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ABSTRACT

For centuries, scientists have manually designed closed-form ordinary differential
equations (ODEs) to model dynamical systems. An automated tool to distill closed-
form ODEs from observed trajectories would accelerate the modeling process.
Traditionally, symbolic regression is used to uncover a closed-form prediction
function a = f(b) with label-feature pairs (ai, bi) as training examples. However,
an ODE models the time derivative ẋ(t) of a dynamical system, e.g. ẋ(t) =
f(x(t), t), and the “label” ẋ(t) is usually not observed. The existing ways to bridge
this gap only perform well for a narrow range of settings with low measurement
noise and frequent sampling. In this work, we propose the Discovery of Closed-
form ODE framework (D-CODE), which advances symbolic regression beyond the
paradigm of supervised learning. D-CODE uses a novel objective function based on
the variational formulation of ODEs to bypass the unobserved time derivative. For
formal justification, we prove that this objective is a valid proxy for the estimation
error of the true (but unknown) ODE. In the experiments, D-CODE successfully
discovered the governing equations of a diverse range of dynamical systems under
challenging measurement settings with high noise and infrequent sampling.

1 INTRODUCTION

An ordinary differential equation (ODE) links the state of a continuous-time dynamical system x(t)
to its time derivative ẋ(t) via a function f , e.g. ẋ(t) = f(x(t), t). The ODE is closed-form when f
has a concise and analytical expression (e.g. f(x, t) = −t log(x)). Closed-form ODEs are ubiquitous
in science and engineering. The popularity is partly due to their transparency and interpretability to
human experts (Petersen et al., 2019). Their concise functional form also facilitates the analysis of
many key properties of the dynamical system, e.g. asymptotic stability (Lyapunov, 1992).

However, the discovery of closed-form ODEs has been laborious and time-consuming as it heavily
relies on human experts (Simmons, 1972). The goal of this work is to discover closed-form ODEs in
an automated and data-driven way. We envision that such a tool would accelerate the quantitative
modeling of dynamical systems, with applications ranging from discovering the kinetics of bio-
chemical reactions to modeling tumor growth (Schuster, 2019; Geng et al., 2017).

Symbolic regression is an established approach to discover a closed-form function a = f(b) for
predicting the label a from the feature b. It operates in the supervised learning setting and requires a
dataset of label-feature pairs for training, i.e. D = {ai, bi}Ni=1 (Schmidt & Lipson, 2009).

However, symbolic regression is not directly applicable to ODEs because we usually do not observe
the time derivative ẋ(t), i.e. the labels for regression are not available in the data. In contrast, we only
have access to the measurements of state y(t) = x(t) + ε at some discrete time points and with noise.
For instance, the datasets for tumor growth modeling typically contain tumor volumes measured at
different clinical visits with substantial noise (Wilkerson et al., 2017; Mazaheri et al., 2009). We refer
to this problem as the equation-data mismatch.

A simple way to resolve this mismatch is to estimate ẋ(t) from data (e.g. by numerical differentiation
(Bickley, 1941)), and use the estimated derivatives as labels for regression (Gaucel et al., 2014).
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However, it is very challenging to recover the time derivative under high measurement noise or
infrequent sampling (Cullum, 1971), and symbolic regression tends to perform poorly with inaccurate
labels (Žegklitz & Pošı́k, 2021). This is an substantial drawback because many applications, such as
healthcare, may involve noisy or infrequently sampled data (Jensen et al., 2014).

In this work, we develop the Discovery of Closed-form ODE framework (D-CODE), which extends
symbolic regression beyond the supervised learning setting. The key insight behind D-CODE is
the variational formulation of ODE (Hackbusch, 2017), which establishes a direct link between the
trajectory x(t) and the ODE f while bypassing the unobservable time derivative ẋ(t). We develop a
novel objective function based on this insight, and prove that it is a valid proxy for the estimation
error of the true (but unknown) ODE. We demonstrate via extensive experiments that D-CODE can
uncover the governing equations for a diverse range of dynamical systems while being substantially
more robust to measurement artifacts than the alternative methods. Finally, D-CODE is designed as a
general framework, where some of its components can be flexibly adapted based on the application.

2 BACKGROUND AND PROBLEM SETTING

Curating a dataset of trajectories for ODE discovery involves many decisions, e.g. What variables to
include? When and for how long to take measurements? (we discuss dataset curation in Appendix
C.) In this work, we assume the dataset is given and the variables can be modeled by a system of
first-order autonomous ODEs (Eq. 1). We note that higher-order or time-dependent ODEs can be
represented in this form by curating a dataset with additional variables (Simmons, 1972) (Appendix
B). The system with J ∈ N+ variables is defined as

ẋj(t) = fj(x(t)), ∀j = 1, . . . , J, ∀t ∈ [0, T ] (1)

where we use Newton’s notation ẋj(t) for the time derivative. The functions fj : RJ → R will be
sometimes referred to as the ODEs directly. We denote T ∈ R+ as the maximum time horizon we
have data for. We highlight the following distinction: the trajectory xj : [0, T ]→ R is a function of
time, whereas the state xj(t) ∈ R, ∀t ∈ [0, T ] is a point on the trajectory1. We denote the state vector
x(t) := [x1(t), . . . , xJ(t)]> ∈ RJ and the vector-valued trajectory function x := [x1, . . . , xJ ].

Let f∗j ’s be the true but unknown ODEs to be uncovered, and xi : [0, T ]→ RJ , i ≤ N , N ∈ N+ be
the true trajectories that satisfy f∗j ’s. In practice, we only measure the true trajectories at discrete
times and with noise. Denote the measurement of trajectory i at time t as yi(t) ∈ RJ ; we assume

yi(t) = xi(t) + εi(t), ∀i ≤ N, t ∈ T (2)

where εi(t) ∈ RJ is zero-mean noise with standard deviation σ. The measurements are made at time
t ∈ T = {t1, t2, . . . , T}. We denote the dataset as D = {yi(t)|i ≤ N, t ∈ T }.
Closed form. The function fj : RJ → R has a closed form if it can be expressed as a finite sequence
of operations (+,÷, log, . . .), input variables (x1, x2, . . .) and numeric constants (1.5, 0.8, . . .) (Bor-
wein et al., 2013). The functional form of fj is the expression with all the numeric constants replaced
by placeholders θk’s, e.g. fj(x) = θ1x · log(θ2x). To fully uncover f∗j , we need to infer its functional
form and estimate the unknown constants θk’s (if any).

Variational formulation. The variational formulation provides a direct link between the trajectory
x and the ODE fj without involving ẋ (Hackbusch, 2017). We start with the following definition.

Definition 1. Consider J ∈ N+, T ∈ R+, continuous functions x : [0, T ]→ RJ , f : RJ → R, and
g ∈ C1[0, T ], where C1 is the set of continuously differentiable functions. We define the functionals

Cj(f,x, g) :=

∫ T

0

f
(
x(t)

)
g(t)dt+

∫ T

0

xj(t)ġ(t)dt; ∀j ∈ {1, 2, . . . , J} (3)

Importantly, the functional Cj depends on the testing function g(t) and its derivative ġ(t) but not ẋj .
Proposition 1 below provides the variational formulation of ODE. Essentially it specifies the infinitely
many constraints that x has to satisfy in order to be a solution to the ODE. (see Appendix A).

1We restrict the domain of the function xj to [0, T ] (rather than R+) because we only have data up to T .
However, after learning the ODE, we can extrapolate xj beyond T (Appendix D).
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Table 1: Comparison of related works. “Data”: the observed variables. “Allowed f∗”: the space of discoverable
functions. “Est.”: the quantities estimated in the intermediate step. “ẋ Free”: is the method not reliant on ẋ?
“x(0) Free”: is the method not reliant on initial condition x(0)? “Objective”: the objective function. References:
[1] Schmidt & Lipson (2009), [2] Brunton et al. (2016), [3] Gaucel et al. (2014) , [4] Chen et al. (2018).

Method Data Allowed f∗ Est. ẋ Free x(0) Free Objective

Symbolic Reg [1] a, b Closed-form None - - ||a− f(b)||2
2-step Sparse [2] y(t)

∑
θkhk(x) ̂̇x × X

∑
t ||̂̇x(t)− f(y(t))||2

2-step Symbolic [3] y(t) Closed-form ̂̇x × X
∑
t ||̂̇x(t)− f(y(t))||2

ODE Approx [4] y(t) Neural nets x̂(0) X ×
∑
t ||y(t)− x̂(t)||2

D-CODE y(t) Closed-form x̂ X X Equation 5

Proposition 1. (Hackbusch, 2017) Consider J ∈ N+, T ∈ R+, a continuously differentiable function
x : [0, T ]→ RJ , and continuous functions fj : RJ → R for j = 1, . . . , J . Then x is the solution to
the system of ODEs in Equation 1 if and only if

Cj(fj ,x, g) = 0, ∀j ∈ {1, . . . , J}, ∀g ∈ C1[0, T ], g(0) = g(T ) = 0 (4)

3 RELATED WORK

3.1 SYMBOLIC REGRESSION

Symbolic regression attempts to uncover a closed-form prediction function a = f(b) using supervised
learning (Table 1). The main challenge is optimization: searching for the optimal f is thought to
be NP-hard because the space of closed-form functions is vast and complex—it is combinatorial
in the functional form and continuous in the numeric constants (Lu et al., 2016). Therefore, most
existing work focuses on developing optimization algorithms. Genetic programming has been one of
the most successfully and widely used methods (Koza, 1994; Schmidt & Lipson, 2009). It represents
f as a tree where the internal nodes are operations and the leaves are variables or constants (Figure
1 B). It then applies genetic algorithm to search for the best tree representation (Forrest, 1993).
More recently, AI Feynman introduces a set of heuristics to directly prune the search space, thereby
improving the optimization efficiency (Udrescu & Tegmark, 2020). Optimization methods based on
reinforcement learning (Petersen et al., 2019), pre-trained neural networks (Biggio et al., 2021), and
Meijer G-functions (Alaa & van der Schaar, 2019) have also been proposed.

All methods above use prediction error (e.g. RMSE) as the objective, which is not applicable to ODE
discovery because the label (time derivative) is not observed. D-CODE advances symbolic regression
beyond the supervised learning setting and addresses the unique challenges for ODE discovery: the
equation-data mismatch and the sensitivity to noisy or infrequent observations.

3.2 DATA-DRIVEN DISCOVERY OF CLOSED-FORM ODES

Two-step sparse regression performs sparse regression on the estimated time derivative ̂̇xj (Brunton
et al., 2016; Rudy et al., 2017). It assumes that the true ODE can be symbolically expressed in a
linear form: ẋj(t) =

∑K
k=1 θkhk(x(t)) where θk ∈ R are unknown constants and hk : RD → R

are pre-specified candidate functions, such as monomials x, x2, . . . (Table 1). The method uses L1
regularization on θk to ensure the learned function only contains a few terms. We review the methods
to estimate time derivative in Appendix E.

However, the assumed linear form is very restrictive (e.g. x3/2 or 1/(x + 2) are not allowed). In
fact, it cannot symbolically represent many well-known ODEs (e.g. generalized logistic model).
Furthermore, the choice of candidate functions heavily depends on the human experts, which deviates
from our goal of automated and data-driven ODE discovery.

Two-step symbolic regression also uses the estimated time derivatives ̂̇xj as the label but applies
symbolic regression instead (Gaucel et al., 2014) (Table 1). It may use any optimization method
discussed in Section 3.1 to search for the optimal function. In this way, it removes the linear
assumption on the functional form and can discover closed-form functions in general.
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Figure 1: (A) Illustration of D-CODE (compared with two-step symbolic regression). Both algorithms
involve two steps, but they (1) estimate different variables in step one and (2) optimize different
objective functions in step two. (B) An example of closed-form function and its tree representation.

The main difficulty is that the true label (the derivative) may not be accurately recoverable due to
measurement and discretization error, but symbolic regression is sensitive to inaccurate labels because
of the large search space (Agapitos et al., 2012). As we show experimentally in Section 5, even with
the state-of-the-art methods for estimating derivatives, this approach still often fails when the noise is
relatively low. We briefly review the methods for estimating derivatives from y(t) in Appendix E and
show why this is generally a very challenging problem in Section 4.2.

The function approximator approach learns the true ODE with a function approximator f̂ , such
as a neural network (NN) (Chen et al., 2018; Rubanova et al., 2019) or a Gaussian process (GP)
(Heinonen et al., 2018). It estimates the unknown initial condition x̂(0) and predicts the entire
trajectory x̂ by solving the initial value problem (IVP) of the approximated ODE f̂ . The model is
trained by minimizing the prediction error between predicted and the observed trajectories (Table 1).

Importantly, the function approximator approach does not give a concise closed-form expression
to describe the dynamics, which is the main objective of this work. Furthermore, its performance
strongly depends on the prediction horizon used for training. Using an inappropriate horizon may fail
with certain type of systems, e.g. chaotic systems (Ditto & Munakata, 1995). We further discuss this
issue and provide experimental results in Appendix H.2.

4 METHOD

4.1 THE D-CODE ALGORITHM

D-CODE consists of a preprocessing step and an optimization step. Figure 1 provides a schematic
illustration of D-CODE and Appendix B provides the pseudocode. The two steps are detailed below.

Preprocessing. D-CODE starts by estimating the trajectories x̂i : [0, T ] → RJ , i ≤ N from the
noisy and discretely-sampled data D as an approximation to the true trajectories xi. Denoising and
interpolating signals is a well-studied problem in statistics and signal processing, with many proven
solutions including Gaussian process and spline regression (Bernardo et al., 1998; Marsh & Cormier,
2001). The D-CODE framework is agnostic to the exact choice of the smoothing algorithm. The user
should choose a suitable algorithm based on the application and adopt best practices (e.g. Is the noise
distribution Gaussian? Are the measurements made at regular intervals? etc.).

Optimization. After estimating the trajectories x̂i, we search for the function f̂j , ∀j ≤ J that is
consistent with x̂i. Specifically, we solve the following optimization problems for all j ≤ J :

f̂j = arg min
f

N∑
i=1

S∑
s=1

Cj(f, x̂i, gs)
2, (5)
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where Cj is the functional defined in Equation 3 and computed using numerical integration (Davis
& Rabinowitz, 2007). The search space of f is the set of closed-form functions, and the user may
instantiate D-CODE with any optimization algorithm proposed for symbolic regression (Section 3).
We use a set of pre-defined testing functions gs ∈ C1[0, T ], s ≤ S (to be discussed in Section 4.2).

Comparison with two-step symbolic regression. As depicted in Figure 1, D-CODE and two-step
symbolic regression have two main differences. (1) The estimands in the pre-processing steps are
different: D-CODE estimates the true trajectory x while the two-step symbolic regression estimates
the time derivative. (2) The optimization objectives are different: D-CODE optimizes the loss function
in Equation 5 while the two-step symbolic regression optimizes the prediction loss, e.g. RMSE.

4.2 THEORETICAL RESULTS

In this section we provide a formal justification of the objective in Eq. 5 and describe the shortcomings
of the objectives used in other methods (Table 1). For ease of exposition, we assume that our dataset
contains only one trajectory, i.e. N = 1. The results can be easily extended to multiple trajectories.

Distance between f and f∗. A reasonable objective should measure the distance between a candidate
function f and the target function f∗ (i.e. the true ODE). By minimizing the distance, the candidate
f would better approximate f∗. A common way to measure the distance between functions is to use
the metrics induced by Lp norms of the function space. However, the Lp norms consider the values
in the entire domain RJ . This is a disadvantage because most dynamical systems in nature operate
within specific range and scale, and RJ contains areas where we do not have knowledge about or
cannot collect data from. A natural solution is to restrict the comparison on the trajectory x, which
can be achieved by composing f and f∗ with x. We propose the following distance function:

dx(f, f∗) := ||f ◦ x− f∗ ◦ x||2 = ||(f − f∗) ◦ x||2 (6)

where ◦ denotes function composition and x is a true trajectory satisfying the ODE f∗. In Appendix
A, we further justify and discuss the properties of dx(f, f∗). However, in practice, the dx(f, f∗)
cannot be computed from data because it depends on the unknown f∗ and x. Next, we show that the
objective in Eq. 5, which is computable from data, can be used to approximate this distance.

Convergence to distance. The first step of our algorithm estimates a trajectory x̂ from the measure-
ments {y(t)|t ∈ T } as an approximation to the true trajectory x. For a suitable smoothing algorithm,
if we increase the number of samples on the trajectory, the recovered trajectory should converge to
the ground truth. This is achieved, for instance, by spline regression (Stone, 1985; 1994) or Gaussian
processes Choi & Schervish (2007). If this is the case, Theorem 1 shows that given high enough
sampling frequency and large enough number of testing functions our objective converges to the
squared distance dx(f, f∗)2, which measures how different f is from f∗. That justifies our objective.
Theorem 1. Consider J ∈ N+, j ∈ {1, . . . , J}, T ∈ R+. Let f∗ : RJ → R be a continuous function,
and let x : [0, T ] → RJ be a continuously differentiable function satisfying ẋj(t) = f∗(x(t)).
Consider a sequence of functions (x̂k), where x̂k : [0, T ] → RJ is a continuously differentiable
function. If (x̂k) converges to x in L2 norm. Then for any Lipschitz continuous function f

lim
S→∞

lim
k→∞

S∑
s=1

Cj(f, x̂k, gs)
2 = dx(f, f∗)2, (7)

where {g1, g2, . . . } is a Hilbert (orthonormal) basis for L2[0, T ] such that ∀i, gi(0) = gi(T ) = 0
and gi ∈ C1[0, T ].

We provide the proof of Theorem 1 in the Appendix A.

Comparison with other methods. Theorem 1 does not place any additional constraints regarding
the smoothing algorithm apart from the convergence of the regression function. In general, the
convergence of functions does not imply the convergence of the derivatives (example in Appendix
A). That means that in contrast to D-CODE, other objectives in Table 1 place constraints on the
type estimation algorithm, i.e., the estimated derivative ˆ̇x needs to converge to the true derivative
ẋ. Even if the estimation algorithm satisfies this constraint (for instance, spline regression (Zhou
& Wolfe, 2000)), the convergence rate for derivatives is slower than for the functions themselves
(Stone, 1982). Convergence rate depends on the smoothness (differentiability class) of the function
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and differentiation reduces its differentiability class. Namely, if a true trajectory has a maximum
number of m continuous derivatives then its derivative ẋ has only m− 1 continuous derivatives.

Choice of testing functions. As stated in Theorem 1, we should use testing functions that are
orthonormal basis for L2[0, T ] and satisfy g(0) = g(T ) = 0. Ideally, they should also have analytical
time derivatives ġ(t) for efficient computation of the functional C (Eq. 3). Hence, a natural choice
is the sine functions gs(t) =

√
2/T · sin(sπt/T ), which we will use in all the main experiments.

Another possibility is the cubic spline functions (investigated in Appendix G). Although Theorem 1
uses infinitely many testing functions to establish convergence, we observe in the experiments that
typically 40-60 sine functions are sufficient (a sensitivity analysis is conducted in Appendix G).

5 EXPERIMENTS AND EVALUATION

In this section, we perform a series of simulations to evaluate whether the algorithms can discover
the underlying closed-form ODEs that govern the observed trajectories.2

Choice of dynamical systems. In this study, we select five dynamical systems governed by nine
closed-form ODEs (one of them is discussed and examined in Appendix G due to space limit). The
selected systems have varying complexity and different properties of the temporal dynamics. We
start with two common growth models, the Gompertz model and the generalized logistic model
(Gompertz, 1825; Richards, 1959). Both models involve one variable governed by a nonlinear
ODE and converging to a global fixed point. Next, we consider the glycolytic oscillator in bio-
chemistry (Sel’Kov, 1968), which is a standard benchmark problem for dynamical system prediction
and inference (Daniels & Nemenman, 2015a;b). The system involves two nonlinearly interacting
variables that converge to a oscillatory limit cycle. Finally, we consider the chaotic Lorenz system,
which involves three variables forming a strange attractor (Lorenz, 1963). Together, these systems
represent a range of temporal dynamics and application scenarios.

Measurement settings. For each dynamical system, we consider different measurement settings
specified by (1) the measurement noise level σR, (2) the sampling step size ∆t, and (3) the number
of trajectories N . Since the dynamical systems have different scales, we will report the noise-to-
signal ratio σR = σ/std(x(t)) for ease of comparison. We sample the system at regular intervals
T = {∆t, 2∆t, . . . T} to show the effect of changing sampling frequency. For each setting, we
perform 100 independent simulation runs to compute the evaluation metric and its confidence interval.

Data generation. For each trajectory, we first sample the initial condition xi(0) from a uniform
distribution (specified in Appendix F). Then we obtain the true xi by solving the IVP computationally.
Finally, we obtain yi(t) by adding independent Gaussian noise and sampling at discrete time steps.

Evaluation metrics. We use three metrics to study various aspects of the algorithms. (1) The
probability of successfully recovering the functional form (Success Prob.). We use a computer
algebra system to judge whether the true and discovered functional forms are equivalent (Meurer
et al., 2017) (e.g. θ1 + x1 ≡ x1 + θ1). (2) When the functional form is correct, we evaluate the
accuracy of the estimated constants θ̂ using root mean square error (RMSE). (3) We evaluate how
well the estimated f̂ approximates f∗ using the distance function in Equation 6 (Dist.). Note that it is
possible that f̂ has a wrong functional form but still approximates f∗ well.

Algorithm and Benchmarks. We instantiate D-CODE with Gaussian process for smoothing and
genetic programming for optimization due to their success and popularity in the literature (Gramacy,
2020; Schmidt & Lipson, 2009). Our main benchmark is the two-step symbolic regression method.
We consider three variants with different methods for estimating the derivative: Total variation
regularized differentiation (SR-T) (Chartrand, 2011), Spline-smoothed differentiation (SR-S) (Ahnert
& Abel, 2007), and Gaussian process smoothed differentiation (SR-G) (detailed in Appendix E). Note
that SR-G and D-CODE both fit Gaussian process in the pre-processing step but they use different
objective functions. For fairness of comparison, we use genetic programming for optimization in
all these benchmarks. We also compare with Neural ODEs in some cases, although it does not give
closed-form expressions. Appendix F contains further implementation details.

2The code is available at https://github.com/ZhaozhiQIAN/D-CODE-ICLR-2022.
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Figure 2: The success probability of the two growth models under different settings. The three columns
correspond to various noise levels σR, step sizes ∆t, and numbers of trajectories N . The two rows correspond
to the Gompertz model and the generalized logistic model. The shaded area is the 95% confidence interval.

Figure 3: Illustration of performance gain using a trajectory with moderate noise σR = 0.1. Panel A: the
trajectory x̂(t) estimated from the measurements y(t) is very close to the true trajectory x(t); hence, the first
step of D-CODE tends to have small error. Panels B and C: even with moderate noise on x(t), the estimated
derivatives ẋ(t) may suffer from very high variance (B: finite difference) or systematic bias (C: SR-T, SR-S).
Hence, two-step symbolic regression tends to under-perform due to high error in the first step.

5.1 RESULTS

Gompertz and generalized logistic growth models. These two models are widely used to capture
asymmetric growth with saturation. Their governing equations are as follows:

ẋ(t) = −θ1x(t) · log
(
θ2x(t)

)
Gompertz Model

ẋ(t) = θ1x(t) ·
(
1− x(t)θ2

)
Generalized Logistic Model

where θ1, θ2 > 0 are numeric constants. It is worth highlighting that the generalized logistic model
involves a constant θ2 ∈ R+ in the power of x(t). Therefore, it cannot be symbolically expressed
in a sparse linear form

∑K
k=1 θkhk(x(t)) for some candidate functions hk, and the two-step sparse

regression method cannot discover the exact functional form of this equation (Section 3.2).

The main simulation results are presented in Figure 2 (the RMSE and distance metrics follow
the same pattern and are shown in Appendix G. The discovered ODEs are shown in Appendix G
Table 4). D-CODE achieves comparable performance as the benchmarks in the low noise, small
step size settings (σR = 0.01), where the time derivative ẋ can be accurately estimated from the
observed trajectories. However, D-CODE consistently out-performs the benchmarks under the
more challenging measurement settings. With increased noise or step size, the success probabilities
decrease much more rapidly in the benchmarks compared to D-CODE. Note that although SR-G and
D-CODE both use Gaussian process in the pre-processing step, D-CODE achieves much stronger
performance. This suggests that D-CODE’s performance gain is mainly due to its objective function.

Figure 3 contextualizes the reason for performance gain with an illustrative example. The panel
A shows a typical observed trajectory with moderate measurement noise (σR = 0.1). Here, the
Gaussian process can produce a good estimate x̂(t) by de-noising the measurements. Its posterior
interval covers the true trajectory x(t). Hence, x̂(t) is suitable to guide the search for the ODE,
as is done in D-CODE. On the other hand, the moderate measurement noise on x(t) translates
into very high noise on the time derivative ẋ(t) (panel B). Even with the state-of-the-art numerical
differentiation methods used by SR-T and SR-S, the estimated derivative is still biased on certain
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Table 2: Simulation results of the glycolytic oscillator under different noise levels. The success probability and
the RMSE on θ1, θ3 are reported for the two equations. Standard deviations are shown in the brackets.

Equation Method Success Prob. RMSE θ̂ (10−2)
σR = 0.01 0.1 0.2 σR = 0.01 0.1 0.2

Eq. 8

SR-T 0.45 (.05) 0.27 (.05) 0.00 (.00) 1.19 (.15) 2.37 (.38) NA
SR-S 0.44 (.06) 0.11 (.04) 0.00 (.00) 1.67 (.24) 2.07 (.47) NA
SR-G 0.44 (.05) 0.05 (.02) 0.00 (.00) 1.87 (.22) 2.18 (.46) NA
D-CODE 0.58 (.05) 0.51 (.05) 0.26 (.05) 1.01 (.12) 1.55 (.28) 2.00 (.27)

Eq. 9

SR-T 0.99 (.03) 0.88 (.03) 0.00 (.00) 0.14 (.03) 0.43 (.03) NA
SR-S 0.95 (.02) 0.04 (.02) 0.00 (.00) 0.10 (.01) 0.41 (.18) NA
SR-G 0.99 (.01) 0.94 (.02) 0.25 (.04) 0.22 (.02) 1.10 (.07) 2.85 (.02)
D-CODE 1.00 (.00) 0.91 (.03) 0.65 (.05) 0.07 (.01) 0.40 (.07) 0.61 (.05)

Figure 4: Simulation results of the chaotic Lorenz system. First row: the success probabilities for the three
equations under different noise levels. Second row: simulated trajectories using true and estimated equations.

intervals (panel C). Thus, applying symbolic regression on the biased estimates is unlikely to perform
well, as is shown in the benchmark results. The same reasoning also applies to the scenario with large
sampling step size ∆t, another challenging situation for estimating the time derivatives.

Glycolytic oscillator. This biochemical oscillator consists of two ODEs (Sel’Kov, 1968):

ẋ1(t) = θ1 − θ2x1(t)− x1(t)x2(t)2 (8)

ẋ2(t) = −x2(t) + θ3x1(t) + x1(t)x2(t)2 (9)

where θ1, θ2, θ3 > 0 are numeric constants. Compared with the growth models above, the glycolytic
oscillator involves more variables and has more complex expressions. The two variables in the
equation interact in a highly nonlinear way through the term x1(t)x2(t)2.

The simulation results for the glycolytic oscillator are shown in Table 2. Here we report the success
probability in addition to the RMSE (×10−2) on the constants θ2, θ3, whose true values are set to 0.1
(other metrics are reported in Appendix G). D-CODE performs better or equally well compared to
the benchmarks in all metrics. Note that D-CODE is the only model that successfully recovered the
functional form under σR = 0.2 (The benchmarks’ RMSE are NA in this setting because they never
recovered the correct functional form).

Chaotic Lorenz system. The Lorenz system is a model system for chaotic dynamics, defined as:

ẋ1(t) = θ1
(
x2(t)− x1(t)

)
; ẋ2(t) = x1(t)

(
θ2 − x3(t)

)
− x2(t); ẋ3(t) = x1(t)x2(t)− θ3x3(t)

We set the constants as θ1 = 10, θ2 = 28, θ3 = 8/3, which leads to chaotic behaviour.
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The simulation results for the chaotic Lorenz system are shown in Figure 4. D-CODE’s robustness
to measurement noise is still evident when the underlying system is chaotic and non-periodic. The
benchmarks achieve high success probability only when the measurement noise is low. The second
row of Figure 4 shows a simulated trajectory in the phase space using the true or estimated ODEs
(with σR = 0.2). D-CODE generates a trajectory that is closest to the true one. SR-T fails because it
is unable to recover the true ODE under this noise level. Although the Neural ODE is trained on a
very short prediction horizon (0.04), it still fails to capture the non-periodic behavior of the system.

6 D-CODE IN ACTION

We apply D-CODE to model the temporal effect of chemotherapy on the tumor volume. For most
patients, the tumor volume decreases initially in response to the treatment but it eventually grows
again due to drug resistance. Although there exist many models for unintervened tumor growth,
few models can capture the effect of chemotherapy or the possibility of relapsing—in many cases
exponential decay (log cell-kill model) is used for a crude approximation (Geng et al., 2017).

We used the dataset collected by Wilkerson et al. (2017) based on eight clinical trials on cancer
patients. The patients started chemotherapy at time t = 0, and the trajectory of tumor volume are
measured for up to one year T = 1. In practice, the tumor volumes are inferred from medical scans
and are subject to significant measurement noise (Mazaheri et al., 2009). After data cleaning, we
obtained 310 trajectories, among which 200 is used for training and 110 for evaluation.

Figure 5: An observed trajectory
and the trajectories generated by
the two discovered ODEs. Values
are indexed at t = 0.

The following two ODEs are discovered by D-CODE and SR-T.

ẋ(t) = 4.48t2x(t) + log(t); D-CODE

ẋ(t) = 4x(t) log
(
tx(t)

)
log
(
tx(t) + 2t

)
; SR-T

The equation discovered by SR-T is much more complex than the
one found by D-CODE while still being a poor representation of
the data. Figure 5 shows an observed trajectory and the trajectories
generated by the two ODEs. D-CODE successfully captures the
relapse at t = 0.6 and predicts that, under no further intervention,
the tumor volume would keep growing after t > 0.6 until patient
death. In comparison, SR-T’s trajectory is almost constant.

We also quantitatively evaluate the prediction errors on the testing
set. Given the tumor size measured at t = 0, we solve the IVP to
obtain the full trajectory x and compute the RMSE between the est-
imated and the observed trajectory. D-CODE achieves an error of
0.220 compared with 0.637 of SR-T.

7 DISCUSSION ON FAILURE MODES AND OPEN CHALLENGES

Scientific discovery is a challenging process with no success guarantee. The same holds for ODE
discovery with D-CODE. Here we discuss the failure modes and the challenges for future work.

Unobserved variables. In some cases, certain external variables u(t) ∈ RL may also influence the
temporal dynamics, i.e. ẋj(t) = f

(
x(t),u(t)

)
. When u(t) is observed or known, D-CODE can

include these variables to discover the expanded equation. However, when they are unobserved,
the identification of system dynamics is challenging or even impossible without strong assumptions
(Ljung, 1998). In this case, D-CODE can still find an ODE based on the observed variables—this
ODE may still be a useful approximation but it will leave some dynamics unexplained.

Complex equations. The discovery algorithm may fail to discover highly complex ODEs. The
complexity can arise from two aspects: (1) x(t) may include many variables (high dimensionality)
or (2) the equation f∗ may include many mathematical operations (long expression). However, we
highlight that these settings are difficult in general, even for human experts with domain knowledge.

Extreme measurement settings. D-CODE may still fail when the measurement noise or step size is
too large. However, as we show experimentally, D-CODE is more robust to measurement artifacts
than the alternative discovery methods.
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ferential equations with orthogonality conditions. Journal of the American Statistical Association,
109(505):173–185, 2014.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Rick Chartrand. Numerical differentiation of noisy, nonsmooth data. International Scholarly Research
Notices, 2011, 2011.

10

https://github.com/ZhaozhiQIAN/D-CODE-ICLR-2022
https://github.com/ZhaozhiQIAN/D-CODE-ICLR-2022


Published as a conference paper at ICLR 2022

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. arXiv preprint arXiv:1806.07366, 2018.

Taeryon Choi and Mark J. Schervish. On posterior consistency in nonparametric regression problems.
Journal of Multivariate Analysis, 98(10):1969–1987, November 2007.

S-N Chow and Jack K Hale. Methods of bifurcation theory, volume 251. Springer Science & Business
Media, 2012.

Jane Cullum. Numerical differentiation and regularization. SIAM Journal on numerical analysis, 8
(2):254–265, 1971.

Bryan C Daniels and Ilya Nemenman. Automated adaptive inference of phenomenological dynamical
models. Nature communications, 6(1):1–8, 2015a.

Bryan C Daniels and Ilya Nemenman. Efficient inference of parsimonious phenomenological models
of cellular dynamics using s-systems and alternating regression. PloS one, 10(3):e0119821, 2015b.

Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier Corporation, 2007.

Carl De Boor. A practical guide to splines, volume 27. springer-verlag New York, 1978.

William Ditto and Toshinori Munakata. Principles and applications of chaotic systems. Communica-
tions of the ACM, 38(11):96–102, 1995.

Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte carlo sampling
methods for bayesian filtering. Statistics and computing, 10(3):197–208, 2000.

L. E. Elsgolc. Calculus of variations / L. E. Elsgolc. International series of monographs in pure
and applied mathematics ; Volume 19. Oxford, New York, Pergamon Press 1961, 1961. ISBN
1-4831-3756-2.

William F. Ford and James A. Pennline. When does convergence in the mean imply uniform
convergence? The American Mathematical Monthly, 114(1):58–60, 2007.

Stephanie Forrest. Genetic algorithms: principles of natural selection applied to computation. Science,
261(5123):872–878, 1993.
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A THEORETICAL RESULTS: PROOF AND DISCUSSION

A.1 VARIATIONAL FORMULATION OF ODE

Before we prove Proposition 1, we need the following lemma which is a particular formulation of the
Fundamental lemma of calculus of variations Elsgolc (1961).

Lemma (Fundamental lemma of calculus of variations). Let h be a continuous function on a closed
interval [0, T ]. h is equal to 0 everywhere if and only if

∫ T
0
h(t)g(t) dt = 0 for all g ∈ C1[0, T ] such

that g(0) = g(T ) = 0.

Proof. The forward direction is trivial, so let us focus on the converse.

Assume for contradiction that there is a point t0 ∈ [0, T ] such that h(t0) 6= 0. Without loss of
generality, assume that h(t0) > 0. From the continuity of h, we know that there is actually a point
t1 ∈ (0, T ), such that h(t1) > 0. Continuity of h implies that there exists δ > 0 and a small
neighbourhood (t1 − δ, t1 + δ) ⊂ (0, T ) such that h(t) > 0 ∀t ∈ (t1 − δ, t1 + δ).

We can now define a non-negative continuous function g : [0, T ] → [0,+∞) such that g(t) = 0
outside the neighbourhood (t1− δ, t1 + δ) and g(t) > 0 for some interval inside (t1− δ, t1 + δ). See
Figure 6 for an illustrative example.

Figure 6: A visual illustration of the proof of Fundamental lemma of calculus of variations

Then ∫ T

0

h(t)g(t) dt =

∫ t1+δ

t1−δ
h(t)g(t)dt > 0 (10)

That contradicts
∫ T
0
h(t)g(t) dt = 0 for all g ∈ C1[0, T ] such that g(0) = g(T ) = 0.

Proof of Proposition 1. Observe that

ẋj(t) = fj(x(t))⇐⇒ fj(x(t))− ẋj(t) = 0 (11)
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Now using Fundamental lemma of calculus of variations, we get that the following two statements
are equivalent

fj(x(t))− ẋj(t) = 0 ∀t ∈ [0, T ]∫ T

0

(fj(x(t))− ẋj(t))g(t)dt = 0 ∀g ∈ C1[0, T ], g(0) = g(T ) = 0
(12)

By linearity and integration by parts, we get∫ T

0

(fj(x(t))− ẋj(t))g(t)dt =

∫ T

0

fj(x(t))g(t)dt−
∫ T

0

ẋj(t)g(t)dt

=

∫ T

0

fj(x(t))g(t)dt+

∫ T

0

xj(t)ġ(t)dt− xj(T )g(T ) + xj(0)g(0)

=

∫ T

0

fj(x(t))g(t)dt+

∫ T

0

xj(t)ġ(t)dt

(13)

where in the last equality we used the fact that g(0) = g(T ) = 0. That means that∫ T

0

(fj(x(t))− ẋj(t))g(t)dt = Cj(fj ,x, g) (14)

This proves that
ẋj(t) = fj(x(t)) ∀j ∈ {1, . . . , J} (15)

if and only if

Cj(fj ,x, g) = 0, ∀j ∈ {1, . . . , J}, ∀g ∈ C1[0, T ], g(0) = g(T ) = 0 (16)

Discussion. As we show in the proof above, the key idea of the variational formulation is to bypass
the derivative of the trajectory ẋj(t) with the derivative of a testing function ġ(t) — the swapping of
derivatives is achieved by integration by parts (Equations 13). An important consequence is that we
no longer need to know or estimate ẋj(t) (which is unobserved and challenging to estimate), but only
need to know ġ(t) for a given testing function g(t). Indeed, if g(t) has an analytical derivative, we
immediately have access to ġ(t).

Note that the variational formulation builds on the exact condition Cj = 0. It does not consider the
situation where Cj 6= 0, no matter how close Cj is to 0. Hence, the formulation itself is inadequate
to guide the search of closed-form ODEs. For instance, suppose the Cj for two candidate functions
f̂1 and f̂2 are 0.01 and 1000 respectively. The variational formulation does not imply f̂1 fits the
trajectory x better than f̂2; rather, it implies that f̂1 and f̂2 are equally bad as Cj 6= 0 for both. In
order to bridge this gap, we need to establish a notion of distance between functions and link the
functional Cj to this distance — they are addressed in Appendix A.2 and A.3 respectively.

The formulation above is tailored for ODEs, which is the focus of the current work. However, the
variational formulation can be generalized to other types of differential equations, e.g partial differen-
tial equations (PDE) and delay differential equations (DDE). In fact, the variational formulation is
the theoretical foundation of the Finite Element Method (FEM) — the industrial standard for solving
PDEs in complex engineering systems and fluid dynamics (Zienkiewicz et al., 1977; Gokhale, 2008).
It has also been used to estimate the parameters of a known ODE or DDE (Brunel et al., 2014). We
envision that future works may be built on the general variational formulation to discover closed-form
PDE or DDE from data.

A.2 DISTANCE FUNCTION

In this section, we justify that dx(f, f∗) is an appropriate metric for our problem.
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There are two main ways of comparing functions. We can either compare their symbolic representa-
tions or measure the differences in values they take for a set of arguments. As we want this metric to
be a limit of some objective computable from the data, we focus on the latter.

Commonly used distance functions are metrics induced by Lp norms. Lp norm is defined in the
following way:

||g||p =

(∫ b

a

|g(t)|pdt

) 1
p

(17)

In practice, L1 or L2 norm is used. The induced metric is then defined as the norm of the difference
between the functions, namely d(f, g) = ||f − g||p.

Now the question remains which difference we should take the norm of. We have three reasonable
choices:

1. f − f∗

2. x̃− x, where x̃ is trajectory prescribed by f computed from an estimated initial condition

3. f − f∗ composed with some other function

The first choice poses the challenge of choosing the range [a, b] over which we integrate f − f∗. In
general we do not make any assumptions on the domain of the functions. It also seems unreasonable
to compare the functions far from trajectory, where we have no information about their behaviour.

The second choice is similar to what is done in the Neural ODE approach. As we mentioned before,
this involves solving the Initial Value Problem (IVP). Even if the IVP has a unique solution, it might
be very sensitive to the initial condition, making it unfit for chaotic systems. We verify this claim in
the experiments (Figure 4)

The third proposition can solve the main issue of the first option. If we compose f − f∗ with the
ground truth trajectory, x, not only we have a well-defined interval over which to integrate ([0, T ])
but also we focus our attention on values of f∗ where we have a chance to recover it, and where it
matters for us the most.

That is why we decided to chose dx(f, f∗) = ||(f − f∗) ◦ x||2 as our distance function. Moreover,
as it is based on a familiar metric, it inherits many important properties, such as

1. dx is a pseudo-metric3, in particular, f = f∗ =⇒ dx(f, f∗) = 0

2. dx(f, f∗) = 0 =⇒ f = f∗ on x([0, T ]), the image of x

3. For a sequence fl such that dx(fl, f
∗)→ 0 it holds that fl ◦ x→ f∗ ◦ x in the mean4

The third property tells us that if we keep minimising dx(f, f∗), we can expect f getting closer to f∗
on x([0, T ]), the image of x.

A.3 PROOF OF THE THEOREM

Proof of Theorem 1. Let us consider a Hilbert space L2[0, T ] where the inner product is denoted by
〈·, ·〉 and defined as:

〈a, b〉 =

∫ T

0

a(t)b(t)dt (18)

where a and b are real functions which are square-integrable on the interval [0, T ]. The L2 norm can
be written as:

||a||22 = 〈a, a〉 (19)

3It can be considered to be a metric through metric identification. We would need to declare two functions
being equal if they are equal on x([0, T ])

4This can be strengthened to imply uniform convergence if the sequence fl is equicontinuous (Ford &
Pennline, 2007). This can be satisfied if, for instance, they all share the same Lipschitz constant. In particular,
this is true if their derivatives are bounded by the same constant.

16



Published as a conference paper at ICLR 2022

Using this notation we can rewrite Cj(f, x̂k, gs) as:

Cj(f, x̂k, gs) = 〈f ◦ x̂k, gs〉+ 〈x̂kj , ġs〉 (20)

We assume that x̂k converges to x in mean. For vector-valued functions that means that∫ T

0

||x̂k(t)− x(t)||22 dt→ 0 as k →∞ (21)

Note that || · ||2 in this equation denotes the usual Euclidean norm as the arguments are vectors
not functions. This is equivalent to saying that all components of x̂ converge to the corresponding
components of x. Thus

||x̂kj − xj ||2 → 0 as k →∞∀j (22)

As the inner product with one argument fixed can be seen as a continuous operator, we get:

〈x̂kj , ġs〉 → 〈xj , ġs〉 as k →∞ (23)

We assume that fj is λ-Lipschitz continuous. That means that

||f ◦ x̂k − f ◦ x||22 =

∫ T

0

|f(x̂k(t))− f(x(t))|2 dt

≤
∫ T

0

λ2||x̂k(t)− x(t)||22 dt

= λ2
∫ T

0

||x̂k(t)− x(t)||22 dt→ 0 as k →∞

(24)

This means that
〈f ◦ x̂k, gs〉 → 〈f ◦ x, gs〉 as k →∞ (25)

Combining equations (23) and (25) with expression (20), we conclude that

lim
k→∞

Cj(f, x̂k, gs)
2 = (〈f ◦ x, gs〉+ 〈xj , ġs〉)2 (26)

Now, using integration by parts we get

〈xj , ġs〉 =

∫ T

0

xj(t)ġs(t)dt = −
∫ T

0

ẋj(t)gs(t)dt+ xj(T )gs(T )− xj(0)gs(0) (27)

We use the assumption that gs(0) = gs(T ) = 0 ∀s to obtain

〈xj , ġs〉 = −〈ẋj , gs〉 (28)

We can substitute it back into Equation 26 and use the linearity of the inner product to get

lim
k→∞

Cj(f, x̂k, gs)
2 = 〈f ◦ x− ẋj , gs〉2 (29)

Now we can use Parseval’s identity and the fact that the set g1, g2, ... forms a Hilbert basis for L2[0, T ]
to infer that:

lim
S→∞

S∑
s=1

〈f ◦ x− ẋj , gs〉2 = ||f ◦ x− ẋj ||22 (30)

Substituting Equation 29 into Equation 30 and using the fact that the inner limit does not depend on
S we obtain the statement in the theorem

lim
S→∞

lim
k→∞

S∑
s=1

Cj(f, x̂k, gs)
2 = ||f ◦ x− ẋj ||22 = ||(f − f∗) ◦ x||22 (31)
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A.4 DIVERGENT DERIVATIVES

The main advantage of our algorithm lies in estimating the trajectory instead of estimating its time
derivative. We show how the derivatives of a uniformly convergent sequence of functions may fail to
converge, and we illustrate how it impacts objectives based on estimating the derivative.

We highlight the following mathematical fact:
Remark. Uniform convergence of functions does not guarantee convergence of the derivatives

This is in contrast to definite integrals where such implication holds. Intuitively, this follows from the
fact that the derivative is a very local property of the function. To see an example of such a sequence,
consider a sequence of functions (hk) where hk : [0, 1]→ R is given by

hk(t) =
sin(kt)

k
(32)

It can be shown that (hk) converges to h(t) = 0 uniformly. However, the derivative of hk, given by

h′k(t) = cos(kt), (33)

fails to converge at any point.

We use this observation to show that the square of ||ˆ̇xj−fj ◦x̂||2, where x̂j is the derivative calculated
from the recovered trajectory x̂, does not converge to dx(fj , f

∗
j )2 when x̂ converges to the ground

truth trajectory x.

Consider the following ODE (J = 1, T = 1):

ẋ(t) = x(t) ∀t ∈ [0, 1] (34)

so f∗(x) = x. We choose x(t) = et as the ground truth trajectory from which we sample. Let (x̂k)

be a sequence of trajectories given by x̂k = et + sin(kt)
k . It can be shown that (x̂k) converges to x

uniformly. Then for any candidate function f

||ˆ̇xk − f ◦ x̂k||22 =

∫ 1

0

(ˆ̇xk(t)− f(x̂k(t)))2dt

=

∫ 1

0

(
et + cos(kt)− f

(
et +

sin(kt)

k

))2

dt

(35)

If ||ˆ̇xk− f ◦ x̂k||22 were to converge to dx(f, f∗)2 then in particular ||ˆ̇xk− f∗ ◦ x̂k||22 should converge
to 0. However, we show this is not what happens.

||ˆ̇xk − f∗ ◦ x̂k||22 =

∫ 1

0

(
et + cos(kt)− f∗

(
et +

sin(kt)

k

))2

dt

=

∫ 1

0

(
et + cos(kt)−

(
et +

sin(kt)

k

))2

dt

=

∫ 1

0

(
cos(kt)− sin(kt)

k

)2

dt

=

∫ 1

0

cos2(kt) +

(
sin(kt)

k

)2

− 2cos(kt)

(
sin(kt)

k

)
dt

(36)

As
(
sin(kt)
k

)2
and 2cos(kt)

(
sin(kt)
k

)
converge uniformly to a 0 function, we can use the linearity

of integration to obtain

lim
k→∞

||ˆ̇xk − f∗ ◦ x̂k||22 = lim
k→∞

∫ 1

0

cos2(kt)dt = lim
k→∞

(
sin(2k)

4k
+

1

2

)
=

1

2
6= 0 (37)

This example shows that objectives that estimate the derivative are highly dependent on the type of
estimation algorithm used. In contrast, Theorem 1 tells us that the only property of the estimation
algorithm we need is that the trajectories converge to the ground truth in L2 norm.
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Algorithm 1 D-CODE.
Input: Dataset D = {yi(t)|i ≤ N, t ∈ T }
Input: Smoothing algorithm S, numerical integration algorithm I, optimization algorithm O
Input: Testing functions gs, s ≤ S, initial guesses fj0, j ≤ J .
x̂i = S

(
yi(t1),yi(t2), . . .

)
, i ≤ N {Preprocessing step: smooth input trajectories}

for j ∈ [1, J ] do
f̂j = fj0 {Initialize the jth ODE}
Converge = False
while Not Converge do
obj =

∑N
i=1

∑S
s=1 Cj(fj , x̂i, gs)

2 {Calculate objective (Eq. 5).}
f̂j ,Converge = O(obj, f̂j) {Run optimization step.}

end while
end for
Output: The discovered ODEs f̂j , j ≤ J

B D-CODE FRAMEWORK

B.1 PSEUDOCODE

The Pseudocode is presented in Algorithm 1.

B.2 DISCOVER HIGHER ORDER AND NONAUTONOMOUS ODES

In the main text, we focused on the system of first order autonomous ODEs (Equation 1). This
is because higher order or nonautonomous ODEs can be transformed into first order autonomous
systems by including more variables. For instance, consider the damped, driven harmonic oscillator,
a model system for classical mechanics (Simmons, 1972):

ẍ1 + ẋ1 + x1 − cos(t) = 0

The ODE is second-order as it involves the acceleration term ẍ1 and it is nonautonomous because of
the time-dependent term cos(t). If we introduce two new variables: x2 = ẋ1 and x3 = t, we obtain
the following first order autonomous system:

ẋ1 = x2

ẋ2 = −x2 − x1 + cos(x3)

ẋ3 = 1

Since the first and the third equations are implied by the definition of x2 and x3, they do not need to
be discovered from data. One can apply the discovery algorithm to uncover the second equation from
the measurements of x1, x2 and x3.

C DISCUSSION ON DATASET CURATION

The success of ODE discovery depends on the availability of a well-curated dataset. However,
curating a dataset is a highly nontrivial task, and it is well beyond the scope of the current work. In
fact, the curation of dataset is sometimes an important scientific contribution in itself (Blasius et al.,
2020). Here, we provide a brief discussion on this topic.

Selection of variables. The researcher needs to decide which variables to include in the dataset —
this defines the scope of problem. In general, variable selection depends on the scientific problem
being addressed and the background knowledge about the interactions between variables. For
instance, one may use the known chemical reaction network to choose a small set of compounds to
include in the data. When such knowledge is unavailable, the researcher may need to perform pilot
studies to find out the interaction network (otherwise they may face a challenging high-dimensional
problem). We note that there is a well-developed literature on uncovering the interaction network of a
high-dimensional dynamical systems (Mangan et al., 2016; Qian et al., 2020).
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Measurement settings. In practice, the measurement settings are often affected by practical con-
straints, e.g. the precision of measurement device, the measurement cost, the time limit, etc. However,
the researcher should ensure that the measurement horizon [0, T ] covers the pattern of scientific
interest. To illustrate this point, consider an application in climate modeling. If we are interested in
studying the cyclic behavior of the system (e.g. seasonality), the measurement should cover at least
one entire period (one year). On the other hand, if we are interested in the system’s response to an
external stimuli (e.g. short-term weather change due to volcanic activity), the measurement should
cover the period before and after the stimuli (volcano eruption).

Iterative nature of discovery. Scientific discovery is by no means a single-step monolithic process.
Rather, it is an iterative process involving many components: hypothesis generation, data curation,
modeling, validation, etc. D-CODE focuses on the modeling component, but it can facilitate the
entire loop of discovery because it distills an interpretable close-form ODE. For instance, if the
discovered ODE converges to a wrong stationary point (as indicated by domain knowledge), the
researcher may curate an additional dataset with longer time horizon and re-train D-CODE with the
additional information.

D UTILITIES OF THE DISCOVERED CLOSED-FORM ODE

In the main text, we focus on the problem of distilling closed-form ODE from data. Here we illustrate
how the learned closed-form ODE can facilitate various downstream tasks and applications.

Prediction. The learned closed-form ODE can be used to make predictions about the future states of a
dynamical system. Formally speaking, given a sequence of past observations y(t1),y(t2), . . . ,y(tk),
we would like to predict x(t∗) for a future time t∗ > tk. This prediction problem is very well studied
and has many proven algorithms (e.g. the family of Kalman filters (Welch et al., 1995) and the
Bayesian methods (Doucet et al., 2000)).

Simulation and synthetic data. The learned closed-form ODE can also be used as a simulation
model to generate synthetic datasets. The user can specify different initial conditions x(0) and
different external signals (if applicable) to generate a range of trajectories. The simulated trajectories
may be used in downstream tasks, e.g. computing the statistical properties.

Planning and control. In some cases, the system contains variables that can be intervened on (e.g.
external forces), and we would like to manipulate these variables to maximize certain utility function.
This is the canonical problem setting for Control Theory, where decades of research have been
devoted to deriving the optimal policy from the closed-form governing equations and the utility
function (Mehrmann, 1991; Haddad & Chellaboina, 2011).

Understanding the properties. Often we are interested in understanding the high-level properties
of the dynamical system. Examples include asymptotic stability, fixed points, periodicity, bifurcation,
and so on. The closed-form ODE would facilitate the study of these properties because the analytical
and the computational tools developed in the dynamical system literature are both applicable (Browder,
1983; Lyapunov, 1992; Chow & Hale, 2012).

E BACKGROUND ON NUMERICAL DIFFERENTIATION

The task of estimating time derivative ẋ from discretely sampled and noisy data is commonly referred
to as numerical differentiation. Finite difference is a family of the most basic numerical differentiation
methods (Bickley, 1941). For example, the central difference estimator calculates

ˆ̇x =
y(t+ ∆t)− y(t−∆t)

2∆t

The main disadvantage of finite difference is that it is highly sensitive to measurement noise (Char-
trand, 2011).

A common way to address this shortcoming is to estimate the derivative on the smoothed trajectory.
For example, spline-smoothed differentiation smooths the observed trajectories with cubic spline and
estimates ẋ from the fitted spline functions (Shen et al., 1998; Zhou & Wolfe, 2000). (This method is
used in the benchmarks SR-S). However, this family of methods is usually based on assumptions on
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Table 3: The detailed settings for each simulation: noise level σR, time step size ∆t, number of trajectories N ,
time horizon T , range of initial conditions [a, b], numeric constants θ. Bold values are the defaults.

System σR ∆t N T [a, b] θ

Gompertz [0.01, 1.3] 0.1, 0.2, 0.5, 1 5, 20, 50, 100 4 [0, 0.01] θ1 = θ2 = 1.5
Logistic [0.01, 1.3] 0.1, 0.2, 0.5, 1 5, 20, 50, 100 10 [0, 0.1] θ1 = 1, θ2 = 0.5
Glycolytic 0.01, 0.1, 0.2 0.1, 0.2, 0.5, 1 5, 20, 50, 100 15 [0, 0.1] θ1 = 0.75, θ2 = 0.1
Lorenz [0.01, 0.3] 0.01, 0.02, 0.04, 0.1 5, 20, 50, 100 10 [0, 10] 10, 28, 8/3

the smoothness of the trajectory and its (higher-order) derivatives (Zhou & Wolfe, 2000): they encode
a bias towards smooth and slow-changing derivatives. Such bias may the hamper the estimation of
dynamical systems with abrupt changes (Chartrand, 2011).

To address this challenge, Chartrand (2011) proposes to use explicit regularization on the finite
difference estimator. As we pointed out in Appendix A, the standard L2 regularization is not suitable
for derivative estimation. The authors propose to use total variation regularization, a method originally
developed in computer vision to obtain sharp denoised images (Strong & Chan, 2003). This type of
regularization allows rapid (or even discountinous) change in ẋ. The method has been adopted in the
two-step sparse regression literature (Brunton et al., 2016), and it is used in the benchmark SR-T.

F IMPLEMENTATION DETAILS OF THE EXPERIMENTS

F.1 DETAILED SETTINGS FOR EACH EXPERIMENT

The detailed settings for each experiment in Section 5 is shown in Table 3. The time horizon T and
the range of initial conditions [a, b] are chosen based on the scale and properties of the system. For
example, we observe that the Gompertz model reaches saturation and converges to the constant x = 1
before t = 4 (hence we set the time horizon T = 4). In practical applications, the time horizon is
decided by the problem scope and the availability of experimental or observational data (see the
discussion on dataset curation in Appendix C).

F.2 HYPER-PARAMETER SETTINGS

Smoothing algorithm. In the experiments, D-CODE uses Gaussian process in the pre-processing
step. We use the radial basis kernel with the hyper-parameters tuned based on marginal log-likelihood
(Bernardo et al., 1998).

Genetic programming. The hyperparameters of genetic programming is decided based on a pilot
study. In the pilot study, we consider a noiseless and frequently sampled Gompertz growth model
(σ = 0, ∆t = 0.01). We use randomized search on Two-step Symbolic Regression to find the
hyperparameters that achieves the best RMSE loss (Table 1). The same hyperparameters are used
by all algorithms on all experiments. The values are listed below. We refer the reader to the
documentation of gplearn library for a detailed explanation of these hyperparameters (Stephens,
2021).

1. population size: 15000

2. tournament size: 20

3. p crossover: 0.6903

4. p subtree mutation: 0.133

5. p hoist mutation: 0.0361

6. p point mutation: 0.0905

7. generations: 20

8. parsimony coefficient: 0.01
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The set of allowed mathematical operations is

{+,−,×,÷, log, cos, power}

D-CODE and all benchmarks use the same set of mathematical operations for fairness of comparison.
To speed up computation, we run a pilot study for each dynamical system in the noiseless setting
described above to select a subset of these operations for the main experiments.

Numerical differentiation. We use the python package derivative for numerical differentiation
(Quade & Goldschmidt, 2020). The library contain implementations of the methods discussed
in Appendix E. Currently, there lacks a principled way to tune the hyperparameters of numerical
differentiation because the time derivative is not observed. Existing works often rely on heuristics
(Chartrand, 2011). Here, we tune the hyperparameters based on the true derivative using grid search
over (0.001, 0.01, 0.1, 1, 10, 100, 1000). Note that this procedure may allow the time derivative to
be estimated more accurately than what is possible (because the true derivative is not available in
real data). Hence, it will give an advantage to SR-T and SR-S because D-CODE does not use the
true derivative in any way. SR-G uses the same Gaussian process as D-CODE, which is tuned by the
marginal log-likelihood on the observed trajectory.

Correctness of the functional form. As discussed in Section 2, the functional form of a closed-
form function f is the expression with all the numeric constants replaced by placeholders θ1, θ2, . . .
In practice, the uncovered function f̂ may contain constants that are close to 0. For instance
f(x) = x + 0.001x2 is close to f(x) = x when x is small. Hence, we apply thresholding on the
estimated constants and set all constants between [−0.05, 0.05] as 0 (only for logistic model and
Glycolytic oscillator, where we found thresholding to be helpful). The thresholding is applied to the
results of all methods to evaluate success probability of recovering the functional form – and it is not
used when calculating the RMSE of parameter estimation or the distance dx. We use Python package
sympy to decide whether the discovered functional form is correct (Meurer et al., 2017), i.e. success
when simplify(f∗ − f̂) returns 0.

F.3 CLEANING TUMOR GROWTH DATASET

The original tumor growth dataset (Section 6) contains heterogeneous growth patterns and outliers.
However, the dataset does not include any patient covariate that could help to model or explain the
heterogeneity, i.e. some variables that would drive the tumor growth dynamics are not recorded in the
data, e.g. age and comorbidity (see the discussion in Section 7). To address this issue, we performed
k-means clustering on the observed trajectories (with 10 clusters), such that the growth pattern within
each cluster is more or less homogeneous. We selected the largest cluster with 310 trajectories for the
analysis.

G ADDITIONAL RESULTS

G.1 ADDITIONAL EVALUATION METRIC: dx

Here we report the distance function dx(f̂ , f∗) between the true and estimated ODEs. This metric
tracks how well f̂ approximates f∗. The rationale for reporting this metric is that it may be possible
that f̂ has the wrong functional form but it still well approximates f∗. Hence, we need the distance
dx in addition to the discovery probability.

The results are presented in Figure 7 and 8. We observe that the patterns of dx and discovery
probability (reported in the main text Section 5) are very similar — the performance gap between
the methods is minor in the low-noise frequent-sampling scenarios, but D-CODE significantly out-
performs the benchmarks in the more challenging measurement settings. The agreement between
dx and discovery probability suggests that when the correct functional form is not recovered, the
estimated f̂ tends to perform poorly in approximating the true function as well.
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Figure 7: The metric dx (Eq. 6) for the two growth models under different settings (smaller better). The three
columns correspond to various noise levels σR, step sizes ∆t, and numbers of trajectories N . The two rows
correspond to the Gompertz model and the generalized logistic model respectively.

Figure 8: The metric dx (Eq. 6) for the chaotic Lorenz system under different noise levels (smaller better).

Figure 9: Simulation results for the dynamical system in Eq 38 under various noise levels. Left: the success
probability (higher better) and Right: distance dx (lower better).

G.2 ADDITIONAL DYNAMICAL SYSTEMS

Here we consider an additional dynamical system, which is an extension to the quadratic integrate
and fire (QIF) model in Neuroscience (Brunel & Latham, 2003). The governing equation is

ẋ =
x2

t+ θ
(38)

We highlight that this ODE is time-dependent and it involves a fraction, which makes it impossible
to be symbolically represented in a linear form f(x) =

∑
k θkbk(x) (as required by the two-step

sparse regression method). A similar example was given in Appendix B-2 of Brunton et al. (2016) to
illustrate this failure mode of two-step sparse regression method.

The simulation results are shown in Figure 9. We observe the same pattern as the other dynamical
systems considered in the main text.

G.3 SENSITIVITY ANALYSIS FOR TESTING FUNCTION

Here we study the sensitivity of D-CODE to the choice and number of testing functions. We consider
two families of testing function: sine functions and cubic spline functions, both of which satisfy the
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Figure 10: The success probability with different families and different numbers of testing functions g (sine
and cubic spline).

Figure 11: Comparison of average training time.

conditions in Section 4.2. We refer the readers to De Boor (1978) for the exact recursive definition of
cubic spline functions.

Figure 10 reports the discovery probability for Gompertz model (first row) and Lorenz system (second
row). We first observe that using too few testing functions (i.e. < 40) leads to performance loss. This
agrees with Theorem 1 because the objective function Eq. 5 cannot well-approximate the distance dx
(Eq. 6) with too few testing functions. We also observe that the performance is reasonably stable
when enough testing functions are included (e.g. 40 - 80 sine functions, and 80 - 100 cubic splines).
Finally, we see a performance drop for using too many (e.g. 100) sine functions. After investigation,
we find that the drop is due to the numerical error in the integration procedure — sine functions with
very high frequency are oscillating too rapidly for accurate numerical integration. One may resolve
this issue by using a smaller integration step size or a more advanced numerical integration method.

For practical applications, the user may experiment with different numbers of testing functions and
examine the discovered ODEs. A key advantage of discovering close-form ODEs is that it allows the
user to examine and refine the ODEs in an iterative way.

G.4 TRAINING TIME

Figure 11 compares the average training time of D-CODE and two-step symbolic regression (SR-T).
We expect D-CODE to have longer training time due to the numerical integration step in evaluating
the functional C (Eq. 3). However, even for the longest-running task, D-CODE finishes training
within 30 minutes on average. This can still be a very significant speed up compared with manual
discovery by human experts. Experiments are run on a computer with Intel Xeon E3-12xx v2 CPU
(16 cores) and 60 GB memory.

G.5 TABLE OF DISCOVERED ODES

The top-3 most common equations discovered by different methods for each dynamical system
(among the 100 simulation runs) are listed in the table on the next page.
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Table 4: The top-3 most common equations discovered by different methods for each dynamical system (among the 100 simulation runs). “Freq” denotes the chance of discovering
the equation. We make the following observations: (1) SR-T and SR-S produce over-simplistic equations for the growth models (constant or zero), possibly because the estimated
derivative ̂̇x is too noisy to learn useful signal. (2) SR-T and SR-S may consistently miss a variable (e.g. the x0 term in Glycolytic 1) or miss an interaction (e.g. the x0x2 term in
Lorenz 2). (3) SR-T and SR-S may include unnecessary terms in the equation (e.g. Lorenz 3). The measurements settings are the default ones listed in Table 3.

D-CODE SR-T ST-S
System Discovered Equation f̂ Freq. Discovered Equation f̂ Freq. Discovered Equation f̂ Freq.

Gompertz
−θ1x log(θ2x) 1 θ1 0.63 θ1 0.67
- - θ1x− θ2xθ3 0.04 −θ1xθ2(xθ3 + log(x)) 0.03
- - x2 log(x) log(x2) 0.04 − log(log(θ1 + x) 0.03

Logistic
θ1x− xθ2 1 0 0.96 0 0.98
- - θ1 0.02 θ1 0.02
- - θ1x

θ2 − xθ3 0.02 - -

Glycolytic 1
−θ1x0 + θ2 − x0x21 0.38 θ1 − x0x21 0.5 θ1 − x0x21 0.1
−θ1x0 − θ2x1 + θ3 − x0x21 0.03 −θ1x0 + θ2 − x0x21 0.22 −θ1x0x21 + θ2 0.08
θ1 − x0(θ2 + x21) 0.03 −θ1x0x21 − θ2x0 + θ3 0.04 −θ1x0x1(θ2 + x1) + θ3 0.07

Glycolytic 2
θ1x0 + x0x

2
1 − x1 0.78 θ1x0 + x0x

2
1 − x1 0.75 −θ1x1 + θ2x

2
1 + θ3 + x0x1 0.09

θ1x0 + θ2 + x0x
2
1 − x1 0.13 x0(θ1 + x21)− x1 0.09 θ1x0x

2
1 + θ2x0 − θ3x1 0.08

θ1x0 + θ2x1(θ3x0 + x0x
2
1) 0.01 θ1x0x

2
1 + θ3x0 − θ4x1 0.02 −θ1x1 − θ2x21 + θ3 + x0x1 + x12 0.06

Lorenz 1
−θ1x0 + θ2x1 1 −θ1x0 + θ2x1 1 −θ1x0 + θ2x1 0.63
- - - - −θ1x0 + θ2x1 + θ3 0.37
- - - - - -

Lorenz 2
θ1x0 − x0x2 − x1 0.33 −θ1x0 + θ2x1 + θ3x2 − θ4 0.99 x0(θ1 − x2) 0.73
x0(θ1 − x2) + x0 − x1 0.28 θ1x0(−θ2x2 + θ3) + θ4x1 − x0 0.01 θ1x0 − x0x2 0.2
x0(θ1 − x2)− x1 0.28 - - x0(θ1 − x2)− x0 0.03

Lorenz 3
−θ1x2 + x0x1 0.8 θ1x2 − θ2 + x0x1 + x0 0.46 θ1x2 + x0x1 0.51
−θ1x2 + θ2 + x0x1 0.13 −θ1x2 + x0x1 + x0 0.11 θ1x2 + x0x1 + x0 0.11
−θ1x2 − θ2 + x0x1 0.08 θ1x0x1 − θ2x2 0.1 θ1x2 + x0x1 + x1 0.09
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Figure 12: Visualization of the observations y(t), the true trajectory x(t) and the smoothed trajectory x̂(t).
First row: increasing noise level σR. Second row: increasing sampling sparsity ∆t. The success probability of
D-CODE is shown in the headings.

G.6 VISUALIZATION OF SMOOTHED AND TRUE TRAJECTORIES

In this section we study whether D-CODE can still discover the ODE when the smoothed trajectory
x̂(t) is significantly different from the true trajectory x(t); for instance, when the signal-to-noise
ratio is low or the observations are sparse.

In Section 5 we provided quantitative evaluation under scenarios with different noise levels (σR) and
sampling sparsity (∆t).5 For further illustration, here we visualize x̂(t) and x(t) together with the
observations y(t) in Figure 12. In the most favorable setting (top left), x̂(t) is indistinguishable from
x(t), and D-CODE achieves very high success probability as expected. As the observation setting
becomes more challenging (middle column), x̂(t) may recover the overall trend of x(t) but it may
also contain some estimation artifacts (e.g. the unnecessary zigzag pattern). However, D-CODE is
still able to recover the true ODE with very high probability. In the most challenging settings (right
column), x̂(t) differs significantly from x(t) for extended periods of time (top right t > 2, bottom
right t < 2 and t > 4). Yet, D-CODE still makes successful discovery at times.

H DISCUSSION ON ALTERNATIVE METHODS

In this section, we discuss the alternative methods that, in theory, could also be applied to discovering
closed form ODEs from data. However, as we will show, these methods suffer from various drawbacks
that may severely limit their practical utility.

H.1 DOUBLE OPTIMIZATION METHOD

The double optimization method (DO) was first proposed in the literature of ODE parametric
estimation, where the functional form of f is known but it contains unknown parameters θ (see
Ramsay et al. (2007) Section 1.3 for a review).6 DO solves the following optimization problem (we
consider the one-dimensional case to simplify notations):

f̂ = arg min
f

[
min
x̂i(0)

N∑
i=1

∑
t∈T

(
yi(t)− x̂i(t)

)2]
, subject to x̂i(t) = x̂i(0) +

∫ t

0

f(x̂i(s))ds (39)

This is a nested optimization problem where the outer part searches for the unknown function f and
the inner part searches for the unknown initial conditions xi(0) given the current guess of f . Note

5Note that, by definition, the signal-to-noise ratio is the inverse of σR, i.e. 1/σR.
6DO is also referred to as the nonlinear least square method (NLS) in some literature.
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Figure 13: The computation time (in seconds) to evaluate a candidate function f . The data are generated from
Gompertz and Logistic ODEs respectively. The results are calculated from 100 independent runs. The summary
statistics (mean, median and quartiles) are shown in the boxplot. DO is 30 - 50 times slower than D-CODE.

that the inner and outer parts are coupled because the optimal x̂i(0) depends on f , e.g. the best-fitting
exponential curve would have a different initial condition from the best linear fit.

A well-known shortcoming of DO is its computational complexity (Gugushvili & Klaassen, 2012).
The inner optimization over xi(0) is typically non-convex and may take many steps to converge. To
further aggravate the problem, each inner optimization step requires solving the IVP numerically.

The computational challenge becomes even more pronounced in our setting, where the functional
form of f is also unknown. Genetic programming needs to evaluate many candidate functions f but
DO requires solving the inner optimization for each evaluation. In contrast, D-CODE (Equation 5)
does not involve any nested optimization.

To illustrate this point, we have implemented DO and measured its computation time to evaluate
a candidate f . The results are shown in Figure 13. We found that DO is typically 30 - 50 times
slower than D-CODE. Its computational cost is too high to be considered as a feasible method for
discovering closed-form ODEs.

H.2 NEURAL ODE WITH POST-HOC DISTILLATION

Although Neural ODE (NODE) does not directly produce closed-form ODEs, one may attempt
to distill a closed-form equation from the trained network. The method takes two steps: (1)
train a NODE fN using observed trajectories and query the trained NODE to produce a dataset
{xi(t), fN (xi(t))}i,t; (2) apply symbolic regression on this dataset. This approach can also be
viewed as a two-step regression method (Section 3), where the derivatives are estimated by a NODE.

The standard approach to train a NODE for time series modeling is to minimize the error over a
prediction horizon T ∗ = [t1, t2, . . . , T

∗] (Rubanova et al., 2019), i.e. to minimize

L =

N∑
i=1

∑
t∈T ∗

||yi(t)− x̂i(t)||22, (40)

where x̂i(t) is obtained by solving the IVP of the NODE.

However, the choice of prediction horizon T ∗ is non-trivial and plays an important role in the training.
For chaotic systems, the user should choose a smaller T ∗ because the system is unpredictable in the
long term. On the other hand, making T ∗ too small may lead to a myopic model that fails to capture
long-term patterns (Schmidt et al., 2020; Kantz & Schreiber, 2004).7 In practice, the prediction
horizon T ∗ is a hyper-parameter that may be difficult to decide (note that the Lyapunov time of the
true system is unknown). In contrast, D-CODE does not require user to specify the prediction horizon
T ∗.

Furthermore, as we alluded to earlier, this approach is an instance of two-step regression, where the
derivative is estimated by NODE instead of numerical differentiation. Although NODE is known to

7The limitations of minimizing short-term prediction loss for sequence modeling is well-recognized in
machine learning; for example, the sequence-to-sequence models tackle this issue by minimizing the loss over a
sequence of predictions rather than the one step ahead prediction.
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Figure 14: The probability of successfully recovering the unknown ODEs. Two versions of NODE are compared
with D-CODE on the Gompertz ODE (first panel) and the Lorenz system (second to fourth panels). In the
rightmost panel, the results of NODE-L and NODE-S overlap and only one line is displayed.

Figure 15: The distance dx between the true and the learned ODE.

be a universal function approximator, its estimation efficiency (e.g.
√
n consistency), finite sample

performance, and robustness to noise are still largely under investigation. Hence, we should remind
the readers that NODE is not guaranteed to outperform numerical differentiation in estimating
derivatives.

To illustrate these points, we evaluate the performance of NODE with post-hoc distillation. We
consider two versions of NODE: the NODE-L is trained on long term prediction (T ∗ = 25) and
the NODE-S is trained on short term prediction (T ∗ = 0.04). The evaluation is performed on the
Gompertz ODE (non-chaotic, one dimensional) and the Lorenz system (chaotic, three dimensional).

Figure 14 shows the success probability (bigger better) and Figure 15 shows the distance dx (Equation
6, smaller better). For the non-chaotic Gompertz ODE, both NODE-L and NODE-S are only able
to recover the correct functional form when the noise is very close to zero (σR = 0.01). Note that
this behavior is very similar to other two-step regression methods (SR-T, SR-S and SR-G, Figure 3).
We also observe that the NODE-L achieves consistently better dx than NODE-S. This confirms that
training over longer time horizon leads to better estimate of the ODE when the system is non-chaotic.

Turning to the chaotic Lorenz system, we observe that NODE-L always fails to discover the correct
ODE and its dx is higher than the other two methods. This verifies our expectation that training
with long-term prediction is not feasible for chaotic systems. As before, NODE-S performs well
only when the noise level is relatively small. We also observe that its dx monotonically increases
with the noise level. This suggests that higher noise level significantly reduces NODE-S’s ability to
approximate the unknown ODE, limiting its performance on noisy data.
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