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ABSTRACT

The success of large generative models has driven a paradigm shift, leveraging
massive multi-source data to enhance model capabilities. However, the interaction
among these sources remains theoretically underexplored. This paper takes a first
step toward a rigorous analysis of multi-source training in conditional generative
modeling, where each condition represents a distinct data source. Specifically, we
establish a general distribution estimation error bound in average total variation
distance for conditional maximum likelihood estimation (MLE) based on the
bracketing number. Our result shows that when source distributions share similarity
and the model is sufficiently expressive, multi-source training guarantees a sharper
bound than single-source training. We further instantiate the general theory on
conditional Gaussian estimation as an illustrative example. The result highlights
that the number of sources and similarity among source distributions improve
the advantage of multi-source training. Simulations and real-world experiments
validate our findings. We hope this work inspires further theoretical understandings
of multi-source training in generative modeling. Code is available at: https:
//github.com/ML-GSAI/Multi-Source-GM.

1 BACKGROUND

Large generative models have achieved remarkable success in generating realistic and complex outputs
across natural language (Brown et al., 2020; Touvron et al., 2023) and computer vision (Rombach
et al., 2022). A key factor behind their strong performance is the diverse and rich training data. For
instance, large language models are trained on heterogeneous datasets comprising web content, books,
and code (Brown et al., 2020; Hu et al., 2024), while image generation models benefit from vast
datasets spanning various categories and aesthetic qualities (Peebles & Xie, 2023; Chen et al., 2024).
Empirical evidence suggests that, under certain conditions, training on multiple data sources can
enhance performance across all sources (Pires et al., 2019; Allen-Zhu & Li, 2024). Consequently,
data mixture strategies have become an essential topic (Nguyen et al., 2022; Hu et al., 2024).

However, the theoretical underpinnings of this multi-source training paradigm remain poorly under-
stood. This raises a fundamental question: is it more effective to train separate models on individual
data sources, or to train a single model using data from multiple sources? In this paper, we take the
first step toward a rigorous analysis of multi-source training, focusing on its impact on conditional
generative models, where each condition represents a distinct data source. Our theoretical findings
are validated through simulations and real-world experiments.

2 PROBLEM FORMULATION

We begin by mathematically describe conditional generative modeling via MLE with basic notations
defined in Appendix A. The introduced multi-source setting abstracts practical scenarios where
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sources share common data structures while retaining unique characteristics. The single-source
setting serves as a controlled baseline to assess the benefits of incorporating data from other sources.

2.1 DISTRIBUTIONS FOR MULTIPLE SOURCES

Let X denote the random variable for data (e.g., a natural image) in a data space X, and Y denote the
random variable for the source label in a label space Y. Suppose there are K data sources (e.g., K
categories of images), each corresponding to an unknown conditional distribution p∗X|k for k ∈ [K].
We assume p∗X|k is parameterized by a source-specific feature ϕ∗k in parameter space Φ and a shared
feature ψ∗ in parameter space Ψ as p∗X|k(x|k) = pϕ∗

k,ψ
∗(x|k). The conditional distribution of X

given Y = y is consequently expressed as

p∗X|Y (x|y) =
K∏
k=1

(
pϕ∗

k,ψ
∗(x|k)

)I(y=k)
. (1)

This compact representation provides convenience for subsequent discussions. We further assume
the distribution of Y is known since the proportion of data from different sources is often manually
designed in practice (Deng et al., 2009; Krizhevsky et al., 2009; Brown et al., 2020; Chen et al.,
2024). The joint distribution of X and Y is then given by p∗X,Y (x, y) = p∗X|Y (x|y)p

∗
Y (y).

2.2 CONDITIONAL GENERATIVE MODELING

Given a dataset S = {(xi, yi)}ni=1 consisting of n independent and identically distributed (i.i.d.)
data-label pairs sampled from the joint distribution p∗X,Y , considering that a conditional generative
model estimates p∗X|Y by MLE on S, where the conditional likelihood is defined as

LS(pX|Y ) :=

n∏
i=1

pX|Y (xi|yi). (2)

Under multi-source training, the conditional distribution space is given by

Pmulti
X|Y :=

{
pmulti
X|Y (x|y) =

∏K
k=1

(
pϕk,ψ(x|k)

)I(y=k)
: ϕk ∈ Φ, ψ ∈ Ψ

}
,

and the corresponding estimator is

p̂multi
X|Y = argmax

pmulti
X|Y ∈Pmulti

X|Y

LS(pmulti
X|Y ). (3)

Here, we adopt the realizable assumption that true parameters satisfy ϕ∗k ∈ Φ and ψ∗ ∈ Ψ, which
allows the estimation error analysis to focus on the generalization property of the distribution space.

Under single-source training, we train K conditional generative models for each source using
data exclusively from the corresponding source. For any particular source k, denoting Sk :=
{(xi, yi) ∈ S|yi = k} = {xkj , k}

nk
j=1, the corresponding generative model estimate p∗X|k by

maximizing the conditional likelihood on Sk as p̂singleX|k = argmaxpsingle
X|k ∈Psingle

X|k
LSk

(psingleX|k ), where

LSk
(pX|k) :=

∏nk

j=1 pX|k(x
k
j |k) and Psingle

X|k :=
{
pϕk,ψk

(x|k) : ϕk ∈ Φ, ψk ∈ Ψ
}

. Separately
maximizing these K objectives is equivalent to maximizing LS in conditional distribution space
Psingle
X|Y :=

{
psingleX|Y (x|y)=

∏K
k=1

(
pϕk,ψk

(x|k)
)I(y=k)

:ϕk∈Φ, ψk∈Ψ
}
. Therefore, the estimator of

p∗X|Y under single-source training is

p̂singleX|Y = argmax
psingle
X|Y ∈Psingle

X|Y

LS(psingleX|Y ). (4)

We measure the accuracy of conditional distribution estimation by the average TV distance between
the estimated and true conditional distributions, referred to as the average TV error, defined as:

RTV(p̂X|Y ) := EY
[
TV(p̂X|Y , p

∗
X|Y )

]
, (5)

where the TV distance is given by TV(p̂X|y, p
∗
X|y)=

1
2

∫
X
|p̂X|Y (x|y)−p∗X|Y (x|y)|dx.
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3 PROVABLE ADVANTAGE OF MULTI-SOURCE TRAINING

In this section, we first establish a general upper bound on the average TV error for conditional MLE
and then prove a guaranteed advantage for multi-source training. This analysis extends classical
MLE error bounds (Wong & Shen, 1995; Ge et al., 2024) to the conditional setting by introducing the
upper bracketing number to quantify the complexity of conditional distribution space and modify the
proofs to handle conditional MLE. Detailed discussions and definitions are deferred to Appendix B.
Theorem 3.1 (Average TV error bound for conditional MLE, proof in Appendix B.2.). Given a
dataset S of size n that i.i.d. sampled from p∗X,Y , let p̂X|Y be the maximizer of LS(pX|Y ) defined in
Equation (2) in conditional distribution space PX|Y . Suppose the real conditional distribution p∗X|Y
is contained in PX|Y . Then, for any 0 < δ ≤ 1/2, it holds with probability at least 1− δ that

RTV(p̂X|Y ) ≤ 3

√
1
n

(
logN[]

(
1
n ;PX|Y , L1(X)

)
+ log 1

δ

)
.

Here, N[]

(
1
n ;PX|Y , L

1(X)
)

denotes the 1
n -upper bracketing number of PX|Y w.r.t. L1(X) as defined

in Definition B.1. Notably, as formulated in Section 2, Theorem 3.1 is applicable to both multi-source
and single-source training. The following proposition further shows that multi-source training reduces
the bracketing number of its distribution space through source similarity.
Proposition 3.2 (Multi-source training reducing complexity, proof in Appendix B.3.). Let Pmulti

X|Y

and Psingle
X|Y be as defined in Section 2. Then, for any ϵ > 0 and 1 ≤ p ≤ ∞, we have

N[]

(
ϵ;Pmulti

X|Y , Lp(X)
)
≤ N[]

(
ϵ;Psingle

X|Y , Lp(X)
)
.

Combining Theorem 3.1 and Proposition 3.2, we conclude that when source distributions exhibit
parametric similarity and the realizable assumption is satisfied, multi-source training can enjoy a
sharper estimation guarantee than single-source training. To clearly illustrate this advantage, the next
section presents a concrete example by explicitly measuring the corresponding bracketing numbers.

4 INSTANTIATION ON CONDITIONAL GAUSSIAN ESTIMATION

Now, we instantiate the general theory using Gaussian models as employed in extensive work (Mon-
tanari & Saeed, 2022; Zheng et al., 2023; Dandi et al., 2024), which offer a simple yet insightful
example and enable analytically tractable simulations under our theoretical assumptions.

Suppose each conditional distribution is a d-dimensional standard Gaussian distribution, i.e., X|k ∼
N (µ∗

k, Id) = (2π)−
d
2 e−

1
2∥x−µ∗

k∥
2
2 with a mean vector µ∗

k and an identity covariance matrix Id ∈
Rd×d for all k ∈ [K]. We assume each µ∗

k has two parts: the first d1 entries µ∗
k[1 : d1] represent

the source-specific feature which is potentially different for each source, and the remaining entries
µ∗
k[d1+1:d] represent the shared feature which is identical across all sources. Corresponding to the

general formulation in Section 2, we denote ϕk :=µ∗
k[1 :d1], ψ :=µ∗

1[d1+1:d]= · · ·=µ∗
K [d1+1:d],

and then the conditional distribution is parameterized as

pϕk,ψ(x|k) = (2π)−
d
2 e−

1
2∥x−(ϕk,ψ)∥2

2 . (6)

Under this formulation, multi-source training leads to the following result.
Theorem 4.1 (Average TV error bound for conditional Gaussian parametric estimation under multi-
-source training, proof in Appendix C.2). Let p̂multi

X|Y be the likelihood maximizer defined in Equa-
tion (3) given Pmulti

X|Y with conditional distributions as in Equation (6). Suppose Φ = [−B,B]d1 ,
Ψ = [−B,B]d−d1 with constant B > 0, and ϕ∗k ∈ Φ, ψ∗ ∈ Ψ. Then, for any 0 < δ ≤ 1/2, it holds

with probability at least 1− δ that RTV(p̂
multi
X|Y ) = Õ

(√
(K − 1)d1 + d/n

)
.

In contrast, single-source training results in RTV(p̂
single
X|Y ) = Õ

(√
Kd/n

)
provided in Theorem C.2.
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The advantage of multi-source learning can be quantified by the ratio of these error bounds:

RTV(p̂
multi
X|Y )/RTV(p̂

single
X|Y ) =

√
(K−1)d1+d

Kd =
√

1− K−1
K βsim,

where βsim := (d − d1)/d measures the proportion of shared dimensions. As K increases from 1
to ∞, the ratio decreases from 1 to 1 − βsim, and as βsim increases from 0 (completely dissimilar
source distributions) to 1 (completely identical source distributions), it decreases from 1 to

√
1/K,

reflecting a transition from no asymptotic gain to a constant improvement. This highlights that the
number of sources and distribution similarity enhance the advantage of multi-source training.

5 EXPERIMENTS

Due to the page limit, we only report the experimental results in Figure 1 and Figure 2. Detailed
settings and additional interpretations are provided in Appendix D.

Figure 1: Simulation results for conditional Gaussian estimation. Empirical values (solid lines)
correspond to the left vertical axis, while theoretical values (dashed lines) correspond to the right.
Single-source results are shown in orange, and multi-source results in green.

Table 1: Average FID for single-source
and multi-source training. Under different
amounts of classes K, similarity level Sim,
and per-class sample size N , multi-source
training generally achieves lower average
FID than that of single-source training.

N Sim K
Avg. FID ↓

(Single)
Avg. FID ↓

(Multi)

500
1 3 30.15 29.82

10 30.16 29.36

2 3 32.87 31.16
10 29.96 28.83

1000
1 3 27.76 26.86

10 27.46 25.01

2 3 30.20 28.31
10 29.60 26.70

Figure 2: Relative advantage of multi-source training.
For any fixed similarity level Sim and per-class sample
size N , the relative advantage of multi-sources training
with a larger K is larger than that with a smaller K.
For any fixed K and N , the relative advantage of multi-
source training with a larger distribution similarity is
larger than that with a smaller distribution similarity (as
shown through the dashed lines).

6 CONLUSION

This paper provides the first attempt to rigorously analyze the conditional generative modeling
on multiple data sources from a distribution estimation perspective. In particular, we establish a
general estimation error bound in average TV distance under the realizable assumption based on the
bracketing number of the conditional distribution space. When source distributions share parametric
similarity, multi-source training has a provable advantage against single-source training by reducing
the bracketing number. We further instantiate the general theory on conditional Gaussian estimation
to obtain concrete error bounds. The result shows that the number of data sources and the similarity
between source distributions enhance the advantage of multi-source training guarantee.
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A ELEMENTARY NOTATIONS

Scalars, vectors, and matrices are denoted by lowercase letters (e.g., a), lowercase boldface letters (e.g.,
a), and uppercase boldface letters (e.g., A). We use a[m] to denote the m-th entry of vector a, and
A[m, :], A[:, n], and A[m,n] to denote the m-th row, the n-th column, and the entry at the m-th row
and the n-th column of A. (a, b) denotes the concatenation of a and b. We denote [n] :={1, . . . , n}
for any n ∈ N and a ∨ b as max{a, b}. For any measurable scalar function f(x) on domain X and
real number 1 ≤ p ≤ ∞, its Lp(X)-norm is defined as ∥f(x)∥Lp(X) := (

∫
X
|f(x)|p dx)

1
p . When

p=∞, ∥f(x)∥L∞(X) = supx∈X|f(x)|. I(·) denotes the indicator function. Notation an = Õ(bn)
indicates an is asymptotically bounded above by bn up to logarithmic factors.

B PROOFS FOR SECTION 3

B.1 COMPLEXITY OF THE CONDITIONAL DISTRIBUTION SPACE

We begin by introducing an extended notion of the bracketing number as follows.
Definition B.1 (ϵ-upper bracketing number for conditional distribution space). Let ϵ be a real number
that ϵ > 0 and p be an integer that 1 ≤ p ≤ ∞. An ϵ-upper bracket of a conditional distribution
space PX|Y with respect to Lp(X) is a finite function set B such that for any pX|Y ∈ PX|Y , there
exists some p′ ∈ B such that given any y ∈ Y, it holds

∀x ∈ X : p′(x, y) ≥ pX|Y (x|y), and ∥p′(·, y)− pX|Y (·|y)∥Lp(X) ≤ ϵ.

The ϵ-upper bracketing number N[]

(
ϵ;PX|Y , L

p(X)
)

is the cardinality of the smallest ϵ-upper
bracket.

This notion quantifies the minimal set of functions needed to upper bound every conditional distribu-
tion within a small margin, reducing error analysis from an infinite to a finite function class. Unlike
traditional bracketing numbers for unconditional distributions pX using two-sided brackets (Wellner,
2002), this extension employs one-sided upper brackets (Ge et al., 2024) and requires uniform
coverage across y for all conditional distributions tailored for our setting.

B.2 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Classical approaches investigate distribution estimation for MLE in Hellinger
distance based on the bracketing number and the uniform law of large numbers from empirical process
theory (Wong & Shen, 1995; Geer, 2000), which yields high-probability bounds of similar order
as Theorem 3.1. Ge et al. (2024) extend the analysis to derive TV error bound under the realizable
assumption.

We further adapt the techniques in Ge et al. (2024) to conditional generative modeling by intro-
ducing the upper bracketing number to quantify the complexity of conditional distribution space
in Definition B.1 and modify the proofs to handle conditional MLE. The formal proof is presented
below. Notably, the theorem applies to both discrete and continuous random variables, while we use
integration notation in the proof for generality.

In the following, we first present an elementary inequality (in Equation (9)) which serves as a toolkit
for the subsequent derivations. Then we decompose the TV distance and derive its complexity-based
upper bound (in Equation (11)) using the former inequality. Finally, after specifying certain constants
in this upper bound, a clearer order w.r.t. n is revealed (in Equation (12)).

Intermediate result induced by union bound. Let ϵ be a real number that ϵ > 0 and p be an
integer that 1 ≤ p ≤ ∞. Let B be an ϵ-upper bracket of PX|Y w.r.t. L1(X) such that |B| =

N[]

(
ϵ;PX|Y , L

1(X)
)

.

According to the minimum cardinality requirement, we obtain a proposition of B that: for any p′ ∈ B,

p′(x, y) ≥ 0 on X × Y. Let’s first consider
∏n
i=1

√
p′(xi,yi)

p∗
X|Y (xi|yi) as a random variable on S, where

7
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we suppose p∗X,Y (xi, yi) > 0 since (xi, yi) are sampled from p∗X,Y and thus p∗X|Y (xi|yi) ̸= 0. By
applying the Markov inequality, we have: given any 0 < δ′ < 1,

PrS

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)
≥ 1

δ′
ES

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)


 ≤ δ′. (7)

Applying the union bound on all p′ ∈ B, we further have:

PrS

∀p′ ∈ B,
n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)
<

1

δ′
ES

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)




=1− PrS

∃p′ ∈ B,
n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)
≥ 1

δ′
ES

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)




=1− PrS

 ⋃
p′∈B


n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)
≥ 1

δ′
ES

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)




≥1−
∑
p′∈B

PrS

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)
≥ 1

δ′
ES

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)


 (by union bound)

≥1−N[]

(
ϵ;PX|Y , L

1(X)
)
δ′. (by Equation (7))

By denoting that δ := N[]

(
ϵ;PX|Y , L

1(X)
)
δ′, we have: it holds with probability at least 1− δ that

for all p′ ∈ B,

n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)
<

N[]

(
ϵ;PX|Y , L

1(X)
)

δ
ES

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)

.
Taking logarithms at both sides, we have

1

2

n∑
i=1

log
p′(xi, yi)

p∗X|Y (xi|yi)
≤ logES

 n∏
i=1

√
p′(xi, yi)

p∗X|Y (xi|yi)

+ log
N[]

(
ϵ;PX|Y , L

1(X)
)

δ

= log

n∏
i=1

E(xi,yi)∼p∗X,Y

√ p′(xi, yi)

p∗X|Y (xi|yi)

+ log
N[]

(
ϵ;PX|Y , L

1(X)
)

δ

({xi}ni=1 are i.i.d. sampled from p∗X )

= n logEX,Y

√ p′(x, y)

p∗X|Y (x|y)

+ log
N[]

(
ϵ;PX|Y , L

1(X)
)

δ

= n logEY

EX|Y

√ p′(x, y)

p∗X|Y (x|y)


+ log

N[]

(
ϵ;PX|Y , L

1(X)
)

δ

= n logEY

∫
X

p∗X|Y (x|y)
√

p′(x, y)

p∗X|Y (x|y)
dx

+ log
N[]

(
ϵ;PX|Y , L

1(X)
)

δ

= n logEY
[∫

X

√
p′(x, y)p∗X|Y (x|y)dx

]
+ log

N[]

(
ϵ;PX|Y , L

1(X)
)

δ
.

8
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As log x ≤ x− 1 for all x > 0, the inequality can be further transformed into

1

2

n∑
i=1

log
p′(xi, yi)

p∗X|Y (xi|yi)
≤ n

(
EY
[∫

X

√
p′(x, y)p∗X|Y (x|y)dx

]
− 1

)
+ log

N[]

(
ϵ;PX|Y , L

1(X)
)

δ
.

(8)

Elementary inequality for MLE estimators. Since the real conditional distribution p∗X|Y is in
PX|Y , for the likelihood maximizers p̂X|Y ∈ PX|Y , we have LS(p̂X|Y ) =

∏n
i=1 p̂X|Y (xi|yi) ≥

LS(p
∗
X|Y ) =

∏n
i=1 p

∗
X|Y (xi|yi), and thus 1

2

∑n
i=1 log

p̂X|Y (xi|yi)
p∗
X|Y (xi|yi) = 1

2 log
∏n

i=1 p̂X|Y (xi|yi)∏n
i=1 p

∗
X|Y (xi|yi) ≥

1
2 log 1 = 0. According to the definition of upper bracketing number, there exists some
p̂′ ∈ B such that given any y ∈ Y, it holds that: (i) ∀x ∈ X, p̂′(x, y) ≥ p̂X|Y (x|y), and (ii)
∥p̂′(·, y)− p̂X|Y (·|y)∥L1(X) =

∫
X
|p̂′(x, y)− p̂X|Y (x|y)|dx ≤ ϵ. Applying (i), we have:

1

2

n∑
i=1

log
p̂′(xi, yi)

p∗X|Y (xi|yi)
≥ 1

2

n∑
i=1

log
p̂X|Y (xi|yi)
p∗X|Y (xi|yi)

≥ 0.

Combining this with Equation (8) and rearranging the terms, we have: it holds with at least probability
1− δ that

1− EY
[∫

X

√
p′(x, y)p∗X|Y (x|y)dx

]
≤ 1

n
log

N[]

(
ϵ;PX|Y , L

1(X)
)

δ
. (9)

This serves as an elementary toolkit for deriving the subsequent upper bounds.

Decomposing the square of the TV distance. Recalling that TV(p̂X|Y , p
∗
X|Y ) =

1
2

∫
X
|p̂X|Y (x|y) − p∗X|Y (x|y)|dx, we will decompose its square and then bound each term se-

quentially. First, we use the above p̂′(x, y) as an intermediate term to decompose the square of
2TV(p̂X|Y , p

∗
X|Y ) into parts that can be effectively upper bounded:(
2TV(p̂X|Y , p

∗
X|Y )

)2
=

(∫
X

|p̂X|Y (x|y)− p∗X|Y (x|y)|dx
)2

=

(∫
X

|p̂X|Y (x|y)− p∗X|Y (x|y)|dx
)2

−
(∫

X

|p̂′(x, y)− p∗X|Y (x|y)|dx
)2

︸ ︷︷ ︸
(I)

+

(∫
X

|p̂′(x, y)− p∗X|Y (x|y)|dx
)2

︸ ︷︷ ︸
(II)

.

For (I), we have(∫
X

|p̂X|Y (x|y)− p∗X|Y (x|y)|dx
)2

−
(∫

X

|p̂′(x, y)− p∗X|Y (x|y)|dx
)2

=

(∫
X

|p̂X|Y (x|y)− p∗X|Y (x|y)|+ |p̂′(x, y)− p∗X|Y (x|y)|dx
)

(∫
X

|p̂X|Y (x|y)− p∗X|Y (x|y)| − |p̂′(x, y)− p∗X|Y (x|y)|dx
)

≤
(∫

X

|p̂X|Y (x|y)|+ |p∗X|Y (x|y)|+ |p̂′(x, y)− p̂X|Y (x|y)|+ |p̂X|Y (x|y)|+ |p∗X|Y (x|y)|dx
)

(∫
X

|p̂X|Y (x|y)− p̂′(x, y)|dx
)

≤(ϵ+ 4)ϵ.

9
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The first inequality holds for the triangle inequality |a + b| ≤ |a| + |b| and the reverse triangle
inequality ||a| − |b|| ≤ |a − b|. The second inequality holds for the normalization property of
conditional distributions (

∫
X
|p̂X|Y (x|y)|dx and

∫
X
|p∗X|Y (x|y)|dx equal 1) and the property of the

ϵ-upper bracket (
∫
X
|p̂′(x, y)− p̂X|Y (x|y)|dx ≤ ϵ).

For (II), we have

(∫
X

|p̂′(x, y)− p∗X|Y (x|y)|dx
)2

≤

(∫
X

(√
p̂′(x, y) +

√
p∗X|Y (x|y)

)2

dx

)(∫
X

(√
p̂′(x, y)−

√
p∗X|Y (x|y)

)2

dx

)
(by Cauchy–Schwarz inequality)

≤
(∫

X

2
(
p̂′(x, y) + p∗X|Y (x|y)

)
dx

)(∫
X

p̂′(x, y) + p∗X|Y (x|y)− 2
√
p̂′(x, y)p∗X|Y (x|y)dx

)
(by (a+ b)2 ≤ 2(a2 + b2))

=2

(∫
X

p̂′(x, y)− p̂X|Y (x|y) + p̂X|Y (x|y) + p∗X|Y (x|y)dx
)

(∫
X

p̂′(x, y)− p̂X|Y (x|y) + p̂X|Y (x|y) + p∗X|Y (x|y)− 2
√
p̂′(x, y)p∗X|Y (x|y)dx

)
≤2(ϵ+ 2)

(
ϵ+ 2− 2

∫
X

√
p̂′(x, y)p∗X|Y (x|y)dx

)
.

(by
∫
X
|p̂X|Y (x|y)|dx =

∫
X
|p∗X|Y (x|y)|dx = 1 and

∫
X
|p̂′(x, y)− p̂X|Y (x|y)|dx ≤ ϵ)

Putting together (I) and (II), we get:

TV(p̂X|Y , p
∗
X|Y ) =

1

2

√(∫
X

|p̂X|Y (x|y)− p∗X|Y (x|y)|dx
)2

≤ 1

2

√
(ϵ+ 4)ϵ+ 2(ϵ+ 2)

(
ϵ+ 2− 2

∫
X

√
p̂′(x, y)p∗X|Y (x|y)dx

)
. (10)

Bounding the average TV error. Based on the above results, we upper bound the average TV
error (defined in Equation (5)) of p̂X|Y as follows:

RTV(p̂X|Y )

=EY
[
TV(p̂X|Y , p

∗
X|Y )

]
≤1

2
EY

√(ϵ+ 4)ϵ+ 2(ϵ+ 2)

(
ϵ+ 2− 2

∫
X

√
p̂′(x, y)p∗X|Y (x|y)dx

) (by Equation (10))

≤1

2

√√√√EY

[
(ϵ+ 4)ϵ+ 2(ϵ+ 2)

(
ϵ+ 2− 2

∫
X

√
p̂′(x, y)p∗X|Y (x|y)dx

)]
(by concavity of f(x) =

√
x and Jensen’s inequality)

=
1

2

√√√√√(ϵ+ 4)ϵ+ 2(ϵ+ 2)

ϵ+ 2

(
1− EY

[∫
X

√
p̂′(x, y)p∗X|Y (x|y)dx

]).
(by the linearity of expectation)

10
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Recalling the elementary inequality we derived formerly in Equation (9), we have: it holds with at
least probability 1− δ that

RTV(p̂X|Y ) ≤
1

2

√√√√√√(ϵ+ 4)ϵ+ 2(ϵ+ 2)

ϵ+ 2

n
log

N[]

(
ϵ;PX|Y , L1(X)

)
δ

. (11)

Recalling that 0 ≤ δ ≤ 1
2 and for non-empty PX|Y , N[]

(
ϵ;PX|Y , L

1(X)
)

≥ 1, we have

N[]

(
ϵ;PX|Y , L

1(X)
)
/δ ≥ 2 ≥ e

1
2 . Taking ϵ = 1/n in Equation (11), it then holds with prob-

ability at least 1− δ that

RTV(p̂X|Y ) ≤
1

2

√√√√√√(
1

n
+ 4)

1

n
+ 2(

1

n
+ 2)

 1

n
+

2

n
log

N[]

(
1
n ;PX|Y , L1(X)

)
δ



≤ 1

2

√√√√√√ 5

n
+ 6

 1

n
+

2

n
log

N[]

(
1
n ;PX|Y , L1(X)

)
δ

 (by 1
n ≤ 1)

≤ 1

2

√√√√√√10

n
log

N[]

(
1
n ;PX|Y , L1(X)

)
δ

+ 6

 4

n
log

N[]

(
1
n ;PX|Y , L1(X)

)
δ


(by 1

n ≤ 2
n log

N[]( 1
n ;PX|Y ,L

1(X))
δ )

=
1

2

√√√√34

n
log

N[]

(
1
n ;PX|Y , L1(X)

)
δ

≤ 3

√√√√ 1

n
log

N[]

(
1
n ;PX|Y , L1(X)

)
δ

= 3

√√√√ 1

n

(
logN[]

(
1

n
;PX|Y , L1(X)

)
+ log

1

δ

)
. (12)

Until now, we have completed the proof of this theorem.

B.3 PROOF OF PROPOSITION 3.2

Proof of Proposition 3.2. As defined in Section 2, it holds that Pmulti
X|Y ⊂ Psingle

X|Y . Then, for any

pmulti
X|Y ∈ Pmulti

X|Y , there exists some psingleX|Y ∈ Psingle
X|Y such that psingleX|Y = pmulti

X|Y . Given any ϵ > 0

and 1 ≤ p ≤ ∞, let Bsingle be a ϵ-upper bracket w.r.t. Lp(X) for Psingle
X|Y such that |Bsingle| =

N[]

(
ϵ;Psingle

X|Y , Lp(X)
)

. According to the definition of ϵ-upper bracket (as in Definition B.1), there

exists some p′ ∈ Bsingle such that given any y ∈ Y, it holds that: ∀x ∈ X, p′(x, y) ≥ psingleX|Y (x|y) =
pmulti
X|Y (x|y), and ∥p′(·, y)−pmulti

X|Y (·|y)∥Lp(X) = ∥p′(·, y)−psingleX|Y (·|y)∥Lp(X) ≤ ϵ. Therefore, Bsingle

is also a ϵ-upper bracket w.r.t. Lp(X) for Pmulti
X|Y , and thus N[]

(
ϵ;Pmulti

X|Y , Lp(X)
)

≤ |Bsingle| =

N[]

(
ϵ;Psingle

X|Y , Lp(X)
)

.

11
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C PROOFS FOR SECTION 4

C.1 BRACKETING NUMBER OF CONDITIONAL GAUSSIAN DISTRIBUTION SPACE

According to Theorem 3.1, to derive the upper bound of average TV error, we need to measure the
upper bracketing number for the conditional Gaussian distribution space. This result mainly follows
the bracketing number analysis of Gaussian distribution space in Lemma C.5 in (Ge et al., 2024) and
slightly modifies it to conditional Gaussian distribution space.
Theorem C.1 (Bracketing number upper bound for conditional Gaussian distribution space under
multi-source training). Let B be a constant that 0 < B < ∞, suppose that Φ = [−B,B]d1 ,
Ψ = [−B,B]d−d1 , and conditional distributions in Pmulti

X|Y are formulated as in Equation (6). Then,
given any 0 < ϵ ≤ 1, the ϵ-upper bracketing number of Pmulti

X|Y w.r.t. L1(X) satisfies

N[]

(
ϵ;Pmulti

X|Y , L1(X)
)
≤
(
2(1 + d)B

ϵ
+ 1

)(K−1)d1+d

.

Proof. According to the assumptions, the conditional distribution space expressed by the parametric
estimation model is

Pmulti
X|Y :=

pmulti
X|Y (x|y) =

K∏
k=1

(
pϕk,ψ(x|k)

)I(y=k)
=

K∏
k=1

(
(2π)−

d
2 e−

1
2∥x−(ϕk,ψ)∥2

2

)I(y=k)
: ϕk∈ [−B,B]d1 , ψ ∈ [−B,B]d−d1

 .

For any pmulti
X|Y (x|y)=

∏K
k=1

(
(2π)−

d
2 e−

1
2∥x−(ϕk,ψ)∥2

2

)I(y=k)
∈ Pmulti

X|Y , let’s first divide the mean
vector (ϕk, ψ) into η-width grids with a small constant η > 0 (the value of η will be specified later):
If (ϕk)i ∈ [jη, (j + 1)η) for some j ∈ Z, let (ϕ̄k)i = jη and ϕ̄k :=

(
(ϕ̄k)1, . . . , (ϕ̄k)d1

)
. Similarly,

if (ψ)i ∈ [jη, (j + 1)η) for some j ∈ Z, let (ψ̄)i = jη and ψ̄ :=
(
(ψ̄)1, . . . , (ψ̄)d−d1

)
. In this case,

we have ∥(ϕk, ψ)− (ϕ̄k, ψ̄)∥22 ≤ dη2.

Let

p′(x, y) =

K∏
k=1

(
(2π)−

d
2 e−

c1
2 ∥x−(ϕ̄k,ψ̄)∥2

2+c2
)I(y=k)

.

According to the definition of the bracketing, we want to prove that p′(x, y) ≥ pmulti
X|Y (x|y). By

completing the square w.r.t. x, we have

− c1
2
∥x− (ϕ̄k, ψ̄)∥22 + c2 −

(
−1

2
∥x− (ϕk, ψ)∥22

)

=
1

2

(1− c1)

∥∥∥∥∥x+
c1(ϕ̄k, ψ̄)− (ϕk, ψ)

1− c1

∥∥∥∥∥
2

2

− c1
1− c1

∥∥(ϕ̄k, ψ̄)− (ϕk, ψ)
∥∥2
2
+ 2c2

.
Further taking c1 = 1− η and c2 = d(1− η)η/2, we have

(1− c1)

∥∥∥∥∥x+
c1(ϕ̄k, ψ̄)− (ϕk, ψ)

1− c1

∥∥∥∥∥
2

2

− c1
1− c1

∥∥(ϕ̄k, ψ̄)− (ϕk, ψ)
∥∥2
2
+ 2c2

=η

∥∥∥∥∥x+
c1(ϕ̄k, ψ̄)− (ϕk, ψ)

1− c1

∥∥∥∥∥
2

2

− 1− η

η

∥∥(ϕ̄k, ψ̄)− (ϕk, ψ)
∥∥2
2
+ 2c2 (c1 = 1− η)

≥− 1− η

η

∥∥(ϕ̄k, ψ̄)− (ϕk, ψ)
∥∥2
2
+ 2c2 (η > 0)

≥− 1− η

η
dη2 + 2c2 (∥(ϕk, ψ)− (ϕ̄k, ψ̄)∥22 ≤ dη2)

=− d(1− η)η + d(1− η)η = 0.

12
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Therefore, it holds that for all y ∈ Y,

∀x ∈ X : p′(x, y) ≥ pmulti
X|Y (x|y). (13)

Moreover, given any 0 < ϵ ≤ 1, we take η = ϵ
1+d , and thus c1 = 1− ϵ

1+d and c2 = 1
2 (1−

ϵ
1+d )

ϵ
1
d+1

.

Since d ∈ N, we have η ≤ 1
2 and c2 ≤ 1

2 . Then, ∥p′(·, y)− pmulti
X|Y (·|y)∥L1(X) can be bounded as

∥p′(·, y)− pmulti
X|Y (·|y)∥L1(X) =

∫
X

|p′(x, y)− pmulti
X|Y (x|y)|dx

=

∫
X

p′(x, y)dx−
∫
X

pmulti
X|Y (x|y)dx =

1
√
c1
ec2 − 1 (

∫
X
e−

1
2∥x∥

2
2dx = (2π)

d
2 )

≤ 1
√
c1

(1 + 2c2)− 1 (ex ≤ 1 + 2x for x ∈ [0, 12 ])

=
1√
1− η

(1 + d(1− η)η)− 1 (c1 = 1− η and c2 = d(1− η)η/2)

≤(1 + η)(1 + d(1− η)η)− 1 ( 1√
1−x ≤ 1 + x for x ∈ [0, 12 ])

=η
(
1 + d(1− η2)

)
≤ η(1 + d) = ϵ (14)

Combining Equation (13) and Equation (14), we know that for any pmulti
X|Y (x|y) ∈ Pmulti

X|Y and
0 < ϵ ≤ 1, there exists some p′(x, y) ∈ B such that given any y ∈ Y, it holds that ∀x ∈ X :
p′(x, y) ≥ pX|Y (x|y), and ∥p′(·, y)− pX|Y (·|y)∥Lp(X) ≤ ϵ, where

B :=

p′(x, y) =
K∏
k=1

(
(2π)−

d
2 e−

c1
2 ∥x−(ϕ̄k,ψ̄)∥2

2+c2
)I(y=k)

: (ϕ̄k)i, (ψ̄)i ∈ [−B,B] ∩ ηZ


Recalling the definition of the upper bracketing number in Definition B.1, we know that B is an
ϵ-upper bracket of Pmulti

X|Y w.r.t. L1(X). Therefore,

N[]

(
ϵ;Pmulti

X|Y , L1(X)
)

≤|B| =
∣∣∣∣{{ϕ̄k}Kk=1, ψ̄ : (ϕ̄k)i, (ψ̄)i ∈ [−B,B] ∩ ηZ

}∣∣∣∣
≤
(
2B

η
+ 1

)Kd1+d−d1
=

(
2(1 + d)B

ϵ
+ 1

)(K−1)d1+d

,

which completes the proof.

C.2 PROOF OF THEOREM 4.1

Proof of Theorem 4.1. As ϕ∗k ∈ Φ, ψ∗ ∈ Ψ, and p̂multi
X|Y is the maximizer of likelihood LS(pX|Y ) in

Pmulti
X|Y , according to Theorem 3.1, we know that

RTV(p̂
multi
X|Y ) ≤ 3

√√√√ 1

n

(
logN[]

(
1

n
;Pmulti

X|Y , L1(X)

)
+ log

1

δ

)
.

According to Theorem C.1, it holds that

N[]

(
1

n
;Pmulti

X|Y , L1(X)

)
≤
(
2(1 + d)Bn+ 1

)(K−1)d1+d
.

13
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Therefore, we obtain the result that

RTV(p̂
multi
X|Y ) ≤ 3

√
1

n

((
(K − 1)d1 + d

)
log
(
2(1 + d)Bn+ 1

)
+ log

1

δ

)
.

Omitting constants about n,K, d1, d, B, and the logarithm term we have RTV(p̂
multi
X|Y ) =

Õ
(√

(K−1)d1+d
n

)
.

C.3 AVERAGE TV ERROR BOUND UNDER SINGLE-SOURCE TRAINING

Theorem C.2 (Average TV error bound for conditional Gaussian distribution space under single–
source training). Let p̂singleX|Y be the likelihood maximizer defined in Equation (4) given Psingle

X|Y with
conditional distributions as in Equation (6). Suppose Φ = [−B,B]d1 , Ψ = [−B,B]d−d1 with
constant B > 0, and ϕ∗k ∈ Φ, ψ∗ ∈ Ψ. Then, for any 0 < δ ≤ 1/2, it holds with probability at least
1− δ that

RTV(p̂
single
X|Y ) = Õ

(√
Kd

n

)
.

Proof. The proof is very similar to that in the multi-source case. According to the as-
sumptions, the conditional distribution space expressed by the parametric estimation model is

Psingle
X|Y :=

{
psingleX|Y (x|y)=

∏K
k=1{pϕk,ψk

(x|k)
}I(y=k)

=
∏K
k=1

(
(2π)−

d
2 e−

1
2∥x−(ϕk,ψk)∥2

2

)I(y=k)
:ϕk ∈

[−B,B]d1 ,ψk ∈ [−B,B]d−d1}. For any psingleX|Y (x|y) =
∏K
k=1

(
(2π)−

d
2 e−

1
2∥x−(ϕk,ψk)∥2

2

)I(y=k)
∈

Psingle
X|Y , let’s first divide the mean vector (ϕk, ψk) into η-width grids with a small constant η > 0

(the value of η will be specified later): If (ϕk)i ∈ [jη, (j + 1)η) for some j ∈ Z, let (ϕ̄k)i = jη and
ϕ̄k :=

(
(ϕ̄k)1, . . . , (ϕ̄k)d1

)
. Similarly, if (ψk)i ∈ [jη, (j + 1)η) for some j ∈ Z, let (ψ̄k)i = jη and

ψ̄k :=
(
(ψ̄k)1, . . . , (ψ̄k)d−d1

)
. In this case, we have ∥(ϕk, ψk)− (ϕ̄k, ψ̄k)∥22 ≤ dη2.

Let

p′(x, y) =

K∏
k=1

(
(2π)−

d
2 e−

c1
2 ∥x−(ϕ̄k,ψ̄k)∥2

2+c2
)I(y=k)

.

We need p′(x, y) ≥ psingleX|Y (x|y) by the definition of the bracketing. By completing the square w.r.t.
x, we have

− c1
2
∥x− (ϕ̄k, ψ̄k)∥22 + c2 −

(
−1

2
∥x− (ϕk, ψk)∥22

)

=
1

2

(1− c1)

∥∥∥∥∥x+
c1(ϕ̄k, ψ̄k)− (ϕk, ψk)

1− c1

∥∥∥∥∥
2

2

− c1
1− c1

∥∥(ϕ̄k, ψ̄k)− (ϕk, ψk)
∥∥2
2
+ 2c2

.
Further taking c1 = 1− η and c2 = d(1− η)η/2, we have

(1− c1)

∥∥∥∥∥x+
c1(ϕ̄k, ψ̄k)− (ϕk, ψk)

1− c1

∥∥∥∥∥
2

2

− c1
1− c1

∥∥(ϕ̄k, ψ̄k)− (ϕk, ψk)
∥∥2
2
+ 2c2

=η

∥∥∥∥∥x+
c1(ϕ̄k, ψ̄k)− (ϕk, ψk)

1− c1

∥∥∥∥∥
2

2

− 1− η

η

∥∥(ϕ̄k, ψ̄k)− (ϕk, ψk)
∥∥2
2
+ 2c2 (c1 = 1− η)

≥− 1− η

η

∥∥(ϕ̄k, ψ̄k)− (ϕk, ψk)
∥∥2
2
+ 2c2 (η > 0)

≥− 1− η

η
dη2 + 2c2 (∥(ϕk, ψ)− (ϕ̄k, ψ̄k)∥22 ≤ dη2)

=− d(1− η)η + d(1− η)η = 0.
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Therefore, it holds that for all y ∈ Y,

∀x ∈ X : p′(x, y) ≥ psingleX|Y (x|y). (15)

Moreover, given any 0 < ϵ ≤ 1, we take η = ϵ
1+d , and thus c1 = 1− ϵ

1+d and c2 = 1
2 (1−

ϵ
1+d )

ϵ
1
d+1

.

Since d ∈ N, we have η ≤ 1
2 and c2 ≤ 1

2 . Then, ∥p′(·, y)− psingleX|Y (·|y)∥L1(X) can be bounded as

∥p′(·, y)− psingleX|Y (·|y)∥L1(X) =

∫
X

|p′(x, y)− psingleX|Y (x|y)|dx

=

∫
X

p′(x, y)dx−
∫
X

psingleX|Y (x|y)dx =
1

√
c1
ec2 − 1 (

∫
X
e−

1
2∥x∥

2
2dx = (2π)

d
2 )

≤ 1
√
c1

(1 + 2c2)− 1 (ex ≤ 1 + 2x for x ∈ [0, 12 ])

=
1√
1− η

(1 + d(1− η)η)− 1 (c1 = 1− η and c2 = d(1− η)η/2)

≤(1 + η)(1 + d(1− η)η)− 1 ( 1√
1−x ≤ 1 + x for x ∈ [0, 12 ])

=η
(
1 + d(1− η2)

)
≤ η(1 + d) = ϵ (16)

Combining Equation (15) and Equation (16), we know that for any psingleX|Y (x|y) ∈ Psingle
X|Y and

0 < ϵ ≤ 1, there exists some p′(x, y) ∈ B such that given any y ∈ Y, it holds that ∀x ∈ X :
p′(x, y) ≥ pX|Y (x|y), and ∥p′(·, y)− pX|Y (·|y)∥Lp(X) ≤ ϵ, where

B :=

p′(x, y) =
K∏
k=1

(
(2π)−

d
2 e−

c1
2 ∥x−(ϕ̄k,ψ̄k)∥2

2+c2
)I(y=k)

: (ϕ̄k)i, (ψ̄k)i ∈ [−B,B] ∩ ηZ


Recalling the definition of the upper bracketing number in Definition B.1, we know that B is an
ϵ-upper bracket of Psingle

X|Y w.r.t. L1(X). Therefore,

N[]

(
ϵ;Psingle

X|Y , L1(X)
)

≤|B| =
∣∣∣∣{{ϕ̄k}Kk=1, {ψ̄k}Kk=1 : (ϕ̄k)i, (ψ̄k)i ∈ [−B,B] ∩ ηZ

}∣∣∣∣
≤
(
2B

η
+ 1

)Kd1+K(d−d1)

=

(
2(1 + d)B

ϵ
+ 1

)Kd
.

Besides, according to Theorem 3.1, we know that

RTV(p̂
single
X|Y ) ≤ 3

√√√√ 1

n

(
logN[]

(
1

n
;Psingle

X|Y , L1(X)

)
+ log

1

δ

)

≤ 3

√
1

n

(
Kd log

(
2(1 + d)Bn+ 1

)
+ log

1

δ

)
.

Omitting constants about n,K, d1, d, B, and the logarithm term we have RTV(p̂
multi
X|Y ) = Õ

(√
Kd
n

)
.
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D SUPPLEMENTARY FOR EXPERIMENTS

D.1 SIMULATIONS ON CONDITIONAL GAUSSIAN ESTIMATION

In this part, we aim to examine the tightness of the derived upper bound that RTV(p̂
multi
X|Y ) =

Õ(
√

(K−1)d1+d
n ) in Theorem 4.1 and RTV(p̂

single
X|Y ) = Õ(

√
Kd
n ) in Theorem C.2.

In all of our simulations, we fix the data dimension d = 10 and p∗Y (k) = 1/K all k ∈ [K]. K,
n, and the similarity factor βsim = 1−d1

d ∈ [0, 1] are key parameters. The dissimilar dimension
d1 = d− ⌊βsimd⌋. We set the source-specific feature as ϕk = k1 ∈ Rd1 and the shared feature as
ψ = 0 ∈ Rd−d1 . Under the setting of Section 4, conditional MLE has analytical solution as

ϕ̂k =
∑
yi=k

xi[1 : d1]/nk, ψ̂ =
∑n
i=1 xi[d1 + 1 : d]/n

for multi-source training and

ϕ̂k=
∑
yi=k

xi[1 :d1]/nk, ψ̂k=
∑
yi=k

xi[d1 + 1:d]/nk

for single-source training.

For evaluation, we randomly sample ntest = 500 data points according to the true joint distribution
p∗X,Y . Empirically, we approximate the true TV distance by using the Monte Carlo method based on
the test set, which can be written formally as

RTV(p̂X|Y)≈
1

2ntest

ntest∑
i=1

∣∣∣∣∣ p̂X|Y (xi|yi)
p∗X|Y (xi|yi)

−1

∣∣∣∣∣=Rem
TV

(p̂X|Y).

To eliminate the randomness, we average over 5 random runs for each simulation and report the mean
results.

Order of the average TV error about K. We range the number of sources K in [1, 3, 5, 10, 15]
with fixed sample size n = 500 and similarity factor βsim = 0.5. We display the empirical average
TV error for each K in Figure 1(a), with Rem

TV
(p̂multi
X|Y ) colored in green and Rem

TV
(p̂singleX|Y ) colored in

orange. Ignoring the influence of constants, it shows a good alignment between empirical errors (in
solid lines) and theoretical upper bounds (in dashed lines), both scaling as Õ(

√
K).

Order of the average TV error about n. We range sample size n in [100, 300, 500, 1000, 5000]
with fixed number of sources K = 5 and similarity factor βsim = 0.5. We display the empirical error
for each n in Figure 1(b), with Rem

TV
(p̂multi
X|Y ) colored in green and Rem

TV
(p̂singleX|Y ) colored in orange.

Ignoring the influence of constants, it shows that the orders of empirical error about n match well
with the theoretical upper bounds which scale as Õ(1/

√
n).

Order of the average TV error about βsim. We range similarity factor βsim in [0, 0.3, 0.5, 0.7, 1]
with fixed sample size n = 500 and number of data sources K = 5. We display the empirical average
TV error for each βsim in Figure 1(c) to observe how similarity factor βsim impacts the advantage of
multi-source training. Concretely, as predicted by the theoretical bounds, the changing of βsim will
not influence the performance of single-source training but will decrease the error of multi-source
training in the order of Õ(

√
d1) = Õ(

√
1− βsim). The results show that the theoretical bounds

predict the empirical performance well.

To sum up, our simulations verify the validity of our theoretical bounds in Section 4. Moreover, in
all experiments, Rem

TV
(p̂multi
X|Y ) is consistently smaller than Rem

TV
(p̂singleX|Y ), supporting our results in

Section 3.

D.2 REAL-WORLD EXPERIMENTS ON DIFFUSION MODELS

In this section, we conduct experiments on diffusion models to validate our theoretical findings in real-
world scenarios from two aspects: (1) We empirically compare multi-source and single-source training
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on conditional diffusion models and evaluate their performance to validate the guaranteed advantage
of multi-source training against single-source training proved in Section 3. (2) We investigate the
trend of this advantage about key factors—the number of sources and distribution similarity—as
discussed in Section 4.

Experimental settings. We train class-conditional diffusion models following EDM2 (Karras et al.,
2024) at 256×256 resolution on the selected classes from the ILSVRC2012 training set (Russakovsky
et al., 2015), which is a subset of ImageNet (Deng et al., 2009) containing 1.28M natural images
from 1000 classes, each annotated with an integer class label from 1 to 1000. In our experiments,
we treat each class as a distinct data source. To control similarity among data sources, we manually
design two levels of distribution similarity based on the semantic hierarchy of ImageNet (Deng et al.,
2010; Bostock., 2018) as shown in Figure 3.

ImageNet

Dog Vehicle

Italian 
greyhound

French 
bulldog Jeep Tank

Sim=2 Sim=1

Figure 3: Similarity level.

Following EDM2, we use the Latent Diffusion Model (LDM) (Rombach et al., 2022) to down-sample
each image x ∈ R3×256×256 to a corresponding latent z ∈ R4×32×32 for training a diffusion models.
All experiments are trained and sampled on 8 × NVIDIA A800 80GB, 8 × NVIDIA GeForce
RTX 4090, and 8 × NVIDIA GeForce RTX 3090 on the Linux Ubuntu-22.04 platform. For a fair
comparison, we set different hyper-parameters for experiments with different numbers of sources as
shown in Table 2, but these parameters are the same with different similarity levels.

Table 2: Hyparameters of our experiments. ‘1c’ denotes training from single-source, and others
denote training from multi-source which contains 3,5, and 10 classes.

Setup Iterations (kimg) Learning rate Decay (kimg)

1c 184549 0.005 2500
3c 268435 0.006 4000
10c 1610612 0.012 6000

For each controlled experiment comparing multi-source and single-source training, we fix K target
classes within one similarity level Sim and train the models on a dataset S consisting of N examples
per class. Under multi-source training, we train a single conditional diffusion model for all K classes
jointly. Under single-source training, we train K separate conditional diffusion models, one for each
class. Please refer to Section 2 for the formal formulation of these two strategies. We set each factor
with two possible values: the number of classes K in 3 or 10, distribution similarity Sim in 1 or
2, and the sample size per class N in 500 or 1000. This results in a total of 8 sets of experiments
comparing multi-source and single-source training.

We evaluate model performance using the average Fréchet Inception Distance (Heusel et al., 2017)
(FID, a widely used metric for image generation quality) across all conditions to assess the overall
conditional generation performance. Results are displayed in Table 1. Specifically, for multi-source
training, we compute the FID for each class and take the average over all K classes. For single-
source training, we compute the FID for each of the K separately trained models on their respective

17



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

classes and calculate the average. Relative advantage of multi-source training is measured by
Avg. FID (Single)−Avg. FID (Multi)

Avg. FID (Single) as displayed in Figure 2.

Experimental results In the following, we interpret the results sequentially from the view of our
theoretical findings.

From Table 1, we observe that under different amounts of classes K, similarity level Sim, and
per-class sample size N , multi-source training generally achieves lower average FID than that of
single-source training, which is consistent with our theoretical guarantees derived in Section 3,

From Figure 2, we observe that for any fixed similarity level Sim and per-class sample size N , the
relative advantage of multi-sources training with a larger K (the green bars) is larger than that with
a smaller K (the nearby orange bars). Additionally, for any fixed K and N , the relative advantage
of multi-sources training with a larger distribution similarity is larger than that with a smaller
distribution similarity (as shown through the dashed lines). These results support our theoretical
insights in Section 4 that the number of sources and similarity among source distributions improves
the advantage of multi-source training.
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