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Abstract

Recent years have witnessed significant advancements in industrial anomaly
detection (IAD) thanks to existing anomaly detection datasets. However, the large
performance gap between these benchmarks and real industrial practice reveals
critical limitations in existing datasets. We argue that the mismatch between current
datasets and real industrial scenarios becomes the primary barrier to practical IAD
deployment. To this end, we propose ReinAD dataset, a comprehensive contrastive
dataset towards Real-world industrial Anomaly Detection. Our dataset prioritizes
three critical real-world requirements: 1) Contrast-based anomaly definition that is
essential for industrial practice, 2) Fine-grained unaligned image pairs reflecting
real inspections, and 3) Large-scale data from active production lines spanning
multiple industrial categories. Based on our dataset, we introduce the ReinADNet.
It takes both normal reference and test images as inputs, achieving anomaly
detection through normal-anomaly comparison. To address the fine-grained and
unaligned properties of real industrial scenes, our method integrates pyramidal
similarity aggregation for comprehensive anomaly characterization and global-
local feature fusion for spatial misalignment tolerance. Our method outperforms all
baselines on the ReinAD dataset (e.g., 64.5% v.s. 59.5% in 1-shot image-level AP)
under all settings. Extensive experiments across several datasets demonstrate our
dataset’s challenging nature and our method’s superior generalization. This work
provides a solid foundation for practical industrial anomaly detection. Dataset and
code are available at https://tocmac.github.io/ReinAD.

1 Introduction
Industrial anomaly detection (IAD) has made significant progress in recent years, benefiting from
datasets such as MVTecAD [6], MPDD [33], BTAD [36], VisA [68], etc. Existing anomaly detection
methods [32, 42, 57] have achieved remarkably high performance on these benchmarks. For example,
PatchCore [42] has achieved an image-level AUROC higher than 99% on MVTecAD. However, these
methods remain difficult to apply in real industrial scenarios [4, 37, 46, 49, 64]. This is mainly due to
the gap between existing dataset and real industrial scenarios.

First, the contrastive ability is necessary for industrial anomaly detection. In real industrial scenarios,
the identification of “which part is anomalous” should be initiated based on normal samples or
rules. Notably, many industrial anomalies, such as “wire missing” in Fig. 1a, cannot be detected
even by humans without the reference of normal samples. In contrast, many anomalies in existing
datasets are defined only by common sense (e.g., “capsule crack” in Fig. 1a), making them easier
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Figure 1: Illustration of our ReinAD dataset, a comprehensive contrastive dataset towards Real-
world industrial Anomaly Detection. (a) Some real anomalies (e.g., “wire missing” circled by red)
require contrast between normal and anomalous samples to detect. (b) Sample unalignment caused by
variations in shifts, rotations, and scales in production environments. (c) Quite fine-grained anomalies
(scratch) masked by red. (d) Multi-class anomalies may appear in one object.

to be identified even without normal references. This is evidenced by the fact that even 0-shot IAD
method WinCLIP [32] has achieved a very high image-level AUROC (91.8%) on MVTecAD. Another
advantage is that this contrastive ability can generalize to new categories unseen during training, as
illustrated in prior works like InCTRL [67] and ResAD [55]. Therefore, we argue that the contrastive
ability between normal and anomalous samples is crucial in industrial applications.

Second, the samples in existing datasets are mostly well aligned and the anomalies are obvious without
complex categories, underestimating the challenges of actual industrial scenarios. As illustrated in
Fig. 1b, all samples in the bottle category in MVTecAD dataset are well-aligned. However, images
taken in real production lines exhibit variations in shifts, rotations, and scales (e.g., right part in
Fig. 1b) due to different production environments. Also, anomalies in existing datasets (e.g., hazelnut
crack in Fig. 1c) are usually obvious with a large size. In contrast, real anomalies shown in the right
part of Fig. 1c can be extremely small and fine-grained. Finally, as depicted in Fig. 1d, multiple
anomalies often co-occur on a single object, a scenario overlooked by existing datasets. Therefore,
the difficulty of existing datasets is much lower than that of actual scenarios.

To address these challenges, we construct a large-scale dataset that matches better with real industrial
demands, termed ReinAD. As illustrated in Fig. 1, Our dataset comprises four key components:

• Contrastive capability. We prioritize contrastive capability in sample collection. Many anomalies
in our dataset can only be identified through comparison with normal samples.

• Unaligned property. Misalignment is common in real-world industrial imaging. Samples in our
dataset capture this property through variations in shift, rotation, and scale.

• Fine-grained anomalies. Large quantities of anomalies in our dataset have a tiny area ratio,
presenting significant challenges for anomaly detection.

• Complex anomaly patterns. Co-occurring anomalies are common in our dataset. This important
real-world property is overlooked by many existing datasets.

Based on our ReinAD dataset, we propose ReinADNet, a model taking both normal reference and
test image as inputs, identifying anomalies via comparing with normal reference. For fine-grained
comparison, we propose a pyramidal cost aggregation module to compute point-wise multi-scale
similarities. To contrast unaligned samples, we develop an adaptive nearest-neighbor search strategy
for optimal local matching. Our method outperforms all baselines on ReinAD dataset (e.g., 64.5% v.s.
59.5% in 1-shot image-level AP) under all settings. Cross-dataset experiments demonstrate both our
dataset’s challenges and our method’s superior generalization.

In summary, our main contributions can be summarized as follows:

• We introduce ReinAD dataset, a novel dataset for real-world industrial anomaly detection. Our
ReinAD dataset focuses on contrastive ability, containing unaligned samples and multi-class
fine-grained anomalies, better reflecting real industrial scenes.

• Our comprehensive and large-scale ReinAD dataset provides a foundation for advanced anomaly
detection methods. The introduced dataset contains 56 categories, 279 anomalous types, and
87,084 expert-annotated samples with anomalous segmentation masks.
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• We propose ReinADNet, a generalizable anomaly detection method. ReinADNet identifies
anomalies via normal-anomaly sample comparisons and handles fine-grained unaligned anomalies,
achieving better results than previous baselines.

2 Related Works
Anomaly detection datasets. The evolution of anomaly detection datasets reflects incremental
progress toward addressing real-world industrial challenges. Early works predominantly relied on
KolektorSDD [44], a single-category dataset that constrained algorithm evaluation and development.
Subsequent datasets like MTD [31], MPDD [33], and BTAD [36] expanded diversity but remained
limited in scale and categorical coverage. A pivotal shift occurred with MVTec AD [6], standardizing
industrial anomaly detection (IAD) research by providing 5,354 images across 15 object categories.
VisA [68] further advanced this effort, scaling to 10,821 images spanning 12 objects and 15 anomaly
types. However, existing datasets remain confined to narrow industrial scenarios due to their small
scale and limited categories. Recent efforts like Real-IAD [46] introduced larger multi-view data, yet
its reliance on artificially fabricated anomalies creates a significant domain gap in both object and
anomaly realism. Meanwhile, domain-specific datasets (e.g., VAD [3] for solder joints, CID [63] and
CableInspect-AD [2] for cables, and 3CAD [52] for 3C components) focus on niche applications,
limiting their utility for training models requiring generalizable anomaly detection capabilities across
unseen industrial scenarios. These limitations underscore the urgent need for a large-scale, real-world
dataset that captures the complexity and diversity of authentic industrial environments, enabling
robust training and evaluation of models for generalizable anomaly detection.

Classical anomaly detection methods. Existing unsupervised anomaly detection methods exhibit
three primary technical streams: 1) Distance-based approaches [17, 18, 24, 30, 42, 56] identify
anomalies through statistical deviations in feature space; 2) Reconstruction-based methods [1, 12,
13, 28, 39, 51, 53, 54, 58, 60, 61] employ autoencoders or GANs to detect reconstruction errors;
3) Knowledge distillation-based methods [7, 9, 19, 43, 45, 47, 48] utilize teacher-student feature
discrepancies. While achieving category-specific effectiveness, these methods inherently overfit to
closed-set normal patterns and lack generalizable cross-category reasoning capabilities.

Prompt-based anomaly detection methods. Recent works leverage vision-language models (VLMs)
like CLIP [41] for zero-shot detection [10, 14, 15, 23, 29, 32, 35, 40, 66], bypassing category-specific
training via textual prompts. However, their performance depends critically on manual prompt
design. Fixed templates show category inconsistency [11, 65], while dynamic prompts face semantic
ambiguity in defining anomalies. Fundamentally, both classical and prompt-based methods focus on
normality modeling rather than systematic anomaly reasoning, limiting their generalization capability.

Generalizable anomaly detection. Generalizable anomaly detection (GAD) seeks to develop unified
detection models capable of generalizing across diverse application domains without requiring
target-domain training data. The pioneering work InCTRL [67] established a baseline framework
for cross-dataset anomaly classification by capturing contextual residuals between query images
and normal references. While demonstrating category-generalizable detection capability, this
method lacks precise anomaly localization, a critical requirement for industrial inspection scenarios.
Subsequent work ResAD [55] addresses this limitation through residual feature learning with explicit
normality constraints, enabling simultaneous detection and localization. Nevertheless, ResAD inherits
fundamental constraints from traditional distance-based methods since its residual computation
relies on global feature matching that ignores inter-image contextual relationships and intra-image
neighborhood dependencies, thereby limiting its adaptability to complex anomaly patterns.

3 ReinAD Dataset
3.1 Dataset Construction

Data collection. Our data originates from multi-year accumulations in real industrial scenarios such as
3C electronics, mechanical components, consumer goods, etc. To address practical inspection needs,
we develop customized optical solutions tailored for different workpieces and anomaly types (e.g.
low-angle ring light for scratches and multi-zone light for dents), ensuring comprehensive coverage
across diverse scenarios and production lines. Technicians then define anomaly criteria based on
actual quality requirements and industrial SOP standards. During production, large quantities of both
normal and anomaly samples are automatically captured, and subsequently labeled by annotators.
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(a) Data annotation process. (b) Distribution of dataset categories. (d) Statistics of the aspect ratio.

(c) Statistics of the area ratio. 

Figure 2: Data annotation process and statistics of our ReinAD dataset. (a) Data annotation process.
(b) Distribution of dataset categories. (c) Statistics of the anomaly area ratio of the anomaly images.
(d) Statistics of the aspect ratio of the anomaly area’s minimum bounding box.

Table 1: Comparison with existing popular anomaly detection datasets. “%AR<0.1” denotes the
percentage of samples in which the ratio of anomalous area is less than 0.1%. Missing values (i.e.,
“-”) indicate data unavailable up to submission.

Dataset Time Class Anomaly
Types

Image Number Anomaly
Source %AR<0.1

Normal Anomaly Total

KSDD [44] 2019 1 1 347 52 399 Real 8.47
MVTecAD [6] 2019 15 73 4,096 1,258 5,354 Human-crafted 1.01

MTD [31] 2020 1 6 952 392 1,344 Real 7.38
KSDD2 [8] 2021 1 5 2,979 356 3,335 Real 2.04
MPDD [33] 2021 6 – 1,064 282 1,346 Real 11.93
BTAD [36] 2021 3 9 2540 290 2,830 Real 6.09
VisA [68] 2022 12 75 9,621 1,200 10,821 Human-crafted 31.28
MIAD [5] 2023 7 14 87,500 17,500 105,000 Virtual 20.64

Real-IAD [46] 2024 30 131 99,721 51,329 151,050 Human-crafted –
VAD [3] 2024 1 21 3,000 2,000 5,000 Real –
CID [63] 2024 1 6 4,060 233 4,293 Real & Synthetic –

CableInspect-AD [2] 2024 3 7 2,159 2,639 4,798 Real 0.92
3CAD [52] 2025 8 47 15,577 11,462 27,039 Real 28.65

MVTecAD-2 [26] 2025 8 20 4,705 3,299 8,004 Real 33.65

Ours 2025 56 279 68,571 18,513 87,084 Real 40.25

Data annotation. As illustrated in Fig. 2a, we design a human-in-the-loop semi-automated annotation
pipeline. First, annotators manually label a small subset of samples according to predefined anomaly
criteria. These annotated samples then serve as an initial training set for a segmentation model [25, 50].
The trained model subsequently generates preliminary annotations for the remaining unlabeled data.
Next, human annotators refine these annotations to produce the final high-quality ground truth.
Importantly, the newly annotated data are iteratively used to retrain and improve the model. This
creates a positive feedback loop that progressively enhances the model’s pre-annotation accuracy.
Despite this optimized semi-automated approach, pixel-level annotations for our dataset remain
labor-intensive. The entire annotation process requires about 600 person-hours of expert-level
effort. Quantitative details on annotation quality improvement with the human-in-the-loop annotation
pipeline are available in the supplementary material.

3.2 Dataset Description
Statistics. The statistics in Fig. 2b-d demonstrate the remarkable diversity of our dataset. Fig. 2b
presents the category distribution of our dataset. The anomaly types can be broadly categorized into
surface anomalies and logical anomalies. Our dataset encompasses 19 industrial categories, including
daily necessities, 3C components, etc. Each category contains one or multiple distinct products. This
diversity enhances our dataset’s broad applicability. As shown in Fig. 2c, our dataset contains both
large-scale and small-scale anomaly regions. Fig. 2d displays the aspect ratio distribution of anomaly
areas’ minimum bounding boxes, revealing diverse morphological characteristics of anomalies. Both
the anomaly area proportions and aspect variations indicate our dataset’s high difficulty level. This is
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Figure 3: Visualization of ReinAD dataset. Samples are organized into three rows: normal images
with green borders (top); anomaly images with red borders (middle); and Zoom-in patches of images
in the middle row (bottom). The top black texts indicates object categories, and the red texts represents
anomaly types. Additional visualizations are available in the supplementary material.

further corroborated by the experimental results in Tab. 2. We adapt a cross-category split between
training and test sets to evaluate the model’s generalization capability. The categories in training and
test sets are completely distinct. They are randomly split while maintaining the same proportion of
surface defects and logical defects.

Comparison with popular datasets. As shown in Tab. 1, our ReinAD exhibits four key advantages
over existing anomaly detection datasets. First, our dataset contains a substantial number of fine-
grained anomalies, reflecting the real challenges in industrial inspection scenarios. In our dataset,
samples with anomaly area ratios below 0.1% account for over 40% of the total, surpassing all
other datasets listed in the table. The second-highest ratio is only 33.65% for MVTecAD-2 [26],
while popular datasets like MVTec AD [6], BTAD [36] and MPDD [33] show significantly lower
proportions at just 1.01%, 6.09% and 11.93% respectively. Such subtle anomalies are actually
common in real industrial settings, yet current datasets notably oversimplify this critical aspect.
Second, our data are entirely sourced from real industrial scenarios. All anomalies in our dataset
occurred naturally during manufacturing processes. This ensures authentic representation of industrial
production. In contrast, widely used datasets such as MVTec AD [6], VisA [68], and Real-IAD [46]
rely on human-crafted anomalies. Such artificial anomalies exhibit significant gaps compared to
real-world cases. These gaps manifest in both anomaly feature granularity and diversity of anomaly
types. Third, our ReinAD serves as a comprehensive industrial dataset, offering significantly more
diverse object classes and anomaly types than existing datasets. Recent datasets, such as VAD [68],
CID [63], CableInspect-AD [2], and 3CAD [52], focus on specific applications (e.g., solder joints,
cables, or 3C components). This limits their utility for training models requiring generalizable
capabilities across unseen industrial scenarios. Fourth, our dataset surpasses most datasets (except
MIAD [5] and Real-IAD [46]) in data scale. Notably, MIAD is a virtual simulation dataset, and
anomalies of Real-IAD are human-crafted. To our best knowledge, our dataset represents the largest
real-world industrial anomaly detection dataset.

Property analysis. As illustrated in Fig. 1 and Fig. 3, our dataset exhibits four key characteristics. 1)
Contrastive requirement: Many anomalies in current datasets can be simply detected without normal
reference. However, real industrial anomalies (e.g. the PCB terminal deformation in Fig. 3) can only
be identified through comparison with normal samples. 2) Unaligned property: Real-world industrial
imaging often involves imperfect alignment. Samples in our dataset capture this through variations
in shift, rotation, and scale. In Fig. 3, the wear anomalies on the reflective sheet demonstrate this
characteristic. 3) Fine-grained Anomalies: Our dataset contains subtle anomalies in industrial settings,
exemplified by the LED scratch in Fig. 3. Quantitative analysis in Fig. 2c reveals that over 40% of
anomalies in our dataset have a area ratio below 0.1%, presenting significant detection challenges. 4)
Complex anomaly patterns: Co-occurring anomalies (e.g. multiple wafer debris anomalies in Fig. 3)
are common in our dataset. This important property is overlooked by many current datasets.

4 ReinADNet Method
Problem statement. Our objective is to achieve fine-grained, general anomaly detection. Under
the contrastive paradigm, the model must jointly learn normal and anomalous patterns and transfer
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Figure 4: Framework of our ReinADNet. Given a query image and a set of reference images as
input, a pretrained network extracts multi-scale features. The Cost Aggregation Module captures
global point-to-point similarity between Iq and In, while the Patch Comparison Module captures
local discrepancies. The predictor subsequently aggregates these discrepancy and similarity features
to generate precise pixel-wise anomaly predictions. Additional information is available in the
supplementary material.

this discriminative ability to novel categories. To emulate such scenarios, we use a source dataset
Dsrc for training, where each subclass comprises normal samples In , anomalous samples Iq and
corresponding masks M . In training, it randomly samples normal–anomalous or normal–normal
pairs across all classes, supervised by the ground-truth masks. In testing, a structurally similar target
dataset Dtgt containing unseen categories is used to evaluate the model’s generalization.

Overview of our approach. As shown in Fig. 4, we extract multi-level features from the query
image Iq and a set of normal images In, forming multiple feature pairs. The cost aggregation module
computes and refines the global similarity for each pair, enabling fine-grained contrast. The patch
comparison strategy uses prototype learning to detect anomalies at a local scale, effectively addressing
the misalignment problem. Finally, the predictor combines similarity and difference cues and further
integrates each pixel’s neighborhood context to decode and output the anomaly heatmap.

Cost aggregation module. To address global semantic shifts, we adopt insights from relevant
research [16, 27] on semantic matching tasks, enabling the model to directly learn feature-to-feature
similarity. First, we compute multi-level similarity between query features f l

q and normal features
f l
n across L hierarchical levels. Initial cost maps Cl are derived via cosine similarity, where i and j

represent the 2D spatial positions of f l
q and f l

n:

Cl(i, j) =
f l
q(i) · f l

n(j)

∥f l
q(i)∥∥f l

n(j)∥
. (1)

Stacked cost maps C ∈ Rhq×wq×hn×wn×L undergo volumetric processing. A 4D CNN extracts
multi-level features, followed by a 4D Swin Transformer for coarse-to-fine refinement:

M l = Conv4d(Cl), Al = Swin4d(M l), Al−1 = Swin4d(M l + up(Al)). (2)

Final feature A ∈ Rhq×wq×C is obtained.

Patch-level comparison strategy. Aligned with the paradigm of prototype learning, we propose
a multi-scale patch comparison strategy. For each position (i, j) in query feature fq, we compute
cosine distances to all patches in normal feature fn, identify the closest prototype fclose, and derive
local discrepancy features fdist as:

fclose = fn

(
argmin

(
1− fq · fn

∥fq∥∥fn∥

))
, fdist(i, j) = fclose(i, j)− fq(i, j). (3)

Normal patches exhibit minimal fdist, while anomalies yield larger mismatches. By deploying this
module across multiple network layers, we capture scale-adaptive discrepancy features.

Predictor. A Swin Transformer-based module fuses the aggregated similarity features A with
multi-scale discrepancy features fdist:

ffussion = Swin2d(A⊕ fdist), m = Conv2d(ffussion), (4)
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where ⊕ denotes concatenation. Predictor integrates global-local context, and generates anomaly
heatmaps, with maximum anomaly score as image-level output.

Training. The image encoder remains frozen. Using one normal sample per class as reference, we
train with normal/anomaly query pairs. Focal loss addresses class imbalance:

L =
1

N

∑
x∈Dsrc

L(S(x), G(x)), (5)

where S(x) is the predicted heatmap and G(x) the ground truth.

Inference. For a test image, we compare it against reference normal samples to generate a patch-level
heatmap. The maximum heatmap value determines the image-level anomaly score.

5 Experiments
5.1 Experimental Setup
Datasets and metrics. To assess both our dataset’s challenge and our method’s generalization
capability, we conduct comprehensive experiments across our ReinAD dataset and several popular
datasets. These datasets include MVTecAD [6], VisA [68], BTAD [36], and MPDD [33]. Previous
works typically rely solely on AUROC (Area Under the Receiver Operating Characteristic Curve) as
an evaluation metric. However, in anomaly detection tasks, there exists a significant class imbalance
between anomalous and normal pixels, with anomalous regions accounting for only a small fraction
of the total. Consequently, AUROC fails to effectively reflect model performance when influenced
by numerous false positives. To address this limitation, we further incorporate image-level and
pixel-level AP (Area Under the Precision-Recall Curve) and F1 max scores into our evaluation for a
more comprehensive assessment.

Implementation details. During both training and testing phases, all images are resized to
512 × 512 pixels and center-cropped. Following common practices in previous literature, we
select WideResNet50 [59] as the feature extractor. With network parameters frozen, we utilize the
outputs from all blocks of layers 2 to 4 to compute global similarity features, and we select the
outputs of the final block from each of layers 1 to 3 for nearest-neighbor feature searches. We employ
the Adam [34] optimizer to update network parameters, setting the learning rate to 1 × 10−5 and
weight decay to 1× 10−4. The total number of training epochs is set to 100, with a batch size of 4
and a random seed of 42. Similar to the training methodology of ResAD [55], we randomly select
reference samples for each input image during training to enhance feature diversity. All experiments
are conducted using a single NVIDIA RTX 4090 GPU.

Competing methods. Among traditional anomaly detection approaches, we select several classical
full-shot methods and adapt them to few-shot settings, including SPADE [17], PaDiM [18], and
PatchCore [42]. Additionally, we compare our approach with prompt-based methods, such as
WinCLIP [32] and InCTRL [67]. Furthermore, we also include ResAD [55] and it shares a similar
contrastive learning strategy with our method. Except for WinCLIP [32] and InCTRL [67] employing
pretrained ViT-B-16 [21] as the backbone, all other methods utilize WideResNet50 [59] as the
backbone with parameters frozen during the training phase. To ensure a fair comparison, we
guarantee that all methods used the same normal samples during the testing phase.

5.2 Main Results

Challenges of our ReinAD dataset. Tab. 2 highlights the distinctive challenges of our ReinAD
dataset compared to existing datasets. We first train all baselines on MVTec AD [6], then conduct
1-shot evaluation across VisA [68], BTAD [36], MPDD [33], and our ReinAD dataset. Notably,
models evaluated on MVTec AD [6] are trained on VisA [68]. Experimental results reveal two key
observations: (1) State-of-the-art methods have achieved strong performance on existing benchmarks:
93.7% Image-AUROC / 93.6% Pixel-AUROC on MVTec AD [6], 86.5% Image-AUROC / 95.5%
Pixel-AUROC on VisA [68], and 92.3% Image-AUROC / 96.4% Pixel-AUROC on BTAD [36]. (2)
However, the same methods suffer significantly reduced performance on the ReinAD dataset, with
the best approach achieving only 69.0% Image-AUROC and 86.7% Pixel-AUROC. The substantial
performance drop reveals that current datasets may oversimplify industrial scenarios. In contrast,
our dataset contains unaligned samples and multi-class fine-grained anomalies, better matching real
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Table 2: Anomaly detection and localization results under 1-shot setting. All models are trained on
MVTecAD datasets then tested on multiple datasets. Metrics are AUROC / AP / F1 max. The best
and second-best results are bold and underlined, respectively.

Datasets
Classical AD Methods Prompt-based AD Methods Compare-based Methods

SPADE [17] PaDiM [18] PatchCore [42]
(CVPR2022)

WinCLIP [32]
(CVPR2023)

InCTRL [67]
(CVPR2024)

ResAD [55]
(NIPS2024)

ReinADNet
(Ours)

Im
ag

e-
le

ve
l MVTecAD [6] 72.2/86.6/87.5 74.5/86.5/88.7 82.6/91.9/91.7 93.7/96.9/94.5 88.5/93.8/91.5 84.3/92.7/90.7 85.6/93.1/89.8

VisA [68] 73.0/77.5/78.4 53.2/60.4/73.8 74.4/78.4/78.9 79.9/81.8/81.3 75.9/78.7/78.1 80.3/83.8/80.4 86.5/89.7/84.5
BTAD [36] 86.9/93.9/90.7 87.5/81.8/80.2 87.8/85.5/80.8 84.8/85.9/80.8 92.3/93.3/88.2 88.3/91.1/86.0 92.2/97.8/94.8
MPDD [33] 57.4/66.3/75.8 50.0/61.3/74.9 56.4/63.0/77.0 68.3/72.2/80.6 66.0/71.7/78.8 65.6/68.1/79.7 67.7/71.7/78.0

ReinAD (Ours) 59.7/48.6/58.9 55.9/48.8/58.3 60.3/52.4/61.4 68.7/59.5/62.6 59.2/53.0/61.0 64.9/55.0/62.5 68.0/59.7/64.9

Pi
xe

l-
le

ve
l MVTecAD [6] 90.5/34.2/39.0 88.8/32.3/37.5 92.1/44.2/48.0 93.6/38.6/42.8 - 93.1/43.1/46.4 93.6/43.7/46.7

VisA [68] 92.3/14.4/20.2 84.9/5.6/9.5 93.6/26.5/31.4 84.6/15.8/23.4 - 95.5/31.2/37.2 94.7/33.2/39.0
BTAD [36] 95.6/33.5/42.5 94.4/29.9/37.5 94.0/30.0/37.0 95.6/43.6/49.6 - 95.5/41.8/46.2 96.4/51.7/52.1
MPDD [33] 93.7/14.6/19.7 87.5/7.5/13.3 93.1/16.3/18.6 94.4/30.3/31.8 - 95.3/24.8/26.8 93.8/26.6/28.4

ReinAD (Ours) 86.7/7.1/10.5 74.6/2.2/5.0 81.9/7.7/10.3 85.9/7.7/13.2 - 86.3/8.3/13.3 86.3/10.7/15.4

Table 3: Anomaly detection and localization results. All models are trained and then tested on
our ReinAD dataset under 1/2/4-shot settings. Metrics are AUROC / AP / F1 max. The best and
second-best results are bold and underlined, respectively. Detailed results for each category are
available in the supplementary material.

Setting
ClassicalAD Methods Prompt-based AD Methods Compare-based Methods

SPADE [17] PaDiM [18] PatchCore [42]
(CVPR2022)

WinCLIP [32]
(CVPR2023)

InCTRL [67]
(CVPR2024)

ResAD [55]
(NIPS2024)

ReinADNet
(Ours)

Im
ag

e-
le

ve
l 1-shot 59.7/48.6/58.9 55.9/48.8/58.3 60.3/52.4/61.4 68.7/59.5/62.6 53.3/49.4/58.5 67.0/57.5/64.5 71.2/64.5/67.6

2-shot 61.3/50.1/59.1 57.4/49.4/58.8 61.6/52.5/60.7 70.3/59.8/63.2 54.0/48.9/58.7 70.5/61.4/65.3 72.0/65.1/68.0
4-shot 64.1/52.3/59.7 63.6/51.0/60.6 61.9/51.7/61.0 71.2/60.5/63.9 54.6/49.3/58.7 73.0/63.1/66.1 73.8/66.2/68.0

Pi
xe

l-
le

ve
l 1-shot 86.7/7.1/10.5 74.6/2.2/5.0 81.9/7.7/10.3 85.9/7.7/13.2 - 89.6/10.4/15.8 90.2/15.6/20.4

2-shot 86.1/5.2/8.8 75.8/2.7/5.9 81.9/5.7/8.8 86.8/8.1/13.6 - 91.0/12.0/18.4 90.3/16.3/20.8
4-shot 87.7/6.8/11 83.9/3.9/8.1 80.0/4.7/7.9 87.5/9.0/14.6 - 91.9/14.5/21.4 89.7/16.6/22.3

industrial scenes. Thus, the ReinAD dataset provides a more rigorous benchmark that encourages
development of anomaly detection methods capable of handling real industrial challenges.

Generalization ablity of our ReinADNet method. Tab. 3 validates the generalization ability of our
ReinADNet method through few-shot evaluation. All methods are trained on our ReinAD training set
and evaluated on our ReinAD testing set under 1/2/4-shot settings. Experimental results reveal two
critical insights: (1) Since our dataset requires normal-anomaly comparisons to identify anomalies,
contrastive-based approaches (ResAD [55] and our method) dominate performance rankings across
almost all settings and metrics. (2) Designed for unaligned samples and multi-class fine-grained
anomalies, ReinADNet outperforms all baselines under almost all settings and metrics (e.g. 64.5%
v.s. 59.5% in image-level AP under 1-shot setting). Our method achieves better generalization
by treating anomaly detection as a contrastive learning paradigm rather than memorizing normal
patterns. This contrastive ability can generalize to novel categories. Above results demonstrate our
method’s strengths of contrastive representation learning and cross-sample fine-grained alignment.
Such capabilities are crucial for real-world industrial inspection scenarios.

Qualitative results. Fig. 5 shows qualitative results on our testing set under 1-shot setting. Most
state-of-the-art methods fail to generate good anomaly localization maps for new classes, due to
many false positives in normal regions. However, our method effectively reduces false positives in
normal regions and locate anomalies more accurately. The LED, PCB solder and thread samples
highlight our method’s robust feature matching for unaligned regions, where traditional methods
often fail. Additionally, the plastic cover case shows our method’s exceptional sensitivity to fine-
grained anomalies. It can detect subtle anomalies that baseline approaches typically miss. The visual
results complement our quantitative results, confirming our ReinADNet’s superiority in handling
both misalignment and fine-grained anomalies.

5.3 Ablation Studies

Tab. 4 presents the individual and combined detection performance of each module in our method.
Specifically, “Search" refers to using only the Patch Comparison Strategy, where the global features
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Figure 5: Qualitative results. More qualitative results are available in the Supplementary Material.

Table 4: Ablation studies of different network architec-
tures. Metrics are AUROC / AP / F1 max.
# Method Image-Level Pixel-Level

0 Search 70.0 / 61.2 / 65.7 88.4 / 11.9 / 17.6
1 Aggregation 57.9 / 50.9 / 59.3 86.7 / 5.5 / 9.6
2 Aggregation+Query 66.8 / 60.1 / 63.8 88.1 / 11.8 / 16.9
3 Aggregation+Search 71.2 / 64.5 / 67.6 90.2 / 15.6 / 20.4

Table 5: Ablation studies of image-level
anomaly score selection strategies.

I-AUROC I-AP I-F1 max

Maximum 71.2 64.5 67.6
Top 5% 70.2 62.5 65.4
Top 10% 69.2 60.5 64.0
Top 20% 68.0 58.5 62.5

output by the similarity aggregation module are removed, while the remaining structure is kept
consistent with the full model. “Aggregation" denotes the use of only the Cost Aggregation Module,
where the subsequent residual feature pyramid fusion module is excluded, and the global similarity
features are directly decoded to produce the output. “Aggregation+Query" represents a variant of
the model where the features involved in the Predictor module aggregation are the original query
image features rather than residual features, with the rest of the structure identical to the full model.
“Aggregation+Search" denotes the complete model configuration.

Analysis of module functionality. As illustrated in Tab. 4, local discrepancy features derived
from nearest-neighbor search effectively complement global features obtained through similarity
aggregation, thereby enhancing detection performance (i.e. #1 v.s. #3), additionally, the residual
features derived by feature subtraction after search mitigate the category gap and demonstrate stronger
generalization capabilities than the original query features (i.e. #2 v.s. #3). The cost aggregation
module consolidates global contextual information across image pairs, further refining the local
differential features (i.e. #0 v.s. #3).

Calculation of image-level anomaly scores. The image-level anomaly scores are directly derived
from the output pixel-level anomaly score maps, rather than being produced by a separately trained
network. Here we compare the image-level performance on our dataset using different strategies:
the maximum value of the anomaly score map, and the average of the top n% highest scores in
the entire map (with n set to 5, 10, and 20). As shown in Tab. 5, the best detection performance
is achieved when using the maximum anomaly value as the image-level anomaly score, and as the
value of n increases, the detection performance gradually declines. This indicates that the model
effectively distinguishes between normal and anomalous instances, with a significant gap between
the highest anomaly score and the scores of normal regions. In contrast, introducing the top n%
averaging strategy dilutes the anomaly severity and led to reduced performance.

Contrastive-based v.s. zero-shot methods. To validate the advantages of contrastive-based methods,
we compare them against several zero-shot methods [11, 14, 32] on our dataset. Our contrastive
setting requires simultaneous input of both normal references and query images, while most existing
zero-shot methods can only accept query images as inputs. Therefore, we only input query images to
evaluate zero-shot methods. The results are given in Tab. 6, the zero-shot approaches demonstrate
worse performance compared to contrastive-based methods. For instance, even for our ReinAD
under 1-shot setting, the advantage over WinCLIP [32] is over 5% at image-level AUROC and 12%
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Table 6: Comparison between zero-shot methods
and contrastive-based methods under 1/2/4-shot
settings. Metrics are AUROC / AP / F1 max.
Shot Method Image-Level Pixel-Level

0
APRIL-GAN [14] 61.8/55.9/60.3 78.7/6.4/11.7

WinCLIP [32] 65.5/57.0/61.0 77.9/2.3/5.6
AdaCLIP [11] 64.7/58.0/61.7 82.1/9.1/13.7

1 ResAD [55] 67.0/57.5/64.5 89.6/10.4/15.8
ReinADNet (Ours) 71.2/64.5/67.6 90.2/15.6/20.4

2 ResAD [55] 70.5/61.4/65.3 91.0/12.0/18.4
ReinADNet (Ours) 72.0/65.1/68.0 90.3/16.3/20.8

4 ResAD [55] 73.0/63.1/66.1 91.9/14.5/21.4
ReinADNet (Ours) 73.8/66.2/68.0 89.7/16.6/22.3

Table 7: Quantitative results of supervised
defect classification methods and unsupervised
anomaly detection methods on our ReinAD
dataset. Here we adopt AUROC / AP / F1 max
as evaluation metrics.

Method Image-Level Pixel-Level

Su
p. DevNet [38] 69.0/85.1/86.0 -

DRA [22] 75.6/91.2/89.6 -

U
ns

up
. SPADE [17] 75.4/88.7/88.2 85.5/7.4/12.0

PaDiM [18] 81.9/91.5/91.0 92.4/18.3/25.0
PatchCore [42] 83.7/92.5/91.0 92.6/19.2/24.7

UniAD [57] 74.5/88.7/88.6 89.5/12.6/18.8

at pixel-level AUROC. As the number of shots increases, contrastive-based methods demonstrate
greater advantages over zero-shot approaches.

5.4 Extended Applications of ReinAD
Beyond generalizable anomaly detection, our ReinAD dataset can be applied to extensive industrial
anomaly detection tasks. First, it captures unaligned samples and multi-class fine-grained anomalies,
better matching real-world complexity. Thus, it can be directly used for both one-for-one and one-for-
many unsupervised anomaly detection methods. Second, as the largest real industrial dataset with
pixel-level annotations, our ReinAD dataset enables backbone pre-training. Notably, the wide-used
WideResNet50 [59] is pre-trained on ImageNet [20], exhibiting a critical domain gap with industrial
scenarios. Therefore, a backbone pre-trained on a real industrial dataset can extract specific feature
of industrial scenarios, improving the accuracy and generalization capability of IAD methods.

To demonstrating the broad applicability of our dataset, we evaluate two supervised [22, 38] and four
unsupervised [17, 18, 42, 57] methods on our dataset. In these two settings, each category is split
into training and test sets at an 8:1 ratio. We train the supervised models by classifying normal and
anomaly samples, and then test on the same categories. The unsupervised AD methods are trained
with only normal samples, and tested on the same categories. We conduct parts of experiments with
the Ader [62] framework. Note that these experimental results cannot be compared with the results
of few-shot methods before, since all the few-shot models are directly tested on categories unseen
during training. Results in Tab. 7 demonstrate the usability of our dataset in both supervised and
unsupervised settings.

6 Conclusion
We propose ReinAD, a comprehensive dataset for Real-world industrial Anomaly Detection. Our
dataset focuses on contrastive capability, containing unaligned samples and multi-class fine-grained
anomalies. These features better match actual industrial scenarios. Based on our dataset, we introduce
the ReinADNet method. Our method detects anomalies by comparing normal and anomaly samples,
and can effectively identify fine-grained unaligned anomalies. Extensive experiments on ReinAD and
several popular datasets demonstrate our dataset’s challenge and our method’s generalization ability.

Limitation and future work. While our ReinAD dataset offers the most diverse categories within
existing industrial anomaly detection datasets, it still represents only a fraction of real industrial
scenarios. Future work could extend coverage to more industrial categories, especially those with
complex logical anomalies. Additionally, our method incurs higher computational costs due to its
multi-scale matching approach. Thus, optimizing inference efficiency without sacrificing accuracy
presents a key challenge.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are provided in Sec. 4 and Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Our dataset and codes will be made publicly available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Details are provided in Sec. 4 and Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We report the experimental results following the convention in anomaly detection
research, the same as previous works.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The information on the computer resources is shown in Sec. 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: Our work does not have direct negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: We collect our data from actual industrial scenarios, thus does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We cite all original papers and make sure that our usage is legal.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our dataset and code are well documented and the documentation is provided
alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limitations,
etc.
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• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Our work does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLM is used only for writing in our work.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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