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Abstract

Aligning powerful AI models on tasks that001
surpass human evaluation capabilities is the002
central problem of superalignment. To ad-003
dress this problem, weak-to-strong generaliza-004
tion aims to elicit the capabilities of strong mod-005
els through weak supervisors and ensure that006
the behavior of strong models aligns with the007
intentions of weak supervisors without unsafe008
behaviors such as deception. Although weak-009
to-strong generalization exhibiting certain gen-010
eralization capabilities, strong models exhibit011
significant overfitting in weak-to-strong gener-012
alization: Due to the strong fit ability of strong013
models, erroneous labels from weak supervi-014
sors may lead to overfitting in strong models.015
In addition, simply filtering out incorrect labels016
may lead to a degeneration in question qual-017
ity, resulting in a weak generalization ability018
of strong models on hard questions. To miti-019
gate overfitting in weak-to-strong generaliza-020
tion, we propose a two-stage framework that021
simultaneously improves the quality of super-022
vision signals and the quality of input ques-023
tions. Experimental results in three series of024
large language models and two mathematical025
benchmarks demonstrate that our framework026
significantly improves PGR compared to naive027
weak-to-strong generalization, even achieving028
up to 100% PGR on some models.029

1 Introduction030

Large language models (LLMs) have progressed031

rapidly in recent years, achieving superhuman abil-032

ity in diverse tasks, and showing great potential in033

pursuing superhuman intelligence. Although large034

language models acquire extensive world knowl-035

edge and excellent capabilities to complete com-036

plex tasks through large-scale pre-training, align-037

ment is still necessary to ensure that these mod-038

els carry out tasks according to human intentions039

(Ouyang et al., 2022). The hard problem of align-040

ment is “How do we align systems on tasks that are041

Figure 1: Illustration of different weak-to-strong gener-
alization approaches. (a) Conventional approach with
noisy labels from weak model, indicated by black dots;
(b) Simple filtering approach that discards too many
valuable hard samples; (c) Our framework can main-
tains both supervision quality and question quality.

difficult for humans to evaluate? (Leike, 2022) " 042

This challenge is known as superalignment, which 043

refers to how humans can align models on tasks 044

that are beyond human ability to evaluate, which 045

means that humans cannot provide correct supervi- 046

sion. One notable method in superalignment is the 047

weak-to-strong generalization (Burns et al., 2023): 048

How can weak supervisors supervise stronger 049

models? This concept describes how the capacity 050

of strong students can be elicited by fine-tuning 051

on data labeled by weak teachers, consistently en- 052

abling them to outperform their weak teachers. In 053

specific experiments, a weak model is typically 054

used as a weak teacher, while a more capable model 055

serves as the strong student. 056

Figure 1(a) demonstrates the features of weak-to- 057

strong generalization, labels generated by the weak 058

model contain noise due to its limited capabilities, 059

thus presenting lower correctness and adding diffi- 060

culties in eliciting strong model’s capabilities. As a 061
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Figure 2: Overview of our two-stage training framework. Stage I (top): The raw question set is filtered based on
weak model’s consistency ( ). High-consistency questions are used to generate Training Set A, which is then used
for finetuning the strong model ( ). Stage II (bottom): Previously discarded questions are re-evaluated and refined
using the finetuned strong model from Stage I ( ). High-consistency questions are selected to form Training Set B,
which is then combined with Set A for final finetuning ( ). Here represents weak model, represents primary
strong model, represents Stage I finetuned model, and represents final finetuned model.

result, the strong model may overfit the erroneous062

weak supervisions, leading to performance degen-063

eration (Yang et al., 2024a). Recent research has064

introduced filtering techniques to improve label cor-065

rectness (Guo and Yang, 2024), making the analogy066

similar to easy-to-hard learning (Hase et al., 2024).067

In contrast to these related studies, we conduct a068

more in-depth investigation into the effects of com-069

monly used data filtering methods. Based on our070

experimental results, we highlight that an exces-071

sive emphasis on data filtering can lead to data072

degeneration since some hard samples can be dis-073

carded, which may hinder the overall performance,074

as shown in Figure 1(b).In contrast, Figure 1(c)075

illustrates an ideal scenario, where a clean train-076

ing set, containing both strong and weak samples,077

facilitates improved generalization. These hard078

samples may be important to elicit student’s ca-079

pabilities to solve hard problems.080

For denoising supervision, most common meth-081

ods, like filtering, tend to achieve better perfor-082

mance by improving supervision quality. However,083

such improvements come at the cost of lower ques-084

tion quality, harming features including difficulty085

and diversity, and overfiltering may even cause086

question degeneration.087

Therefore, to mitigate overfitting and improve088

weak-to-strong generalization, we propose a two-089

stage weak-to-strong training framework, as de-090

picted in Figure 2. In the first stage, we enhance 091

supervision quality by filtering the generated sam- 092

ples based on weak model’s uncertainty, which is 093

estimated through the model’s self-consistency. In 094

the second stage, we further augment question qual- 095

ity by reusing the discarded questions and leverage 096

the previous finetuned strong model to generate 097

answers, as finetuned strong model may solve diffi- 098

cult questions better, incorporating those with high 099

confidence back into the training dataset, to further 100

elicit strong model’s capabilities. 101

We assess the effectiveness of our framework 102

on two popular mathematical reasoning bench- 103

marks: GSM8k (Cobbe et al., 2021) and MATH 104

(Hendrycks et al., 2021). The evaluation involves 105

two distinct model series: Llama 3 (Dubey et al., 106

2024) and Deepseek (Bi et al., 2024). The results 107

demonstrate the substantial improvements offered 108

by our framework. Specifically, the first stage 109

outperforms the standard weak-to-strong method, 110

while the second stage further enhances data quality 111

and narrows the performance gap. On the com- 112

momly used criteria performance gap recoverd 113

(PGR), our framework significantly outperforms 114

conventional weak-to-strong finetuning, reaching 115

or surpassing 100% on certain models and datasets. 116

The main contributions of this paper are con- 117

cluded as follows: 118

1. We pinpoint two critical factors for mitigat- 119
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ing overfitting in weak-to-strong generaliza-120

tion: the quality of supervision and the quality121

of questions. And we demonstrate that en-122

hancing supervision quality through data filter-123

ing leads to degeneration in question quality,124

which may harm the model’s generalization125

on hard questions.126

2. We introduce a two-stage weak-to-strong127

training framework focusing on supervision128

quality and question quality, effectively ad-129

dress overfitting on challenging reasoning130

tasks.131

3. We conduct extensive experiments on MATH132

and GSM8k using model series including133

Llama 3 and Deepseek. The results demon-134

strate that our framework effectively mitigates135

overfitting, in which our first stage signifi-136

cantly outperforms the conventional weak-to-137

strong generalization method, and the second138

stage further enhances PGR with notable ro-139

bustness, providing strong evidence of the ef-140

fectiveness of our framework.141

2 Background142

In weak-to-strong generalization, the primary focus143

is how to elicit the ability of superhuman models144

using supervision from humans, as there is no ac-145

cess to superhuman tasks and superhuman models.146

The terms Weak and Strong here refer to model’s147

latent potential, indicating human and superhuman148

models in the superalignment hypothesis.149

Generally, the weak-to-strong generalization pro-150

cess involves the following steps, originally pro-151

posed by Burns et al. (2023):152

1. Creating a weak supervisor: The weak su-153

pervisor referred to as Weak Model, is typi-154

cally made by training small pretrained mod-155

els. Its performance is referred to as weak156

performance.157

2. Training strong models with weak labels:158

Data labelled by the weak model is used to159

finetune a large pretrained model, with the160

resulting performance termed weak-to-strong161

performance.162

3. Training the strong ceiling: Ground truth data,163

used in the second step, is employed to fine-164

tune the large pretrained model, resulting in165

strong ceiling performance.166

In the context of weak-to-strong generalization, 167

the Performance Gap Recovered (PGR) is a com- 168

monly adopted criterion, introduced by Burns et al. 169

(2023), to assess how effectively the potential of 170

the strong model is elicited. A higher PGR indi- 171

cates improved weak-to-strong performance, as it 172

reflects the ability of the finetuned strong model to 173

achieve performance closer to the "strong ceiling," 174

thereby demonstrating the effective extraction of 175

the model’s full potential. The PGR is mathemati- 176

cally defined as: 177

PGR =
weak-to-strong − weak
strong ceiling − weak

. (1) 178

In a specific model series, models’ weak or 179

strong can be directly represented by their model 180

size, as a weak instruct model may outperform 181

its strong under-elicited pretrained model, but still 182

underperforms the strong finetuned model (e.g., 183

Llama 3 8B Instruct vs Llama 3 70B & Llama 3 184

70B Instruct). In this work, we simplify weak su- 185

pervisor’s training by selecting the instruct versions 186

of the current state-of-the-art models, as they show 187

more human-like behaviours and generate more 188

natural answers. 189

3 Methodology 190

An overview of our framework is illustrated in Fig- 191

ure 2. In the first stage, we use an uncertainty-based 192

criterion to filter data labelled by the weak model, 193

samples are filtered based on model’s consistency 194

and are then used to train the strong model. In the 195

second stage, we reuse discarded questions show- 196

ing high uncertainty for weak model in Stage I by 197

employing the finetuned strong model to provide 198

supervision. To ensure the correctness of the super- 199

visions in Stage II, we also employ an uncertainty- 200

based filtering criterion to retain the more accu- 201

rate supervisory signals. Our framework simulta- 202

neously improves both the quality of supervision 203

and the quality of questions in the weak-to-strong 204

process, enhancing the generalization ability of 205

weak-to-strong training. 206

3.1 Stage I: Purifying Supervision Signals 207

With given weak model Mweak, strong model 208

Mstrong and a set of questions, conventional weak- 209

to-strong generalization directly use weak model 210

to generate answers, then use generated samples to 211

train strong model.However, due to weak model’s 212

limited ability, generated labels may contain many 213
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Figure 3: The relationship between supervision correct-
ness and filtering threshold. As the filtering threshold
increases, the supervision correctness (measured by la-
bel accuracy) shows a consistent upward trend.

noisy labels showing low supervision quality, caus-214

ing overfitting during strong model finetune. To pu-215

rify noisy supervision, we introduce an uncertainty-216

based filter, choosing samples with high model217

consistency. We employ chain-of-thought prompt-218

ing to randomly generate ten responses for each219

question, thereby ensuring a diverse set of possi-220

ble answers. Among these, we select the answer221

with the highest consistency as the model’s final222

response, as it reflects the greatest confidence in223

the reasoning process. Specifically, for a selected224

answer Ans, which appears NAns times out of a225

total of NTotal samplings, the model’s confidence226

in that answer is defined as:227

Confidence(Ans) =
NAns

NTotal
× 100%. (2)228

To filter out noisy labels and improve supervi-229

sion quality, we apply an uncertainty-based filter230

based on model‘s confidence. By filtering samples231

with a consistency threshold, we form a filtered232

dataset of high-confidence question-answer pairs,233

shown as "Training set A" in Figure 2, showing234

higher supervision quality. Our experiments show235

that with higher consistency threshold results in236

higher sample correctness, as shown in Figure 3.237

We finally use the filtered dataset to finetune strong238

model, expecting to solve the problem of overfit-239

ting on wrong labels.240

We further analyzed the effectiveness of chain-241

of-thought prompting, detailed in Appendix C.1.242

3.2 Stage II: Mitigating Question243

Degeneration244

Following Stage I, the finetuned model Mfinretune245

and two distinct datasets are produced: a filtered246

dataset Dfiltered containing high-certainty questions247

and a discarded dataset Ddiscarded comprising low-248

certainty questions. The discarded questions often249

represent questions with higher difficulty or less 250

common topics, where the weak model struggled to 251

provide confident answers. Despite this, these ques- 252

tions remain crucial for improving overall model 253

performance, as the test set typically encompasses a 254

diverse range of difficulty levels and topics. Mean- 255

while, the finetuned model in Stage I, having its 256

ability elicited by labels from weak teacher, now 257

outperforms its weak teacher, showing the potential 258

to solve questions beyond weak model’s ability. 259

To address this, the finetuned student 260

model—now exceeding the weak model in 261

performance—is employed to generate answers 262

for the discarded questions. For each question 263

in the discarded question set, the finetuned 264

model generates a variety of potential answers, 265

providing a more accurate and comprehensive set 266

of responses than its teacher. Similar to Stage I, 267

an uncertainty-based filtering process is applied to 268

retain only high-confidence samples, producing a 269

high quality dataset, shown as "Training set B" in 270

Figure 2. 271

The refined, high-certainty samples are then ap- 272

pended to the training set, creating an enriched 273

dataset. This updated training set is subsequently 274

used to finetune the initial strong model, enhanc- 275

ing its ability to generalize across the full spec- 276

trum of question difficulty and diversity. This re- 277

finement process ensures the inclusion of valuable 278

but initially uncertain data, maximizing the strong 279

model’s potential and overall performance. 280

4 Experiments 281

4.1 Experimental Settings 282

Dataset We conduct experiments on two promi- 283

nent mathematical reasoning benchmarks, the 284

grade-school level reasoning task GSM8K (Cobbe 285

et al., 2021) and the more challenging MATH task 286

(Hendrycks et al., 2021). For training, we use the 287

same training set as Yang et al. (2024b) for both 288

weak model labelling and strong model training. 289

For evaluation, we utilized the GSM8K evaluation 290

set, which contains 1,319 data points. For MATH, 291

we used the smaller subset as the primary eval- 292

uation test set following Lightman et al. (2024), 293

which contains 500 data points. We compared the 294

model’s performance on the 500 samples subset 295

with that on the original test dataset, with details 296

provided in Appendix C.2. 297

Models We use several models to investigate 298

the effectiveness of our framework, including the 299
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Figure 4: (a) The upper row shows the performance trajectory and PGR across different stages (Baseline, Stage I,
and Stage II). The solid lines represent model performance (left y-axis), while the dash-dotted lines show PGR values
(right y-axis). (b) The lower row demonstrates the impact of different filtering thresholds on model performance,
with triangles representing Stage I results and circles representing Stage II results. For each experimental setting,
points with the same color correspond to the same Stage I filtering threshold. Results show consistent improvement
patterns across all model configurations, with Stage II generally achieving better performance than Stage I.

Llama 3 series (Dubey et al., 2024) (Llama 3 8B300

Instruct, Llama 3 70B) and the Deepseek series (Bi301

et al., 2024) (Deepseek 7B Chat, Deepseek 67B302

Base).303

Evaluation Metrics We use accuracy and perfor-304

mance gap recovered (PGR) as our primary eval-305

uation metrics. For PGR, we define the perfor-306

mance of small instruct/chat models as "weak per-307

formance", and the performance of strong models308

after finetuned with golden labels as "strong ceil-309

ing", each representing the starting and the goal310

performance we aim to achieve. Both metrics were311

employed to assess the effectiveness of the weak-312

to-strong generalization approach, highlighting the313

elicited abilities of the model and the extent to314

which the performance gap was recovered.315

4.2 Main results316

As illustrated in Figure 4, our framework signifi-317

cantly narrows the performance gap between fine-318

tuned strong model and strong ceiling, meanwhile319

effectively eliciting strong model’s ability. Our320

experimental results demonstrate the efficacy of321

our framework across multiple model series, in-322

cluding Llama 3 and Deepseek. For the Llama323

3 model, specifically the 70B variant, the perfor-324

mance in weak-to-strong generalization (PGR) on325

the GSM8K dataset shows a remarkable improve-326

ment, rising from 7.19% to 120.50% when utilizing 327

the smaller Llama 3 8B Instruct model as the weak 328

model. This improvement is accompanied by an 329

increase in task performance, which climbs from 330

75.20% to 81.50%. Similar enhancements are ob- 331

served on the MATH dataset, where PGR increases 332

from 36.17% to 121.28% and task performance 333

rises from 18.2% to 35.2%. 334

Comparable gains are seen with the Deepseek 335

model series. On the GSM8K dataset, PGR 336

increases significantly from 51.39% to 90.04%, 337

while task performance improves from 62.39% to 338

72.94%. For the MATH dataset, PGR improves 339

from 65.85% to 126.83%, with performance rising 340

from 16.8% to 21.8%. 341

4.3 Performance Gains from Enhanced 342

Supervision Quality 343

As illustrated in Figure 4(a), the uncertainty-based 344

filtering approach implemented in Stage I con- 345

sistently outperforms the conventional baseline 346

across multiple datasets and model configurations. 347

Specifically, for Llama 3 on the GSM8K dataset, 348

the weak-to-strong generalization performance im- 349

proves substantially from 7.19% to 98.56% in PGR, 350

accompanied by an increase in task performance 351

from 75.20% to 80.28%. On the MATH dataset, 352

PGR rises from 36.17% to 112.77%, while task 353
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performance increases from 18.2% to 34.0%. Sim-354

ilarly, for Deepseek on GSM8K, PGR increases355

from 51.39% to 83.33%, while performance en-356

hances from 62.39% to 71.11%. On the MATH357

dataset, Deepseek shows a notable improvement,358

with PGR rising from 65.85% to 119.51%, and task359

performance increasing from 16.8% to 21.2%.360

4.4 Further Improvement from Enhanced361

Question Quality362

As further illustrated in Figure 4(b), the refinement363

process in Stage II effectively enhances the quality364

of the training data, particularly in terms of diffi-365

culty and diversity, leading to significant improve-366

ments in model performance. Specifically, for the367

Llama 3 series, the strong model achieves a peak368

PGR of 120.50% on the GSM8K dataset, reflecting369

an additional 21.94% improvement compared to370

the finetuned strong model in Stage I, correspond-371

ing to a performance of 81.50%. On the MATH372

dataset, we observe a peak PGR of 121.28%, with373

a further increase of 8.51% compared to Stage I,374

reaching 35.2% on task performance.375

For the Deepseek series, the strong model at-376

tains a peak PGR of 90.04% on GSM8K, mark-377

ing an additional 6.71% improvement over Stage378

I, with a corresponding finetuned performance379

of 72.94%. On MATH, the peak PGR reaches380

126.83%, demonstrating a further increase of381

7.32% compared to Stage I, with task performance382

reaching 21.8%.383

5 Analysis384

5.1 The Impact of Excessive Filtering on385

Supervision Quality386

As shown in Figure 3, label correctness increases387

as model uncertainty decreases. However, in pre-388

liminary experiments during Stage I, we observed389

an intriguing trend: while performance improves390

initially as uncertainty decreases, it starts to de-391

teriorate after a certain threshold. This suggests392

that other factors, beyond supervision quality, in-393

fluence weak-to-strong generalization, and existing394

filtering methods may have inherent limitations.395

Reduction in Data Difficulty Figure 5 shows396

that increasing the filtering threshold leads to a de-397

crease in average difficulty, with fewer hard ques-398

tions (Levels 4-5) remaining in the dataset. These399

harder questions represent areas where the weak400

model is less confident, suggesting they are beyond401

its current capabilities. In contrast, easier questions402
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Figure 5: Impact of filtering threshold on question diffi-
culty distribution. As the threshold increases, the pro-
portion of difficult questions (Levels 4-5) decreases,
while easier questions (Levels 1-2) increase, resulting
in a decline in average difficulty from 3.48 to 2.66.
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Figure 6: Changes in topic distribution across filtering
thresholds for three representative mathematical cate-
gories. Filtering causes shifts in topic distribution, with
minor categories seeing more reductions.

(Levels 1-2), where the model is more confident, 403

dominate the dataset. This results in a less chal- 404

lenging training set, hindering the model’s ability 405

to generalize to more difficult problems and con- 406

tributing to data degeneration. 407

Shift in Data Diversity As shown in Figure 6, 408

filtering also causes a significant shift in the diver- 409

sity of questions. For instance, the Counting and 410

Probability section drops from 10.79% to 4.31%, 411

reflecting changes in the model’s uncertainty. This 412

shift in data diversity impacts the variety of ques- 413

tion types, reducing exposure to harder topics. The 414

complete trends and numerical results across all 415

categories are provided in Appendix D.1. 416

Once the filtering threshold surpasses a certain 417

point, performance degrades due to the exclusion of 418

important, challenging data. While reducing label 419

uncertainty can improve performance, excessive 420

filtering diminishes the dataset’s diversity, partic- 421
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Figure 7: Difficulty and diversity analysis in Stage II
(GSM8K, Llama 3, Threshold-70%), showing improved
preservation of question quality.

ularly regarding difficulty and topic variety. This422

limits the model’s ability to generalize effectively,423

leading to degeneration in its overall performance.424

5.2 The Robust Effectiveness of Data425

Refinement in Stage II426

To address excessive filtering, we propose a strat-427

egy that balances uncertainty-based filtering with428

the preservation of question quality, including dif-429

ficulty and diversity. In Stage II, we regenerate430

answers for discarded questions from Stage I us-431

ing the finetuned model, filtering them by uncer-432

tainty before adding low-uncertainty samples to the433

dataset.434

As shown in Figure 4(a), Stage II consistently im-435

proves performance across all filtering thresholds,436

demonstrating the effectiveness of our framework437

in recovering lost data and boosting performance.438

Figure 7 shows recovery in both difficulty and439

diversity, with the refined dataset closely resem-440

bling the original. For Llama 3 on MATH, PGR441

increases from 112.77% to 121.28%, and perfor-442

mance rises from 34.4% to 35.2%. Similar results443

are observed in Figure 4, highlighting the frame-444

work’s robustness across models and datasets.445

Additionally, Figure 4 demonstrates that even 446

models with initially lower performance show sig- 447

nificant improvements. For the Deepseek series 448

on MATH, the performance gap between thresh- 449

olds narrows in Stage II, indicating that the frame- 450

work effectively recovers discarded data from 451

over-filtered scenarios while refining fewer under- 452

filtered questions. 453

5.3 The Importance of Label Filtering in 454

Stage II 455

In Stage II, we focus on enhancing question quality 456

and mitigating degeneration by using the finetuned 457

model to generate answers for discarded questions 458

from Stage I. Instead of adding all generated an- 459

swers back, we apply an uncertainty-based filter 460

to ensure only reliable answers are reintegrated, 461

preventing the inclusion of low-quality data. 462

Table 1 summarizes the results of the ablation 463

study comparing the framework with and without 464

the filtering process, using the Llama 3 model se- 465

ries on the GSM8K dataset. 466

Origin With Filter Without Filter
Stage I-50% 78.99 80.89 (+1.90) 78.31 (-0.68)
Stage I-60% 80.07 81.50 (+1.43) 78.84 (-1.23)
Stage I-70% 80.28 81.19 (+0.91) 80.28 (+0.00)
Stage I-80% 80.06 80.74 (+0.68) 79.59 (-0.47)

Table 1: The impact of With vs. Without label filtering
in Stage II on Weak-to-Strong Generalization.

As seen in Table 1, appending all generated sam- 467

ples without filtering leads to performance degra- 468

dation, highlighting that indiscriminate inclusion 469

reduces supervision quality. The uncertainty-based 470

filter ensures optimal supervision and question 471

quality, which are critical for effective weak-to- 472

strong reasoning generalization. 473

5.4 Exploring the Potential for Further 474

Iterative Refinement 475

While our current framework is effective, we be- 476

lieve additional iterative refinement could further 477

improve question quality and enhance overall per- 478

formance. Specifically, the Stage II refinement pro- 479

cess—where discarded questions are recovered and 480

answered by the finetuned strong model—presents 481

significant potential for iterative enhancement. As 482

the model improves, this iterative process could 483

continuously boost question quality. 484

We introduce an additional iteration, Stage Exp, 485

where discarded questions are reprocessed using 486

the finetuned model in Stage II to generate answers, 487
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Accuracy PGR
GSM8K
Baseline 62.39 51.39%
Stage I 71.11 83.33% (+31.94%)
Stage II 72.94 90.04% (+38.65%)
Stage Exp-Threshold-80% 72.26 87.55%
Stage Exp-Threshold-90% 72.93 90.00%
Stage Exp-Threshold-100% 73.77 93.08% (+41.69%)
MATH
Baseline 16.8 65.85%
Stage I 21.2 119.51% (+53.66%)
Stage II 21.8 126.83% (+60.98%)
Stage Exp-Threshold-50% 21.4 120.71%
Stage Exp-Threshold-40% 21.2 119.51%
Stage Exp-Threshold-30% 22.4 134.15% (+68.3%)

Table 2: Performance comparison of iterative refine-
ment on GSM8K and MATH datasets (Deepseek model).
Best results are underlined.

followed by uncertainty filtering before reintegra-488

tion into the dataset. Due to computational con-489

straints, Stage Exp experiments were conducted490

on Deepseek series, focusing on best-performing491

configurations for GSM8K and MATH datasets.492

As shown in Table 2, iterative refinement demon-493

strates a promising potential for further enhance-494

ment. However, determining the optimal thresh-495

old for these iterations remains an open challenge,496

which we plan to explore in future work.497

6 Related Work498

6.1 AI Deceptions499

A persistent challenge in weak-to-strong general-500

ization is AI deception, where strong models overfit501

to noisy labels from weak models, hindering their502

ability to generalize to complex samples (Yang503

et al., 2024a). A similar issue in reinforcement504

learning from human feedback (RLHF) is identi-505

fied by Wen et al. (2024), where models mislead506

human evaluators.507

This behaviour is akin to model sycophancy,508

where models align with human feedback at the509

expense of accuracy. Early work by Cotra (2021)510

and Perez et al. (2023) shows models often aim511

to please users. Sharma et al. (2024) attributes512

this to human preference biases. Solutions such513

as synthetic data (Wei et al., 2023) and pinpoint514

tuning (Chen et al., 2024) aim to mitigate syco-515

phancy, while Sicilia et al. (2024) links it to model516

uncertainty.517

6.2 Weak-to-Strong Generalization518

Weak-to-strong generalization, introduced by Ope-519

nAI (Burns et al., 2023), has led to advancements520

in model training and supervision. Recent stud-521

ies explore ensemble learning to improve labels by 522

integrating predictions from smaller models (Liu 523

and Alahi, 2024; Agrawal et al., 2024; Cui et al., 524

2024). Dong et al. (2024) enhances learning by 525

replacing sample-label pairs with concept vectors, 526

while Guo and Yang (2024) employs filtering and 527

confidence-based reweighting. Additionally, Yang 528

et al. (2024b) introduces a two-stage framework 529

for refining training data, and Lyu et al. (2024) 530

proposes multi-agent contrastive optimization. 531

Theoretical studies have also examined the foun- 532

dations of weak-to-strong generalization (Lang 533

et al., 2024; Charikar et al., 2024; Wu and Sahai, 534

2024), while safety concerns, including risks of de- 535

ceptive outcomes and backdoor attacks, have been 536

explored (Yang et al., 2024a; Zhao et al., 2024; Ye 537

et al., 2024). 538

7 Conclusion 539

In this paper, we introduce a two-stage training 540

framework to enhance weak-to-strong generaliza- 541

tion through mitigating overfitting. By focusing on 542

both supervision and question quality, we demon- 543

strate that traditional data filtering methods, while 544

improving supervision, can reduce question diffi- 545

culty and diversity. Our framework mitigates this 546

by relabeling discarded questions using the fine- 547

tuned strong model, maintaining both supervision 548

accuracy and question quality. 549

Experiments on the GSM8k and MATH bench- 550

marks demonstrate that our approach significantly 551

outperforms conventional weak-to-strong general- 552

ization methods, improving the performance gap 553

recovered (PGR). This validates the effectiveness 554

of our framework in addressing overfitting and en- 555

hancing model capabilities on challenging tasks. 556

Limitations 557

Our experiments demonstrate strong performance 558

on mathematical reasoning tasks, though the frame- 559

work’s effectiveness remains to be validated across 560

other domains. Through extensive experimenta- 561

tion, we identified optimal confidence thresholds 562

for filtering model predictions. However, these 563

thresholds vary significantly across different tasks 564

and datasets, making automatic threshold selection 565

an important direction for future research. Addi- 566

tionally, the computational overhead of our two- 567

stage finetuning approach, particularly in the sec- 568

ond stage, may pose scalability challenges for large- 569

scale applications or real-time scenarios. 570
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A Dataset details787

A.1 Dataset Statistics788

For the original question set used in GSM8K and789

MATH, we followed the methodology of Yang et al.790

(2024b), adopting the same training set for both791

datasets. Specifically, we used their dataset D2,792

which was employed for training the Llama 2 70B793

model. For GSM8K, the dataset consists of 7,000794

samples, while for MATH, the dataset comprises795

6,000 samples.796

For evaluation, we utilized the original evalua-797

tion set for GSM8K and the test set from Lightman798

et al. (2024), which contains 500 samples. We com-799

pared the model’s performance on the 500 samples800

subset with that on the original test dataset, with801

details provided in Appendix C.2.802

A.2 Implementation Details803

For answer generation within the framework, we804

utilize chain-of-thought (CoT) prompting, as its ne-805

cessity has been outlined in Section 5.4. In Stage I,806

answers are generated using zero-shot CoT prompt-807

ing for the weak models in the Deepseek series.808

However, for the Llama 3 series, we observed that809

the Llama 3 9B Instruct model performed below ex-810

pectations, prompting us to switch from zero-shot811

to one-shot CoT prompting to enhance its perfor-812

mance.813

For sampling parameters, we generate answers814

with a temperature of 0.6 and top-p of 0.9 for815

uncertainty-based filtering to ensure diverse and816

coherent outputs, while using greedy decoding dur-817

ing evaluation to enhance stability.818

In both Stage II and the experimental Stage Exp,819

discussed in Section 5.5, all answers are generated820

using zero-shot prompting. During the filtering821

process, after excluding answers based on model822

confidence, we also discard responses that fail to823

generate valid answers or do not adhere to the CoT824

format.825

B Training Details826

For the supervised finetuning in our framework,827

we perform full-parameter finetuning on the strong828

model. The finetuning is carried out with a learn-829

ing rate of 110−5, a warmup ratio of 0.1, and a830

cosine learning rate scheduler. We use a batch size831

of 128 and train for 2 epochs on both the GSM8K832

and MATH datasets. The implementation is based833

on the LlamaFactory (Zheng et al., 2024) frame-834

work and all experiments are conducted using 64835

H100 80GB GPUs to ensure efficient processing 836

and model optimization. 837

C Additional Analysis 838

C.1 The Role of Chain-of-Thought in 839

Weak-to-Strong Reasoning 840

In contrast to the original weak-to-strong gener- 841

alization framework proposed by (Burns et al., 842

2023), where all tasks are classification-based, rea- 843

soning tasks like GSM8K and MATH consist of 844

open-ended questions that lack definitive answer 845

sets. Previous work has utilized chain-of-thought 846

prompting to enhance performance (Guo and Yang, 847

2024; Yang et al., 2024b). This raises the ques- 848

tion: Can weak-to-strong generalization remain 849

effective without chain-of-thought prompting? 850

To explore this, we replicate the same base- 851

line settings, comparing using chain-of-thought 852

answers to manually constructed direct answers. 853

The results are shown in Table 3. 854

Chain-of-Thought Direct Answer
GSM8K
Weak Model 74.8 14.6
Strong Ceiling 80.36 30.93
Weak-to-Strong 75.2 13.64
PGR 7.19% -5.87%(-13.06%)
MATH
Weak Model 23.8 14.6
Strong Ceiling 33.2 30.93
Weak-to-Strong 27.2 11.4
PGR 36.17% -31.8%(-76.97%)

Table 3: Performance comparison between chain-of-
thought and direct answer approaches in weak-to-strong
generalization on GSM8K and MATH datasets with
Deepseek series.

When omitting chain-of-thought prompting, we 855

fail to observe generalization in strong models, as 856

finetuned strong models perform worse than their 857

weak teachers. This can be attributed to the fact that 858

chain-of-thought prompting facilitates step-by-step 859

reasoning, which is critical for the strong model to 860

learn from the weak model. It enables the strong 861

model to verify whether each step is correct or 862

incorrect and learn how to break down the whole 863

question into smaller steps. In contrast, the direct 864

answer approach may mislead the model due to the 865

lack of reasoning paths, while incorrect labels may 866

cause more harm than using chain-of-thought, as 867

strong model can learn nothing but false results. We 868

conclude that for reasoning tasks within weak-to- 869

strong generalization, chain-of-thought prompting 870
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significantly aids the learning process. Moreover, it871

may prove beneficial in other tasks and areas under872

weak-to-strong generalization.873

C.2 Is MATH 500 Precise Enough Compared874

to MATH 5000?875

As introduced in Section 2, the Performance Gap876

Recovered (PGR) metric quantifies the effective-877

ness of weak-to-strong generalization by compar-878

ing the performances of three models: the weak879

model, strong ceiling model, and finetuned strong880

model. Our initial evaluations used a subset of881

500 test samples (MATH500). Given this relatively882

small sample size, performance variations of up883

to 0.2 points per test sample were observed. This884

variation could be particularly significant when the885

performance gap between weak and strong ceiling886

models is small, potentially affecting the reliability887

of our results.888

To validate our findings, we conducted ad-889

ditional evaluations on the complete test set890

(MATH5000) using models from the DeepSeek891

series. The results are presented in Table 4.892

Model MATH500 MATH5000
Weak Model 11.4 9.34
Strong Ceiling 19.6 20.12
Stage I Models
Stage I-Threshold-30% 21.2 (119.51%) 19.96 (98.52%)
Stage I-Threshold-40% 19.6 (100.00%) 17.58 (76.44%)
Stage I-Threshold-50% 17.6 (75.61%) 16.84 (69.57%)
Stage II Models
Stage I-30% + Stage II-30% 21.4 (121.95%) 21.3 (110.95%)
Stage I-30% + Stage II-40% 21.8 (126.83%) 20.9 (107.24%)
Stage I-30% + Stage II-50% 19.4 (97.56%) 19.48 (94.06%)
Stage I-40% + Stage II-30% 20.4 (109.76%) 19.62 (95.36%)
Stage I-40% + Stage II-40% 19.8 (102.44%) 19.46 (93.88%)
Stage I-40% + Stage II-50% 17.4 (73.17%) 17.62 (76.81%)
Stage I-50% + Stage II-30% 20.6 (112.20%) 19.98 (98.70%)
Stage I-50% + Stage II-40% 20.6 (112.20%) 20.5 (103.53%)
Stage I-50% + Stage II-50% 19.4 (97.56%) 18.8 (87.76%)
Stage I-50% + Stage II-60% 18.6 (87.80%) 18.38 (83.86%)

Table 4: Performance comparison between MATH500
and MATH5000 test sets. Numbers in parentheses rep-
resent PGR values.

The results in Table 4 demonstrate that our893

framework achieves consistent performance across894

both MATH500 and MATH5000. While the ab-895

solute accuracy values remain similar, the slightly896

lower PGR on MATH5000 can be attributed to the897

weaker baseline performance of the weak model.898

However, this difference does not significantly im-899

pact our framework’s effectiveness. These find-900

ings confirm that MATH500 serves as a reliable901

representative subset for evaluating model perfor-902

mance using PGR, and our framework maintains its903

effectiveness for weak-to-strong reasoning across904

different evaluation scales. 905

D Additional Experimental Results 906

D.1 Detailed Analysis of Section Diversity 907

Shifts 908

In this appendix, we provide a comprehensive anal- 909

ysis of the changes in section distribution across fil- 910

tering thresholds for both Stage I and Stage II of our 911

framework. As shown in Figure 8 for Stage I, in- 912

creasing the filtering threshold leads to a noticeable 913

reduction in several minor categories, negatively 914

impacting the strong model’s ability to generalize 915

effectively across a diverse range of topics. Simi- 916

larly, in Stage II, as depicted in Figure 9 for Llama 917

3 MATH (Stage I-Threshold-70%), we observe a 918

recovery in certain minor categories, highlighting 919

the delicate balance between filtering for improved 920

accuracy and maintaining the diversity necessary 921

for robust generalization. Detailed breakdowns of 922

these shifts are provided to offer a clearer under- 923

standing of how the filtering process influences the 924

training data distribution across various mathemati- 925

cal categories. 926

D.2 Numeric Results of All Models and 927

Datasets 928

We present the numerical results for all models and 929

datasets used in the experiments. It includes perfor- 930

mance metrics for different configurations across 931

the GSM8K and MATH benchmarks, showcasing 932

the impact of various stages and filtering thresholds 933

on model performance. 934
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Figure 8: Changes in topic distribution across filter-
ing thresholds for all mathematical categories in Stage
I.(Llama3 MATH) Filtering causes shifts in topic distri-
bution, with minor categories seeing more reductions.
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Figure 9: Changes in topic distribution across filter-
ing thresholds for all mathematical categories in Stage
II.(LLama3 MATH Stage I-Threshold-70%) We observe
recovery in several minor categories, while sections in-
cluding algebra, intermediate algebra, prealgebra are
also effected by difficulty.
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Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 74.8% 0%

Strong Ceiling 80.36% 100%

Conventional Weak-to-Strong 75.2% 7.19%

Stage I

Stage I-Threshold-30% 79.37% 82.19%

Stage I-Threshold-40% 79.51% 84.71%

Stage I-Threshold-50% 78.99% 75.36%

Stage I-Threshold-60% 80.07% 94.78%

Stage I-Threshold-70% 80.28% 98.56%

Stage I-Threshold-80% 80.06% 94.60%

Stage I-Threshold-90% 80.13% 95.86%

Stage I-Threshold-100% 78.16% 60.43%

Stage II based on Stage I Threshold-50%

Stage I-50% + Stage II-50% 80.28% 98.56%

Stage I-50% + Stage II-60% 80.89% 109.53%

Stage I-50% + Stage II-70% 79.62% 86.69%

Stage I-50% + Stage II-80% 79.37% 82.19%

Stage II based on Stage I Threshold-60%

Stage I-60% + Stage II-50% 80.28% 98.56%

Stage I-60% + Stage II-60% 81.50% 120.50%

Stage I-60% + Stage II-70% 81.04% 112.23%

Stage I-60% + Stage II-80% 81.34% 117.63%

Stage II based on Stage I Threshold-70%

Stage I-70% + Stage II-60% 80.89% 109.53%

Stage I-70% + Stage II-70% 80.36% 100.00%

Stage I-70% + Stage II-80% 81.19% 114.93%

Stage I-70% + Stage II-90% 80.89% 109.53%

Stage II based on Stage I Threshold-80%

Stage I-80% + Stage II-70% 80.43% 101.26%

Stage I-80% + Stage II-80% 80.33% 99.46%

Stage I-80% + Stage II-90% 80.45% 101.62%

Stage I-80% + Stage II-100% 80.74% 106.83%

Table 5: Llama3 GSM8k
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Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 23.8% 0%

Strong Ceiling 33.2% 100%

Conventional Weak-to-Strong 27.2% 36.17%

Stage I

Stage I-Threshold-30% 27.2% 36.17%

Stage I-Threshold-40% 29.8% 63.83%

Stage I-Threshold-50% 30.0% 65.96%

Stage I-Threshold-60% 31.4% 80.85%

Stage I-Threshold-70% 34.4% 112.77%

Stage I-Threshold-80% 33.2% 100.00%

Stage I-Threshold-90% 32.6% 93.62%

Stage I-Threshold-100% 22.6% -12.77%

Stage II based on Stage I Threshold-60%

Stage I-60% + Stage II-50% 27.0% 34.04%

Stage I-60% + Stage II-60% 30.6% 72.34%

Stage I-60% + Stage II-70% 32.4% 91.49%

Stage I-60% + Stage II-80% 32.4% 91.49%

Stage I-60% + Stage II-90% 29.0% 55.32%

Stage I-60% + Stage II-100% 30.7% 73.40%

Stage II based on Stage I Threshold-70%

Stage I-70% + Stage II-60% 32.2% 89.36%

Stage I-70% + Stage II-70% 32.4% 91.49%

Stage I-70% + Stage II-80% 35.2% 121.28%

Stage I-70% + Stage II-90% 34.2% 110.64%

Stage I-70% + Stage II-100% 33.2% 100.00%

Stage II based on Stage I Threshold-80%

Stage I-80% + Stage II-70% 30.0% 65.96%

Stage I-80% + Stage II-80% 32.2% 89.36%

Stage I-80% + Stage II-90% 33.8% 106.38%

Stage I-80% + Stage II-100% 32.8% 95.74%

Table 6: Llama 3 MATH
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Model Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 48.36% 0%

Strong Ceiling 75.66% 100%

conventional Weak-to-Strong 62.39% 51.39%

Stage I

Stage I-Threshold-30% 68.68% 74.43%

Stage I-Threshold-40% 70.96% 82.78%

Stage I-Threshold-50% 69.74% 78.32%

Stage I-Threshold-60% 70.35% 80.55%

Stage I-Threshold-70% 71.11% 83.33%

Stage I-Threshold-80% 69.14% 76.12%

Stage I-Threshold-90% 68.38% 73.33%

Stage I-Threshold-100% 67.55% 70.29%

Stage II based on Stage I Threshold-40%

Stage I-40% + Stage II-30% 72.63% 88.90%

Stage I-40% + Stage II-40% 72.32% 87.77%

Stage I-40% + Stage II-50% 70.58% 81.39%

Stage I-40% + Stage II-60% 72.17% 87.22%

Stage II based on Stage I Threshold-60%

Stage I-60% + Stage II-60% 70.28% 80.29%

Stage I-60% + Stage II-70% 71.49% 84.73%

Stage I-60% + Stage II-80% 70.28% 80.29%

Stage I-60% + Stage II-90% 70.28% 80.29%

Stage II based on Stage I Threshold-70%

Stage I-70% + Stage II-60% 72.40% 88.06%

Stage I-70% + Stage II-70% 72.94% 90.04%

Stage I-70% + Stage II-80% 71.64% 85.27%

Stage I-70% + Stage II-90% 72.55% 88.61%

Stage II based on Stage I Threshold-80%

Stage I-80% + Stage II-70% 70.20% 80.00%

Stage I-80% + Stage II-80% 70.50% 81.10%

Stage I-80% + Stage II-90% 71.47% 84.65%

Stage I-80% + Stage II-100% 70.35% 80.55%

Table 7: Deepseek-GSM8K
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Model Accuracy Performance gap recovered(PGR)

Basic Settings

Weak Model 11.4% 0%

Strong Ceiling 19.6% 100%

conventional Weak-to-Strong 16.8% 65.85%

Stage I

Stage I-Threshold-30% 21.2% 119.51%

Stage I-Threshold-40% 19.6% 100.00%

Stage I-Threshold-50% 17.6% 75.61%

Stage I-Threshold-60% 15.8% 53.66%

Stage I-Threshold-70% 16.4% 60.98%

Stage I-Threshold-80% 15.0% 43.90%

Stage I-Threshold-90% 12.0% 7.32%

Stage II based on Threshold-30%

Stage I-30% + Stage II-30% 21.4% 121.95%

Stage I-30% + Stage II-40% 21.8% 126.83%

Stage I-30% + Stage II-50% 19.4% 97.56%

Stage I-30% + Stage II-60% 19.2% 95.12%

Stage I-30% + Stage II-70% 19.0% 92.68%

Stage II based on Threshold-40%

Stage I-40% + Stage II-30% 20.4% 109.76%

Stage I-40% + Stage II-40% 19.8% 102.44%

Stage I-40% + Stage II-50% 17.4% 73.17%

Stage I-40% + Stage II-60% 18.0% 80.49%

Stage II based on Threshold-50%

Stage I-50% + Stage II-30% 20.6% 112.20%

Stage I-50% + Stage II-40% 20.6% 112.20%

Stage I-50% + Stage II-50% 19.4% 97.56%

Stage I-50% + Stage II-60% 18.6% 87.80%

Table 8: Deepseek-MATH
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