constant. This is possible because the
network output is dominated by the signal, which is shared across samples with the same label. This
allows to bound maxi |ℓ′ki | = Θ

(
|Syi∗ |

−1∑
i∈Syi∗

|ℓ′ki |
)
≤ Θ(LS(W

k)).
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Low SNR (n · SNR2 = 0.75) High SNR (n · SNR2 = 6.75)

Figure 2: Experiments on the synthetic dataset with both low SNR (n · SNR2 = 0.75) and high
SNR (n · SNR2 = 6.75). In the low SNR setting, we see noise learning quickly dominates signal
learning for the classification task and in the high SNR setting, signal learning quickly dominates
noise learning. Meanwhile diffusion model converges to a stationary point that with signal-to-noise
learning ratio respects the order of n · SNR2.

n · SNR2 = 0.75 n · SNR2 = 6.75

Figure 3: Experiments on the synthetic dataset with both low SNR (n · SNR2 = 0.75) and high SNR
(n · SNR2 = 6.75). The loss for both diffusion model and classification and training/test accuracy
for classification.

5 NUMERICAL EXPERIMENTS

We conduct both synthetic and real-world experiments to verify the difference between diffusion
model and classification in terms of signal and noise learning.

5.1 SYNTHETIC EXPERIMENT

We follow the data distribution in Definition 2.1 to generate a synthetic dataset for both diffusion model
and classification. Specifically, we set data dimension d = 1000 and let µ1 = [µ, 0, · · · , 0] ∈ Rd

and µ−1 = [0, µ, 0, · · · , 0] ∈ Rd. We sample the noise patch ξi ∼ N (0, Id), i ∈ [n] (i.e., σξ = 1).
We set sample size and network width to be n = 30 and m = 20 and initialize the weights to be
Gaussian with a standard deviation σ0 = 0.001. Such a setting is aligned with the Condition 3.1.
We vary the choice of µ to create two problem settings: (1) low SNR with µ = 5, which leads to
n · SNR2 = 0.75 and (2) high SNR with µ = 15, which leads to n · SNR2 = 6.75. We use the same
two-layer networks introduced in Section 2. For classification, we set a learning rate of η = 0.1 and
train for 500 iterations. We also measure the in-distribution test accuracy with 3000 test samples. For
diffusion model, instead of using the expected loss, we train the DDPM loss by averaging the added
diffusion noise, following the standard training of diffusion model. In particular, for each sample,
we samples nϵ = 2000 noise at each iteration and the loss is calculated by taking an average over
the noise. For the noise coefficients, we consider a time t = 0.2 and set αt = exp(−t) = 0.82 and
βt =

√
1− exp(−2t) = 0.57.

In Figure 2, we compare signal and noise learning dynamics (visualized through maximum signal
and noise inner product) between classification and diffusion model. In Figure 3, we also include
training loss convergence for both the tasks as well as training and test accuracy for classification.

We see both classification and diffusion model are able to converge in loss, although diffusion model
only finds a stationary point. In the low SNR setting, classification is able to perfectly fit the training
samples with a 100% classification accuracy. However because it primarily focuses on learning noise,
the generalization is poor with a test accuracy of around 50%. For the high-SNR case, both training
and test sets can be perfectly classified due to the signal learning.

8
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Figure 4: Experiments on Noisy-MNIST with S̃NR = 0.1. (First
row): Test Noisy-MNIST images; (Second row): Illustration of in-
put gradient, i.e., ∇xF+1(W,x) when y = 1 and ∇xF−1(W,x)
when y = 0. (Third row): denoised image from diffusion model.
In this low-SNR case, we see classification tends to predominately
learn noise while diffusion learns both signals and noise.

(a)

(b)

(c)

Figure 5: Experiments on
Noisy-MNIST with S̃NR =
0.1. (a) Train loss for classifi-
cation. (b) Train loss for diffu-
sion model. (c) Feature learn-
ing dynamics.

Regarding feature learning in classification, noise learning quickly dominates signal learning by
exhibiting a significant larger growth in the first stage (up to around 20 iterations). This ensures
noise learning to reach a constant order while signal learning is still very small. The second stage
corresponds to loss convergence and the growth of both signal and noise learning is upper bounded
by a log order. For diffusion model, in the first stage, where loss does not materially change, both
signal and noise learning increases linearly which remains on the same order. In the second stage
where loss significantly decreases, signal and noise learning grow at an exponential rate and in the
third stage, due to the regularization term on the weight, noise and signal reach a stationary point that
preserves the scale of n · SNR2.

5.2 REAL-WORLD EXPERIMENT

In addition, we also verify the feature learning comparisons on MNIST dataset (Lecun et al., 1998).
In order to better control the SNR, we create a noisy version of MNIST dataset (and called Noisy-
MNIST) where we view each original MNIST image as a clean signal patch and then we concatenate
a standard Gaussian noise patch with the same size, i.e., 28×28. In addition, we scale the signal patch
by a constant, which we denote as S̃NR. Because the noise scale is fixed, higher S̃NR corresponds
to higher SNR. Some sample images with S̃NR = 0.1 are shown in the first row of Figure 4.
We select 50 samples each from digit 0 and 1 respectively (i.e., n = 100). We consider the same
neural networks as in the synthetic example, where we set m = 100 and initialize the weights with
σ0 = 0.01. For diffusion model, we choose the same αt, βt as in the synthetic experiment. In the
main paper, we present the results for S̃NR = 0.1, which corresponds to low SNR setting. Figure
5 shows both classification and diffusion model converges in losses. In addition, we also plot the
signal and noise learning dynamics in Figure 5(c). Because each image is composed of unique
signal µi and noise patch ξi for i ∈ [n], we measure the signal and noise learning by computing
1
n

∑n
i=1 maxr |⟨wr,µi⟩| and 1

n

∑n
i=1 maxr |⟨wr, ξi⟩| respectively. We notice that due to the low

SNR, when convergence, noise learning in classification dominates signal learning while diffusion
model learns a more balanced ratio. This corroborates our theoretical findings.
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To visualize the patterns learned by the neural networks, for classification, we use a similar idea
of Grad-CAM (Selvaraju et al., 2020) by probing into the gradient of output with respect to the
input. In particular, for samples of digit 0, we plot the gradient of negative function output, i.e.,
∇xF−1(W,x) and for samples of digit 1, we plot ∇xF+1(W,x). In the second row of Figure 4,
the gradients with respect to six test images suggest that classification learns significantly more noise
compared to the signal patch. On the other hand, for diffusion model, we first add diffusion noise to
the input images and use the network to predict the added noise. Then we plot the predicted input
using the formula x̂0 = (xt − βtϵ̂(xt))/αt, where ϵ̂(xt) denotes the predicted diffusion noise. In
the third row of Figure 4, we see diffusion models learn both the signal and noise. In Appendix B.1,
we also experiment on a high-SNR setting with S̃NR = 0.5 where we see the reverse pattern that
classification predominately learns noise rather than signal while diffusion model still balances the
learning of both signal and noise.

6 CONCLUSIONS AND DISCUSSIONS

This work presents a novel theoretical framework for analyzing the feature learning dynamics in
diffusion models, marking the first such contribution to the existing literature. Through rigorous
analysis, we demonstrate that diffusion models inherently promote the learning of more balanced
features, in contrast to traditional classification methods, which tend to prioritize certain features over
others. This suggests models trained for classification may be more sensitive to the change in SNR
compared to diffusion models. Consequently, this may explain the inherent adversarial robustness
of diffusion model in downstream applications, such as classification (Li et al., 2023a; Chen et al.,
2024c;b), because such perturbations are less likely to significantly alter the feature learning outcomes
of diffusion models compared to classification models.

Although our study focuses on two-patch data setup, the framework can be adapted to accommodate
more complex data settings. For example, our analysis can be extended to multi-feature data
distributions, where certain features appear more frequently (Zou et al., 2023) or possess larger
norms than others (Lu et al., 2024). Such extensions may potentially uncover deeper insights into
the mechanisms of feature learning in more realistic scenarios. We hypothesize that, despite the
infrequent occurrence or smaller norm of these features, diffusion models can effectively learn them
due to the nature of the denoising objective. This insight has significant implications for downstream
tasks, such as out-of-distribution classification, where only these rare or weak features may be present.
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A RELATED WORKS

Theoretical analysis of diffusion model. Existing theoretical guarantees for diffusion models focus
on distribution estimation and sampling. For distribution estimation, Oko et al. (2023) show that
diffusion model can achieve a nearly minimax optimal estimation error where the true density is
defined over a bounded Besov space. The minimax optimality of diffusion model is later proved
to hold for a more general class of densities that are sub-Gaussian and satisfy certain degree of
smoothness (Zhang et al., 2024). Further, Oko et al. (2023); Chen et al. (2023a) prove that when the
density is supported on a low-dimensional subspace, diffusion model avoids curse of dimensionality
with an estimation rate that only depends on the intrinsic dimension. Besides statistical guarantees,
several studies approach the distribution learning problem from an algorithmic perspective. Shah
et al. (2023) shows gradient descent can provably learn the distribution of well-separated spherical
Gaussian mixtures. Some other works study the distribution estimation of diffusion model trained
by gradient descent dynamics, under the choice of a random feature model (Li et al., 2023c) and
neural tangent kernel regime (Han et al., 2024). In addition, Gatmiry et al. (2024); Chen et al. (2024d)
introduce efficient algorithms based on diffusion models for estimating the density of more general
Gaussian mixture model. Finally, Wang et al. (2024) analyze the convergence of denoising score
matching objective under gradient descent.

Apart from distribution estimation aspect of diffusion model, many works study the convergence
guarantees for diffusion model sampling. Several results (Lee et al., 2022; 2023; Chen et al., 2023b;
Li et al., 2023b) have shown (score-based) diffusion model attains polynomial convergence rate under
sufficiently accurate score estimation. Recent literature has also aimed to accelerate the convergence
in sampling via strategies such as consistency training (Song et al., 2023; Li et al., 2024b), advanced
design of the reverse transition kernel (Huang et al., 2024), higher-order approximation (Li et al.,
2024a) and parallelization (Chen et al., 2024a; Gupta et al., 2024). In addition, Li & Chen (2024)
theoretically verify the critical window of feature emergence during the sampling process assuming
access to accurate score estimates.

Theoretical analysis on (denoising) autoencoders. Diffusion models can be viewed as multi-level
denoising autoencoders (Xiang et al., 2023). There exists extensive research on theoretical guarantees
for autoencoders without denoising. Most of the works focus on linear autoencoders (Kunin et al.,
2019; Oftadeh et al., 2020; Steck, 2020; Bao et al., 2020) while only a few works analyzed non-linear
autoencoders, either in the lazy training regime (Nguyen et al., 2021) or the mean-field regime Nguyen
(2021). Training dynamics of non-linear autoencoders has also been studied under population gradient
descent (Shevchenko et al., 2023; Kögler et al., 2024) and online gradient descent (Refinetti & Goldt,
2022). On the other hand, training dynamics of denoising autoencoder has been studied with a linear
network (Pretorius et al., 2018) and in the high-dimensional asymptotic limit (Cui & Zdeborová,
2024). Thus, even for (denoising) autoencoders, feature learning dynamics is not well-understood.

Diffusion model for representation learning. Apart from the generative applications, diffusion
models have been leveraged for representation learning. The intermediate representation of a pre-
trained diffusion model is shown to possess significant discriminative power. Such an representation
is useful for downstream tasks such as classification (Mukhopadhyay et al., 2023; Xiang et al., 2023;
Li et al., 2023a; Clark & Jaini, 2024; Yang & Wang, 2023), semantic segmentation (Baranchuk
et al., 2022; Zhao et al., 2023; Yang & Wang, 2023). Moreover many works have found intriguing
properties of diffusion models used as classifier, including its ability to understand shape bias (Jaini
et al., 2024) and improved adversarial robustness (Chen et al., 2024c). For more detailed exposition,
we refer to the recent survey on this matter (Fuest et al., 2024).

B ADDITIONAL EXPERIMENTAL RESULTS

This section includes additional experiment results, supplementary to the results in the main text.

B.1 HIGH SNR SETTING ON NOISY-MNIST

Here we include experiment results when S̃NR = 0.5, which corresponds to the high SNR setting.
The experiment settings are exactly the same as in the main experiment. Figure 7 shows both
classification and diffusion model converge in terms of objective. In addition, we see the high
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SNR encourages classification to learn primarily the signal while ignoring the noise. In contrast,
diffusion model still learns both signal and noise to relatively the same order. Figure 6 suggests that
classification learns more signal compared to noise while diffusion model still learns more balanced
signal and noise. We also plot classification accuracy for both the low and high SNR cases. In the
low-SNR case, because classification predominately learns noise, the generalization is poor with test
accuracy around 50%. Conversely in the high-SNR case, where the model is able to learn signals, the
classification demonstrates effective generalization with nearly 100% test accuracy.

Figure 6: Experiments on Noisy-MNIST with S̃NR = 0.5. (First
row): Test Noisy-MNIST images; (Second row): Illustration of in-
put gradient, i.e., ∇xF+1(W,x) when y = 1 and ∇xF−1(W,x)
when y = 0. (Third row): denoised image from diffusion model.
In this high-SNR case, we see classification tends to predomi-
nately learn signals while diffusion learns both signal and noise.

(a)

(b)

(c)

Figure 7: Experiments on
Noisy-MNIST with S̃NR =
0.5. (a) Train loss for classifi-
cation. (b) Train loss for diffu-
sion model. (c) Feature learn-
ing dynamics.

(a) ACC (S̃NR = 0.1) (b) ACC (S̃NR = 0.5)

Figure 8: Classification accuracy on (a) low-SNR and (b) high-SNR noisy MNIST datasets. This
demonstrates that when classification focuses on learning noise (as in the low-SNR case), the test
accuracy hovers around 50%, thus suggesting failure to generalize. In contrast, when classification
focuses on learning signals (as in the high-SNR case), classification generalizes effectively, achieving
near-perfect accuracy.

B.2 EXPERIMENTS WITH ADDITIONAL DIFFUSION TIME STEP

Here we also test on additional diffusion time step for learning on noisy-MNIST dataset. In particular,
we consider t = 0.8, which gives αt = exp(−t) = 0.45 and βt =

√
1− exp(−2t) = 0.89. We

include the illustrations of denoised images as well as loss convergence and feature learning dynamics
in Figure 9, 10, 11, 12. We see despite with a larger scale of added diffusion noise, diffusion model
still learn both signals and noise unlike for the case of classification.
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Figure 9: Additional experiments on Noisy-MNIST with S̃NR =
0.1 and diffusion t = 0.8. (First row): Test Noisy-MNIST im-
ages; (Second row): denoised image from diffusion model. We
see diffusion still learns both signals and noise even with large
diffusion time step.

(a)

(b)

Figure 10: Additional experi-
ments on Noisy-MNIST with
S̃NR = 0.1 and t = 0.8. (a)
Train loss for diffusion model.
(c) Feature learning dynamics.

Figure 11: Additional experiments on Noisy-MNIST with S̃NR =
0.5 and diffusion t = 0.8. (First row): Test Noisy-MNIST im-
ages; (Second row): denoised image from diffusion model. We
see diffusion still learns both signals and noise even with large
diffusion time step.

(a)

(b)

Figure 12: Additional experi-
ments on Noisy-MNIST with
S̃NR = 0.5 and = t = 0.8. (a)
Train loss for diffusion model.
(c) Feature learning dynamics.
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C PRELIMINARY LEMMAS

Recall we define S1 = {i ∈ [n] : yi = 1} and S−1 = {i ∈ [n] : yi = −1}.
Lemma C.1. Given arbitrary δ > 0, with probability at least 1− δ, we have

n

2

(
1− Õ(n−1/2)

)
≤ |S1|, |S−1| ≤

n

2

(
1 + Õ(n−1/2)

)
Proof of Lemma C.1. The proof is the same as in (Cao et al., 2022; Kou et al., 2023) and we include
here for completeness. Because |S1| =

∑n
i=1 1(yi = 1) and |S−1| =

∑n
i=1 1(yi = −1) and

P(yi = 1) = P(yi = −1) = 1/2 for all i ∈ [n], then E|S1| = E|S−1| = n/2. By Hoeffding’s
inequality, for arbitrary a > 0,

P(||S±1| − n/2| ≥ a) ≤ 2 exp(−2a2n−1).

Setting a =
√

n log(4/δ)/2 and taking union bound, we have with probability at least 1− δ,∣∣∣|S±1| −
n

2

∣∣∣ ≤√n log(4/δ)

2
.

Hence the proof is complete.

Lemma C.2. Given arbitrary δ > 0, with probability at least 1− δ,

σ2
ξd(1− Õ(d−1/2)) ≤ ∥ξi∥2 ≤ σ2

ξd(1 + Õ(d−1/2))

|⟨ξi, ξi′⟩| ≤ 2σ2
ξ

√
d log(4n2/δ)

for all i, i′ ∈ [n].

Proof of Lemma C.2. The proof is the same as in (Cao et al., 2022; Kou et al., 2023) and we include
here for completeness. By Bernstein’s inequality, with probability at least 1− δ/(2n), we have

|∥ξi∥2 − σ2
ξd| = O(σ2

ξ

√
d log(4n/δ)),

which shows the first result.

For the second claim, we can show by Bernstein’s inequality, with probability at least 1− δ/(2n2)
that for any i ̸= i′

|⟨ξi, ξi′⟩| ≤ 2σ2
ξ

√
d log(4n2/δ)

Then we apply union bound to show the results hold for all i, i′ ∈ [n].

D CLASSIFICATION

We track the inner product dynamics during the training of supervised classification to elucidate the
signal learning and noise learning. We first write the gradient descent dynamics as follows.

wk+1
j,r = wk

j,r − η∇wj,rLS(W
k)

= wk
j,r −

η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r,x

(1)
i ⟩jyix(1)

i − η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi

= wk
j,r −

η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1 −

η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi

Here we restate the Condition 3.1 specific for the case of supervised classification.
Condition D.1. Suppose that

1. Dimension d satisfies d = Ω̃(max{n2mσ−1
ξ ∥µ∥, n4m}).
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2. Training sample and network width satisfy m = Ω(log(n/δ)), n = Ω(log(m/δ)).

3. The initialization variation σ0 satisfies Õ(n2mσ−1
ξ d−1) ≤ σ0 ≤ Õ(min{∥µ∥−1, σ−1

ξ d−1/2}).

4. The learning rate satisfies η ≤ Õ(min{m∥µ∥−2, nmσ0σ
−1
ξ d−1/2, nmσ−2

ξ d−1})

The lower bound on σ0 is required for the noise memorization setting where we need to control the
lower bound for the noise inner product at initialization. Thus to ensure the lower bound σ0 is valid,
we require further conditions on the dimension d apart from d = Ω̃(n2).

D.1 USEFUL LEMMAS

We first provide a lemma that bound the inner product at initialization.
Lemma D.1 (Cao et al. (2022)). Suppose δ > 0 and that d = Ω(log(mn/δ)),m = Ω(log(1/δ)),
then with probability at least 1− δ,

|⟨w0
j,r,µj′⟩| ≤

√
2 log(8m/δ)σ0∥µ∥

|⟨w0
j′,r, ξi⟩| ≤ 2

√
log(8mn/δ)σ0σξ

√
d

for all j, j′ ∈ {±1}, r ∈ [m], i ∈ [n]. In addition,

max
r∈[m]

|⟨w0
j,r,µj′⟩| ≥ σ0∥µ∥/2,

max
r∈[m]

|⟨w0
j,r, ξi⟩| ≥ σ0σξ

√
d/4

for all j, j′ ∈ {±1}, i ∈ [n].

We decompose the weights into its signal components and noise components.
Lemma D.2. The weight can be decomposed as

wk
j,r = w0

j,r + ζk1µ1 + ζk−1µ−1 +

n∑
i=1

ρkj,r,i∥ξi∥−2ξi

where the noise coefficients ρkj,r,i satisfy ρ0j,r,i = 0 and

ρk+1
j,r,i = ρkj,r,i −

η

nm
ℓ′ki ⟨wk

j,r, ξi⟩jyi∥ξi∥2

for all j = ±1, r ∈ [m] and i ∈ [n].

Proof of Lemma D.2. The proof follows from (Cao et al., 2022; Kou et al., 2023). First, we recall the
gradient descent update as

wk+1
j,r = wk

j,r −
η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1 −

η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi

= w0
j,r −

η

nm

k∑
s=0

∑
i∈S1

ℓ′ki ⟨ws
j,r,µ1⟩jµ1 +

η

nm

k∑
s=0

∑
i∈S−1

ℓ′ki ⟨ws
j,r,µ−1⟩jµ−1

− η

nm

k∑
s=0

n∑
i=1

ℓ′ki ⟨ws
j,r, ξi⟩jyiξi.

By the data model, we have with probability 1, the vectors are linearly independent and thus the
decomposition is unique with

ρkj,r,i = − η

nm

k∑
s=0

ℓ′ki ⟨ws
j,r, ξi⟩jyi∥ξi∥2

Then writing out the iterative update for ρkj,r,i completes the proof.
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Lemma D.3. Let x ∼ N (0, σ2). Then P(|x| ≤ c) ≤ erf
(

c√
2σ

)
≤
√

1− exp(− 2c2

πσ2 ).

Proof of Lemma D.3. The probability density function for x is given by

f(x) =
1√
2πσ

exp(− x2

2σ2
).

Then we know that

P(|x| ≤ c) =
1√
2πσ

∫ c

−c

exp(− x2

2σ2
)dx.

By the definition of erf function

erf(c) =
2√
π

∫ c

0

exp(−x2)dx,

and variable substitution yields

erf(
c√
2σ

) =
1√
2πσ

∫ c

0

exp(− x2

2σ2
)dx.

Therefore, we first conclude P(|x| ≤ c) = 2erf( c√
2σ

). Next, by the inequality erf(x) ≤√
1− exp(−4x2/π), we obtain the desired result.

D.2 SCALE OF INNER PRODUCTS

We first derive a global bound for the growth of inner products until convergence. To this end, we let
T ∗ = η−1poly(∥µ∥−1, σ−2

ξ d−1, σ−1
0 , n,m, d) be the maximum number of iterations considered and

let α = 2 log(T ∗). We also denote β := 3maxj,r,i,y{|⟨w0
j,r,µy⟩|, |⟨w0

j,r, ξi⟩|}. Then from Lemma
D.1 and from Condition D.1, we can bound

3max{σ0∥µ∥/2, σ0σξ

√
d/4} ≤ β ≤ 1/C (3)

for some sufficiently large constant C > 0.
Proposition D.1. Under Condition D.1, for all 0 ≤ k ≤ T ∗, we can bound

|⟨wk
j,r,µj⟩|, |⟨wk

yi,r, ξi⟩|, |ρ
k
yi,r,i| ≤ α, (4)

|⟨wk
j,r,µ−j⟩| ≤ β, (5)

|⟨wk
−yi,r, ξi⟩|, |ρ

k
−yi,r,i| ≤ β + 12

√
log(4n2/δ)

d
nα (6)

for all i ∈ [n], r ∈ [m] and j = ±1.

We will prove the bound by induction and we first derive several intermediate lemmas as follows.
Lemma D.4. Suppose results in Proposition D.1 hold at iteration k, then we have Fj(W

k
j ,xi) ≤ 0.5

for all i ∈ [n], j ̸= yi.

Proof of Lemma D.4. Recall that

Fj(W
k
j ,xi) =

1

m

m∑
r=1

(
⟨wk

j,r,x
(1)
i ⟩2 + ⟨wk

j,r,x
(2)
i ⟩2

)
=

1

m

m∑
r=1

(
⟨wk

j,r,µyi
⟩2 + ⟨wk

j,r, ξi⟩2
)

≤ β2 +

(
β + 12

√
log(4n2/δ)

d
nα

)2

≤ 0.5

where the second last inequality is by (5) and (6). The last inequality is by Condition D.1 such that
β ≤ 1/C ≤ 0.25 and d ≥ 144n2α2 log(4n2/δ).
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Lemma D.5. Suppose results in Proposition D.1 hold at iteration k, then we have

|⟨wk
j,r −w0

j,r, ξi⟩ − ρkj,r,i| ≤ 4

√
log(4n2/δ)

d
nα,

for all j = ±1, r ∈ [m], i ∈ [n].

Proof. By Lemma D.2, we recall the decomposition as

wk
j,r = w0

j,r + ζk1µ1 + ζk−1µ−1 +

n∑
i=1

ρkj,r,i∥ξi∥−2ξi.

By the orthogonality, we can show

⟨wk
j,r, ξi⟩ = ⟨w0

j,r, ξi⟩+ ρkj,r,i +
∑
i ̸=i′

ρkj,r,i′∥ξi′∥−2⟨ξi, ξi′⟩

By Lemma C.2 and suppose d = Ω(log(n/δ)), then |⟨ξi, ξi′⟩|∥ξi∥−2 ≤ 4
√
log(4n2/δ)d−1. Thus

we have

|⟨wk
j,r −w0

j,r, ξi⟩ − ρkj,r,i| ≤ 4

√
log(4n2/δ)

d
nα,

where we use the upper bound on |ρkj,r,i| ≤ α.

Lemma D.6. For any r ∈ [m], j, y = ±1, we have sign(⟨w0
j,r,µy⟩) = sign(⟨wk

j,r,µy⟩) for all
0 ≤ k ≤ T ∗.

Proof of Lemma D.6. We prove the results by induction. First, it is clear at k = 0, the results are
satisfied. Then suppose there exists an iteration k̃ such that sign(⟨wk

j,r,µy⟩) = sign(⟨w0
j,r,µy⟩)

holds for all k ≤ k̃ − 1, we show the sign invariance also holds at k̃. Recall the gradient descent
update as

wk+1
j,r = wk

j,r −
η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1

− η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi.

Then the update of the inner product is

⟨wk̃
j,r,µy⟩ = ⟨wk̃−1

j,r ,µy⟩ −
η

nm

∑
i∈Sy

ℓ′k̃−1
i ⟨wk̃−1

j,r ,µy⟩jy∥µ∥2

=
(
1− η

nm
jy
∑
i∈Sy

ℓ′k̃−1
i ∥µ∥2

)
⟨wk̃−1

j,r ,µy⟩

By the condition that η ≤ C−1m∥µ∥−2 for sufficiently large constant C, we have
| η
nmjy

∑
i∈Sy

ℓ′k̃−1
i ∥µ∥2| < 1. Thus we can guarantee the sign(⟨wk̃

j,r,µy⟩) = sign(⟨wk̃−1
j,r ,µy⟩) =

sign(⟨w0
j,r,µy⟩).

Proof of Proposition D.1. We prove the results by induction. For ρkj,r,i, we prove a stronger result

that |ρkyi,r,i
| ≤ 0.9α ≤ α and |ρk−yi,r,i

| ≤ 0.6β + 8
√

log(4n2/δ)
d nα. First it is clear at t = 0, the

results are satisfied based on the definition of β and α ≥ β. Now suppose that there exists T̃ ≤ T ∗

such that results hold for all 0 ≤ k ≤ T̃ − 1. We wish to show the results also hold for k = T̃ .

First recall the gradient descent update as

wk+1
j,r = wk

j,r −
η

nm

∑
i∈S1

ℓ′ki ⟨wk
j,r,µ1⟩jµ1 +

η

nm

∑
i∈S−1

ℓ′ki ⟨wk
j,r,µ−1⟩jµ−1
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− η

nm

n∑
i=1

ℓ′ki ⟨wk
j,r, ξi⟩jyiξi.

Then based on the orthogonal data modelling assumption, we have for y ̸= j, i.e., y = −j,

⟨wk+1
j,r ,µ−j⟩ = ⟨wk

j,r,µ−j⟩+
η

nm

∑
i∈S−j

ℓ′ki ⟨wk
j,r,µ−j⟩∥µ∥2

=
(
1− η∥µ∥2

nm

∑
i∈S−j

|ℓ′ki |
)
⟨wk

j,r,µ−j⟩

where the second equality is by ℓ′ki < 0 for all i, k. From Lemma D.6, we have sign(⟨wk+1
j,r ,µ−j⟩) =

sign(⟨wk
j,r,µ−j⟩) and thus

|⟨wT̃
j,r,µ−j⟩| ≤

∣∣∣∣∣∣
(
1− η∥µ∥2

nm

∑
i∈S−j

|ℓ′T̃−1
i |

)∣∣∣∣∣∣
∣∣∣⟨wT̃−1

j,r ,µ−j⟩
∣∣∣ ≤ ∣∣∣⟨wT̃−1

j,r ,µ−j⟩
∣∣∣ ≤ β

On the other hand, for y = j, we have

⟨wk+1
j,r ,µj⟩ = ⟨wk

j,r,µj⟩ −
η

nm

∑
i∈Sj

ℓ′ki ⟨wk
j,r,µj⟩∥µ∥2

= ⟨wk
j,r,µj⟩+

η∥µ∥2

nm

∑
i∈Sj

|ℓ′ki |⟨wk
j,r,µj⟩

Next, we notice that

|ℓ′ki | = 1

1 + exp
(
Fyi

(Wk
yi
,xi)− F−yi

(Wk
−yi

,xi)
)

≤ exp
(
− Fyi

(Wk
yi
,xi) + F−yi

(Wk
−yi

,xi)
)

≤ exp
(
− Fyi(W

k
yi
,xi) + 0.5

)
= exp

(
− 1

m

m∑
r=1

(
⟨wk

yi,r,µyi
⟩2 + ⟨wk

yi,r, ξi⟩
2
)
+ 0.5

)
(7)

where the last inequality is by Lemma D.4. Let kj,r be the last time k ≤ T ∗ that |⟨wk
j,r,µj⟩| ≤ 0.5α.

Then we have

⟨wT̃
j,r,µj⟩ = ⟨wkj,r

j,r ,µj⟩+
η∥µ∥2

nm
|ℓ′kj,r

i |⟨wkj,r

j,r ,µj⟩︸ ︷︷ ︸
A1

+
η∥µ∥2

nm

∑
kj,r<k≤T̃−1

|ℓ′ki |⟨wk
j,r,µj⟩

︸ ︷︷ ︸
A2

.

Without loss of generality, we suppose ⟨w0
j,r,µj⟩ ≥ 0, then by Lemma D.6, ⟨wk

j,r,µj⟩ ≥ 0 for all
k ≥ 0. Then we can bound

|A1| ≤
η∥µ∥2

nm
0.5α ≤ 0.25α

where the last inequality is by the condition that η ≤ nm∥µ∥−2/2. Furthermore,

|A2| ≤
η∥µ∥2

nm

∑
kj,r<k≤T̃−1

exp(−Fyi(W
k
yi
,xi) + 0.5)⟨wk

j,r,µj⟩

≤ 2η∥µ∥2α
nm

T ∗ exp(−α2/4)

=
2η∥µ∥2α

nm
T ∗ exp(− log(T ∗))

≤ 0.25α
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where the first inequality is by (7) and the second inequality is by upper bound on ⟨wk
j,r,µj⟩ ≤ α for

all k ≤ T̃ − 1. The equality is by the definition of α = 2 log(T ∗) and the last inequality is by the
condition η ≤ nm∥µ∥−2/8. Thus, we can show

⟨wT̃
j,r,µj⟩ ≤ 0.5α+ 0.25α+ 0.25α = α.

Next for the noise growth, from Lemma D.2, we have for yi ̸= j

ρT̃−yi,r,i = ρT̃−1
−yi,r,i

+
η

nm
ℓ′ki ⟨wT̃−1

−yi,r, ξi⟩∥ξi∥
2. (8)

When |ρT̃−1
−yi,r,i

| ≤ 1.5
(
0.3β + 4

√
log(4n2/δ)

d nα
)
, we have

|ρT̃−yi,r,i| ≤ |ρT̃−1
−yi,r,i

|+
2ησ2

ξdα

nm
≤ |ρT̃−1

−yi,r,i
|+ 0.15β ≤ 0.6β + 8

√
log(4n2/δ)

d
nα

where the second inequality is by triangle inequality and |ℓ′ki | ≤ 1 and Lemma C.2. The third
inequality is by the lower bound on β in (3) and the condition that η ≤ 0.05nmσ0σ

−1
ξ d−1/2α.

Further, because |⟨w0
−yi,r, ξi⟩| ≤ 0.3β, when 1.5

(
0.3β + 4

√
log(4n2/δ)

d nα
)
≤ |ρT̃−1

−yi,r,i
| ≤ 0.6β +

8
√

log(4n2/δ)
d nα, we can show from Lemma D.5 that if ρT̃−1

−yi,r,i
> 0, then

1

3
ρT̃−1
−yi,r,i

≤ ⟨wT̃−1
−yi,r, ξi⟩ ≤

4

3
ρT̃−1
−yi,r,i

Then (8) suggests

ρT̃−yi,r,i ≤
(
1− η∥ξi∥2

3nm
|ℓ′ki |

)
ρT̃−1
−yi,r,i

≤ ρT̃−1
−yi,r,i

≤ 0.6β + 8

√
log(4n2/δ)

d
nα

If ρT̃−1
−yi,r,i

< 0, then

4

3
ρT̃−1
−yi,r,i

≤ ⟨wT̃−1
−yi,r, ξi⟩ ≤

1

3
ρT̃−1
−yi,r,i

Then (8) suggests

ρT̃−yi,r,i ≥
(
1− η∥ξi∥2

3nm
|ℓ′ki |

)
ρT̃−1
−yi,r,i

≥ ρT̃−1
−yi,r,i

≥ −0.6β − 8

√
log(4n2/δ)

d
nα

Thus this completes the proof that |ρT̃−yi,r,i
| ≤ 0.6β + 8

√
log(4n2/δ)

d nα.

Finally, by Lemma D.5 we have for all k ≥ 0

|⟨wk
−yi,r, ξi⟩| ≤ |⟨w0

−yi,r, ξi⟩|+ |ρk−yi,r,i|+ 4

√
log(4n2/δ)

d
nα ≤ 0.9β + 12

√
log(4n2/δ)

d
nα

which proves the upper bound for |⟨wT̃
−yi,r, ξi⟩| and |ρT̃−yi,r,i

|.
Next, from Lemma D.2, we have for yi = j,

ρk+1
yi,r,i

= ρkyi,r,i −
η

nm
ℓ′ki ⟨wk

yi,r, ξi⟩∥ξi∥
2. (9)

Let k̃r,i be the last time k < T ∗ that |ρkyi,r,i
| ≤ 0.6α. Then it can be verified that for k ≥ k̃r,i,

|⟨wk
yi,r, ξi⟩| ≥ |ρkyi,r,i| − |⟨w0

yi,r, ξi⟩| − 4

√
log(4n2/δ)

d
nα ≥ 0.5α

where the first inequality is by Lemma D.5 and the last inequality is by |⟨w0
yi,r, ξi⟩| +

4
√

log(4n2/δ)
d nα ≤ 1 ≤ 0.1α.
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We now expand (9) as

ρT̃yi,r,i = ρ
k̃r,i

yi,r,i
+

η

nm
|ℓ′k̃r,i

i |⟨wk̃r,i
yi,r, ξi⟩∥ξi∥

2︸ ︷︷ ︸
A3

+
η

nm

∑
k̃r,i<k≤T̃−1

|ℓ′ki |⟨wk
yi,r, ξi⟩∥ξi∥

2

︸ ︷︷ ︸
A4

Then we can bound

|A3| ≤
2ησ2

ξd

nm
|⟨wk̃r,i

yi,r, ξi⟩| ≤
2ησ2

ξd

nm

(
|⟨w0

yi,r, ξi⟩|+ 0.6α+ 4

√
log(4n2/δ)

d
nα

)

≤
2ησ2

ξd

nm
0.7α

≤ 0.15α

where the first inequality is by |ℓ′ki | ≤ 1 and Lemma C.2 with d = Ω(log(n/δ)) and the second
inequality is by Lemma D.5. The last inequality is by the condition η ≤ C−1nmσ−2

ξ d−1 for
sufficiently large constant C.

In addition, we bound

|A4| ≤
2ησ2

ξdα

nm

∑
kj,r<k≤T̃−1

exp(−Fyi
(Wk

yi
,xi) + 0.5)

≤
4ησ2

ξdα

nm
T ∗ exp(−α2/4)

≤
4ησ2

ξdα

nm
≤ 0.15α

where the first inequality is by (7) and the second inequality is by |⟨wk
yi,r, ξi⟩| ≥ 0.6α−0.1α = 0.5α.

The last inequality is by the condition η ≤ C−1nmσ−2
ξ d−1 for sufficiently large constant C.

Combining the bound on |A3| and |A4|, we have

|ρT̃yi,r,i| ≤ 0.6α+ 0.15α+ 0.15α = 0.9α.

Lastly, we bound

|⟨wT̃
yi,r, ξi⟩| ≤ |⟨w0

yi,r, ξi⟩|+ |ρT̃yi,r,i|+ 4

√
log(4n2/δ)

d
nα ≤ 0.3β + 4

√
log(4n2/δ)

d
nα+ 0.9α

≤ α.

This shows the upper bound as |⟨wT̃
yi,r, ξi⟩|, |ρ

T̃
yi,r,i

| ≤ α.

We require the following lemma that lower bound the loss derivatives in the first stage before the
inner products reach constant order.
Lemma D.7. If maxr,i,y{⟨wk

j,r,µy⟩, ⟨wk
j,r, ξi⟩} = O(1), there exists a constant Cℓ > 0 such that

|ℓ′ki | ≥ Cℓ for all i ∈ [n].

Proof of Lemma D.7. If maxr,i,y{⟨wk
j,r,µy⟩, ⟨wk

j,r, ξi⟩} = O(1), we can bound for all j = ±1

Fj(W
k
j ,xi) =

1

m

m∑
r=1

(
⟨wk

j,r,µyi
⟩2 + ⟨wk

j,r, ξi⟩2
)
≤ O(1)

Therefore, we can bound |ℓ′ki | = (1 + exp(Fyi
(Wk

yi
,xi)− F−yi

(Wk
−yi

,xi)))
−1 ≥ Ω(1).

We also prove the following upper bound on the gradient norm.
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Lemma D.8 (Proof of Lemma D.8). Under Condition D.1, for 0 ≤ k ≤ T ∗, we can bound

∥∇LS(W
k)∥2 = O(max{∥µ∥2, σ2

ξd})LS(W
k)

Proof of Lemma D.8. The proof adopts a similar argument as in (Cao et al., 2022, Lemma C.7) and
we include here for completeness. We first bound

∥∇f(Wk,xi)∥ ≤ 2

m

∑
j,r

∥∥⟨wk
j,r,µyi⟩µyi + ⟨wk

j,r, ξi⟩ξi
∥∥

≤ 2

m

∑
r

|⟨wk
yi,r,µyi

⟩|∥µ∥+ 2

m

∑
r

|⟨wk
yi,r, ξi⟩|∥ξi∥

+
2

m

∑
r

|⟨wk
−yi,r,µyi

⟩|∥µ∥+ 2

m

∑
r

|⟨wk
−yi,r, ξi⟩|∥ξi∥

≤ 2

m

m∑
r=1

(
|⟨wk

yi,r,µyi
⟩|+ |⟨wk

yi,r, ξi⟩|
)
max{∥µ∥, 2σξ

√
d}

+
2

m

m∑
r=1

(
|⟨wk

−yi,r,µyi⟩|+ |⟨wk
−yi,r, ξi⟩|

)
max{∥µ∥, 2σξ

√
d}

≤ 2
(√

Fyi
(Wk

yi
,xi) +

√
F−yi

(Wk
−yi

,xi)
)
max{∥µ∥, 2σξ

√
d}

≤ 2
(√

Fyi
(Wk

yi
,xi) + 1

)
max{∥µ∥, 2σξ

√
d}

where the third inequality is by Lemma C.2 and the fourth inequality is by Jensen’s inequality and
the last inequality is by Lemma D.4 that F−yi

(Wk
−yi

,xi) for all i ∈ [n]. Then we have

− ℓ′(yif(W
k,xi))∥∇f(Wk,xi)∥2

≤ −ℓ′
(
Fyi

(Wk
yi
,xi)− 0.5

)(
2
(√

Fyi
(Wk

yi
,xi) + 1

)
max{∥µ∥, 2σξ

√
d}
)2

= −4ℓ′
(
Fyi(W

k
yi
,xi)− 0.5

)(√
Fyi(W

k
yi
,xi) + 1

)2
max{∥µ∥2, 4σ2

ξd}

≤ max
z>0

{−4ℓ′(z − 0.5)(
√
z + 1)2}max{∥µ∥2, 4σ2

ξd}

= O(max{∥µ∥2, σ2
ξd})

where the last equality is by maxz>0{−4ℓ′(z−0.5)(
√
z+1)2} < ∞ because ℓ′ has an exponentially

decaying tail. Then we can bound

∥∇LS(W
k)∥2 ≤

( 1
n

n∑
i=1

ℓ′(yif(W
k,xi))∥∇f(Wk,xi)∥

)2
≤
( 1
n

n∑
i=1

√
−O(max{∥µ∥2, σ2

ξd})ℓ′(yif(Wk,xi))
)2

≤ O(max{∥µ∥2, σ2
ξd})

1

n

n∑
i=1

−ℓ′(yif(W
k,xi))

≤ O(max{∥µ∥2, σ2
ξd})LS(W

k)

where the third inequality is by Cauchy-Schwartz inequality and the last inequality is by −ℓ′ ≤ ℓ for
cross-entropy loss.

D.3 SIGNAL LEARNING

We first analyze the setting, where n · SNR2 ≥ C ′ for some constant C ′ > 0, which allows signal
learning to dominate noise memorization, thus reaching benign overfitting.

For the purpose of signal learning, we derive an anti-concentration result that provides a lower bound
for signal inner product at initialization.
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Lemma D.9. Suppose δ > 0 and m = Ω(log(1/δ)). Then with probability at least 1− δ, we have
for all j, y = ±1

σ0∥µ∥/2 ≤ 1

m

n∑
r=1

|⟨w0
j,r,µy⟩| ≤ σ0∥µ∥

Proof of Lemma D.16. First notice that for any j = ±1, ⟨w0
j,r,µy⟩ ∼ N (0, σ2

0∥µ∥2) and thus we
have E[|⟨w0

j,r,µy⟩|] = σ0∥µ∥
√

2/π. By sub-Gaussian tail bound, with probability at least 1− δ/8,
for any j, y = ±1 ∣∣∣∣∣ 1m

m∑
r=1

|⟨w0
j,r,µy⟩| − σ0∥µ∥

√
2/π

∣∣∣∣∣ ≤
√

2σ2
0∥µ∥2 log(8/δ)

m

Choosing m = Ω(log(1/δ)), we have

σ0∥µ∥
√

2/π0.99 ≤ 1

m

n∑
r=1

|⟨w0
j,r,µy⟩| ≤ σ0∥µ∥

√
2/π1.01.

Then we have σ0∥µ∥/2 ≤ 1
m

∑n
r=1 |⟨w0

j,r, ξi⟩| ≤ σ0∥µ∥. Finally taking the union bound for all
j, y = ±1 completes the proof.

We have established several preliminary lemmas that hold with high probability, including Lemma
C.1, Lemma C.2, Lemma D.1, Lemma D.9. We let Eprelim be the event such that all the results in
these lemmas hold for a given δ. Then by applying union bound, we have P(Eprelim) ≥ 1− 4δ. The
subsequent analysis are conditioned on the event Eprelim.

D.3.1 FIRST STAGE

In the first stage where maxr,i,y{⟨wk
j,r,µy⟩, ⟨wk

j,r, ξi⟩} = O(1), we show in Lemma D.7 that we
can lower bound the loss derivatives by a constant Cℓ, i.e., |ℓ′ki | ≥ Cℓ, for all i ∈ [n], k ≤ T1.

Theorem D.1. Under Condition D.1, suppose n · SNR2 ≥ C ′ for some C ′ ≥ 0. Then there
exists a time T1 = Θ̃(η−1m∥µ∥−2), such that (1) maxr |⟨wT1

j,r,µj⟩| ≥ 2, for all j = ±1, (2)
1
m

∑m
r=1 |⟨w

T1
j,r,µj⟩| ≥ 2, for all j = ±1 (3) maxr,i |⟨wT1

yi,r, ξi⟩| = Õ(n−1/2).

Proof of Theorem D.1. We first upper bound the growth of noise by analyzing inner product dynamics

⟨wk
yi,r, ξi⟩ = ⟨wk−1

yi,r , ξi⟩ −
η

nm

n∑
i′=1

ℓ′k−1
i′ ⟨wk−1

j,r , ξi′⟩⟨ξi′ , ξi⟩

= ⟨wk−1
yi,r , ξi⟩ −

η

nm
ℓ′ki ⟨wk−1

yi,r , ξi⟩∥ξi∥
2 − η

nm

∑
i′ ̸=i

ℓ′k−1
i′ ⟨wk−1

yi,r , ξi′⟩⟨ξi′ , ξi⟩

This suggests

|⟨wk
yi,r, ξi⟩| ≤ |⟨wk−1

yi,r , ξi⟩|+
η

nm
|ℓ′ki ||⟨wk−1

yi,r , ξi⟩|∥ξi∥
2 +

η

nm

∑
i′ ̸=i

|ℓ′ki′ ||⟨wk−1
yi,r , ξi′⟩||⟨ξi′ , ξi⟩|

(10)

Next, from Lemma D.7 and Lemma C.2, we have for any i′ ̸= i ∈ [n] and k ≤ T1,

|ℓ′ki′ | · |⟨ξi, ξi′⟩|
|ℓ′ki | · ∥ξi∥2

≤
2σ2

ξ

√
d log(4n2/δ)

Cℓ0.99σ2
ξd

= 2.1C−1
ℓ

√
log(4n2/δ)

d

where we use the lower and upper bound on loss derivatives during the first stage, as well as
Lemma C.2. Then taking the maximum of (10) over the neurons and samples, we let Bk :=
maxr,i |⟨wk

yi,r, ξi⟩| and obtain

Bk ≤ Bk−1 +
η

nm

(
1 + 2.1C−1

ℓ n

√
log(4n2/δ)

d

)
|ℓ′ki |∥ξi∥2Bk−1
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≤
(
1 +

1.01η∥ξi∥2

nm

)
Bk−1

≤
(
1 +

1.02ησ2
ξd

nm

)k
B0

where the second inequality is by d = Ω̃(n2) sufficiently large and |ℓ′ki | ≤ 1. The third inequality is
by Lemma C.2.

We then consider the propagation of ⟨wk
j,r,µy⟩. From the gradient update we can show for j = y,

⟨wk+1
j,r ,µj⟩ = ⟨wk

j,r,µj⟩ −
η

nm

∑
i∈Sj

ℓ′ki ⟨wk
j,r,µj⟩∥µ∥2

≥ ⟨wk
j,r,µj⟩+

ηCℓ|S1|∥µ∥2

nm
⟨wk

j,r,µj⟩

≥
(
1 + 0.49

ηCℓ∥µ∥2

m

)
⟨wk

j,r,µj⟩

where the first inequality is by loss derivative lower bound and the the second inequality is by Lemma
C.1 and n = Ω̃(1) sufficiently large. This implies that

|⟨wk
j,r,µj⟩| ≥

(
1 + 0.49

ηCℓ∥µ∥2

m

)
|⟨wk−1

j,r ,µj⟩| ≥
(
1 + 0.49

ηCℓ∥µ∥2

m

)k|⟨w0
j,r,µj⟩|

Applying Lemma D.1 and Lemma D.9, we have for all j = ±1,

max
r

|⟨wk
j,r,µj⟩| ≥

(
1 + 0.49

ηCℓ∥µ∥2

m

)k
σ0∥µ∥/2

1

m

m∑
r=1

|⟨wk
j,r,µj⟩| ≥

(
1 + 0.49

ηCℓ∥µ∥2

m

)k
σ0∥µ∥/2

Consider

T1 = log(4mσ−1
0 ∥µ∥−1)/ log

(
1 + 0.49

ηCℓ∥µ∥2

m

)
= Θ(η−1m∥µ∥−2 log(4mσ−1

0 ∥µ∥−1))

for η sufficiently small. Then we can verify that for j = ±1, we have

max
r

|⟨wT1
j,r,µj⟩| ≥ 2,

1

m

m∑
r=1

|⟨wT1
j,r,µj⟩| ≥ 2,

Now under the SNR condition, we can bound the growth of noise as

BT1 ≤
(
1 + 1.01

ησ2
ξd

nm

)T1

2σ0σξ

√
d
√
log(8mn/δ)

= exp

 log(1 + 1.02
ησ2

ξd

nm )

log(1 + 0.49ηCℓ∥µ∥2

m )
log(4σ−1

0 ∥µ∥−1)

 2σ0σξ

√
d
√

log(8mn/δ)

≤ exp
((

2.1/Cℓn
−1SNR−2 + Õ(nSNR2η)

)
log(4σ−1

0 ∥µ∥−1)
)
2σ0σξ

√
d
√

log(8mn/δ)

≤ exp
((
2.1/Cℓn

−1SNR−2 + 0.01
)
log(4σ−1

0 ∥µ∥−1)
)
2σ0σξ

√
d
√
log(8mn/δ)

≤ 8SNR−1
√
log(8mn/δ)

= Õ(n−1/2)

where the first inequality is by Lemma D.1 and the second inequality is by Taylor expansion around
η = 0. The third inequality is by choosing η sufficiently small and the fourth inequality is by the
SNR condition that n · SNR2 ≥ C ′ ≥ 2.5C−1

ℓ .
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D.3.2 SECOND STAGE

First, at the end of first stage, we have

• maxr |⟨wT1
j,r,µj⟩| ≥ 2 for all j = ±1.

• 1
m

∑m
r=1 |⟨w

T1
j,r,µj⟩| ≥ 2 for all j = ±1.

• maxr,i |⟨wT1
yi,r, ξi⟩| = Õ(n−1/2)

• maxr,i |⟨wT1
−yi,r, ξi⟩| ≤ β + 12

√
log(4n2/δ)

d nα.

Next we define

w∗
j,r = w0

j,r + 2 log(4/ϵ)sign(⟨w0
j,r,µj⟩)

µj + µ−j

∥µ∥2

We first show the monotonicity of signal inner product in the second stage.

Lemma D.10. Under the same conditions as in Theorem D.1, we have for all j = ±1, r ∈ [m],
T1 ≤ k ≤ T , |⟨wk

j,r,µj⟩| ≥ |⟨wT1
j,r,µj⟩| ≥ 2.

Proof of Lemma D.10. From the update of signal inner product, we have for all j = ±1, r ∈ [m],
T1 ≤ k ≤ T

⟨wk+1
j,r ,µj⟩ = ⟨wk

j,r,µj⟩ −
η

nm

∑
i∈Sj

ℓ′ki ⟨wk
j,r,µj⟩∥µ∥2

=
(
1− η∥µ∥2

nm

∑
i∈Sj

ℓ′ki
)
⟨wk

j,r,µj⟩.

Thus |⟨wk
j,r,µj⟩| ≥ |⟨wk−1

j,r ,µj⟩| ≥ |⟨wT1
j,r,µj⟩| ≥ 2 for all j = ±1, r ∈ [m], T1 ≤ k ≤ T .

We then bound the distance between WT1 to W∗.

Lemma D.11. Under Condition D.1, we can bound ∥WT1 −W∗∥ = O(
√
m log(1/ϵ)∥µ∥−1).

Proof of Lemma D.11. Let Pξ be the projection matrix to the direction of ξ, i.e., Pξ = ξξ⊤

∥ξ∥2 . Then
we can represent

wk
j,r −w0

j,r = Pµ1
(wk

j,r −w0
j,r) +Pµ−1

(wk
j,r −w0

j,r) +

n∑
i=1

Pξi
(wk

j,r −w0
j,r)

+
(
I−Pµ1 −Pµ−1 −

n∑
i=1

Pξi

)
(wk

j,r −w0
j,r).

By the scale difference at T1 and the fact that gradient descent only updates in the direction of µj ,
j = ±1 and ξi, we can bound

∥WT1 −W0∥2

≤
∑

j=±1,r∈[m]

( ⟨wT1
j,r −w0

j,r,µ1⟩2

∥µ∥2
+

⟨wT1
j,r −w0

j,r,µ−1⟩2

∥µ∥2
+

n∑
i=1

⟨wT1
j,r −w0

j,r, ξi⟩2

∥ξi∥2
)

+
∑

j=±1,r∈[m]

∥∥∥∥∥(I−Pµ1 −Pµ−1 −
n∑

i=1

Pξi

)
(wT1

j,r −w0
j,r)

∥∥∥∥∥
2

≤ 2m
(2maxr⟨wT1

j,r,µj⟩2

∥µ∥2
+

2⟨wT1
j,r,µ−j⟩2 + 2⟨w0

j,r,µ−j⟩2 + 2⟨w0
j,r,µj⟩2

∥µ∥2
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+

n∑
i=1

2⟨wT1
j,r, ξi⟩2 + 2⟨w0

j,r, ξi⟩2

∥ξi∥2
)
+

∑
j=±1,r∈[m]

∥∥∥∥∥(I−Pµ1 −Pµ−1 −
n∑

i=1

Pξi

)
(wT1

j,r −w0
j,r)

∥∥∥∥∥
2

≤ O(m∥µ∥−2)

where we have use the scale difference at T1. Therefore,

∥WT1 −W∗∥ ≤ ∥WT1 −W0∥+ ∥W0 −W∗∥
≤ O(

√
m∥µ∥−1) +O(

√
m log(1/ϵ)∥µ∥−1)

≤ O(
√
m log(1/ϵ)∥µ∥−1)

where we use the definition of W∗.

Lemma D.12. Under Condition D.1, we have for all T1 ≤ k ≤ T ∗

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
t)− ηϵ

Proof of Lemma D.12. The proof is similar as in Cao et al. (2022). We first show a lower bound on
yi⟨∇f(Wt,xi),W

∗⟩ for any i ∈ [n] for all T1 ≤ k ≤ T ∗.

yi⟨∇f(Wk,xi),W
∗⟩ = 1

m

∑
j,r

jyi⟨wk
j,r,µyi⟩⟨µyi ,w

∗
j,r⟩+

1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w∗

j,r⟩

=
1

m

m∑
r=1

⟨wk
yi,r,µyi

⟩⟨w∗
yi,r,µyi

⟩ − 1

m

m∑
r=1

⟨wk
−yi,r,µyi

⟩⟨w∗
−yi,r,µyi

⟩

+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w0

j,r⟩

=
1

m

m∑
r=1

|⟨wk
yi,r,µyi⟩|2 log(4/ϵ)︸ ︷︷ ︸

A5

+
1

m

m∑
r=1

⟨wk
yi,r,µyi⟩⟨w0

yi,r,µyi⟩︸ ︷︷ ︸
A6

− 1

m

m∑
r=1

⟨wk
−yi,r,µyi⟩⟨w∗

−yi,r,µyi⟩︸ ︷︷ ︸
A7

+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w0

j,r⟩︸ ︷︷ ︸
A8

where the second equality is by definition of W∗. The third equality is by Lemma D.6. We next
bound

|A6| ≤ σ0∥µ∥
√

2 log(8m/δ)α = Õ(σ0∥µ∥)

|A7| ≤
1

m

m∑
r=1

|wk
−yi,r,µyi

|
(
|⟨w0

−yi,r,µyi
⟩|+ 2 log(2/ϵ)

)
= Õ(σ0∥µ∥)

|A8| ≤ Õ(σ0σξ

√
d)

where we use the global bound on the inner product by Õ(1). Next, by Theorem D.1 and Lemma D.10,
we can show 1

m

∑m
r=1 |⟨wk

yi,r,µyi
⟩| ≥ 2 for all i ∈ [n] and we can lower bound A5 ≥ 4 log(4/ϵ)

and thus

yi⟨∇f(Wk,xi),W
∗⟩ ≥ 4 log(4/ϵ)− 2 log(4/ϵ) = 2 log(4/ϵ) (11)

where we bound |A6|+ |A7|+ |A8| ≤ 2 log(4/ϵ) under Condition D.1.

Further, we derive

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2

= 2η⟨∇LS(W
k),Wk −W∗⟩ − η2∥∇LS(W

k)∥2

=
2η

n

n∑
i=1

ℓ′ki yi
(
2f(Wk,xi)− ⟨∇f(Wk,xi),W

∗⟩
)
− η2∥∇LS(W

k)∥2
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≥ 2η

n

n∑
i=1

ℓ′ki
(
2yif(W

k,xi)− 2 log(2/ϵ)
)
− η2∥∇LS(W

k)∥2

≥ 4η

n

n∑
i=1

(
ℓ(yif(W

k,xi))− ϵ/4
)
− η2∥∇LS(W

k)∥2

≥ 2ηLS(W
k)− ηϵ

where the first inequality is by (11) and the second inequality is by convexity of cross-entropy function
and the last inequality is by Lemma D.8.

Before proving the second stage convergence, we require the following lemma in order to bound the
ratio of loss derivatives among different samples.
Lemma D.13 (Kou et al. (2023)). Let g(z) = ℓ′(z) = −(1 + exp(z))−1. Then for any z2 − c ≥
z1 ≥ −1 where c ≥ 0, we have g(z1)/g(z2) ≤ exp(c).

Theorem D.2. Under the same settings as in Theorem D.1, let T = T1 + ⌊∥WT1−W∗∥2

ηϵ ⌋ =

T1 +O(η−1ϵ−1m∥µ∥−2). Then we have

• there exists T1 ≤ k ≤ T such that LS(W
k) ≤ 0.1.

• maxj,r,i |⟨wk
j,r, ξi⟩| = o(1) for all T1 ≤ k ≤ T .

• maxr |⟨wk
j,r,µj⟩| ≥ 2 for all j = ±1, T1 ≤ k ≤ T .

Proof of Theorem D.2. By Lemma D.12, for any T1 ≤ k ≤ T , we have

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
k)− ηϵ

for all s ≤ k. Then summing over the inequality gives

1

T − T1 + 1

T∑
k=T1

LS(W
k) ≤ ∥WT1 −W∗∥2

2η(T − T1 + 1)
+

ϵ

2
≤ ϵ

where the last inequality is by the choice T = T1 + ⌊∥WT1−W∗∥2

ηϵ ⌋ = T1 +

Ω(η−1ϵ−1m log(1/ϵ)∥µ∥−2). Then we can claim that there exists a k ∈ [T1, T ] such that
LS(W

k) ≤ ϵ. Setting ϵ = 0.1 shows the desired convergence.

Next, we show the upper bound on maxj,r,i |⟨wk
j,r, ξi⟩| for all k ∈ [T1, T ]. No-

tice that by Proposition D.1, we already have maxj,r |⟨wk
−yi,r, ξi⟩| ≤ ϑ, where

we let ϑ := 3max{maxr,i |⟨wT1
yi,r, ξi⟩|, β, 4

√
log(4n2/δ)

d nα}. Then we only focus on
bounding maxyi,i |⟨wk

j,r, ξi⟩|. From the scale difference at T1, we know that ϑ =

Õ(max{n−1/2, σ0σξ

√
d, σ0∥µ∥, nd−1/2}) = o(1). Next, we can bound

T∑
k=T1

LS(W
k) ≤ ∥WT1 −W∗∥2

η
= O(η−1m log(1/ϵ)∥µ∥−2) (12)

where we use Lemma D.11 for the last equality.

Then, we first prove maxr,i |ρkyi,r,i
| ≤ 2ϑ for all T1 ≤ k ≤ T . First it is easy to see that at T1, we

have

max
r,i

|ρT1
yi,r,i

| ≤ max
r,i

|⟨wT1
yi,r, ξi⟩|+max

r,i
|⟨w0

yi,r, ξi⟩|+ 4

√
log(4n2/δ)

d
nα ≤ ϑ ≤ 2ϑ

Then suppose there T̃ ∈ [T1, T ] such that maxr,i |ρT1
yi,r,i

| ≤ 2ϑ for all k ∈ [T1, T̃ − 1]. Now we let
ϕk := maxr,i |ρkyi,r,i

| and thus by the update of noise coefficient

ϕk+1 ≤ ϕk +
η

nm
|ℓ′ki |

(
ϕk + β/3 + 4

√
log(4n2/δ)

d
nα
)
∥ξi∥2

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

≤ ϕk +
η

nm
max

i
|ℓ′ki |

(
ϕk + β/3 + 4

√
log(4n2/δ)

d
nα
)
O(σ2

ξd).

where we use Lemma D.5 in the first inequality. Then taking the summation from T1 to T̃ gives

ϕT̃ ≤ ϕT1 +
η

nm

T̃−1∑
k=T1

max
i

|ℓ′ki |O(σ2
ξd)ϑ (13)

where the first inequality is by the induction condition. Next, the aim is bound
∑T̃−1

k=T1
maxi |ℓ′ki |.

First, for any i, i′ ∈ [n] such that yi = yi′ , we can bound for all T1 ≤ k ≤ T̃ − 1

yif(W
k,xi)− yi′f(W

k,xi′)

= Fyi
(Wk

yi
,xi)− F−yi

(Wk
−yi

,xi))− Fyi′ (W
k
yi′

,xi′) + F−yi′ (W
k
−yi′

,xi′))

≤ 1

m

m∑
r=1

(
⟨wk

yi,r,µyi
⟩2 + ⟨wk

yi,r, ξi⟩
2
)
− 1

m

m∑
r=1

(
⟨wk

yi,r,µyi
⟩2 + ⟨wk

yi,r, ξi′⟩
2
)
+ 1/C1

=
1

m

m∑
r=1

(
⟨wk

yi,r, ξi⟩
2 − ⟨wk

yi,r, ξi′⟩
2
)
+ 1/C1

≤ max
r,i

⟨wk
yi,r, ξi⟩

2 + 1/C1

≤ max
r,i

(
|ρkyi,r,i|+max

r,i
|⟨w0

yi,r, ξi⟩|+ 4

√
log(4n2/δ)

d
nα
)2

≤ 6ϑ2 ≤ ϑ

where in the first inequality we notice that F−yi
(Wk

−yi
,xi)) ≥ 0, yi = yi′ and we recall that

F−yi(W
k
j ,xi) ≤ β2 +

(
β + 12

√
log(4n2/δ)

d nα
)2

= 1/C1 for some sufficiently large constant
C1 > 0. The second last inequality is by induction condition and the last inequality is by choosing
ϑ ≤ 1/6. Then we can bound the ratio of loss derivatives (based on Lemma D.13) that

|ℓ′ki′ |/|ℓ′ki | ≤ exp
(
yif(W

k,xi)− yi′f(W
k,xi′)) ≤ exp(ϑ)

This suggests 1 − O(ϑ) ≤ |ℓ′ki′ |/|ℓ′ki | ≤ 1 + O(ϑ) for all i, i′ ∈ [n], T1 ≤ k ≤ T̃ − 1. Then let
i∗ = argmaxi |ℓ′ki |, we have
T∑
T1

max
i

|ℓ′ki | =
T∑
T1

Θ(
1

|Syi∗ |
∑

i∈Syi∗

|ℓ′ki |) ≤
T∑
T1

Θ(
1

|Syi∗ |
∑

i∈Syi∗

ℓki ) ≤
T∑
T1

Θ(
n

|Syi∗ |
LS(W

k))

= Õ(η−1m log(1/ϵ)∥µ∥−2)
(14)

where the first inequality is by |ℓ′| ≤ ℓ and the last equality is from (12) and |Syi∗ | ≥ 0.49n (based
on Lemma C.1).

This allows to bound (13) as

ϕT̃ ≤ ϕT1 +
η

nm

T̃−1∑
s=T1

max
i

|ℓ′ki |O(σ2
ξd)ϑ

≤ ϕT1 +O(n−1σ2
ξd log(1/ϵ)∥µ∥−2) · ϑ

≤ ϑ+O(n−1SNR−2 log(1/ϵ)) · ϑ
≤ 2ϑ

and the second inequality is by (14) and the last inequality is by setting ϵ = 0.1 and n · SNR2 ≥ C ′

for sufficiently large constant C ′. Thus, we have maxr,i |⟨wT̃
yi,r, ξi⟩| ≤ maxr,i |ρT̃yi,r,i

| + β +

4
√

log(4n2/δ)
d nα ≤ 3ϑ = o(1). The lower bound on signal inner product is directly from Lemma

D.10.
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D.4 NOISE MEMORIZATION

We also analyze the setting where n−1SNR−2 ≥ C ′ for some constant C ′ > 0, which allows the
noise memorization to dominate signal learning, thus reaching harmful overfitting.

We first require the following anti-concentration result for the noise inner product, which is required
to ensure the sign invariance of the inner product along training.
Lemma D.14. Suppose δ > 0 and σ0 ≥ Ω(log(n2/δ)n2mαd−1σ−1

ξ ), we have for all j = ±1, r ∈

[m], i ∈ [n], |⟨w0
j,r, ξi⟩| ≥ 8

√
log(4n2/δ)

d nα.

Proof of Lemma D.14. For any j = ±1, r ∈ [m], i ∈ [n], we have ⟨w0
j,r, ξi⟩ ∼ N (0, σ2

0∥ξi∥2).

Then applying Lemma D.3 by setting RHS to δ/(2mn) and c = 8
√

log(4n2/δ)
d nα, we require

d2 ≥ 42 log(4n2/δ)n2α2σ−2
0 σ−2

ξ / log(
4m2n2

4m2n2 − δ2
)

where we use Lemma C.2 that ∥ξi∥2 ≥ 0.99σ2
ξd. Finally noticing that 1/ log(4m2n2/(4m2n2 −

δ2)) ≤ Θ(m2n2) and taking the union bound completes the proof.

An immediate consequence of Lemma D.14 is the following result that allows to derive the sign
invariance for ⟨wk

yi,r,i
, ξi⟩ for all iterations.

Lemma D.15. Under Condition D.1, for any i ∈ [n], r ∈ [m], we have sign(⟨wk
yi,r, ξi⟩) =

sign(ρkyi,r,i
) = sign(⟨w0

yi,r, ξi⟩) for all 0 ≤ k ≤ T ∗.

Proof of Lemma D.15. First by Lemma D.14 and Lemma D.5, we can bound if ⟨w0
yi,r, ξi⟩ ≥ 0,

ρkyi,r,i +
1

2
⟨w0

yi,r, ξi⟩ ≤ ⟨wk
yi,r, ξi⟩ ≤ ρkyi,r,i +

3

2
⟨w0

yi,r, ξi⟩

and if ⟨w0
yi,r, ξi⟩ ≤ 0,

ρkyi,r,i +
3

2
⟨w0

yi,r, ξi⟩ ≤ ⟨wk
yi,r, ξi⟩ ≤ ρkyi,r,i +

1

2
⟨w0

yi,r, ξi⟩

Next we use induction to show the sign invariance. First it is clear when k = 0, the sign invariance is
trivially satisfied. At k = 1, we have by the iterative update of the coefficients,

ρ1yi,r,i = ρ0yi,r,i +
η

nm
|ℓ′0i |⟨w0

yi,r, ξi⟩∥ξi∥
2 =

η

nm
|ℓ′0i |⟨w0

yi,r, ξi⟩∥ξi∥
2

and thus sign(ρ1yi,r,i
) = sign(⟨w0

yi,r, ξi⟩). Further, by Lemma D.5, and without loss of generality
that ⟨w0

yi,r, ξi⟩ ≥ 0, we have

⟨w1
yi,r, ξi⟩ ≥ ρ1yi,r,i + ⟨w0

yi,r, ξi⟩ − 4

√
log(4n2/δ)

d
nα ≥ ρ1yi,r,i +

1

2
⟨w0

yi,r, ξi⟩ ≥ 0.

Similar argument also holds for ⟨w0
yi,r, ξi⟩ < 0. Then we show at k = 1, sign(ρ1yi,r,i

) =

sign(⟨w1
yi,r, ξi⟩) = sign(⟨w0

yi,r, ξi⟩). Suppose there exists a time T̃ such that for all k ≤ T̃ − 1,

the sign invariance holds. Then for k = T̃ , suppose sign(⟨wT̃−1
yi,r , ξi⟩) = sign(ρT̃−1

yi,r,i
) =

sign(⟨w0
yi,r, ξi⟩) = +1,

ρT̃yi,r,i = ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |⟨wT̃−1

yi,r , ξi⟩∥ξi∥
2

≥ ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+ ⟨w0
yi,r, ξi⟩ − 4

√
log(4n2/δ)

d
nα
)
∥ξi∥2

≥ ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+
1

2
⟨w0

yi,r, ξi⟩
)
∥ξi∥2

≥ 0
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Further,

⟨wT̃
yi,r, ξi⟩ ≥ ρT̃yi,r,i + ⟨w0

yi,r, ξi⟩ − 4

√
log(4n2/δ)

d
nα ≥ ρT̃yi,r,i +

1

2
⟨w0

yi,r, ξi⟩ ≥ 0.

and thus completes the induction that sign(⟨wT̃
yi,r, ξi⟩) = sign(ρT̃yi,r,i

) = sign(⟨w0
yi,r, ξi⟩). Similar

argument holds when sign(⟨w0
yi,r, ξi⟩) = −1.

We also derive the following concentration result for the average noise inner product at initialization.

Lemma D.16. Suppose δ > 0 and m = Ω(log(n/δ)). Then with probability at least 1− δ, we have
for all j = ±1, i ∈ [n]

σ0σξ

√
d/2 ≤ 1

m

n∑
r=1

|⟨w0
j,r, ξi⟩| ≤ σ0σξ

√
d

Proof of Lemma D.16. First notice that for any i ∈ [n], ⟨w0
j,r, ξi⟩ ∼ N (0, σ2

0∥ξi∥2) and thus we
have E[|⟨w0

j,r, ξi⟩|] = σ0∥ξi∥
√

2/π. By sub-Gaussian tail bound, with probability at least 1−δ/(2n),
for any i ∈ [n] ∣∣∣∣∣ 1m

m∑
r=1

|⟨w0
j,r, ξi⟩| − σ0∥ξi∥

√
2/π

∣∣∣∣∣ ≤
√

2σ2
0∥ξi∥2 log(4n/δ)

m

Choosing m = Ω(log(n/δ)), we have

σ0∥ξi∥
√

2/π0.99 ≤ 1

m

n∑
r=1

|⟨w0
j,r, ξi⟩| ≤ σ0∥ξi∥

√
2/π1.01.

Because from Lemma C.2, we have 0.99σξ

√
d ≤ ∥ξi∥ ≤ 1.01σξ

√
d by choosing d = Ω̃(1)

sufficiently large. Then we have σ0σξ

√
d/2 ≤ 1

m

∑n
r=1 |⟨w0

j,r, ξi⟩| ≤ σ0σξ

√
d. Finally taking the

union bound for all j = ±1, i ∈ [n] completes the proof.

We have established several preliminary lemmas that hold with high probability, including Lemma
C.1, Lemma C.2, Lemma D.1, Lemma D.14, Lemma D.16. We let Eprelim be the event such
that all the results in these lemmas hold for a given δ. Then by applying union bound, we have
P(Eprelim) ≥ 1− 5δ. The subsequent analysis are conditioned on the event Eprelim.

D.4.1 FIRST STAGE

Theorem D.3. Under Condition D.1, suppose n−1 · SNR−2 ≥ C ′ for some constant C ′ > 0. Then
there exists a time T1 = Θ̃(η−1nmσ−2

ξ d−1), such that (1) maxr |⟨wT1
yi,r, ξi⟩| ≥ 2 for all i ∈ [n], (2)

1
m

∑m
r=1 |⟨wT1

yi,r, ξi⟩| ≥ 4 for all i ∈ [n] and (3) maxj,r,y |⟨wT1
j,r,µy⟩| = Õ(n−1/2).

Proof of Theorem D.3. We first bound the growth of signal as follows. From the gradient descent
update, we have

|⟨wk
j,r,µj⟩| = |⟨wk−1

j,r ,µj⟩|+
η|Sj |
nm

|⟨wk−1
j,r ,µj⟩|∥µ∥2

≤
(
1 + 0.51

η∥µ∥2

m

)
|⟨wk−1

j,r ,µj⟩|

≤
(
1 + 0.51

η∥µ∥2

m

)k
|⟨w0

j,r,µj⟩| (15)

where the first inequality is by |ℓ′ki | ≤ 1 and the second inequality is by Lemma C.1 with n = Ω̃(1)
sufficiently large.
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On the other hand, for the growth of noise, we have from the inner product update, for any i ∈ [n]

⟨wk
yi,r, ξi⟩ = ⟨wk−1

yi,r , ξi⟩ −
η

nm

n∑
i′=1

ℓ′k−1
i′ ⟨wk−1

j,r , ξi′⟩⟨ξi′ , ξi⟩

=
(
1− η

nm
ℓ′ki ∥ξi∥2

)
⟨wk−1

yi,r , ξi⟩ −
η

nm

∑
i′ ̸=i

ℓ′k−1
i′ ⟨wk−1

yi,r , ξi′⟩⟨ξi′ , ξi⟩

Then this suggests

|⟨wk
yi,r, ξi⟩| ≥

(
1− η

nm
ℓ′ki ∥ξi∥2

)
|⟨wk−1

yi,r , ξi⟩| −
η

nm

∑
i′ ̸=i

|ℓ′k−1
i′ | · |⟨wk−1

yi,r , ξi′⟩| · |⟨ξi′ , ξi⟩| (16)

We first prove for any i ∈ [n], maxr |⟨wk+1
yi,r , ξi⟩| ≥ maxr |⟨wk

yi,r, ξi⟩| ≥ maxr |⟨w0
yi,r, ξi⟩| for all

k ≤ T1. We prove such a result by induction. It is clear that at k = 0, the result is satisfied. Now
suppose there exists an iteration k̃ such that

max
r

|⟨wk
yi,r, ξi⟩| ≥ max

r
|⟨w0

yi,r, ξi⟩| ≥ σ0σξ

√
d/4

for all k ≤ k̃ − 1, where the last inequality is by Lemma D.1. Then we can bound based on Lemma
D.7 and Lemma C.2, we have for any i′ ̸= i ∈ [n] and

n|ℓ′k̃−1
i′ | · |⟨ξi, ξi′⟩| · |⟨wk̃−1

yi,r , ξi′⟩|

|ℓ′k̃−1
i | · ∥ξi∥2 maxr |⟨wk̃−1

yi,r , ξi⟩|
≤

2σ2
ξ

√
d log(4n2/δ)

Cℓ0.99σ2
ξd

nασ−1
0 σ−1

ξ d−1/2

= 8.4C−1
ℓ nα

√
log(4n2/δ)

dσ0σξ

≤ 0.01 (17)

where we use the lower and upper bound on loss derivatives during the first stage, as well as Lemma
C.2 and Lemma D.1. The last inequality is by σ0 ≥ 840nC−1

ℓ d−1σ−1
ξ α

√
log(4n2/δ). Then we

have

max
r

|⟨wk̃
yi,r, ξi⟩| ≥

(
1− η

nm
ℓ′k̃−1
i ∥ξi∥2

)
max

r
|⟨wk̃−1

yi,r , ξi⟩| −
η

nm

∑
i′ ̸=i

|ℓ′k̃−1
i′ | · |⟨wk̃−1

yi,r , ξi′⟩| · |⟨ξi′ , ξi⟩|

≥
(
1 +

η

nm
0.99|ℓ′k̃−1

i |∥ξi∥2
)
max

r

∣∣∣⟨wk̃−1
yi,r , ξi⟩

∣∣∣
≥ max

r

∣∣∣⟨wk̃−1
yi,r , ξi⟩

∣∣∣
≥ max

r
|⟨w0

yi,r, ξi⟩|

Let Bk
i := maxr |⟨wk

yi,r, ξi⟩| and we obtain for any k ≤ T1,

Bk
i ≥

(
1 +

η

nm
0.99|ℓ′k̃−1

i |∥ξi∥2
)
Bk−1

i ≥
(
1 +

ησ2
ξd

nm
0.98Cℓ

)
Bk−1

i

≥
(
1 +

ησ2
ξd

nm
0.98Cℓ

)k
B0

i

≥
(
1 +

ησ2
ξd

nm
0.98Cℓ

)k
σ0σξ

√
d/4

where we use (17), which holds for iteration k and Lemma D.1. Consider

T1 = log(8σ−1
0 σ−1

ξ d−1/2)/ log
(
1 +

ησ2
ξd

nm
0.98Cℓ

)
= Θ(η−1nmσ−2

ξ d−1 log(8σ−1
0 σ−1

ξ d−1/2))

for η sufficiently small. Then it can be shown that

BT1
i = max

r
|⟨wT1

yi,r, ξi⟩| ≥ 2
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In addition, we show the average also grows to a constant order with a similar argument. In particular,
from (16), we have

1

m

m∑
r=1

|⟨wk
yi,r, ξi⟩| ≥

(
1− η

nm
ℓ′ki ∥ξi∥2

) 1

m

m∑
r=1

|⟨wk−1
yi,r , ξi⟩|

− η

nm

∑
i′ ̸=i

|ℓ′k−1
i′ | · 1

m

m∑
r=1

|⟨wk−1
yi,r , ξi′⟩| · |⟨ξi′ , ξi⟩|

Using a similar induction argument, we can show

1

m

m∑
r=1

|⟨wk
yi,r, ξi⟩| ≥

1

m

m∑
r=1

|⟨wk−1
yi,r , ξi⟩| ≥

1

m

m∑
r=1

|⟨w0
yi,r, ξi⟩| ≥ σ0σξ

√
d/2

for all k ≤ T1, where the last inequality follows from Lemma D.16. Then we can show at T1,

1

m

m∑
r=1

|⟨wT1
yi,r, ξi⟩| ≥

(
1 +

ησ2
ξd

nm
0.98Cℓ

)T1

σ0σξ

√
d/2 ≥ 4.

In the meantime, (15) allows to bound the growth of signal learning as for any j = ±1,

max
r

|⟨wT1
j,r,µj⟩|

≤
(
1 + 0.51

η∥µ∥2

m

)T1√
2 log(8m/δ)σ0∥µ∥

= exp
( log(1 + 0.51η∥µ∥2

m )

log(1 + 0.98
ησ2

ξdCℓ

nm )
log
(
8σ−1

0 σ−1
ξ d−1/2

))√
2 log(8m/δ)σ0∥µ∥

≤ exp
((

0.53C−1
ℓ nSNR2 + Õ(n−1SNR−2η)

)
log
(
8σ−1

0 σ−1
ξ d−1/2

))√
2 log(8m/δ)σ0∥µ∥

≤ 8
√

2 log(8m/δ)SNR

= Õ(n−1/2)

where the first inequality is by Lemma D.1 and the second inequality is by Taylor expansion around
η = 0. The third inequality is by choosing η sufficiently small and based on the condition that
n−1SNR−2 ≥ 0.55C−1

ℓ . The last equality is by the SNR condition.

D.4.2 SECOND STAGE

We choose W∗ to be

w∗
j,r = w0

j,r + 2 log(4/ϵ)

n∑
i=1

1(yi = j)sign(⟨w0
j,r, ξi⟩)

ξi
∥ξi∥2

First we show the invariance of sign of noise inner product after the first stage.
Lemma D.17. Under the same settings as in Theorem D.3, we have maxr |⟨wk

yi,r, ξi⟩| ≥ 1 and
1
m

∑m
r=1 |⟨wk

yi,r, ξi⟩| ≥ 2 for all T1 ≤ k ≤ T ∗ and any i ∈ [n].

Proof of Lemma D.17. In addition to the two results, we also prove maxr |ρkyi,r,i
| ≥ 1.5 and

1
m

∑m
r=1 |ρkyi,r,i

| ≥ 3. We prove these results by induction. First, it is clear that at k = T1,
the bound regarding inner products are trivially satisfied by Theorem D.3. Then by Lemma D.5, we
have

max
r

|ρT1
yi,r,i

| ≥ max
r

|⟨wT1
yi,r, ξi⟩| − β − 4

√
log(4n2/δ)

d
nα ≥ 2− 0.5 = 1.5

1

m

m∑
r=1

|ρT1
yi,r,i

| ≥ 1

m

m∑
r=1

|⟨wT1
yi,r, ξi⟩| − β − 4

√
log(4n2/δ)

d
nα ≥ 4− 1 = 3
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where the last inequalities are by Condition D.1 for sufficiently large constant C.

Now suppose there exists a time T1 ≤ T̃ ≤ T ∗ such that the results hold for all k ≤ T̃ − 1. Then at
k = T̃ , recall the coefficient update as

ρT̃yi,r,i = ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |⟨wT̃−1

yi,r , ξi⟩∥ξi∥
2 (18)

If ⟨w0
yi,r, ξi⟩ > 0, by Lemma D.15 we have ⟨wT̃−1

yi,r , ξi⟩, ρ
T̃−1
yi,r,i

> 0. Then

ρT̃yi,r,i = ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |⟨wT̃−1

yi,r , ξi⟩∥ξi∥
2

≥ ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+ ⟨w0
yi,r, ξi⟩ − 4

√
log(4n2/δ)

d
nα
)
∥ξi∥2

≥ ρT̃−1
yi,r,i

+
η

nm
|ℓ′T̃−1
i |

(
ρT̃−1
yi,r,i

+
1

2
⟨w0

yi,r, ξi⟩
)
∥ξi∥2.

Then taking maximum over r,

max
r

|ρT̃yi,r,i| ≥ max
r

|ρT̃−1
yi,r,i

|+ η∥ξi∥2

2nm
|ℓ′T̃−1
i |max

r
|ρT̃−1

yi,r,i
| ≥ max

r
|ρT̃−1

yi,r,i
| ≥ 1.5

where the first inequality follows from ⟨w0
yi,r, ξi⟩/2 ≤ 0.5 ≤ maxr |ρT̃−1

yi,r,i
|/2 based on Condition

D.1. Similarly, when ⟨w0
yi,r, ξi⟩ < 0, we can obtain the same result. Then, we have

max
r

|⟨wT̃
yi,r, ξi⟩| ≥ max

r
|ρT̃yi,r,i| − β − 4

√
log(4n2/δ)

d
nα ≥ 1.5− 0.5 = 1.

Furthermore, we prove the results for the average quantities in a similar manner. First, from the
coefficient update, and by Lemma D.15, sign(ρT̃−1

yi,r,i
) = sign(⟨wT̃−1

yi,r , ξi⟩) and thus taking the average
of absolute value on both sides of (18), we get

1

m

m∑
r=1

|ρT̃yi,r,i| =
1

m

m∑
r=1

|ρT̃−1
yi,r,i

|+ η

nm
|ℓ′T̃−1
i | 1

m

m∑
r=1

|⟨wT̃−1
yi,r , ξi⟩|∥ξi∥

2

≥ 1

m

m∑
r=1

|ρT̃−1
yi,r,i

|+ η

nm
|ℓ′T̃−1
i |

( 1
m

m∑
r=1

|ρT̃−1
yi,r,i

| − β − 4

√
log(4n2/δ)

d
nα
)
∥ξi∥2

≥ 1

m

m∑
r=1

|ρT̃−1
yi,r,i

|+ η

2nm
|ℓ′T̃−1
i | 1

m

m∑
r=1

|ρT̃−1
yi,r,i

|∥ξi∥2

≥ 1

m

m∑
r=1

|ρT̃−1
yi,r,i

| ≥ 3

where we use |a+ b| = |a|+ |b| when sign(a) = sign(b). Then, we have

1

m

m∑
r=1

|⟨wT̃
yi,r, ξi⟩| ≥

1

m

m∑
r=1

|ρT̃yi,r,i| − β − 4

√
log(4n2/δ)

d
nα ≥ 3− 1 = 2.

where the inequality is by Condition D.1.

Lemma D.18. Under Condition D.1, we have ∥WT1 −W∗∥ = O(
√
nm log(1/ϵ)σ−1

ξ d−1/2).

Proof of Lemma D.18. The proof follows similarly as in Lemma D.11. Let Pξ be the projection
matrix to the direction of ξ, i.e., Pξ = ξξ⊤

∥ξ∥2 . Then we can represent

wk
j,r −w0

j,r = Pµ1
(wk

j,r −w0
j,r) +Pµ−1

(wk
j,r −w0

j,r) +

n∑
i=1

Pξi
(wk

j,r −w0
j,r)
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+
(
I−Pµ1

−Pµ−1
−

n∑
i=1

Pξi

)
(wk

j,r −w0
j,r).

By the scale difference at T1 and the fact that gradient descent only updates in the direction of µj ,
j = ±1 and ξi, we can bound

∥WT1 −W0∥2

≤
∑

j=±1,r∈[m]

( ⟨wT1
j,r −w0

j,r,µ1⟩2

∥µ∥2
+

⟨wT1
j,r −w0

j,r,µ−1⟩2

∥µ∥2
+

n∑
i=1

⟨wT1
j,r −w0

j,r, ξi⟩2

∥ξi∥2
)

+
∑

j=±1,r∈[m]

∥∥∥∥∥(I−Pµ1 −Pµ−1 −
n∑

i=1

Pξi

)
(wT1

j,r −w0
j,r)

∥∥∥∥∥
2

≤ 2m
(2⟨wT1

j,r,µj⟩2 + 2⟨wT1
j,r,µ−j⟩2 + 2⟨w0

j,r,µ−j⟩2 + 2⟨w0
j,r,µj⟩2

∥µ∥2

+ nmax
j,r

2⟨wT1
j,r, ξi⟩2 + 2⟨w0

j,r, ξi⟩2

∥ξi∥2
)
+

∑
j=±1,r∈[m]

∥∥∥∥∥(I−Pµ1
−Pµ−1

−
n∑

i=1

Pξi

)
(wT1

j,r −w0
j,r)

∥∥∥∥∥
2

≤ O(mnσ−2
ξ d−1)

where we use the scale difference at T1. Therefore,

∥WT1 −W∗∥ ≤ ∥WT1 −W0∥+ ∥W0 −W∗∥
≤ O(

√
mnσ−1

ξ d−1/2) +O(
√
nm log(1/ϵ)σ−1

ξ d−1/2)

≤ O(
√
nm log(1/ϵ)σ−1

ξ d−1/2)

where we use the definition of W∗.

Lemma D.19. Under Condition D.1, we have for all T1 ≤ k ≤ T ∗

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
t)− ηϵ

Proof of Lemma D.19. The proof follows from similar arguments as for Lemma D.12. We first obtain
a lower bound on yi⟨∇f(Wt,xi),W

∗⟩ for any i ∈ [n] for all T1 ≤ k ≤ T ∗.

yi⟨∇f(Wk,xi),W
∗⟩ = 1

m

∑
j,r

jyi⟨wk
j,r,µyi

⟩⟨µyi
,w∗

j,r⟩+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w∗

j,r⟩

=
1

m

∑
j,r

jyi⟨wk
j,r,µyi

⟩⟨µyi
,w0

j,r⟩+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w0

j,r⟩

+
1

m

∑
j=±1

m∑
r=1

n∑
i′=1

jyi⟨wk
j,r, ξi⟩1(j = yi′)

⟨ξi, ξi′⟩
∥ξi′∥2

2 log(4/ϵ)

=
1

m

m∑
r=1

|⟨wk
yi,r, ξi⟩|2 log(4/ϵ)︸ ︷︷ ︸

A9

+
1

m

∑
j,r

∑
i′ ̸=i

⟨wk
yi,r, ξi⟩2 log(4/ϵ)

⟨ξi, ξi′⟩
∥ξi′∥2︸ ︷︷ ︸

A10

+
1

m

∑
j,r

jyi⟨wk
j,r,µyi

⟩⟨µyi
,w0

j,r⟩︸ ︷︷ ︸
A11

+
1

m

∑
j,r

jyi⟨wk
j,r, ξi⟩⟨ξi,w0

j,r⟩︸ ︷︷ ︸
A12

where the second equality is by definition of W∗. The third equality is by Lemma D.17 and Lemma
D.15 on the sign invariance. We next bound based on the scale difference and Lemma C.2,

|A10| = Õ(nd−1/2), |A11| = Õ(σ0∥µ∥), |A12| ≤ Õ(σ0σξ

√
d)
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where we use the global bound on the inner product by Õ(1). Next, by Theorem D.3 and Lemma
D.17, we can show 1

m

∑m
r=1 |⟨wk

yi,r,µyi
⟩| ≥ 2 for all i ∈ [n], k ≥ T1 and we can bound

A9 ≥ 4 log(4/ϵ)

Combining the bound for A9, A10, A11, A12, we have

yi⟨∇f(Wk,xi),W
∗⟩ ≥ 2 log(4/ϵ) (19)

where we bound |A10|+ |A11|+ |A12| ≤ 2 log(4/ϵ) under Condition D.1.

Further, we derive

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2

= 2η⟨∇LS(W
k),Wk −W∗⟩ − η2∥∇LS(W

k)∥2

=
2η

n

n∑
i=1

ℓ′ki yi
(
2f(Wk,xi)− ⟨∇f(Wk,xi),W

∗⟩
)
− η2∥∇LS(W

k)∥2

≥ 2η

n

n∑
i=1

ℓ′ki
(
2yif(W

k,xi)− 2 log(2/ϵ)
)
− η2∥∇LS(W

k)∥2

≥ 4η

n

n∑
i=1

(
ℓ(yif(W

k,xi))− ϵ/4
)
− η2∥∇LS(W

k)∥2

≥ 2ηLS(W
k)− ηϵ

where the first inequality is by (19) and the second inequality is by convexity of cross-entropy function
and the last inequality is by Lemma D.8.

Theorem D.4. Under the same settings as in Theorem D.3, let T = T1 + ⌊∥WT1−W∗∥2

ηϵ ⌋ =

T1 +O(η−1ϵ−1mnσ−2
ξ d−1). Then we have

• there exists T1 ≤ k ≤ T such that LS(W
k) ≤ 0.1.

• maxj,r,y |⟨wk
j,r,µy⟩| = o(1) for all T1 ≤ k ≤ T .

• maxr |⟨wk
yi,r, ξi⟩| ≥ 1 for all i ∈ [n], T1 ≤ k ≤ T .

Proof of Theorem D.4. The proof is similar as in Theorem D.2. By Lemma D.19, for any T1 ≤ k ≤
T , we have

∥Wk −W∗∥2 − ∥Wk+1 −W∗∥2 ≥ 2ηLS(W
k)− ηϵ

for all s ≤ k. Then summing over the inequality gives

1

T − T1 + 1

T∑
k=T1

LS(W
k) ≤ ∥WT1 −W∗∥2

2η(T − T1 + 1)
+

ϵ

2
≤ ϵ

where the last inequality is by the choice T = T1 + ⌊∥WT1−W∗∥2

ηϵ ⌋ = T1 +

Ω(η−1ϵ−1nm3 log(1/ϵ)σ−2
ξ d−1). Then we can claim that there exists a k ∈ [T1, T ] such that

LS(W
k) ≤ ϵ. Setting ϵ = 0.1 shows the desired convergence.

Next, we show the upper bound on maxj,y,r |⟨wk
j,r,µy⟩| for all k ∈ [T1, T ]. Notice that by Proposi-

tion D.1, we already have maxj,r |⟨wk
−j,r,µj⟩| ≤ ϑ, where we let

ϑ := 3max{max
j,r

|⟨wT1
j,r,µj⟩|, β, 4

√
log(4n2/δ)

d
nα} = Õ(max{n−1/2, σ0σξ

√
d, σ0∥µ∥, nd−1/2})

Subsequently, we use induction to prove maxj,r |⟨wk
j,r,µj⟩| ≤ 2ϑ. First we notice that

T∑
k=T1

LS(W
k) ≤ ∥WT1 −W∗∥2

η
= O(η−1nmσ−2

ξ d−1) (20)
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where the equality is by Lemma D.11 where we choose ϵ = 0.1.

At k = T1, we have maxj,r |⟨wT1
j,r,µj⟩| ≤ ϑ ≤ 2ϑ. Suppose there T̃ ∈ [T1, T ] such that

maxr,i |ρT1
yi,r,i

| ≤ 2ϑ for all k ∈ [T1, T̃ − 1]. Now we let Ψk := maxj,r |⟨wk
j,r,µj⟩| and thus

by the update of inner product

Ψk+1 ≤ Ψk +
η

nm

∑
i∈Sj

|ℓ′ki |Ψk∥µ∥2

≤ Ψk +
η

nm

∑
i∈[n]

ℓkiΨ
k∥µ∥2

= Ψk +
2η∥µ∥2

m
LS(W

k)Ψk.

where we use |ℓ′| ≤ ℓ in the second inequality. Taking the summation from T1 to T̃ gives

ΨT̃ ≤ ΨT1 +
2η∥µ∥2

m

T̃−1∑
k=T1

LS(W
k) ·m2ϑ

≤ ΨT1 +O(nSNR2) · 2ϑ
≤ 2ϑ

where the second inequality is by (20) and the last inequality is by n−1 ·SNR−2 ≥ C ′ for sufficiently
large constant C ′ > 0. The lower bound for noise inner product is directly from Lemma D.17.

E DIFFUSION MODEL

For the analysis of diffusion model, we restate 3.1 specifically for the case of diffusion model.
Condition E.1. Suppose there exists a sufficiently large constant C > 0 such that the following hold:

1. The dimension d satisfies d = Ω̃(max{∥µ∥2, n2}).

2. The training sample and network width satisfy m,n = Ω̃(1).

3. The initialization variation σ0 satisfies σ0 ≤ Õ(min{∥µ∥−1, σ−1
ξ d−1/2,m−3d−1/2}).

4. The noise coefficients αt, βt satisfy αt, βt = Θ(1).

E.1 USEFUL LEMMAS

Lemma E.1. Suppose δ > 0. Then with probability at least 1− δ, for any t,

σ2
0d(1− Õ(d−1/2)) ≤ ∥w0

r,t∥2 ≤ σ2
0d(1 + Õ(d−1/2))

|⟨w0
r,t,µj⟩| ≤

√
2 log(16m/δ)σ0∥µj∥,

|⟨w0
r,t, ξi⟩| ≤ 2

√
log(16mn/δ)σ0σξ

√
d

|⟨w0
r,t,w

0
r′,t⟩| ≤ 2

√
log(16m2/δ)σ2

0

√
d, r ̸= r′

for all r, r′ ∈ [m] and i ∈ [n]. and j = 1, 2

Proof of Lemma E.1. The proof is the same as in (Kou et al., 2023) and we include here for com-
pleteness. Because at initialization w0

r,t ∼ N (0, σ2
0I), by Bernstein’s inequality, with probability at

least 1− δ/(8m), we have

|∥w0
r,t∥22 − σ2

0d| = O(σ2
0

√
d log(16m/δ))

Then taking the union bound yields for all r ∈ [m], we have with probability at least 1− δ/4 that

σ2
0d(1− Õ(d−1/2)) ≤ ∥w0

r,t∥22 ≤ σ2
0d(1 + Õ(d−1/2)).
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Further, because ⟨w0
r,t,µj⟩ ∼ N (0, σ2

0∥µj∥22) for j = 1, 2, then by Gaussian tail bound and union
bound, we have with probability at least 1− δ/4, for all j = 1, 2, r ∈ [m],

|⟨w0
r,t,µj⟩| ≤

√
2 log(16m/δ)σ0∥µ∥2

Finally, following similar argument and noticing that ∥ξi∥22 = Θ(σ2
ξd) and ∥w0

r,t∥22 = Θ(σ2
0d), we

have with probability at least 1 − δ/4 that for all i ∈ [n], |⟨w0
r,t, ξi⟩| ≤ 2

√
log(16mn/δ)σ0σξ

√
d

and |⟨w0
r,t,w

0
r′,t⟩| ≤ 2

√
log(16m2/δ)σ2

0

√
d.

E.2 DERIVATION OF LOSS FUNCTION AND GRADIENT

We first simplify the objective through taking the expectation over the added diffusion noise.
Lemma E.2. The DDPM loss can be simplified under expectation as

L(Wt) =
1

2n

n∑
i=1

∑
j∈[2]

(
d+ L

(j)
1,i (Wt) + L

(j)
2,i (Wt)

)
,

where

L
(j)
1,i (Wt) =

1

m

m∑
r=1

∥wr,t∥2
(
α4
t ⟨wr,t,x

(j)
0,i ⟩

4 + 6α2
tβ

2
t ⟨wr,t,x

(j)
0,i ⟩

2∥wr,t∥2 + 3β4
t ∥wr,t∥4

− 4
√
mαtβt⟨wr,t,x

(j)
0,i ⟩
)

L
(j)
2,i (Wt) =

2

m

m∑
r=1

∑
r′ ̸=r

⟨wr,t,wr′,t⟩
((

α2
t ⟨wr,t,x

(j)
0,i ⟩

2 + β2
t ∥wr,t∥2

)(
α2
t ⟨wr′,t,x

(j)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
+ 2β4

t ⟨wr,t,wr′,t⟩2 + 4α2
tβ

2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

)
corresponding to the learning of r-th neuron and alignment of r-th neuron with other neurons
respectively.

Proof of Lemma E.2. Without loss of generality, we consider for a single sample xt,i. We first write
the objective as

E∥fp(Wt,x
(p)
t,i )− ϵ

(p)
t,i ∥

2

= E∥ϵ(p)t,i ∥
2︸ ︷︷ ︸

I1

+E

∥∥∥∥∥ 1√
m

m∑
r=1

σ(⟨wr,t,x
(p)
t,i ⟩)wr,t

∥∥∥∥∥
2

︸ ︷︷ ︸
I2

−2E

[
1√
m

m∑
r=1

σ(⟨wr,t,x
(p)
t,i ⟩)⟨wr,t, ϵt,i⟩

]
︸ ︷︷ ︸

I3

where we omit the subscript for the expectation for clarity.

First, we can see I1 = d. Then

I3 =
1√
m

m∑
r=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)

2⟨wr,t, ϵt,i⟩
]

=
1√
m

m∑
r=1

d∑
i′=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)

2wr,t[i
′]ϵt,i[i

′]
]

=
2βt√
m

m∑
r=1

d∑
i′=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)wr,t[i

′]2
]

=
2βt√
m

m∑
r=1

∥wr,t∥2E
[
⟨wr,t,x

(p)
t,i ⟩
]

=
2αtβt√

m

m∑
r=1

∥wr,t∥2⟨wr,t,x
(p)
0,i ⟩
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where the third equality uses Stein’s Lemma.

Next, we consider I2 by writing

I2 =
1

m

m∑
r=1

E
[
(⟨wr,t,x

(p)
t,i ⟩)

4
]
∥wr,t∥2 +

2

m

m∑
r=1

∑
r′ ̸=r

E
[
(⟨wr,t,x

(p)
t,i ⟩)

2(⟨wr′,t,x
(p)
t,i ⟩)

2
]
⟨wr,t,wr′,t⟩.

Next, we compute the two terms E
[
(⟨wr,t,x

(p)
t,i ⟩)4

]
and E

[
(⟨wr,t,x

(p)
t,i ⟩)2(⟨wr′,t,x

(p)
t,i ⟩)2

]
respec-

tively. For notation simplicity, we let ar := αt⟨wr,t,x
(p)
0,i ⟩, br := βt∥wr,t∥ and zr := βt⟨wr,t, ϵt,i⟩.

We first compute E[zr] = 0 and E[z2r ] = β2
t ∥wr,t∥2, E[z4r ] = 3β4

t ∥wr,t∥4. For the first term,

E
[
(⟨wr,t,x

(p)
t,i ⟩)

4
]
= E

[
(ar + zr)

4
]

= E[a4r + 4a3rzr + 6a2rz
2
r + 4arz

3
r + z4r ]

= a4r + 6a2rE[z2r ] + E[z4r ]
= a4r + 6a2rb

2
r + 3b4r

= α4
t ⟨wr,t,x

(p)
t,i ⟩

4 + 6α2
tβ

2
t ⟨wr,t,x

(p)
0,i ⟩

2∥wr,t∥2 + 3β4
t ∥wr,t∥4

Next, for Eϵt,i∼N (0,I)[⟨wr,t, αtx0,i + βtϵt,i⟩2⟨wr′,t, αtx0,i + βtϵt,i⟩2], we note that

E[zrzr′ ] = β2
tE[ϵ⊤t,iwr,tw

⊤
r′,tϵt,i] = β2

t ⟨wr,t,wr′,t⟩,
E[zrz2r′ ] = 0

E[z2rz2r′ ] = E[z2r ]E[z2r′ ] + 2E[zrzr′ ]2 = β4
t ∥wr,t∥2∥wr′,t∥2 + 2β4

t ⟨wr,t,wr′,t⟩2

where the second and third results follow from Isserlis Theorem. Then we can simplify

E[⟨wr,t, αtx0,i + βtϵt,i⟩2⟨wr′,t, αtx0,i + βtϵt,i⟩2]
= E[(ar + zr)

2(ar′ + zr′)
2]

= a2ra
2
r′ + a2rE[z2r′ ] + 4arar′E[zrzr′ ] + a2r′E[z2r ] + E[z2rz2r′ ]

= α4
t ⟨wr,t,x0,i⟩2⟨wr′,t,x0,i⟩2 + α2

tβ
2
t ⟨wr,t,x0,i⟩2∥wr′,t∥2 + 4α2

tβ
2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

+ α2
tβ

2
t ⟨wr′,t,x0,i⟩2∥wr,t∥2 + β4

t ∥wr,t∥2∥wr′,t∥2 + 2β4
t ⟨wr,t,wr′,t⟩2

Combining I1, I2, I3 gives

E∥st(x(p)
t,i )− ϵt,i∥

2

= d+
1

m

m∑
r=1

∥wr,t∥2
(
α4
t ⟨wr,t,x

(p)
0,i ⟩

4 + 6α2
tβ

2
t ⟨wr,t,x

(p)
0,i ⟩

2∥wr,t∥2 + 3β4
t ∥wr,t∥4 − 4

√
mαtβt⟨wr,t,x

(p)
0,i ⟩
)

︸ ︷︷ ︸
L

(p)
1,i (wr,t)

+
2

m

m∑
r=1

∑
r′ ̸=r

⟨wr,t,wr′,t⟩
((

α2
t ⟨wr,t,x

(p)
0,i ⟩

2 + β2
t ∥wr,t∥2

)(
α2
t ⟨wr′,t,x

(p)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
+ 2β4

t ⟨wr,t,wr′,t⟩2 + 4α2
tβ

2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

)
︸ ︷︷ ︸

L
(p)
2,i (wr,t)

where we respectively denote the two composing loss terms as L(p)
1,i (corresponding to the learning of

r-th neuron) and L
(p)
2,i (alignment with other neurons).

We next compute the gradient of the DDPM loss in expectation.
Lemma E.3. The gradient of expected DDPM loss in Lemma E.2 can be computed as

∇L(Wt) =
1

2n

n∑
i=1

∑
p∈[2]

(
∇L

(p)
1,i (Wt) +∇L

(p)
2,i (Wt)

)
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where

∇L
(p)
1,i (wr,t)

=
2

m

(
α4
t ⟨wr,t,x

(p)
0,i ⟩

4 + 12α2
tβ

2
t ⟨wr,t,x

(p)
0,i ⟩

2∥wr,t∥2 + 9β4
t ∥wr,t∥4 − 4

√
mαtβt⟨wr,t,x

(p)
0,i ⟩
)
wr,t

+
2

m

(
2α4

t ⟨wr,t,x
(p)
0,i ⟩

3∥wr,t∥2 + 6α2
tβ

2
t ∥wr,t∥4⟨wr,t,x

(p)
0,i ⟩ − 2

√
mαtβt∥wr,t∥2

)
x
(p)
0,i

∇L
(p)
2,i (wr,t)

=
2

m

∑
r′ ̸=r

((
α2
t ⟨wr,t,x

(p)
0,i ⟩

2 + β2
t ∥wr,t∥2

)(
α2
t ⟨wr′,t,x

(p)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
+ 2β4

t ⟨wr,t,wr′,t⟩2

+ 4α2
tβ

2
t ⟨wr,t,x0,i⟩⟨wr′,t,x0,i⟩⟨wr,t,wr′,t⟩

)
wr′,t

+
2

m

∑
r′ ̸=r

(
α2
t ⟨wr′,t,x

(p)
0,i ⟩

2 + β2
t ∥wr′,t∥2

)
⟨wr,t,wr′,t⟩

(
2α2

t ⟨wr,t,x
(p)
0,i ⟩x

(p)
0,i + 2β2

twr,t

)
+

2

m

∑
r′ ̸=r

⟨wr,t,wr′,t⟩2
(
4β2

twr′,t + 8α2
tβ

2
t ⟨wr,t,x0,i⟩x0,i

)
Proof of Lemma E.3. The proof is straightforward and thus omitted for clarity.

E.3 FIRST STAGE

Lemma E.4. Under Condition E.1, suppose n · SNR2 = Õ(1), n−1 · SNR−2 = Õ(1). There
exists an iteration T−

1 = max{Tµ, Tξ}, where Tµ = Θ̃(
√
mσ−1

0 d−1∥µ∥−1η−1) and Tξ =

Θ̃(n
√
mσ−1

0 σ−1
ξ d−3/2η−1) such that for all 0 ≤ k ≤ T−

1 , (1) |⟨wk
r,t,µj⟩| = Õ(σ0∥µ∥) (2)

|⟨wk
r,t, ξi⟩| = Õ(σ0σξ

√
d) and (3) ∥wk

r,t∥2 = Θ(σ2
0d) for all r ∈ [m], j = ±1, i ∈ [n]. and (4) the

signal and noise learning dynamics can be simplified to

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+
4ηαtβt|Sj |

n
√
m

∥wk
r,t∥2∥µj∥2 + Õ(ησ5

0d
2∥µj∥3),

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+
4ηαtβt

n
√
m

∥wk
r,t∥2∥ξi∥2 + Õ(ησ5

0σ
3
ξd

7/2n−1)

for all j = ±1, r ∈ [m], i ∈ [n]. Furthermore, we can show

• ⟨wT−
1

r,t ,µj⟩ = Θ(⟨wT−
1

r′,t,µj′⟩),

• ⟨wT−
1

r,t , ξi⟩ = Θ(⟨wT−
1

r′,t, ξi′⟩),

• ⟨wT−
1

r,t ,w
T−
1

r′,t⟩ = Θ(∥wT−
1

r,t ∥2)

• |⟨wT−
1

r,t ,µj⟩|/|⟨w
T−
1

r,t , ξi⟩| = Θ(n · SNR2)

for all j, j′ = ±1, r, r′ ∈ [m], i, i′ ∈ [n].

Proof of Lemma E.4. We prove the results by induction. To this end, we first compute the scale of
the gradients projected to the space of µ1,µ−1 and ξi, for i ∈ [n] under the scale of (1)-(3). For
notation clarity, we omit the index k.

Signal. First for µj , and for any i ∈ [n], we compute

1

2n

n∑
i=1

⟨∇L
(1)
1,i (wr,t),µj⟩ = Õ(σ4

0∥µj∥4 + σ4
0∥µj∥2d+ σ4

0d
2 + σ0∥µj∥)Õ(σ0∥µj∥)

+ Õ(σ5
0∥µj∥3d+ σ5

0d
2∥µj∥+ σ2

0d)∥µj∥2
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= Õ(σ2
0∥µj∥2) + Õ(σ2

0d∥µj∥2)
= Õ(σ2

0d∥µj∥2)

where the dominating term is −4
√
mαtβt∥wr,t∥2∥µj∥2. It is also worth highlighting that the second

dominating term is 6α2
tβ

2
t ∥wr,t∥4⟨wr,t,µj⟩∥µj∥2, which on the order of Õ(σ5

0d
2∥µj∥3).

Further, we have due to the orthogonality between signal and noise vectors,

1

2n

n∑
i=1

⟨∇L
(2)
1,i (wr,t),µj⟩ = Õ(σ4

0σ
4
ξd

2 + σ4
0σ

2
ξd

2 + σ4
0d

2 + σ0σξ

√
d)Õ(σ0∥µj∥)

= Õ(σ2
0σξ∥µj∥

√
d)

where the dominating term is −4
√
mαtβt⟨wr,t, ξi⟩⟨wr,t,µj⟩.

In addition, we have

1

2n

n∑
i=1

⟨∇L
(1)
2,i (wr,t),µj⟩ = Õ

((
σ2
0∥µj∥2 + σ2

0d
)2

+ σ4
0d+ σ4

0∥µ∥2
√
d
)
Õ(σ0∥µ∥)

+ Õ
(
(σ2

0∥µj∥2 + σ2
0d)σ

2
0

√
d(σ0∥µj∥3 + σ0∥µj∥)

)
+ Õ

(
σ4
0d(σ0∥µj∥+ σ0∥µj∥3)

)
= Õ

(
σ5
0d

2∥µj∥
)
+ Õ(σ5

0d
3/2∥µj∥3) + Õ(σ5

0d∥µj∥3)

Further,

1

2n

n∑
i=1

⟨∇L
(2)
2,i (wr,t),µj⟩ = Õ

((
σ2
0σ

2
ξd+ σ2

0d
)2

+ σ4
0d+ σ4

0σ
2
ξd

3/2
)
Õ(σ0∥µj∥)

+ Õ
(
(σ2

0σ
2
ξd+ σ2

0d)σ
2
0

√
d(σ0∥µj∥)

)
+ Õ

(
σ4
0d(σ0∥µj∥)

)
= Õ(σ5

0d
2∥µj∥)

Then according to the definition of |S±1| and µ±1, we can simplify the dynamics of µj learning at
initialization as

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+
4ηαtβt|Sj |

n
√
m

∥wk
r,t∥2∥µj∥2 + Õ(σ5

0d
2∥µj∥3)

where the second dominating term is 6α2
tβ

2
t ∥wk

r,t∥4⟨wk
r,t,µj⟩∥µj∥2, which on the order of

Õ(σ5
0d

2∥µj∥3).

Noise. Similarly, we can also show for the noise learning

1

2n

n∑
i′=1

⟨∇L
(1)
1,i′(wr,t), ξi⟩ = Õ(σ4

0∥µj∥4 + σ4
0∥µj∥2d+ σ4

0d
2 + σ0∥µj∥)Õ(σ0σξ

√
d)

= Õ(σ2
0σξ

√
d∥µj∥)

where the dominating term is −4
√
mαtβt⟨wr,t,µj⟩⟨wr,t, ξi⟩.

1

2n

n∑
i′=1

⟨∇L
(2)
1,i′(wr,t), ξi⟩ = Õ(σ4

0σ
4
ξd

2 + σ4
0σ

2
ξd

2 + σ4
0d

2 + σ0σξ

√
d)Õ(σ0σξ

√
d)

+ Õ(σ5
0σ

3
ξd

5/2 + σ5
0σξd

5/2 + σ2
0d)O(σ2

ξd(n
−1 + d−1/2))

= Õ(σ2
0σ

2
ξd) + Õ(σ2

0σ
2
ξd

2)
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= Õ(n−1σ2
0σ

2
ξd

2)

where the dominating term is −4
√
mαtβt∥wr,t∥2∥ξi∥2/n. The next dominating term is

6α2
tβ

2
t ∥wr,t∥4⟨wr,t, ξi⟩∥ξi∥2/n, which is on the order of σ5

0σ
3
ξd

7/2/n.

Further, we can show

1

2n

n∑
i′=1

⟨∇L
(1)
2,i (wr,t), ξi⟩ = Õ

((
σ2
0∥µj∥2 + σ2

0d
)2

+ σ4
0d+ σ4

0∥µ∥2
√
d
)
Õ(σ0σξ

√
d)

+ Õ
(
(σ2

0∥µj∥2 + σ2
0d)σ

2
0

√
d(σ0σξ

√
d)
)

+ Õ
(
σ4
0d(σ0σξ

√
d)
)

= Õ(σ5
0σξd

2)

Lastly,

1

2n

n∑
i′=1

⟨∇L
(2)
2,i (wr,t), ξi⟩ = Õ

((
σ2
0σ

2
ξd+ σ2

0d
)2

+ σ4
0d+ σ4

0σ
2
ξd

3/2
)
Õ(σ0σξ

√
d)

+ Õ
(
(σ2

0σ
2
ξd+ σ2

0d)σ
2
0

√
d(σ0σ

3
ξd

3/2(n−1/2 + d−1/2) + σ0σξ

√
d)
)

+ Õ
(
σ4
0d(σ0σξ

√
d+ σ0σξ

√
dσ2

ξd(n
−1/2 + d−1/2))

)
= Õ(σ5

0σξd
5/2) + Õ(σ5

0σ
3
ξd

3n−1/2) + Õ(σ5
0σ

3
ξd

5/2n−1/2).

This suggests the the dynamics of noise learning at initialization is

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+
4ηαtβt

n
√
m

∥wk
r,t∥2∥ξi∥2 + Õ(σ5

0σ
3
ξd

7/2n−1)

where the second dominating term is 6α2
tβ

2
t ∥wr,t∥4⟨wr,t, ξi⟩∥ξi∥2/n, which is on the order of

σ5
0σ

3
ξd

7/2/n.

Next, let Tµ = Θ(

√
m log(16m/δ)

σ0d∥µ∥ηαtβt
) and Tξ = Θ(

n
√

m log(16mn/δ)

σ0σξd3/2ηαtβt
) and we prove the results (1)-(4)

hold for all 0 ≤ k ≤ T−
1 via induction. We first show for all 0 ≤ k ≤ T−

1 that

⟨wk+1
r,t ,µj⟩ = ⟨wk

r,t,µj⟩+
4ηαtβt|Sj |

n
√
m

∥wk
r,t∥2∥µj∥2 + Õ(ησ5

0d
2∥µj∥3)

⟨wk+1
r,t , ξi⟩ = ⟨wk

r,t, ξi⟩+
4ηαtβt

n
√
m

∥wk
r,t∥2∥ξi∥2 + Õ(ησ5

0σ
3
ξd

5/2n−1)

First it is clear that at k = 0, we have from Lemma E.1 that ∥w0
r,t∥2 = Θ(σ2

0d) and

|⟨w0
r,t,µj⟩| ≤

√
2 log(16m/δ)σ0∥µ∥ = Õ(σ0∥µ∥)

|⟨w0
r,t, ξi⟩| ≤ 2

√
log(16mn/δ)σ0σξ

√
d = Õ(σ0σξ

√
d)

Suppose there exists an iteration T̃µ ≤ min{Tµ, Tξ} such that ∥w0
r,t∥2 = Θ(σ2

0d) and |⟨w0
r,t,µj⟩| =

Õ(σ0∥µ∥) for all 0 ≤ k ≤ T̃µ − 1. Then we have from the previous analysis, we can approximate
with a linear dynamics by omitting the higher order terms Õ(σ5

0d
2∥µ∥3) as

⟨wT̃
r,t,µj⟩ = ⟨wT̃−1

r,t ,µj⟩+
ηαtβt√

m
Θ(σ2

0d)∥µ∥2 = ⟨w0
r,t,µj⟩+

ηαtβt√
m

Θ(σ2
0d)∥µ∥2T̃µ

≤ ⟨w0
r,t,µj⟩+

ηαtβt√
m

Θ(σ2
0d)∥µ∥2Tµ

= ⟨w0
r,t,µj⟩+ Õ(σ0∥µ∥)

= Õ(σ0∥µ∥)
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where we use the Lemma C.1 that |Sj | = Θ(n/2).

For the same argument, suppose there exists an iteration T̃ξ ≤ min{Tµ, Tξ} such that ∥w0
r,t∥2 =

Θ(σ2
0d) and |⟨w0

r,t, ξi⟩| = Õ(σ0σξ

√
d) hold for all 0 ≤ k ≤ T̃ξ − 1. Then we we can approximate

with a linear dynamics by omitting the higher order terms Õ(σ5
0σ

3
ξd

7/2)

⟨wT̃
r,t, ξi⟩ = ⟨wT̃−1

r,t , ξi⟩+
ηαtβt

n
√
m

Θ(σ2
0σ

2
ξd

2) ≤ ⟨w0
r,t, ξi⟩+

ηαtβt

n
√
m

Θ(σ2
0σ

2
ξd

2)Tξ

= Õ(σ0σξ

√
d)

where we use Lemma E.1 that ∥ξi∥2 = Θ(σ2
ξd) for all i ∈ [n]. Next, denote Pξ = ξξ⊤

∥ξ∥2 be the projec-

tion matrix onto the direction of ξ and we express wT̃
r,t = Pµ1

wT̃
r,t +Pµ−1

wT̃
r,t +

∑n
i=1 Pξi

wT̃
r,t +(

I−Pµ1
−Pµ−1

−
∑n

i=1 Pξi

)
wT̃

r,t and due to the orthogonality of the decomposition, we have

∥wT̃
r,t∥2 =

⟨wT̃
r,t,µ1⟩2

∥µ∥2
+

⟨wT̃
r,t,µ−1⟩2

∥µ∥2
+

∥∥∥∥∥
n∑

i=1

⟨wT̃
r,t, ξi⟩
∥ξ∥2

∥∥∥∥∥
2

+

+

∥∥∥∥∥(I−Pµ1
−Pµ−1

−
n∑

i=1

Pξi

)
wT̃

r,t

∥∥∥∥∥
2

= Õ(σ2
0) + Õ(nσ2

0) + Θ(σ2
0d)

= Θ(σ2
0d)

where we use the induction results that |⟨wT̃
r,t,µj⟩| = Õ(σ0∥µ∥) and |⟨wT̃

r,t, ξi⟩| = Õ(σ0σξ

√
d),

and the
∥∥(I−Pµ1 −Pµ−1 −

∑n
i=1 Pξi

)
wT̃

r,t

∥∥2 is dominated by ∥w0
r,t∥2 = Θ(σ2

0d).

This completes the induction that for all k ≤ min{Tµ, Tξ} the results (1) are satisfied. Next, we
examine the iteration min{Tµ, Tξ} ≤ k ≤ max{Tµ, Tξ} = T−

1 . The magnitude comparison
between Tµ and Tξ depends on the condition on n ·SNR2. Because n ·SNR2, n−1 ·SNR−2 = Õ(1),
then Tµ/Tξ = Θ̃(n−1/2

√
n−1SNR−2) = Õ(1) and Tξ/Tµ = Θ̃(n1/2

√
nSNR2) = Õ(1), where

we use the condition on n = Õ(1). Hence using a similar induction argument for the iteration
min{Tµ, Tξ} ≤ k ≤ max{Tµ, Tξ} completes the proof that for all 0 ≤ k ≤ T−

1 , ∥wk
r,t∥2 = Θ(σ2

0d),
|⟨wk

r,t,µj⟩| = Õ(σ0∥µ∥) and |⟨wk
r,t, ξi⟩| = Õ(σ0σξ

√
d).

Furthermore, at k = T−
1 , we have for all r ∈ [m], j = ±1 and i ∈ [n], the growth term dominates

the initialization term and thus

⟨wT−
1

r,t ,µj⟩ = Θ(ηαtβtm
−1/2σ2

0d∥µ∥2T−
1 )

⟨wT−
1

r,t , ξi⟩ = Θ(ηαtβtn
−1m−1/2σ2

0dσ
2
ξdT

−
1 )

Thus, we verify the concentration of inner products at the end of first stage as well as the ratio

⟨wT−
1

r,t ,µj⟩/⟨w
T−
1

r,t , ξi⟩ = Θ(nSNR2) as well as ⟨wT−
1

r,t ,w
T−
1

r′,t⟩ = Θ(∥wT−
1

r,t ∥2).

E.4 SECOND STAGE

In the second stage, we show there exists some W∗
t such that ∇L(W∗

t ) satisfies
⟨∇wr,t

L(W∗
t ),µj⟩ = ⟨∇wr,t

L(W∗
t ), ξi⟩ = 0 for all j = ±1, r ∈ [m], i ∈ [n]. In other words W∗

t
is a stationary point whose gradients along the signal and noise directions are zero.
Theorem E.1. Under Condition E.1, there exists a stationary point W∗

t , i.e., ∇wr,tL(W
∗
t ) = 0

that satisfies (1) ⟨w∗
r,t,µj⟩ = Θ(⟨w∗

r′,t,µj′⟩), (2) ⟨w∗
r,t, ξi⟩ = Θ(⟨w∗

r′,t, ξi′⟩), (3) ⟨w∗
r,t,w

∗
r′,t⟩ =

Θ(∥w∗
r,t∥2) and

|⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| = Θ(n · SNR2)

for all j = ±1, r ∈ [m], i ∈ [m].
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Proof of Theorem E.1. The proof starts by assuming the concentration of neurons. This allows to
simplify the expression for ⟨∇wr,t

L(W∗
t ),µj⟩, ⟨∇wr,t

L(W∗
t ), ξi⟩ as follows.

Signal. Recall ∥µ1∥ = ∥µ−1∥ = ∥µ∥. For j = ±1,

⟨∇wr,t
L(W∗

t ),µj⟩ =
1

2n

n∑
i=1

⟨∇L
(1)
1,i (w

∗
r,t) +∇L

(2)
1,i (w

∗
r,t) +∇L

(1)
2,i (w

∗
r,t) +∇L

(2)
2,i (w

∗
r,t),µj⟩

Then we can simplify

1

2n

n∑
i=1

⟨∇L
(1)
1,i (w

∗
r,t),µj⟩

=
1

m
Θ
(
⟨w∗

r,t,µj⟩5 + ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2 + ∥w∗
r,t∥4⟨w∗

r,t,µj⟩ −
√
m⟨w∗

r,t,µj⟩2

+ ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2∥µj∥2 + ∥w∗
r,t∥4⟨w∗

r,t,µj⟩∥µj∥2 −
√
m∥w∗

r,t∥2∥µj∥2
)

where we have used Lemma C.1. And

1

2n

n∑
i=1

⟨∇L
(2)
1,i (w

∗
r,t),µj⟩ =

1

m
Θ
(
⟨w∗

r,t, ξi⟩4⟨w∗
r,t,µj⟩+ ⟨w∗

r,t, ξi⟩2∥w∗
r,t∥2⟨w∗

r,t,µj⟩

+ ∥w∗
r,t∥4⟨w∗

r,t,µj⟩ −
√
m⟨w∗

r,t, ξi⟩⟨w∗
r,t,µj⟩

)
1

2n

n∑
i=1

⟨∇L
(1)
2,i (w

∗
r,t),µj⟩ =

m− 1

m
Θ
(
⟨w∗

r,t,µj⟩5 + ∥w∗
r,t∥4⟨w∗

r,t,µj⟩+ ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2

+ ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2∥µj∥2 + ∥w∗
r,t∥4⟨w∗

r,t,µj⟩∥µj∥2
)

1

2n

n∑
i=1

⟨∇L
(2)
2,i (w

∗
r,t),µj⟩ =

m− 1

m
Θ
(
⟨w∗

r,t, ξi⟩4⟨w∗
r,t,µj⟩+ ∥w∗

r,t∥4⟨w∗
r,t,µj⟩

+ ⟨w∗
r,t, ξi⟩2∥w∗

r,t∥2⟨w∗
r,t,µj⟩

)
.

Setting ⟨∇wr,tL(W
∗
t ),µj⟩ = 0 yields

√
mΘ

(
⟨w∗

r,t,µj⟩5 + ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2 + ∥w∗
r,t∥4⟨w∗

r,t,µj⟩+ ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2∥µj∥2

+ ∥w∗
r,t∥4⟨w∗

r,t,µj⟩∥µj∥2 + ⟨w∗
r,t, ξi⟩4⟨w∗

r,t,µj⟩+ ⟨w∗
r,t, ξi⟩2∥w∗

r,t∥2⟨w∗
r,t,µj⟩

)
= Θ

(
⟨w∗

r,t,µj⟩2 + ∥w∗
r,t∥2∥µj∥2 + ⟨w∗

r,t, ξi⟩⟨w∗
r,t,µj⟩

)
Noise. Similarly, using the same argument, we can show for noise direction,

⟨∇wr,tL(W
∗
t ), ξi⟩ =

1

2n

n∑
i′=1

⟨∇L
(1)
1,i′(w

∗
r,t) +∇L

(2)
1,i′(w

∗
r,t) +∇L

(1)
2,i′(w

∗
r,t) +∇L

(2)
2,i′(w

∗
r,t), ξi⟩.

Then we can simplify

1

2n

n∑
i′=1

⟨∇L
(1)
1,i′(w

∗
r,t), ξi⟩ =

1

m
Θ
(
⟨w∗

r,t,µj⟩4⟨w∗
r,t, ξi⟩+ ⟨w∗

r,t,µj⟩2∥w∗
r,t∥2⟨w∗

r,t, ξi⟩

+ ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩ −
√
m⟨w∗

r,t,µj⟩⟨w∗
r,t, ξi⟩

)
1

2n

n∑
i′=1

⟨∇L
(2)
1,i′(w

∗
r,t), ξi⟩

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

=
1

m
Θ
(
⟨w∗

r,t, ξi⟩5 + ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2 + ∥w∗
r,t∥4⟨w∗

r,t, ξi −
√
m⟨w∗

r,t, ξi⟩2
)

+
1

nm

n∑
i′=1

Θ
(
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2 + ∥w∗

r,t∥4⟨w∗
r,t, ξi⟩ −

√
m∥w∗

r,t∥2
)
⟨ξi, ξi′⟩

=
1

m
Θ
(
⟨w∗

r,t, ξi⟩5 + ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2 + ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩ −
√
m⟨w∗

r,t, ξi⟩2
)

+
1

nm
Θ
(
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2∥ξi∥2 + ∥w∗

r,t∥4⟨w∗
r,t, ξi⟩∥ξi∥2 −

√
m∥w∗

r,t∥2∥ξi∥2
)
+ Õ(nd−1/2)

where the second equality is due to
∑n

i′=1⟨ξi′ , ξi⟩ = (1 + Õ(nd−1/2))∥ξi∥2 by Lemma C.2.
Furthermore, we have

1

2n

n∑
i′=1

⟨∇L
(1)
2,i′(w

∗
r,t), ξi⟩ =

m− 1

m
Θ
(
⟨w∗

r,t,µj⟩4⟨w∗
r,t, ξi⟩+ ∥w∗

r,t∥4⟨w∗
r,t, ξi⟩

+ ⟨w∗
r,t,µj⟩2∥w∗

r,t∥2⟨w∗
r,t, ξi⟩

)
1

2n

n∑
i′=1

⟨∇L
(2)
2,i′(w

∗
r,t), ξi⟩ =

m− 1

m
Θ
(
⟨w∗

r,t, ξi⟩5 + ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩+ ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2
)

+
m− 1

nm
Θ
(
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2∥ξi∥2 + ∥w∗

r,t∥4⟨w∗
r,t, ξi⟩∥ξi∥2

)
+ Õ(nd−1/2).

Setting ⟨∇wr,t
L(W∗

t ), ξi⟩ = 0 yields
√
mΘ

(
⟨w∗

r,t, ξi⟩5 + ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2 + ⟨w∗
r,t,µj⟩4⟨w∗

r,t, ξi⟩+ ⟨w∗
r,t,µj⟩2∥w∗

r,t∥2⟨w∗
r,t, ξi⟩

+ ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩+
1

n
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2∥ξi∥2 +

1

n
∥w∗

r,t∥4⟨w∗
r,t, ξi⟩∥ξi∥2

)
+ Õ(n

√
md−1/2)

= Θ
(
⟨w∗

r,t,µj⟩⟨w∗
r,t, ξi⟩+ ⟨w∗

r,t, ξi⟩2 +
1

n
∥w∗

r,t∥2∥ξi∥2
)

Combining the above results for both signal and noise, we require to solve the following equations to
compute the stationary point.

√
mΘ

(
⟨w∗

r,t,µj⟩5 + ⟨w∗
r,t,µj⟩3∥w∗

r,t∥2 + ⟨w∗
r,t, ξi⟩4⟨w∗

r,t,µj⟩+ ∥w∗
r,t∥4⟨w∗

r,t,µj⟩

+ ⟨w∗
r,t, ξi⟩2∥w∗

r,t∥2⟨w∗
r,t,µj⟩+ ⟨w∗

r,t,µj⟩3∥w∗
r,t∥2∥µj∥2 + ∥w∗

r,t∥4⟨w∗
r,t,µj⟩∥µj∥2

)
= Θ

(
⟨w∗

r,t, ξi⟩⟨w∗
r,t,µj⟩+ ⟨w∗

r,t,µj⟩2 + ∥w∗
r,t∥2∥µj∥2

)
(21)

√
mΘ

(
⟨w∗

r,t, ξi⟩5 + ⟨w∗
r,t, ξi⟩3∥w∗

r,t∥2 + ⟨w∗
r,t,µj⟩4⟨w∗

r,t, ξi⟩+ ∥w∗
r,t∥4⟨w∗

r,t, ξi⟩

+ ⟨w∗
r,t,µj⟩2∥w∗

r,t∥2⟨w∗
r,t, ξi⟩+

1

n
⟨w∗

r,t, ξi⟩3∥w∗
r,t∥2∥ξi∥2 +

1

n
∥w∗

r,t∥4⟨w∗
r,t, ξi⟩∥ξi∥2

)
= Θ

(
⟨w∗

r,t,µj⟩⟨w∗
r,t, ξi⟩+ ⟨w∗

r,t, ξi⟩2 +
1

n
∥w∗

r,t∥2∥ξi∥2
)
+ Õ(n

√
md−1/2) (22)

Because we require d = Ω̃(n2m), we can first ignore the term Õ(n
√
md−1/2) when computing the

stationary point.

In order to solve such equations, we let τ :=
⟨w∗

r,t,µj⟩
⟨w∗

r,t,ξi⟩ for any i, j and further consider the decomposi-

tion of w∗
r,t = γ1µ1∥µ1∥−2+γ−1µ−1∥µ−1∥−2+

∑n
i=1 ρr,iξi∥ξi∥−2 based on the gradient descent

updates of wr,t starting from small initialization. Then we can see γj = ⟨w∗
r,t,µj⟩ for j = ±1 and

ρr,i = ⟨w∗
r,t, ξi⟩+ Õ(d−1/2), where we use Lemma C.2 that n|⟨ξi, ξi′⟩|∥ξi∥−2 = Õ(nd−1/2) for

any i ̸= i′. Then we can show

∥w∗
r,t∥2 = 2⟨w∗

r,t,µj⟩2∥µj∥−2 + ∥
n∑

i=1

ρr,iξi∥ξi∥−2∥2
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= 2⟨w∗
r,t,µj⟩2∥µj∥−2 + n⟨w∗

r,t, ξi⟩2∥ξi∥−2 + Õ(nd−1/2)

= 2⟨w∗
r,t,µj⟩2∥µj∥−2 + n · SNR2⟨w∗

r,t, ξi⟩2∥µj∥−2 + Õ(nd−1/2) (23)

where the first equality is by orthogonality of µj to ξi and the second equality is by ρr,i = ⟨w∗
r,t, ξi⟩+

Õ(d−1/2) and n|⟨ξi, ξi′⟩|∥ξi∥−2 = Õ(nd−1/2).

Next, we separately consider three SNR conditions, namely (1) n · SNR2 = Θ(1); (2) n · SNR2 ≥
Ω̃(1); and (3) n−1 · SNR−2 ≥ Ω̃(1).

1. When n · SNR2 = Θ(1): we first can derive

∥w∗
r,t∥2 = max{Θ(⟨w∗

r,t,µ⟩2),Θ(⟨w∗
r,t, ξi⟩2)}∥µ∥−2

where we ignore the Õ(nd−1/2) Next, we can simplify (21) and (22) depending on the scale of τ .

• When τ = Ω̃(1), we have ∥w∗
r,t∥2 = Θ(⟨w∗

r,t,µj⟩2)∥µj∥−2 and the equations reduce to{
Θ(

√
mτ5⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

Θ(
√
mτ4⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

It is clear to see for τ = Ω̃(1), the equations cannot be jointly satisfied.
• When τ−1 = Ω̃(1), we have ∥w∗

r,t∥2 = Θ(⟨w∗
r,t, ξi⟩2)∥µj∥−2 and the equations reduce to{

Θ(
√
mτ⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which cannot be satisfied simultaneously for τ−1 = Ω̃(1).
• When τ = Θ(1), ∥w∗

r,t∥2 = Θ(⟨w∗
r,t,µj⟩2)∥µj∥−2 = Θ(⟨w∗

r,t, ξi⟩2)∥µj∥−2 and thus we
can simplify the equations to{

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which has a solution with ⟨w∗
r,t, ξi⟩ = Θ(m−6) = ⟨w∗

r,t,µj⟩.
Finally, we notice the term ignored has an order of Õ(n

√
md−1/2).

2. When n · SNR2 = Ω̃(1): we first derive

∥w∗
r,t∥2 = max{Θ(τ2),Θ(nSNR2)}⟨w∗

r,t, ξi⟩2∥µ∥−2.

We consider the scale of τ as follows.

• When τ ≥ nSNR2, we have ∥w∗
r,t∥2 = Θ(τ2)⟨w∗

r,t, ξi⟩2∥µj∥−2 we can simplify the
equations to {

Θ(
√
mτ5⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

Θ(
√
mτ4⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2n−1SNR−2)

In order to satisfy both equations, we require τ = Θ(nSNR2). On the other hand, if√
nSNR2 ≤ τ ≤ nSNR2, we have ∥w∗

r,t∥2 = Θ(nSNR2)⟨w∗
r,t, ξi⟩2∥µ∥−2 and we can

simplify the equations to{
Θ(

√
mτ5⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

Θ(
√
mτ4⟨w∗

r,t, ξi⟩5) = Θ(τ⟨w∗
r,t, ξi⟩2)

which can be satisfied for any
√
nSNR2 ≤ τ ≤ nSNR2.

Finally, if Ω(1) ≤ τ ≤
√
nSNR2, we have ∥w∗

r,t∥2 = Θ(nSNR2)⟨w∗
r,t, ξi⟩2∥µ∥−2 and

we can simplify (21) as{
Θ(

√
m(τ3nSNR2 + τn2SNR4∥µ∥−2)⟨w∗

r,t, ξi⟩5) = Θ(nSNR2⟨w∗
r,t, ξi⟩2)

Θ(
√
m(τ4 + n2SNR4∥µ∥−4 + τ2nSNR2∥µ∥−2)⟨w∗

r,t, ξi⟩5) = Θ(τ⟨w∗
r,t, ξi⟩2)

(24)
To analyze the solution to the above equations, we consider two cases:
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– When ∥µ∥2 ≤ nSNR2τ−2, the first equation of (24) can be simplified as
Θ(

√
mτn2SNR4∥µ∥−2⟨w∗

r,t, ξi⟩5) = Θ(nSNR2⟨w∗
r,t, ξi⟩2) and the second equation

of (24) can be reduced to Θ(
√
mn2SNR4∥µ∥−4⟨w∗

r,t, ξi⟩5) = Θ(τ⟨w∗
r,t, ξi⟩2) and in

order for both equations hold, we must have τ = Θ(
√
nSNR2∥µ∥−2).

– When ∥µ∥2 ≥ nSNR2τ−2, the first equation of (24) can be simplified as
Θ(

√
mτ3nSNR2⟨w∗

r,t, ξi⟩5) = Θ(nSNR2⟨w∗
r,t, ξi⟩2) and the second equation of (24)

can be reduced to Θ(
√
mτ4⟨w∗

r,t, ξi⟩5) = Θ(τ⟨w∗
r,t, ξi⟩2), which holds for any τ .

Hence in summary we have τ ≥
√
nSNR2∥µ∥−2 ≥ Ω(1) can satisfy both equations.

• When τ−1 = Ω̃(1), we have ∥w∗
r,t∥2 = Θ(nSNR2)⟨w∗

r,t, ξi⟩2∥µ∥−2 and thus{
Θ(

√
m(τ + τ3nSNR2 + τn2SNR4∥µ∥−2)⟨w∗

r,t, ξi⟩5) = Θ(nSNR2⟨w∗
r,t, ξi⟩2)

Θ(
√
m(1 + nSNR2∥µ∥−2 + n2SNR4∥µ∥−4)⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which cannot be satisfied for τ−1 = Ω̃(1) because the coefficient of the first equality
is order smaller than the coefficient of the second equality, i.e., τn−1SNR−2 + τ3 +
τnSNR2∥µ∥−2 ≪ 1 + nSNR2∥µ∥−2 + n2SNR4∥µ∥−4.

3. When n−1 · SNR−2 = Ω̃(1): we first derive

∥w∗
r,t∥2 = max{Θ(τ2),Θ(nSNR2)}⟨w∗

r,t, ξi⟩2∥µj∥−2.

We consider the scale of τ as follows.

• When τ = Ω̃(1), we have ∥w∗
r,t∥2 = Θ(τ2)⟨w∗

r,t, ξi⟩2∥µj∥−2 and thus we can simplify
the equations to{
Θ(

√
mτ5⟨w∗

r,t, ξi⟩5) = Θ(τ2⟨w∗
r,t, ξi⟩2)

Θ(
√
m(τ4 + n−1SNR−2τ2 + τ4n−1SNR−2∥µ∥−2)⟨w∗

r,t, ξi⟩5) = Θ(n−1SNR−2τ2⟨w∗
r,t, ξi⟩2)

which cannot be satisfied when τ = Ω̃(1) because the first equation has a coefficient τ3

while the second equation has a coefficient of τ2nSNR2 + 1 + τ2, which is much smaller
given n−1SNR−2 = Ω̃(1).

• When τ−1 ≥ n−1SNR−2, we have ∥w∗
r,t∥2 = Θ(nSNR2)⟨w∗

r,t, ξi⟩2∥µj∥−2 and we can
simplify {

Θ(
√
mτ⟨w∗

r,t, ξi⟩5) = Θ(nSNR2⟨w∗
r,t, ξi⟩2)

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which can only be satisfied if τ = Θ(nSNR2).

• When
√
n−1SNR−2 ≤ τ−1 ≤ n−1SNR−2, we have ∥w∗

r,t∥2 =

Θ(nSNR2)⟨w∗
r,t, ξi⟩2∥µj∥−2 and we can simplify{

Θ(
√
mτ⟨w∗

r,t, ξi⟩5) = Θ(τ⟨w∗
r,t, ξi⟩2)

Θ(
√
m⟨w∗

r,t, ξi⟩5) = Θ(⟨w∗
r,t, ξi⟩2)

which can be satisfied for any
√
n−1SNR−2 ≤ τ−1 ≤ n−1SNR−2.

• When Ω(1) ≤ τ−1 ≤
√
n−1SNR−2, we have ∥w∗

r,t∥2 = Θ(τ2)⟨w∗
r,t, ξi⟩2∥µj∥−2 and we

can simplify{
Θ(

√
mτ⟨w∗

r,t, ξi⟩5) = Θ(τ⟨w∗
r,t, ξi⟩2)

Θ(
√
m(1 + τ2n−1SNR−2)⟨w∗

r,t, ξi⟩5) = Θ((1 + τ2n−1SNR−2)⟨w∗
r,t, ξi⟩2)

which can be satisfied for any Ω(1) ≤ τ−1 ≤
√
n−1SNR−2.

In summary, the above scale analysis reveals that
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1. When n · SNR2 = Θ(1), |⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| = Θ(1) and ⟨w∗
r,t, ξi⟩ = Θ(m−6).

2. When n · SNR2 = Ω̃(1), Ω(1) = |⟨w∗
r,t,µj⟩|/|⟨w∗

r,t, ξi⟩| ≤ Θ(n · SNR2).

3. When n−1 · SNR−2 = Ω̃(1), Ω(1) = |⟨w∗
r,t, ξi⟩|/|⟨w∗

r,t,µj⟩| ≤ Θ(n−1 · SNR−2).

F ON THE FEATURE LEARNING OF VAE

To analyze variational auto-encoder (VAE) (Kingma & Welling, 2014), we consider the following
problem setup. We follow the common practice by setting the approximate posterior qϕ(z|x) =
N (ϕ(x),diag(σ(x)2)). Here ϕ : Rd → Rm is parameterized by an encoder network. Then we can
show the objective of VAE is given by a reconstruction loss plus a regularization term:

L = Ez∼qϕ(z|x)∥x−ψ(z)∥2 + 1

2
∥ϕ(x)∥2 − 1

2
log
(
σ(x)2

)⊤
1+

1

2
σ(x)2⊤1+ const

= Ez∼qϕ(z|x)∥x−ψ(z)∥2 + Lreg

where ψ : Rm → Rd is a decoder network and we use Lreg = 1
2∥ϕ(x)∥

2 − 1
2 log

(
σ(x)2

)⊤
1 +

1
2σ(x)

2⊤1+ const to denote the KL regularization term. Consider a dataset of {xi}ni=1 following
the same distribution as in Definition 2.1, and leveraging the reparameterized trick, we can rewrite
the loss as

L =
1

n

n∑
i=1

Eξ∼N (0,I)∥xi −ψ
(
ϕ(x) + σ(x)⊙ ξ

)
∥2 + Lreg

=
1

n

n∑
i=1

2∑
p=1

Eξ∥x(p)
i −W⊤((Wx

(p)
i )2 + σ(x)⊙ ξ

)
∥2 + Lreg

where we set the network models following our setting for diffusion models, i.e., ϕ(x) = (Wx)2

and ψ(z) = W⊤z for W ∈ Rm×d, with shared weights for encoder and decoder and quadratic
activation function.

We can readily observe that the loss of VAE is similar to the DDPM loss for diffusion models as a
form of denoising except that the noise is added in the latent space.

Then following a similar trjactory based analysis developed for diffusion models, we expect similar
VAEs also learn balanced features. To see this, we consider the following two settings:

(1) When σ(x) = I, then the loss can be simplified by taking the expectation over ξ. For a
single patch of a sample, we can simplify

Eξ∥x(p)
i −W⊤(Wx

(p)
i )2 −W⊤ξ∥2

= ∥x(p)
i −W⊤(Wx

(p)
i )2∥2 + Eξ∥W⊤ξ∥2 − 2Eξ⟨x(p)

i −W⊤(Wx
(p)
i )2,W⊤ξ⟩

= ∥x(p)
i −W⊤(Wx

(p)
i )2∥2 + ∥W∥2,

which reduces to an auto-encoder with L2 regularization, i.e.,

L =
1

n

n∑
i=1

2∑
p=1

∥x(p)
i −W⊤(Wx

(p)
i )2∥2 + Lreg + ∥W∥2.

(2) When σ(x) is general, then we can simplify the loss as

Eξ∥x(p)
i −W⊤(Wx

(p)
i )2 −W⊤(σ(x

(p)
i )⊙ ξ)∥2

= ∥x(p)
i −W⊤(Wx

(p)
i )2∥2 + Eξ∥W⊤(σ(x

(p)
i )⊙ ξ)∥2
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= ∥x(p)
i −W⊤(Wx

(p)
i )2∥2 + ⟨W,diag

(
σ(x

(p)
i )2

)
W⟩

where we notice the cross term vanishes. This leads to the loss

L =
1

n

n∑
i=1

2∑
p=1

∥x(p)
i −W⊤(Wx

(p)
i )2∥2 + Lreg + ⟨W,diag

(
σ(x

(p)
i )2

)
W⟩.

It can be seen the VAE loss indeed comprises of a reconstruction term plus some regularization terms.
The reconstruction loss forces the model to learn both signal and noise. To see this, we can compute
the dominant term in the gradient directions of the reconstruction loss and simplify the updates in the
early-stage the same as for diffusion models:

⟨wk+1
r ,µj⟩ = ⟨wk

r ,µj⟩+Θ(η⟨wk
r ,µj⟩3)

⟨wk+1
r , ξi⟩ = ⟨wk

r , ξi⟩+Θ(η⟨wk
r , ξi⟩3)

Then we can follow the analysis as in diffusion model to characterize the feature learning dynamics
of VAE.

F.1 EXPERIMENTS

We proceed with experiments to investigate the feature learning dynamics of the VAE model. Using
the same data generation setup as outlined in Section 5.1, we align with the diffusion model approach
by averaging over 2000 sampled noise vectors, ξ, for each data point. The VAE loss is then optimized
with a regularization term, λLreg, setting λ = 0.001. To parameterize the variance, we define it as
σ(x) = diag(Wvx), where Wv is a trainable matrix distinct from W. Feature learning is evaluated
across two signal-to-noise ratio (SNR) regimes, specifically, n · SNR2 = 0.75 and n · SNR2 = 6.75,
as described in Section 5.1. The results of these experiments are presented in Figure 13. We observe
that similar to diffusion model, VAE learns features following the scale of SNR.

Low SNR (n · SNR2 = 0.75) High SNR (n · SNR2 = 6.75)

Figure 13: Loss and feature learning of VAE on the synthetic dataset with both low SNR (n ·SNR2 =
0.75) and high SNR (n · SNR2 = 6.75). We observe the scale of feature learning matches the scale
of n · SNR2.

G FEATURE LEARNING COMPARISON UNDER VARYING SNRS

In this section, we compare the feature learning dynamics of classification and diffusion models on
additional settings of SNR. Apart from the n · SNR2 = 0.75 and n · SNR2 = 6.75 as shown in the
main text, we additionally test on (1) n · SNR2 = 1.92, (2) n · SNR2 = 3 (3) n · SNR2 = 4.32. The
feature learning dynamics under the corresponding SNR settings are shown in Figure 14.

From the figures, we can see that classification indeed is more sensitive to the SNR scale, where it
easily overfit to either signal or noise (except for the case where n · SNR2 = 3 where classification
learns signal and noise to approximately the same scale). On the other hand, we can verify that at
stationarity, diffusion model learns in a more balanced scale for signal and noise.
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n · SNR2 = 1.92 n · SNR2 = 3

n · SNR2 = 4.32

Figure 14: Experiments on the synthetic dataset with varying SNRs.

H FEATURE LEARNING COMPARISON WITH THREE-LAYER NEURAL
NETWORKS

This section performs additional experiments by changing the neural network for both classification
and diffusion model from two layers to three layers. In addition, we switch from quadratic activation
to more practically used ReLU activation.

Specifically, for diffusion model, we consider

f(Wt,1,Wt,2,xt) =
[
f1(Wt,x

(1)
t )⊤,f2(Wt,x

(2)
t )⊤

]⊤
∈ R2d

where fp(Wt,1,Wt,2,x
(p)
t ) = W⊤

t,1σR(Wt,2σR(Wt,1x
(1)
t )), p = 1, 2

where σR(·) denotes the ReLU activation and Wt,1 ∈ Rm×d, Wt,2 ∈ Rm×m.

For classification, we consider
f(W0,W,x) = F1(W0,W1, z)− F−1(W0,W−1, z)

where Fj(W0,Wj , z) =
1

m

m∑
r=1

σR(⟨wj,r, z
(1)⟩) + 1

m

m∑
r=1

σR(⟨wj,r, z
(2)⟩)

z(p) = σR(W0x
(p)), p = 1, 2

where W0 ∈ Rd×m is the first layer weight and we use ReLU activation σR(·).
Here we measure the signal and noise learning by tracking the signal and noise inner products with
the first-layer weight, which directly extracts features from the data.

We use the same synthetic data setups as in Section 5.1 under the two SNR cases. The results are
shown in Figure 15. We observe that although we include another layer and change the activation
from quadratic to ReLU, we still observe a similar pattern as for the two-layer network setup. In
particular, we verify that classification similarly bias the learning towards the one feature depending
on SNR and the resulting gap is significantly larger compared to diffusion model, where all features
are learned to a relatively the same scale.

I ON THE FEATURE LEARNING WITH 10-CLASS MNIST

In the main paper, we only conduct experiments on Noisy-MNIST restricted to two classes. In this
section, we experiment over the 10-class MNIST dataset, which contains more features and is more
challenging for both diffusion model and classification.
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n · SNR2 = 0.75 n · SNR2 = 6.75

Figure 15: Comparison of feature learning dynamics with three-layer neural network. We observe a
similar pattern as for the two-layer networks, i.e., classification is prone to learning one feature over
another while diffusion model tends to learn much balanced features.

We adopt the same data processing pipelines as in Section 5.2 except that for each class, we select
10 images. We set the scaled SNR S̃NR = 0.1, consistent with the main paper. While the diffusion
model remains unchanged, the classification model requires modification. Specifically, the second
layer’s weight matrix has dimensions m × 10, with entries fixed uniformly to values in {−1, 1}.
Furthermore, we employ cross-entropy loss for training the classification model.

We plot the visualization of feature learning in Figure 16. We observe that, even with additional
features and labels, the similar learning patterns are observed, i.e., diffusion model learns both signals
and noise in order to reconstruct the input distribution while classification model learns primarily
noise for loss minimization. From Figure 17(c), we notice that diffusion model learns features to
relatively the same scale while for classification, the growth of feature learning is dominated by noise
learning.

J ON THE FEATURE LEARNING OF CLASSIFICATION WITH ADDED GAUSSIAN
NOISE

In this section, we examine the feature learning of classification models when injecting Gaussian
noise into the inputs. Let LS(W) be the empirical logistic loss without input noise and let L̃S(W)
be the empirical logistic loss with input noise, i.e.,

LS(W) =
1

n

n∑
i=1

ℓ(yif(W,xi)), L̃S(W) =
1

n

n∑
i=1

ℓ(yif(W,xi + ϵi))

where we highlight that the added noise ϵi ∼ N (0, I) is randomly sampled every iteration. We
assume that the added noise has unit variance without loss of generality.

Next we compute the gradient as

∇wj,r L̃S(W
k)

=
1

nm

n∑
i=1

ℓ̃′ki ⟨wk
j,r,x

(1)
i + ϵki,1⟩jyi(x

(1)
i + ϵki,1) +

1

nm

n∑
i=1

ℓ̃′ki ⟨wk
j,r, ξi + ϵ

k
i,2⟩jyi(ξi + ϵki,2)

Then taking the expectation over the added noise and assuming that ℓ̃′ki is bounded (as in the first
stage), we obtain

Eϵki,1,ϵ
k
i,2
[∇wj,r

L̃S(W
k)]
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Figure 16: Experiments on 10-class Noisy-MNIST with S̃NR =
0.1. (First row): Test Noisy-MNIST images; (Second row): Illus-
tration of gradient of output (for the true class) with respect to the
input. (Third row): denoised image from diffusion model. In this
low-SNR case, we see classification tends to predominately learn
noise while diffusion learns both signals and noise.

(a)

(b)

(c)

Figure 17: Experiments on
10-class Noisy-MNIST with
S̃NR = 0.1. (a) Train loss for
classification. (b) Train loss
for diffusion model. (c) Fea-
ture learning dynamics.

=
1

nm

n∑
i=1

ℓ̃′ki ⟨wk
j,r,x

(1)
i ⟩jyix(1)

i +
1

nm

n∑
i=1

ℓ̃′ki ⟨wk
j,r, ξi⟩jyiξi +

1

nm

n∑
i=1

ℓ̃′ki wk
j,r

where we use the fact that Eϵ[ϵϵ
⊤] = I.

Then we can show that

Eϵki,1,ϵ
k
i,2
[∇wj,r

L̃S(W
k)] ≈ ∇wj,r

LS(W
k) +

1

nm
(

n∑
i=1

ℓ′ki )wk
j,r

which can be viewed as the original objective function with an L2 regularization.

In particular, we follow the same problem setups as in Section 5.1 for generating the data. Each
iteration, we use input with randomly sampled Gaussian noise for classification models, i.e., x →
αtx + βtϵ, where αt = exp(−t) = 0.82 and βt =

√
1− exp(−2t) = 0.57, (the same as for

diffusion models).

We plot the feature learning dynamics of classification in Figure 18. From the results, we see despite
the presence of input Gaussian noise, classification still bias learning towards one feature over the
others.

n · SNR2 = 0.75 n · SNR2 = 6.75

Figure 18: Experiments of classification on the synthetic dataset with both low SNR (n·SNR2 = 0.75)
and high SNR (n · SNR2 = 6.75). The inputs to the classification include Gaussian noise. We see
the classification still primarily learn one feature even with the presencen of input noise.
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