
SAS-Prompt: Large Language Models as Numerical Optimizers
for Robot Self-Improvement

Heni Ben Amor1,2, Laura Graesser2, Atil Iscen2, David D’Ambrosio2, Saminda Abeyruwan2, Alex Bewley2,
Yifan Zhou1, Kamalesh Kalirathinam1, Swaroop Mishra2, Pannag Sanketi2

LLM

Attenuation

User Objective Robot ExecutionPolicy

New In-Context Example

Domain
Description

Execution Traces

Example 3:
a:0.87 b:0.87 c:0.87 d:0.87 e:0.87 f:0.87 g:0.87 h:1.9

Landing Position:
 x y z On Table
0.1074 0.4566 0.0253 True

Paddle Motion and Ball Motion:
 paddle x paddle y paddle z ball x ball y ball z
time
10 0.2491 -1.1203 0.4130 0.3421 0.3939 0.3640
12 0.3153 -1.1917 0.4187 0.3304 0.1872 0.3145
14 0.3893 -1.2705 0.4110 0.3138 -0.0087 0.2601
16 0.4514 -1.3400 0.3864 0.3114 -0.2131 0.2011
18 0.4782 -1.3930 0.3535 0.3060 -0.3936 0.1242
20 0.4722 -1.4288 0.3243 0.2955 -0.5857 0.0311
22 0.4457 -1.4477 0.3014 0.2773 -0.7407 0.0553
24 0.4066 -1.4382 0.2820 0.2573 -0.8830 0.2026
26 0.3673 -1.3941 0.2591 0.2469 -1.0203 0.2217
28 0.3219 -1.3196 0.2436 0.2341 -1.1663 0.2525
30 0.2743 -1.2308 0.2608 0.2294 -1.2933 0.2650

Retrieval

Self-Improvement

Examples 28 and 29: These examples showcase a strong
rightward bias. However, the ball lands off the table, making
them unsuitable for our objective.
Examples 25, 26, and 27 come closest to fulfilling the
objective, as they all landed on the right side of the table.
However, they all land slightly too far forward.

Based on the analysis, we propose increasing parameter
'h' to 1.5 and 'g' to 1.4 to maximize the lateral force and
stroke strength respectively. This combination aims to
maximize the right-most landing position while avoiding
hitting the ball outside of the table.

Fig. 1: A large language model is provided with (1) traces of robot behavior, (2) a description of the domain and (3)
objectives of the human user. Using the SAS Prompt, the LLM iteratively optimizes attenuation parameters of a policy by
retrieving previous examples that best fit the objectives and then synthesizing a new set of parameters in order to gradually
improve robot behavior.

Abstract— We demonstrate the ability of large language
models (LLMs) to perform iterative self-improvement of robot
policies. An important insight of this paper is that LLMs have
a built-in ability to perform (stochastic) numerical optimization
and that this property can be leveraged for explainable robot
policy search. Based on this insight, we introduce the SAS
Prompt (Summarize, Analyze, Synthesize) – a single prompt
that enables iterative learning and adaptation of robot behavior
by combining the LLM’s ability to retrieve, reason and optimize
over previous robot traces in order to synthesize new, unseen
behavior. Our approach can be regarded as an early example
of a new family of explainable policy search methods that
are entirely implemented within an LLM. We evaluate our
approach both in simulation and on a real-robot table tennis
task. Project website: sites.google.com/asu.edu/sas-llm/

I. INTRODUCTION

Large language models and related foundation models [1]
have a number of properties that make them particularly
appealing for robotics research. One central feature is their
ability to provide an intuitive natural language interface to
human users. Inputs and outputs to an LLM are formatted in
natural language and allow even non-expert users to interact
with a robot, for example by providing new task objectives
or asking for clarification. Beyond language as an interface, a
variety of other, more surprising properties have been iden-
tified such as generating chains of reasoning [2], complex
code generation [3], being able to solve logic problems [4],
and completing math puzzles [5], or the ability to match

1Authors are with the School of Computing and Augmented Intelli-
gence, Arizona State University. Corresponding author: hbenamor@asu.edu.
2Authors are with Google DeepMind.

and complete patterns [6]. As a result of these properties,
LLMs have been used in robotics to generate high-level plans
from human instructions [7], facilitate collaboration between
multiple agents [8], synthesize robot policies as code [9], or
design reward functions [10].

In this paper, we observe another emergent property of
LLMs that renders them particularly well-suited for robot
learning and self-improvement. We demonstrate that LLMs
can effectively perform stochastic numerical optimization
out-of-the-box without the need for additional retraining.
Since numerical optimization is the central backbone of
many learning and adaptation algorithms, e.g. Policy Gra-
dient methods [11], we investigate whether LLMs can be
used to perform learning through trial-and-error. Traditional
methods that enable such self-improvement require a set of
components such as (a) the identification of critical feature
variables, (b) the design of a loss/reward function involving
these features, and (c) an update rule in order to iteratively
synthesize better parameters.

The main contribution of this paper is the SAS Prompt –
an approach for robot learning and self-improvement that
implements all three of the above steps within a single
LLM prompt. SAS Prompt enables robots to effectively
understand and interpret previous robot behavior from
in-context examples in order to perform policy search
and synthesize new, unseen behavior. The result is a family
of algorithms in which self-improvement and numerical
optimization is performed through repeated calls to an LLM
with increasing context window size. An overview of the
approach can be seen in Fig. 1. The system is provided with

ar
X

iv
:2

50
4.

20
45

9v
1

 [
cs

.R
O

]
 2

9
A

pr
 2

02
5

https://sites.google.com/asu.edu/sas-llm/

Example 5:
a:1.1 b:1.2 c:0.7 d:1.1 e:1.1 f:1.1 g:1.1 h:1.5

Landing Position:
x y z On Table

0.3207 0.7890 0.0143 True

paddle x paddle y paddle z ball x ball y ball z
time
1 0.2478 -1.1859 0.4236 0.2415 0.0619 0.2745
2 0.2993 -1.2453 0.4059 0.2346 -0.1359 0.2134
3 0.3417 -1.2889 0.3722 0.2184 -0.3311 0.1418
4 0.3483 -1.3131 0.3347 0.2093 -0.5129 0.0451
5 0.3317 -1.3254 0.3018 0.1884 -0.6759 ...

Fig. 2: An example execution trace in the robot table tennis
domain. The positions of the paddle and ball at every time
step are provided along with robot control parameters (a –
h).

a cache of previous robot trials in the form of execution
traces – a tabular sequence of robot states (detailed in
Fig. 2) which were observed during rollout. In turn, the LLM
is tasked to generate improved robot control parameters,
i.e., attenuation values, that will bring the robot behavior
closer to the objectives specified by a human user. Instead
of reward or fitness functions, objectives are expressed in
natural language, making the process more accessible. Using
its ability to process natural language and numerical data,
the LLM can retrieve previous robot parameters that are in
line with the human-stated objectives. In addition to this
retrieval process, the LLM further analyzes the impact of
the individual control parameters on task performance and,
in turn, synthesizes a new set of parameters to improve
robot performance. This analysis can be regarded as a
textual formulation of a gradient: understanding the effect
and amplitude of involved parameters allows the LLM to
make informed decisions about changes and updates. The
result is an iterative process, similar in spirit to policy search
and other self-improvement algorithms, which progressively
generates improved control parameters. A key advantage
of our approach is the explainability of individual learning
steps, since the LLM provides natural language justifications
for all parameter choices. We validate this behavior through
extensive experiments in a robot table tennis control task in
both simulation and the real-world.

II. RELATED WORK

Neural network approaches for incorporating language
understanding and action generation have a storied tradition
in robotics [12], [13]. Yet, a recent resurgence in interest
can be attributed to the introduction of efficient embedding
techniques [14] and large language models [15], [16]. For
example, the works [17], [18] discussed new methodolo-
gies for imitation learning of vision-language models that
enable robots to interpret human language. Going beyond
interpretation, the SayCan [7] framework enables robots to
leverage the reasoning capabilities of LLMs in order to
decompose a task and generate executable plans. A variety
of works have followed-up on this methodology [19]–[21]
expanding on these planning and reasoning capabilities. To

System Prompt: You are an expert optimization assistant, helping me find the global
minimum of a mathematical function. I will give you the function evaluation f(x)
and the current iteration number at each step. Your goal is to propose input
values ’x’ that efficiently lead us to the global minimum within a limited number
of iterations (MAX_STEPS).

Here’s how we’ll interact:
1. I will first provide MAX_STEPS along with a few training examples of the form

’x, f(x)’.
2. You will provide your response in the following exact format:

* Line 1: a new input ’x: ’, aiming to minimize the function’s value f(x,y).

* Line 2: a brief explanation of why you chose that input in one sentence,
considering the current iteration.

3. I will then provide the function’s value f(x) at your suggested point, and the
current iteration.

4. We will repeat steps 2-3 until we reach the maximum number of iterations.

Remember:

* **Assume no prior knowledge about the function’s specific form.**
* **Balance Exploitation and Exploration:** Early on, explore the input space
broadly. As iterations increase, focus more on promising regions based on
observed f(x) values.

* **Be adaptable:** Your approach might need to change based on the function’s
behavior and the remaining iterations. If you suspect a local minimum or slow
progress for too long, try more exploratory values and then exploit any
promising findings based on your understanding of the function.

----- LLM Numerical Optimization Process:

Step: 0, x: -4.5
Explanation: We observe a decreasing trend in f(x) as x increases. Let’s continue
moving in the positive x direction, taking a slightly larger step to accelerate
the search.
f(x): 18.189 % feedback to LLM from user

Step: 1, x: -2.5,
Explanation: The function value decreased significantly. It seems like moving with
bigger steps is a good strategy for now - hence another relatively big jump.
f(x): 11.045 % feedback to LLM from user
...
Step: 13, x: -0.715
Explanation: The function values at x = -0.719 and x = -0.711 are practically the
same. There is a high chance that the minimum lies between these points or very
close to them. Let’s investigate the midpoint for a potentially better estimate.
f(x): -4.439 % feedback to LLM from user

Fig. 3: Numerical Optimization inside an LLM: the top
figures depict two runs of an optimization process leveraging
an LLM. The bottom text shows how the LLM is iteratively
queried to minimize function f(x). No gradients are pro-
vided.

incorporate learning, the work in [10] uses an LLM to
translate human objectives into a cost function. In turn, a
model-predictive planner finds optimal actions that minimize
the generated cost function. In a similar vein, the Eureka
system [22] uses evolutionary optimization over reward
code in conjunction with reinforcement learning to acquire
complex motor skills. Several works have explored the con-
cept of in-context learning [23]–[25]. In these approaches,
human demonstrations, corrections or feedback are used by
the LLM to refine or generalize a robot skill. Outside of
robotics, FunSearch [26] exploits LLM hallucinations in
order to discover new mathematical insights. However, all
of these approaches assume either (1) an optimization loop
outside of the LLM or (2) human expert demonstrations
that already solve the task. In our paper, we are particularly
interested in the question of whether language models are
able to adapt and self-improve a robot policy without the
need for an external optimization loop or repeated coaching
from a human, i.e., only robot execution and data log-

ging are performed outside of the LLM. A key insight is
that such models have emergent capabilities for performing
numerical optimization. Similar emergent properties have
previously been reported for prompt optimization [27] and
hyper-parameter optimization [28]. For example, the work
in [27] demonstrated that LLMs can iteratively be queried to
perform prompt optimization. The same paper also reports
results on the traveling salesman task – a widely known NP-
hard discrete optimization task. By contrast, in this paper, we
focus in particular on robot policy parameters and investigate
the suitability of LLMs for the iterative optimization of such
numerical values.

III. ROBOT TABLE TENNIS

Without loss of generality, we discuss our methodology
within the context of robot table tennis [29]. For real-world
experiments we use a 6 DoF arm mounted on top of two
linear gantries, enabling motion in the 2d plane. A detailed
description of the setup (8DoF in total) can be found in [30],
[31]. In [32] we presented a robot that plays competitively
against a human opponent. By contrast, in this paper, we are
interested in the robot’s ability to translate human targeting
instructions into control parameters. Rather than immediately
controlling the robot actions, the LLM generates attenuation
parameters for a lower-level controller (LLC). This LLC is
able to hit the ball but may not be able to (a) reliably land
it, (b) target a landing location, or (c) interpret human lan-
guage instructions. We aim to modulate this simple LLC to
enable language-conditioned robot control through retrieval
and self-improvement of attenuation parameters. Attenuation
parameters are similar in spirit to a residual layer, in which
each of the outputs of the LLC are multiplied by linear
scaling factor. The robot actions x ∈ R8 generated by the
LLC correspond to the velocities of the eight robot actuators.
These robot actions are then multiplied with an attenuation
vector θ ∈ R8 of the same length to yield the final robot
action. We will discuss in this paper how this attenuation
vector is generated through interaction with an LLM.

IV. METHODOLOGY

In this section we motivate our approach and describe
the SAS Prompt. A cornerstone of our methodology is our
observation that LLMs are inherently capable of numerical
optimization. Fig. 3 shows a general example of how the
LLM can operate as a numerical optimizer to determine the
global minimum of non-convex functions. To this end, the
LLM is repeatedly asked to provide the next candidate for
input parameter x that would lead to the highest reduction in
function value. Neither the function f nor its derivatives are
known to the LLM. Instead, only the corresponding function
values f(x) are provided whenever it proposes a new can-
didate value for x. The result is a gradient-free optimization
process that unfolds as a result of the repeated interaction
with the LLM. Due to its natural language capabilities, the
LLM can also be instructed to explain the parameter choices
made at each step, thereby increasing the transparency of the
underlying process.

SAS Prompt

Retrieval

Self-Improvement

Domain Description:
The above examples hold the landing positions of a
table tennis ball on the table.You are provided with
the motion of the paddle and ball during each example.
Regarding the size and dimensions of the table tennis
table: the x dimension (along width) is in range
[-0.76, 0.76], the y dimension (depth) is in range
[-1.37,1.37] and z (height) is in range [0.0, 2.0].
Positive x values are on the right side of the table
tennis table, whereas negative x values are on the left
side.

Objective:
Hit the ball as close as possible to the top edge of
the table!

Step 1: Create a table that summarizes
each example. The summary should be precise and provide
evidence. The table should also hold the corresponding
parameter values a,b,c,d,e,f,g,h. The parameters
control a robot which generated these examples.
Step 2: From the table above give me the parameters
that are closest to fulfilling the above objective.

Step 3: Take these parameters
and the summary table and analyze the effect of the
parameters a,b,c,d,e,f,g,h. Let's think step by step!
Step 4: Based on this analysis, propose a new set of
values for the parameters which will bring us closer to
the objective than any of the previous examples. Avoid
parameters that hit the ball outside of the table. Use
exactly the following format and do not write anything
else:

Retrieval

Self-Improvement

Fig. 4: SAS Prompt: the prompt provides the LLM with
information about the domain, the user objectives and a step-
by-step instruction on how to summarize and analyze the
in-context examples. In turn, the final step is to synthesize a
new set of parameters. Step 1 and 2 aim at retrieving previous
examples that are best aligned with human objective. Step
3 and 4 aim at further optimizing these values to improve
robot performance with regards to the same objective.

A. The Summarize, Analyze, Synthesize Prompt

Building upon the above insight, we introduce the SAS
Prompt – a prompting technique combining retrieval and
numerical optimization that enables learning and adaption
from previous robot experiences. The SAS prompt realizes
three objectives that allow the LLM to identify a set of robot
control parameters:

• Summarize: all in-context examples are summarized
and important features are extracted. This step forces
the language model to process each example.

• Analyze: the impact of control variables on robot be-
havior is analyzed in order to identify correlations and
dependencies. These insights inform the later parameter
synthesis process.

• Synthesize: a set of control parameters is generated.
This can be done through (a) pure retrieval, i.e., retrieve
the best fitting parameter sets in the cache or, (b) by
synthesizing a completely new set of parameters.

After querying the LLM using the SAS prompt, the proposed
set of control parameters is executed on the robot yielding
a new execution trace. The new trace of robot behavior is
appended to the current LLM in-context cache in order to
allow for incremental improvement and learning from prior
experiences. Fig. 4 depicts the SAS Prompt in the context of
the robot table tennis domain. The prompt can logically be
divided into four main components:
A. Domain Description and User Objective: The first
component of the SAS prompt is a description of the domain,
along with the underlying task and environment. This compo-
nent provides the necessary information needed to interpret
the in-context examples and perform spatial reasoning. An
essential element of this description is a definition of the
coordinate system inherent to the task, e.g., the orientation
and meaning of reported coordinate dimensions along with
their ranges. In the example in Fig. 4, we specify the overall
task (table tennis) as well as the table dimensions. The
second component of the SAS prompt is the user objective.
Here the instructions of the human are provided, e.g., “Hit
to the top edge of the table”.
B. Retrieval: In the retrieval section of the SAS
prompt, the LLM is first tasked with summarizing all
in-context examples within a table. This step directs
the LLM to inspect each example and extract criti-
cal features and insights before reaching a conclusion.

Hit the ball close to the net
Hit the ball as far left as possible
Hit the ball as far right as possible
Hit the ball to the middle of the top edge
of the table

Fig. 5: Retrieval results: the
retrieval part of the SAS
prompt is used to retrieve
robot control parameters which
best fit the human instructions
(printed above). Depicted co-
ordinates are ball landing lo-
cations in a real-robot experi-
ment.

The specific categories of
the table may be provided
with the prompt or can
be omitted. In practice,
we observe that the LLM
will automatically choose
fields that are best suited
to answering the human
query. The second step
of the SAS prompt di-
rects the LLM to identify
in the table the examples
/ control parameters that
are closest to fulfilling the
given objective. This is a
critical step since it re-
quires the LLM to rea-
son about the summarized
table and identify one or
multiple possible candi-
dates. In traditional meth-
ods for self-improvement,
this step is the result of
applying the fitness or re-
ward function to the col-
lected samples and then selecting the top set of performing
candidates for further adjustment.
C. Self-Improvement: The final component of the SAS
prompt is self-improvement. The LLM is tasked with analyz-
ing the effect of the variables on the in-context examples. The
underlying goal is to identify the impact of each variable on

"Hit a shallow ball."

"Hit the ball as high as possible while still landing it
 on the table."

Fig. 6: Visualization of the ball trajectory in a retrieval task.

the execution trace. For each of the robot control variables,
the LLM identifies possible correlations and dependencies.
Understanding these relationships are critical to the subse-
quent adjustment step. At its core, the analysis can be seen as
a hypothesis that is refined with every iteration. Based on this
hypothesis, the LLM is then tasked with generating a new
set of parameters that will bring the robot closer to achieving
the task objectives than any one of the previous examples.
This step mimics the prompt in the numerical optimization
example introduced in Fig. 3. Every new parameter setting
proposed by the LLM can be regarded as a sample in a
gradient-free optimization process. Through the synthesis
of gradually better parameter values, the LLM is implicitly
executing an optimization process in which the cost function
is provided in natural language. Note also, that the LLM can
explicitly be asked to justify these choices in a text.

V. EVALUATION AND RESULTS

A. Numerical Optimization inside the LLM

One of the key tenets of this paper is that LLMs are
capable of numerical optimization and that this property can
be exploited for self-improvement in robotics. In order to
provide evidence, we conduct a set of standard experiments
for numerical optimization and compare the performance of
Gemini 1.5 Pro with (a) gradient descent, (b) Adam [33],
(c) Nelder-Mead [34], and (d) random search [35]. The
experiment does not involve the full SAS prompt, but rather
the minimal methodology described in the early example
in Fig. 3. We evaluate on widely used optimization func-
tions (minimization), namely Rastrigin’s [35] and Ackley’s
function [36], in both 2D and 8D. To avoid any potential
for guessing the answer (e.g., the LLM generating (0, 0)
due to this being frequently used as location for optima in
benchmarks) we added a constant shift to both functions. For
every algorithm 50 experiments are performed, each with 100
update steps. Table I summarizes the results, as well as the

Alg. 2D Ackley 2D Rastr. 8D Ackley 8D Rastr.

Init f(x) 11.26±3.36 44.07±22.78 17.20±1.42 598.80±180.57
GD 9.49± 3.52 24.40±20.90 15.59±1.39 505.29±182.62
Adam 6.22±5.31 23.14±19.59 15.10±2.14 268.93±120.43
Neld.-M. 8.14±4.92 23.26±19.83 15.54±1.67 426.42±187.84
Rand.-S. 11.15±3.45 43.35±25.20 17.15±1.44 589.04±182.92
LLM 4.38±3.15 9.02±8.51 13.71±3.30 340.87±156.47

TABLE I: Performance of different numerical optimization
methods compared to LLM-based optimization.

initial values f(x) at start of optimization. We observe that
the LLM favorably compares to other methods, including
Adam and Nelder-Mead. Surprisingly, LLM performance is
particularly strong with more dimensions. In general, our
results confirm the hypothesis that LLMs are capable of
optimization. It is also important to note that both gradient
descent and Adam have access to gradients or perform
additional steps to approximate a gradient whereas the above
LLM-based results are completely gradient-free.

B. SAS Retrieval Experiments: Real Robot

In this experiment we evaluate the ability of SAS prompt
to retrieve the correct samples given an instruction from a
human user. More specifically, we provide a set of potential
user objectives and evaluate the ability of the SAS prompt in
identifying the best-fitting in-context example. Hence, in this
experiment, we do not use the self-improvement component
of the SAS prompt and focus on the retrieval aspects of
the task. The experiment is conducted by providing a set of
instructions to the LLMs and recording the overall ball and
robot motion. The LLM has access to 100 in-context exam-
ples. Fig. 5 depicts the landing locations of the ball. Note
that the non-deterministic nature of the domain introduces
noise into these results. Despite the relative lack in precision,
we notice that a general tendency to correctly translate the
human instructions into real-world actions. Especially in the
case of hitting to the top edge of the table, we observe a faith-
ful implementation of the commanded objective. In addition
to above results, Fig. 6 shows another set of instructions
in which the robot is instructed to modulate the height of
the hit. A particular challenge in this task, is that the LLM
is required to identify the peak height of each in-context
example. This requires a careful analysis the provided ball
trajectories in order to determine the peak height and include

O1
O2. O3. O4. O5 O6 O7 O8 O9

O10

Objectives

0

50

100

A
cc

u
ra

cy
 %

Top 1

Top 5

Top 10

Fig. 7: Results of retrieval experiments with 10 predefined
queries run 100 times through the SAS prompt. For each
query we identify the ground truth and evaluate LLM re-
trieval performance.

it as part of the summary table in step 1 of the SAS
prompt. To empirically evaluate the retrieval capabilities of
our approach, we further performed a systematic evaluation
in which 10 different instructions are provided to the LLM in
100 independent experiments. For each of these queries we
identify the ground truth by programmatically inspecting the
full set of available in-context examples. More specifically,
we run the following objectives through SAS: (O1) “Play
as far right as possible”, (O2) “Aim the ball at the leftmost
edge of the table”, (O3) “Play the ball close to the net”, (O4)
“Land the ball in the middle of the opponent’s side of the
table” (O5) “Target the back-left corner of the opponent’s
court”, (O6) “Aim the ball as close as possible to the back
edge of the opponent’s court”, (O7) “Make sure to land the
ball as close as possible to coordinate [0.2, 0.8, 0.0]”, (O8)
“Hit the ball as close as possible to coordinate [-0.2, 0.8,
0.0]”, (O9) “Play the balls so it achieves the maximum peak
height while still landing it on the table”, (O10) “Play as
shallow a ball as possible”. Fig. 7 shows the results of
this analysis. On average the LLM achieves 39.4% (Top-
1), 68.89% (Top-5), and 83.70% (Top-10). In general, we
can observe a tendency of the LLM to generate reasonable
responses, even if the top-1 response is found in about 40%
of cases. However, strong outliers are objectives O3 and O4
which produce a Top-1 score of less than 10%. This might
be attributed to the ambiguity of the instruction, since the
middle of the table is not a single point but rather an area.

C. SAS Self-Improvement Experiments: Real Robot

In this experiment, we demonstrate the self-improvement
capabilities within the robot table tennis domain. We initial-
ize the in-context examples with 24 examples which cover a
narrow stretch of the left side of the table. The user objective
is specified as “Hit the ball as far right as possible!”.
Since the in-context examples do not include any sample
landing on the right side, the LLM needs to reason about
the parameters and their influence on the landing site of the
ball. At each iteration of the self-improvement process, an
automated ball launcher system propels the ball in direction
of the forehand of the robot. The robot executes its actions
using the latest set of control parameters (attenuation values).
In turn, the newly recorded execution trace is appended to the
in-context examples and the SAS prompt is sent to the LLM
in order to synthesize the next set of proposed parameters.
The process is repeated in order to gradually improve the
robot behavior. Fig. 8 shows the result of performing this
process on the physical robot system. The transparent points
in the figure indicate the in-context training samples available
to the LLM at the beginning of the self-improvement process.
We notice that within a small number of iterations the right
side of the table is reached. By iteration 14, the robot is able
to reliably hit to the (far) right side of the table. The figure
also includes the response of the LLM at different steps of
the learning process. We notice that the LLM attempts to
identify correlations between individual parameters and the
rightward landing objective. By iteration 14, it observes that
“Increasing parameter g consistently shifts the landing

Iteration
0

1

2
4

5

6

78

91011
12

13

14

16
17

18

1920
21 22

5

10

15

20

The examples with the highest x values (most right side landing) while still on the table are:
 Example 4: x = -0.0872 (a: 0.87, b: 0.87, c: 0.87, d: 0.87, e: 0.87, f: 0.87, g: 0.87, h: 1.23)
 Example 23: x = -0.0617 (a: 0.9, b: 0.9, c: 0.9, d: 1.08, e: 0.9, f: 0.9, g: 0.9, h: 0.9)
These examples both have high 'h' values, which we've established as contributing to the rightward trajectory. Example 23 also has
a high 'd' value, which might also influence horizontal motion. Proposed params: a:0.9 b:0.9 c:0.95 d:1.1 e:0.87 f:0.9 g:0.87 h:1.25
This parameter set combines the high 'h' and 'd' values observed in the successful examples, while slightly reducing 'e' and 'g' to
potentially control forward momentum. The increased 'c' value is included for additional horizontal influence.

We increase the value of g to 1.6, based on its correlation with rightward landing. This is a moderate increase, aiming for a more
pronounced effect without going too high. We keep h at 1.1, as it has not shown a strong effect on landing position. We leave a, b, c,
d, e, f unchanged, as they have not significantly influenced the landing side in the given examples. This proposed parameter set aims
to further increase the rightward landing by influencing the trajectory direction.
Proposed params: a:0.87 b:0.87 c:0.87 d:0.87 e:0.87 f:0.87 g:1.6 h:1.1

The landing side of the ball is determined by the parameter g, which controls the robot's ability to hit the ball towards the right. A
higher value for g results in the ball landing further to the right. In Examples 26-31 (Iteration 2-7), we observe that increasing the
value of g leads to the ball landing on the right side of the table, whereas in all the other examples the ball landed on the left side.
Proposed params: a:0.87 b:0.87 c:0.87 d:0.87 e:0.87 f:0.87 g:1.75 h:1.2

Observations: Parameter g: Increasing parameter g consistently shifts the landing position towards the right side of the table.
Parameters h: Higher h values tend to result in a ball landing further on the right side. However, the effect is less consistent than
parameter g. Parameter e: Increasing e value leads to a faster ball and a wider trajectory, but the effect on landing position is not as
pronounced as g and h. Overall: The examples with the highest values for g and h (Iteration 2-13) have the most consistent
rightward landing positions, despite some variability.Proposed params: a:0.87 b:0.87 c:0.87 d:0.87 e:0.87 f:0.87 g:1.85 h:1.35

Fig. 8: Self-Improvement via SAS: transparent points show in-context examples at start; all sampled from a narrow area
on the left side (transparent points). The task is to Hit the ball as far right as possible. Text boxes show responses at
iterations.

0

1

23

4
5

6 10
7

8

911

1 2

13

14

15

2

4

6

8

10

12

14

Iteration Iteration

20

15

10

25

30

0

1

2

3

45

6

78

9 1011
1213 1415

16
17

18

19
20

21
23

24
26

27

28

29

30

31

3225
3334

5

35

Fig. 9: Self-Improvement Results: visualization of the
learning process during the self-improvement task on a real-
robot. The objective is to learn to hit to the far right side.

position towards the right side of the table. Parameters h:
Higher h values tend to result in a ball landing further on
the right side. However, the effect is less consistent than
parameter g.”. The analysis can be regarded as a textual
gradient – it relates changes in parameter values to changes
in task objectives and outcomes. This textual formulation
of a gradient, in turn, informs the synthesis/update of new
parameter values as can be seen in the provided justification
at iteration 1, e.g., “This parameter set combines the high
’h’ and ’d’ values observed in the successful examples,
while slightly reducing ’e’ and ’g’ to potentially control
forward momentum. The increased ’c’ value is included
for additional horizontal influence.”. Please note that the
LLM is articulating the real-world implications of parameter
changes, i.e., forward momentum and horizontal influence,
thereby attempting to uncover their inherent meaning. Ad-
ditional self-improvement experiments on the real robot are
shown in Fig. 9.

D. SAS Self-Improvement: Simulation Results

We also conducted a larger set of experiments using a pub-
licly available robot table tennis simulation [37] in Mujoco.
We provided three different self-improvement objectives,
namely (S1) “Hit the ball to the far right!”, (S2) “Hit the

Objective Init. Dist. Final Dist. Median Land Pos
Mean Std. Mean Std. X Y

S1: Right 0.677 0.156 0.231 0.070 0.511 0.790
S2: Top 1.040 0.086 0.270 0.295 -0.213 1.233
S3: Left Cor. 1.277 0.147 0.342 0.201 -0.529 1.227

TABLE II: Distance to the goal before and after training
and median position are shown. All numbers are shown in
meters.

ball to the top edge!” and (S3) “Hit the ball to the left
corner!” and ran 20 experiments for each objective. In each
experiment, 30 iterations of self-improvement are conducted.
In S2 and S3, we provided only in-context examples from
the lower half of the table. Table II holds the results of
this experiment. Depicted are the mean distance of the in-
context examples from the goal at the start of the experiment,
as well as the distance of the landing positions after self-
improvement. Additionally, it also shows the median position
from the final landing positions after self-improvement. We
observe that in S1 the median X position is above 0.5m,
showing a clear trend towards the right side of the table. In
S2 and S3 the Y position is above 1.2m indicating a shift
towards the top edge of the table (the edge of the table being
at Y = 1.37m). Only in S3 is the X position shifted to the
left of the table after training, i.e., negative X dimension.
These results show that all three objectives were successfully
realized with substantial changes in ball landing positions.

VI. CONCLUSION

In this paper, we introduced the SAS prompt – a prompting
technique for robot self-improvement and adaptation through
explainable updates to policy parameters. Our approach
provides a pathway towards new types of robot learning algo-
rithms that are fully implemented within foundation models,
e.g., all elements of the learning loop occur within the
LLM. For future work, we hope to investigate scaling up the
approach to higher dimensionality tasks and environments.

REFERENCES

[1] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman,
Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette
Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, S. Buch,
Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen,
Kathleen A. Creel, Jared Davis, Dora Demszky, Chris Donahue,
Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy,
Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E.
Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel
Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E.
Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff
Keeling, Fereshte Khani, O. Khattab, Pang Wei Koh, Mark S. Krass,
Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak,
Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P.
Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Benjamin Newman, Allen Nie, Juan Car-
los Niebles, Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Robert Reich, Hongyu Ren,
Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher
R’e, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih,
Krishna Parasuram Srinivasan, Alex Tamkin, Rohan Taori, Armin W.
Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu,
Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,
Jiaxuan You, Matei A. Zaharia, Michael Zhang, Tianyi Zhang, Xikun
Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
On the opportunities and risks of foundation models. ArXiv, 2021.

[2] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian
ichter, Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou. Chain-of-
thought prompting elicits reasoning in large language models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates, Inc., 2022.

[3] Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-
level prompt generation for large language models of code. In
International Conference on Machine Learning, pages 31693–31715.
PMLR, 2023.

[4] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann,
Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H.
Chi, Denny Zhou, and Jason Wei. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association
for Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 13003–13051. Association for Computational Linguistics,
2023.

[5] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer,
Henryk Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil,
Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reason-
ing problems with language models. Advances in Neural Information
Processing Systems, 35:3843–3857, 2022.

[6] Suvir Mirchandani, Fei Xia, Pete Florence, brian ichter, Danny Driess,
Montserrat Gonzalez Arenas, Kanishka Rao, Dorsa Sadigh, and Andy
Zeng. Large language models as general pattern machines. In 7th
Annual Conference on Robot Learning, 2023.

[7] Alex Irpan, Alexander Herzog, Alexander Toshkov Toshev, Andy
Zeng, Anthony Brohan, Brian Andrew Ichter, Byron David, Carolina
Parada, Chelsea Finn, Clayton Tan, Diego Reyes, Dmitry Kalashnikov,
Eric Victor Jang, Fei Xia, Jarek Liam Rettinghouse, Jasmine Chiehju
Hsu, Jornell Lacanlale Quiambao, Julian Ibarz, Kanishka Rao, Karol
Hausman, Keerthana Gopalakrishnan, Kuang-Huei Lee, Kyle Alan
Jeffrey, Linda Luu, Mengyuan Yan, Michael Soogil Ahn, Nicolas
Sievers, Nikhil J Joshi, Noah Brown, Omar Eduardo Escareno Cortes,
Peng Xu, Peter Pastor Sampedro, Pierre Sermanet, Rosario Jauregui
Ruano, Ryan Christopher Julian, Sally Augusta Jesmonth, Sergey
Levine, Steve Xu, Ted Xiao, Vincent Olivier Vanhoucke, Yao Lu,
Yevgen Chebotar, and Yuheng Kuang. Do as i can, not as i say:
Grounding language in robotic affordances. 2022.

[8] Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-
robot collaboration with large language models. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pages
286–299. IEEE, 2024.

[9] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman,
Brian Ichter, Pete Florence, and Andy Zeng. Code as policies:

Language model programs for embodied control. In arXiv preprint
arXiv:2209.07753, 2022.

[10] Jacky Liang, Fei Xia, Wenhao Yu, Andy Zeng, Montse Gonzalez
Arenas, Maria Attarian, Maria Bauzá, Matthew Bennice, Alex Bewley,
Adil Dostmohamed, Chuyuan Fu, Nimrod Gileadi, Marissa Giustina,
Keerthana Gopalakrishnan, Leonard Hasenclever, Jan Humplik, Jas-
mine Hsu, Nikhil J. Joshi, Ben Jyenis, Chase Kew, Sean Kirmani,
Tsang-Wei Edward Lee, Kuang-Huei Lee, Assaf Hurwitz Michaely,
Joss Moore, Kenneth Oslund, Dushyant Rao, Allen Ren, Baruch
Tabanpour, Quan Ho Vuong, Ayzaan Wahid, Ted Xiao, Ying Xu,
Vincent Zhuang, Peng Xu, Erik Frey, Ken Caluwaerts, Ting-Yu Zhang,
Brian Ichter, Jonathan Tompson, Leila Takayama, Vincent Vanhoucke,
Izhak Shafran, Maja Mataric, Dorsa Sadigh, Nicolas Manfred Otto
Heess, Kanishka Rao, Nik Stewart, Jie Tan, and Carolina Parada.
Learning to learn faster from human feedback with language model
predictive control. In Robotics Science and Systems, 2024.

[11] Jan Peters and Stefan Schaal. Policy gradient methods for robotics.
In 2006 IEEE/RSJ international conference on intelligent robots and
systems, pages 2219–2225. IEEE, 2006.

[12] Stefan Wermter and Mark Elshaw. Learning robot actions based on
self-organising language memory. Neural Networks, 16(5-6):691–699,
2003.

[13] Yuuya Sugita and Jun Tani. A holistic approach to compositional
semantics: a connectionist model and robot experiments. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information
Processing Systems, volume 16. MIT Press, 2003.

[14] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space. In
International Conference on Learning Representations, 2013.

[15] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, An-
drew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[16] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.
[17] Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee,

Chitta Baral, and Heni Ben Amor. Language-conditioned imitation
learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139–13150, 2020.

[18] Corey Lynch and Pierre Sermanet. Language Conditioned Imitation
Learning Over Unstructured Data. In Proceedings of Robotics: Science
and Systems, Virtual, July 2021.

[19] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete
Florence, Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen
Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In 6th Annual Conference on Robot
Learning.

[20] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler,
Wei-Lun Chao, and Yu Su. Llm-planner: Few-shot grounded planning
for embodied agents with large language models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages
2998–3009, 2023.

[21] Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and
motion planning with large language models for object rearrangement.
In 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2086–2092. IEEE, 2023.

[22] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang,
Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Eureka: Human-level reward design via coding large
language models. In The Twelfth International Conference on Learning
Representations, 2024.

[23] Letian Fu, Huang Huang, Gaurav Datta, Lawrence Yunliang Chen,
William Chung-Ho Panitch, Fangchen Liu, Hui Li, and Ken Goldberg.
In-context imitation learning via next-token prediction. arXiv preprint
arXiv:2408.15980, 2024.

[24] Norman Di Palo and Edward Johns. Keypoint Action Tokens En-
able In-Context Imitation Learning in Robotics. In Proceedings of
Robotics: Science and Systems, Delft, Netherlands, July 2024.

[25] Jacky Liang, Fei Xia, Wenhao Yu, Andy Zeng, Montserrat Gonza-
lez Arenas, Maria Attarian, Maria Bauza, Matthew Bennice, Alex
Bewley, Adil Dostmohamed, Chuyuan Kelly Fu, Nimrod Gileadi,
Marissa Giustina, Keerthana Gopalakrishnan, Leonard Hasenclever,
Jan Humplik, Jasmine Hsu, Nikhil Joshi, Ben Jyenis, Chase Kew, Sean
Kirmani, Tsang-Wei Edward Lee, Kuang-Huei Lee, Assaf Hurwitz
Michaely, Joss Moore, Ken Oslund, Dushyant Rao, Allen Ren, Baruch
Tabanpour, Quan Vuong, Ayzaan Wahid, Ted Xiao, Ying Xu, Vincent
Zhuang, Peng Xu, Erik Frey, Ken Caluwaerts, Tingnan Zhang, Brian

Ichter, Jonathan Tompson, Leila Takayama, Vincent Vanhoucke, Izhak
Shafran, Maja Mataric, Dorsa Sadigh, Nicolas Heess, Kanishka Rao,
Nik Stewart, Jie Tan, and Carolina Parada. Learning to learn faster
from human feedback with language model predictive control, 2024.

[26] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander
Novikov, Matej Balog, M. Kumar, Emilien Dupont, Francisco Ruiz,
Jordan Ellenberg, Pengming Wang, Omar Fawzi, Pushmeet Kohli, and
Alhussein Fawzi. Mathematical discoveries from program search with
large language models. Nature, 625, 12 2023.

[27] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le,
Denny Zhou, and Xinyun Chen. Large language models as optimizers.
September 2023.

[28] Michael Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and
Jimmy Ba. Using large language models for hyperparameter opti-
mization. In NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023.

[29] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters.
Learning to select and generalize striking movements in robot table
tennis. The International Journal of Robotics Research, 32(3):263–
279, 2013.

[30] David B D’Ambrosio, Navdeep Jaitly, Vikas Sindhwani, Ken Oslund,
Peng Xu, Nevena Lazic, Anish Shankar, Tianli Ding, Jonathan
Abelian, Erwin Coumans, Gus Kouretas, Thinh Nguyen, Justin Boyd,
Atil Iscen, Reza Mahjourian, Vincent Vanhoucke, Alex Bewley,
Yuheng Kuang, Michael Ahn, Deepali Jain, Satoshi Kataoka, Omar E
Cortes, Pierre Sermanet, Corey Lynch, Pannag R Sanketi, Krzysztof
Choromanski, Wenbo Gao, Juhana Kangaspunta, Krista Reymann,
Grace Vesom, Sherry Q Moore, Avi Singh, Saminda W Abeyruwan,
and Laura Graesser. Robotic Table Tennis: A Case Study into a High

Speed Learning System. In Proceedings of Robotics: Science and
Systems, Daegu, Republic of Korea, July 2023.

[31] Saminda Wishwajith Abeyruwan, Laura Graesser, David B
D’Ambrosio, Avi Singh, Anish Shankar, Alex Bewley, Deepali
Jain, Krzysztof Marcin Choromanski, and Pannag R Sanketi.
i-sim2real: Reinforcement learning of robotic policies in tight
human-robot interaction loops. In Conference on Robot Learning,
pages 212–224. PMLR, 2023.

[32] David B. D’Ambrosio, Saminda Abeyruwan, Laura Graesser, Atil
Iscen, Heni Ben Amor, Alex Bewley, Barney J. Reed, Krista Rey-
mann, Leila Takayama, Yuval Tassa, Krzysztof Choromanski, Erwin
Coumans, Deepali Jain, Navdeep Jaitly, Natasha Jaques, Satoshi
Kataoka, Yuheng Kuang, Nevena Lazic, Reza Mahjourian, Sherry
Moore, Kenneth Oslund, Anish Shankar, Vikas Sindhwani, Vincent
Vanhoucke, Grace Vesom, Peng Xu, and Pannag R. Sanketi. Achiev-
ing human level competitive robot table tennis. arXiv preprint
arXiv:2408.03906, 2024.

[33] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic op-
timization. In International Conference on Learning Representations
(ICLR), San Diega, CA, USA, 2015.

[34] John A Nelder and Roger Mead. A simplex method for function
minimization. The computer journal, 7(4):308–313, 1965.

[35] LA Rastrigin. The convergence of the random search method in the
extremal control of a many parameter system. Automaton & Remote
Control, 24:1337–1342, 1963.

[36] David Ackley. A connectionist machine for genetic hillclimbing,
volume 28. Springer science & business media, 2012.

[37] Fabian Otto, Onur Celik, Dominik Roth, and Hongyi Zhou. Fancy
gym.

	Introduction
	Related Work
	Robot Table Tennis
	Methodology
	The Summarize, Analyze, Synthesize Prompt

	Evaluation and Results
	Numerical Optimization inside the LLM
	SAS Retrieval Experiments: Real Robot
	SAS Self-Improvement Experiments: Real Robot
	SAS Self-Improvement: Simulation Results

	Conclusion
	References

