
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NPF-kCT: A k-CENTER CLUSTERING SOLVER WITH
NEURAL PROCESS FILTER FOR CONTINUOUS POMDP-
BASED OBJECT SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficiently searching for target objects in intricate environments poses a significant
challenge for mobile robots, due to perception errors, limited field of view (FOV),
and visual occlusion. These factors cause the problem to be partially observed.
Therefore, we formulate the object-search task as a high-dimensional Partially
Observable Markov Decision Process (POMDP) with hybrid (continuous and dis-
crete) action spaces. We propose a novel sampling-based online POMDP solver
named Neural Process Filtered k-Center Clustering Tree (NPF-kCT). The optimal
action is selected using Monte Carlo Tree Search (MCTS) in conjunction with a
neural process network to filter out ineffective primitive actions (i.e., basic robot
operations), alongside k-center clustering hypersphere discretization to efficiently
refine high-dimensional continuous sub-action spaces. Adhering to the hierar-
chical optimistic optimization (HOO) concept, we leverage an upper-confidence
bound (UCB) on the action value function within the hypersphere with estimated
diameters to guide the MCTS expansion. We extensively tested our approach in
Gazebo simulations using Fetch and Stretch robots across diverse target-finding
scenarios. Comparative results show higher success rates and faster target de-
tection than baseline methods, with no additional computational cost. We also
validated our method on a physical robot in an office environment. Project page:
https://sites.google.com/view/npfkct.

1 INTRODUCTION

Object-searching tasks for mobile robots with manipulators in cluttered, partially known environ-
ments, such as warehouses or living rooms, pose significant challenges. In scenarios such as re-
trieving an item from a warehouse box or fetching a Coke bottle from a kitchen table, the target
object is often occluded. Known as the “Mechanical Search” problem, these tasks typically rely on
partial knowledge of the environment—such as a rough map with large furniture or appliances like
shelves and tables—alongside many unknown small objects, e.g. mugs or snack boxes. To succeed,
the robot must adapt its configurations, strategically remove obstacles, localize the target, and ulti-
mately plan and execute the necessary grasp actions. In this paper, we assume the robot operates in
a home environment with multiple rooms and workspaces (furniture surfaces) and has access to 3D
point cloud and 2D occupancy grid maps, along with photos of the target object (Fig. 1).

Object search with mobile manipulators with on-board sensors relies on a comprehensive support
system encompassing modules for object segmentation, object detection, pose estimation, task-level
planning, and motion planning. Significant advancements have been made in these areas, particu-
larly with advanced learning technologies. For instance, Shaban et al. (2017) introduces a highly
efficient one-shot learning method leveraging a Fully Convolutional Network for pixel-level image
segmentation. Other methods employ diverse networks, such as the Neural Radiance Field architec-
ture, to address challenges related to optimal grasp pose generation Sóti et al. (2023) and manipu-
lation planning Qureshi et al. (2020). This work focuses on task-level planning to effectively select
primitive actions and achieve long-horizon goals for target object search in complex environments.

In this paper, we propose a novel POMDP framework and solver, NPF-kCT, for object search tasks
using mobile robot manipulators with only onboard sensors. We train a neural process-based net-

1

https://sites.google.com/view/npfkct

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

work to score primitive actions and filter useless ones before planning. Filtered actions are grouped
into hyperspheres via clustering, and MCTS is used to construct a belief tree for optimal action se-
lection. An adaptive strategy refines action domains by creating smaller clusters based on particle
limits, ensuring precise sampling. The selected action is applied to the robot, updating the belief
with real-world observations. We analyze the method’s convergence under specific assumptions and
show it outperforms baseline approaches, achieving efficient target search within POMDPs.

2 RELATED WORK

Figure 1: Fetch robot is pointed to
search a snack box (pink). It adjusts its
base, lift, and head (red) to change its
FOV, with no prior knowledge (like size
and number) of non-target objects.

Mechanical Search Planning Methodologies: As pre-
viously discussed, robots frequently encounter challenges
in navigating clustered environments while searching for
target objects. Numerous existing methodologies are
closely linked to advancements in learning technolo-
gies, such as deep reinforcement learning (RL) Kurenkov
et al. (2020), deep Q-learning Yang et al. (2020), and
deep-geometric inference systems Huang et al. (2021).
In Kurenkov et al. (2020), the authors propose a learning
procedure using an asymmetric architecture, suboptimal
teacher guidance, and mid-level representations to train
deep RL agents for uncovering occluded objects. How-
ever, these methods are highly customized for specific
environments, like shelves and boxes, limiting their ap-
plicability in more diverse settings. Another significant
framework for object search is the POMDP formulation.
In a notable example, as detailed in Huang et al. (2022), a MCTS method featuring a 1D occu-
pancy distribution for objects is employed to swiftly identify and extract the target object. Due to
the natural fitness of the different objects, the object-oriented POMDP (OO-POMDP) framework is
widely applied to factor different objects, and the beliefs related to different objects are treated as
independent due to the smaller computational cost Wandzel et al. (2019). As the demands of object-
searching tasks evolve, the planning environment has progressed from a 2D plane scenario Aydemir
et al. (2013) to a more complex 3D case Zheng et al. (2021). This transition incorporates a setting
that accommodates different object dimensions using a multi-resolution planning strategy. Challeng-
ing the conventional object-independent assumption and acknowledging occlusion relationships, a
recent work Chen & Kurniawati (2023) introduces an object-level POMDP formulation. This formu-
lation entails a growing state space, incorporating a guessed target object, and is addressed through
a novel solver based on MCTS and belief tree reuse, ultimately achieving a more efficient outcome.

Mechanical Search Reasoning Methodologies: In earlier robotics approaches, reasoning was of-
ten integrated into the planning process, such as updating probabilities, rather than being treated as
a separate module. As robotic systems grew more complex, reasoning emerged as an independent
layer, focusing on high-level cognitive tasks such as commonsense inference, contextual under-
standing, and hypothesis generation, which then guide a planning module to execute detailed action
strategies. The work Giuliari et al. (2023) demonstrates a reasoning module to infer plausible object
locations using environmental context and commonsense knowledge, aiding object localization in
partially observed scenes. In more recent work Ge et al. (2024), the authors utilize commonsense
knowledge from large language models to construct scene graphs, enhancing object search in house-
hold environments. However, these commonsense-based approaches struggle with unconventional
object arrangements, like a random setting. In our scenario, objects are placed to violate human
habit, increasing search complexity and necessitating active robot-environment interaction, such as
removing occlusions. Our reasoning idea is involved in the probability update of the grid world. By
representing the belief over the pose state of each object in the planning environment using particle
filtering, the authors in Garrett et al. (2020) incorporate probabilistic reasoning into a deterministic
planner and then complete the re-used replanning when facing the base movement failure. A re-
cent work Huang et al. (2024) leverages a video tracking-based memory model with reasoning and
planning capabilities, allowing the system to remember the potential locations of the occluded target
objects and complete tasks by selecting action primitives.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

POMDP Formulation and Solvers: For a POMDP agent, the process commences with a brief,
where the agent deduces and executes the optimal action to transition to a new state. This new state is
concealed within an updated belief, refined through Bayesian inference based on observed data. Fol-
lowing each step, the agent receives an immediate reward and contributes to a discounted cumulative
reward, fostering a long-term objective. This iterative process persists until terminal conditions are
met. This framework has found extensive application in the field of robotics, effectively addressing
diverse tasks such as autonomous underwater vehicle navigation Hou et al. (2021), robot manipula-
tion Pajarinen et al. (2022), and Human-Robot collaboration Burks et al. (2023). Attaining the exact
optimal strategy for a POMDP problem is generally deemed computationally intractable Papadim-
itriou & Tsitsiklis (1987). Due to the cheaper memory demands compared with the offline solvers,
the online methods, particularly sampling-based approaches, have emerged as predominant solu-
tions, striking a favorable balance between approximate optimality and manageable computational
load. Sampling-based solvers, like Partially Observable Monte Carlo Planning (POMCP) Silver &
Veness (2010), Adaptive Belief Tree (ABT) Kurniawati & Yadav (2016), and Determinized Sparse
Partially Observable Tree Somani et al. (2013), adopt a common approach of representing belief as
particles and employ MCTS to expand the belief tree within constrained computational resources.
Despite notable progress, addressing POMDPs with high-dimensional continuous action spaces re-
mains a formidable challenge. The key point in existing continuous-action POMDPs is to refine the
action subset incrementally to improve the possibility that the selected subset of actions contains
the best action. Some continuous-action POMDP approaches, like partially observable Monte Carlo
planning with observation widening (POMCPOW) Sunberg & Kochenderfer (2018), use the Pro-
gressive Widening (PW) strategy to continuously add new randomly sampled actions once current
actions have been sufficiently explored. Other approaches incorporate technologies such as Voronoi
Optimistic Optimization Lim et al. (2021) and Bayesian Optimization Mern et al. (2021) to enhance
PW-based methods. These methods commonly employ the UCB1 Auer et al. (2002) algorithm for
action selection during exploration and leverage Monte Carlo backup for value estimation.

Neural Process in Robotics: Neural processes (NPs) offer a powerful alternative to Gaussian pro-
cesses (GPs) for function regression, capturing uncertainty as a stochastic process. In robotics,
effectively managing prediction uncertainty is crucial for enhancing the robustness and applicability
of systems in real-world scenarios. For example, Chen et al. (2022) introduces a meta-learning al-
gorithm using Conditional Neural Processes (CNPs) to accurately estimate grasp points from depth
images with minimal trials. Additionally, CNPs are utilized in a variety of applications, including
6D pose estimation Li et al. (2022) and social navigation Yildirim & Ugur (2022). In our work, we
utilize neural processes to address the uncertainty in scoring function regression with high dimension
input, like 3D point clouds and high-resolution images, and filter primitive actions effectively.

3 PROBLEM FORMULATION FOR OBJECT SEARCH

General POMDP Model: In this paper, we consider a POMDP P with a hybrid action domain.
Formally, defined as an 8-tuple < S, A, O, T, Z, R, b0, γ >, where the state space S represents
the state space, the action space A ≜ Ac ×Ad denotes the set of all actions the robot can perform,
where sub-domain Ac is assumed to be continuous and embedded in a bounded metric space with
distance metric function and sub-domain Ad is discrete; the observation space O means the set of all
observations the robot can perceive; the transition function T (s, a, s′) = Pr(s′|s, a) represents
the nondeterministic effects of actions a ∈ A working from the current state s ∈ S to the resulting
state s′ ∈ S; the observation function Z(s′, a, o) = Pr(o|s′, a) is commonly a conditional
probability function that represents the observation the robot may perceive after performing action
a ∈ A in state s′ ∈ S; the immediate reward function R(s, a, s′) maps from a state, an action,
a state–action pair, or a tuple of state, action, and subsequent state to a value; the state s ∈ S is
initially hidden in a initial belief b0, which is a probability distribution on the state space S; γ is a
discount factor following 0 < γ < 1, set as 0.9 in this paper. The goal of solving a POMDP problem
is to find an optimal policy Π∗(b) = argmaxa∈AQ(b,a) for belief b, where the Q(b,a)-value is
the value of executing action a when the agent is at belief b and continuing optimally afterwards.

Focused Object Search Problem: Our task is to locate a target object in a complex environment
containing multiple workspaces and numerous obstacles of unknown quantity and location, using
a mobile robot equipped with onboard sensors. The state s ≜ {sr, so0 , so1 , · · · , son} ∈ S
comprises the robot’s configuration and other objects, where sr represents the robot state and soi

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

denotes the state of the i-th object. The robot state sr = (p, lh, lp, lt) includes the 6D base pose
p, lift height lh, and the pan and tilt angles lp and lt of the robot’s head1. At some stages, the robot
may not detect any updating objects in the workspace. To guide the robot’s actions, we introduce
a guessed target object with state so0 = (po0 , sxo0 , syo0 , szo0 , go0 , mo0 , uo0) ∈ R1×20, where
po0 = (pp

o0 , po
o0) is the 6D object pose; sxo0 , syo0 , and szo0 mean the sizes along the principal 3D

axis of the object; go0 ∈ R1×8 indicates 8 grid odds for identifying target/obstacle status, updated
through object matching. The positions of these 8 grids are linked to the object’s pose, indicating that
each visual observation can only capture certain parts (surfaces or grids) of the object. This helps us
to identify similar objects with the same visual surfaces. mo0 ∈ R evaluates the object moveability,
uo0 marks the object’s status 2. The belief of the position pp

o0 of the guessed target object is saved
in a grid world Gf generated by all workspaces W using many odds values Odd(Gf) with a given
resolution. When sampling, within each grid cell, the object’s position is uniformly sampled, and
the probability is determined by the corresponding odds value3. These odds values Odd(Gf) are
updated based on the camera FOV using real-world measurement in the excursion process, which is
similar to the update of the occupancy grid map Chen et al. (2020); Zhao et al. (2024a). However,
during belief tree search, the odds values Odd(Gf) remain unchanged and are used to sample the
guessed target object for MCTS. The i-th detected objects after each real-world excursion will be
appended to the state vector and form the sub-state soi with the same variable format of so0 .

Our control space A consists of 3 primitive actions: adjusting the robot’s configuration (a continuous
action in R9), declaring an object as a target or obstacle, and removing the i-th object using the
robot manipulator. Since declaring and removing are discrete, the action space is a combination
of continuous and discrete actions, Ac × Ad. For simplicity, we assume all actions have a 100%
success rate4. The transition function T mainly accounts for changes in camera motion due to
the robot’s configuration and changes in object status from declaring or removing actions. The
camera motion follows the rigid transformation and the static structure information of the applied
robot. Once an object is removed, it is moved outside the workspace, and its status uoi is set to -2,
indicating it will no longer block the view of other objects. The observation space O and function
Z focus on objects within the robot’s head camera FOV frustum V . Observations are assumed to
update the log-odds of the 4 nearest grids 5 within goi corresponding to the observed objects with
noise-adjusted values: −co + η for negative log-odds, co + η for positive, and η for near-zero,
where co is a constant, and η is Gaussian noise. If the original mean log-odds over 8 grids exceed
a positive threshold νp, the updated value will be c0 + η. For values below a negative threshold νn,
the updated value will be −c0 + η. Values between thresholds generate near-zero η. The discrete
observation space is {{i, · · · , j}, {o(i), · · · ,o(j)}}, where {i, · · · , j} records observed objects
within V , and {o(i), · · · ,o(j)} are the updated log-odds value. Our reward function R encourages
declaration and removal actions to complete the object search task. Rewards are structured as: Rmax

for successfully removing the target object, Rct for correctly declaring the target, Rco for correct
obstacle declarations, and Rmin for each action, where Rmax ≫ Rct > Rco ≫ 0 > Rmin. The
cost of the removal action is set as 2Rmin due to its complexity. All illegal actions, such as colliding
with occupied grids, incorrect declarations, or re-removal attempts, incur a large penalty (Rill ≪ 0).

Perception and Implementation Support: To simplify the scenario with limited resources—a
2D lidar, 3D RGBD camera, and 7-DOF robot arm on the Fetch robot 6—we assume a pre-built
point cloud and occupancy grid map, including furniture and some known objects, is available for
planning. Other objects with unknown identities and poses are excluded. The robot’s configura-
tion changes are implemented using ROS interfaces: move base for base movement, AMCL for
navigation Quigley et al. (2009), ros control for joint control Chitta et al. (2017), and MoveIt for

1This description is based on the Fetch robot, but our framework can be adapted to other mobile robots with
similar configurations by minor revision.

2-2 indicates the object has been removed; -1 means it is still updating without being declared or removed;
0 and 1 signify it has been declared as an obstacle or target object, respectively, and is no longer updating.

3Note that the grids for workspaces differ from 8 grids associated with objects. Please refer to Appendix A.
4To ensure a 100% success rate, we use the Gazebo server’s set model state function with added Gaussian

noise after standard control operations, though improvements will be made in future work.
5This is manual setting to simulate the visual surface. Others are also fine, like based on the visible grids.
6The Stretch robot also has a camera and lidar, so the perception system can be directly transferred. Its

manipulator has only 3 degrees of freedom, so we use the IKPy tool Manceron (2022) to compute inverse
kinematics, integrating base motion to achieve the required grasp poses.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

declaration and removal actions Şucan et al. (2012). The observation after each action is mainly to
estimate object poses, sizes, detectors, and move-ability for all detected objects. Object poses and
sizes are derived from point cloud operations, including iterative closest point (ICP, initialized by 2D
lidar matching) Rusu & Cousins (2011), filtering, segmentation (Euclidean cluster extraction), and
principal component analysis (PCA). Object detection is achieved through point cloud reprojection,
sub-image fusion, YOLO Rusu & Cousins (2011), SIFT Ng & Henikoff (2003), and color matching
to enhance robustness across different object types. Similarly, the object’s move-ability is evaluated
by virtually planning the possible trajectory using the learning-based Grasp Pose Detection (GPD)
toolbox Ten Pas et al. (2017), the k-means clustering algorithm, and the ROS moveit toolbox. Since
this paper does not focus on the implementation system, please refer to Appendix B for more details.

4 NPF-kCT SOLVER

NPF-kCT is an anytime online POMDP solver. We assume that the Q-value of the considered
POMDP problem follows Lipschitz continuity in the action space. NPF-kCT follows a standard
procedure with four alternating stages: planning, execution, obtaining observations, and filtering, as
shown in Algorithm 1 and Fig. 13. It primarily focuses on the planning stage, aiming to identify
the optimal action based on the current belief b0. To reduce the complexity of the high-dimension
action domain and improve the refining efficiency, a pre-trained neural process-based network pre-
dicts the feasibility of sampled actions with associated uncertainties, filtering out the useless action
domains. The actions are then clustered into hyperspheres using k-center clustering. A belief tree
T is constructed, where nodes represent beliefs and actions. Each belief node nodeo ∈ T is linked
to a dynamic list L(nodeo), which is initially formed from the previous step’s tree and then fuses
with the newly generated hyperspheres, displaying all the connected action nodes. During episode
simulations, L(nodeo) expands as the action space is refined further using k-center clustering.

Algorithm 1 NPF-kCT framework

Input: Initial belief b0
Output: Task is complete or not
1: b← b0, isTerminal = False
2: while isTerminal is False do
3: —————–Planning stage—————-
4: Ar = {ai} ← Net sam(Odd(Gf), P , b))
5: Ca = {centeri}, Ra = {rangei} ← k-

Clustering(Ar)
6: L(nodeo) = Update(T , Ca,Ra)
7: while planning budget not exceeded do
8: s← Sampling(b)
9: T ←Episode simulation(T , s, h)

10: end while

11: ——–Execution and filtering stage——–
12: a∗, center∗, range∗ ← Get the best action

in T from b
13: while planning budget not exceeded do
14: aimp ← Action sam(a∗, center∗,

range∗)
15: if Reasonablility check(aimp) then
16: break
17: end if
18: end while
19: (o, isTerminal) ← Execute(aimp)
20: b, T ←Filtering(b, aimp, o)
21: end while

Algorithm 1 includes functions and parameters that are detailed below: Net sam(·) is the func-
tion that generates small feasible regions by sampling numerous candidate actions Ar and filtering
them using neural network (refer to Section 4.1); k-Clustering(·) is the function that generates high-
dimension hyperspheres by partitioning and covering the candidate actions set using k-Clustering
over some discrete actions, satisfying |Ca| = |Ra| = k; Update(·) is the function to expand
the dynamic list of each belief node L(nodeo) based on the filtered cluster centers and ranges;
Episode simulation(·) refers to the function that performs general MCTS sampling by refining the
action domain for each particle (episode); Action sam() is the function that selects a discrete action
aimp from the chosen domain with center center∗ and radius range∗. For details on these be-
lief tree-related functions, refer to Section 4.2. Reasonablility check(·) ensures that only feasible
discrete actions are selected, such as preventing a robot from moving into obstacles. Execute(·) ex-
ecutes the selected action on the platform and obtains real observations (see Section 3). Filtering(·)
is the particle filter to get a new belief and its corresponding sub-tree.

4.1 NPF-kCT: NEURAL PROCESS NETWORK FOR FILTERING

Motivation about Network Filtering: In POMDPs, many primitives within the continuous sub-
action domain Ac may be inefficient or even unreasonable for pursuing long-term goals or even
short-term ones, like completing a primitive action. If the optimal action a∗ = argmaxa∈Ac

Q(b,a)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

lies within Ac, there exists a smaller but more efficient feasible region X ⊂ Ac such that a∗ ∈ X
and Q(b,a) is relatively large. An intuitive idea is, given s and α(P), to quickly identify this region
X using a score function g(a, s, α(P)) > 0, ∀a ∈ X , which, despite some uncertainty, can be
computed efficiently using a Gaussian process (GP), where α(P) is all configuration settings of the
problem P . However, in high-dimensional POMDPs, GPs are computationally intensive and limited
in applicability. Instead, we aim to use NPs, which are defined as distributions over functions, to
estimate the uncertainty in their predictions. Rather than training a complex network for long-term
goals, as seen in Q-learning Hausknecht & Stone (2015), with extremely large minimum description
length Zhao et al. (2024b) to pursue X = a∗, we use a simpler scoring network focused on short-
term (even one step), physically meaningful goals. This approach filters out ineffective actions,
allowing a compact POMDP to select the optimal action based on current beliefs. Inheriting the
advantage of the neural networks, NPs are computationally efficient during training and evaluation,
and also flexible for different inputs. Hence, we use neural processes nn(µ(a), σ(a)) to learn this
scoring function, where µ(a) is the mean function and σ(a) is the kernel function.

g(a, s, α(P)) ∼ nn(µ(a), σ(a)) (1)

To preserve the optimal action a∗, eliminate as many irrelevant actions as possible, and accurately
represent the complex feasible region X , we would like to get a set of {ai} ⊂ Ac such that with
high probability, g(a, s, α(P)) ≥ 0 and then cover these samples using some high-dimension
hyperspheres. We get a bound on the predictive scores of the samples:

Theorem 1. Let g(a, s, α(P)) ∼ nn(µ(a), σ(a)), δ ∈ (0, 1) and set β∗ = (2 log(1/δ))
1
2 . If

µ(ai) > β∗σ(ai), all steps ∀i = 1, · · · , T , then Pr[g(ai, s, α(P)) > 0,∀i] ≥ 1− δ.

For the proof of this theorem, please refer to Appendix C. This theorem provides a condition for
actions ai: If all the sampled actions using nn(µ(ai), σ(ai)) satisfying µ(ai) > β∗

i σ(ai), then all
samples will satisfy the constraint g(ai, s, α(P)) > 0 with probability at least 1− δ. This simple
conclusion offers a good way to sample good robot actions using their predictive scores.

NPs filtering in object search tasks: Based on state s, the primary goal of the object search process
is to observe target object (assumed to be i-th object) and then update the belief b(goi) of the 8
grid odds value from an initial belief b0(goi) to the target belief bT (goi) by changing the robot’s
FOV. This process involves passing a certain threshold to enable subsequent declaration and removal
actions. Among all primitive actions A, those deemed efficient {ai, · · · } ∈ X are identified if, at
step j, they can update the belief bj(goi) to move closer to the target belief bT (goi) within a bounded
distance: ω△△ ≤ ∥bj−1(goi) − bT (goi)∥1 − ∥bj(goi) − bT (goi)∥1 ≤ △, where △ serves as a
natural upper bound for grid updating, like updating one surface of the nontransparent object, since
it is impossible to observe all surfaces of an opaque object simultaneously. ω△, 0 < ω△ < 1 means
at least one grid is observed and updated correctly. According to Theorem 1, if the action ai satisfies
µ(ai) > β∗ σ(ai), the probability that the grid belief moves closer to the target belief bT (goi) at step
j is at least 1−δ. Given this, a successful action sequence that reaches the target belief and completes
the task selected by the POMDP solver must include at least Nl = [∥b0(goi) − bT (goi)∥1/△]
efficient actions within Np ≥ Nl potential primitive actions. Equality holds only if every primitive
action is efficient. In order to complete the task faster with a better long-term reward, we had better
get the actions with a larger β∗ satisfying µ(a) > β∗σ(a). All these ideas rely on accurate learning
of the scoring function. The scoring function g(a, s, α(P)) in our formulation is designed to
learn the probability that the robot camera can observe the updated grids of the target object. This
probability depends on the robot’s configuration sr, obstacle data from the fused point cloud of
detected objects {o0, o1, · · · , on} ∈ M′

c, the grid world status Gf (represented as a 2D grayscale
image), and the 8 grid odds goi , satisfying g(a, s, α(P)) ≜ g(sr, Gf , M′

c, goi).

To learn the scoring function, we implement a repeating process to autonomously generate the simu-
lation data using a Gazebo environment, shown in Appendix E. We first use some predefined action
sequences to generate the point clouds about the detected objects. Then we keep changing the con-
figuration of the robot and grid configuration, and use object detection to compute the probability
of detecting the target object. The process is fully autonomous after offering given candidate ac-
tions and workspace W . A scenario with a sampled target object, a given robot configuration, and a
successful online color-based object detection is shown in Fig. 14.

For the network structure, we use various encoder networks: partial PointNet Qi et al. (2017),
ResNet-18 He et al. (2016), and Multilayer Perceptron (MLP) to process different inputs. The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

point cloud M′
c is encoded into a 1024-element global feature vector. The odds value for the grid

world related to the guessed target object is converted into a 2D grayscale image and encoded as a
1000-dimensional vector using ResNet-18. The robot configuration and the status of the 8-grid odds
are processed by the MLP, producing three 10-dimensional global features. These are concatenated
into a global feature tensor of size M × 2054. To use NPs, this tensor is divided into training data
M1 × 2054 (including context data (xC ,yC) and target data (xT ,yT)) and test data M2 × 2054,
where M1 +M2 = M . The latent variable NP model then models the conditional distributions as:
p(yT |xT , xC , yC) :=

∫
p(yT |xT , z)q(z|rep(xC , yC))dz, where rep(xC , yC) is an encoder

function that shows a representation of the context data using an MLP, p(⋆|•) denotes the condi-
tional prior for ⋆ given •, and q(⋆|•) means the variational posterior for ⋆ given •. Then, with the
latent variable z generated by the Gaussian sampling of the representation rep(xC , yC), the MLP-
based decoder process is applied for the latent variable z and the test data to model a final Gaussian
distribution for prediction. The whole network structure without training is shown in Appendix F.
For training, the network about the encoder part to the latent variable needs to work on both the
context data and the target data to get Kullback–Leibler divergence DKL(•||•) between prior and
posterior. The parameters of the whole network are learned by maximizing the following evidence
lower bound (ELBO) log p(yT |xT , xC , yC) ≥ uELBO:

uELBO = Eq(z|xC , yC) [log p(yT |xT , z)] +DKL(q(z|xT , yT)||q(z|xC , yC)) (2)

Based on Le et al. (2018), the context data are selected as a subset of the target data, and the ob-
servation variance is learned as a latent variable within the range of 0.1 to 1 to enhance learning
performance. Additionally, in the NP model, a self-attention is added to preprocess the context and
test data tensors, which helps reduce predictive uncertainty near context points Kim et al. (2019).

4.2 NPF-kCT: BELIEF TREE CONSTRUCTION

Figure 2: The NP-based scoring func-
tion and some scattered clusters.

Construction overview: To construct the belief tree
T , our NPF-kCT framework follows the typical select-
expand-simulate-backup approach used in many MCTS
algorithms. The key difference is the adaptive discretiza-
tion using the k-center clustering method with a control-
lable discretization rate. As mentioned in the overview,
each observation node has a dynamic list L(nodeo). If
resources permit, we continue sampling episodes to grow
the belief tree. In each episode, a path is selected from
the root: Episode = s0, a0, o0, r0, s1, a1, o1, r1, · · · .
Starting from the root belief, we first select an action ai ∈ L(nodeo) using a revised UCB1 action
selection strategy. We execute ai, moving from state si to si+1, obtaining observation oi, reward
ri, and updating the belief from bi = {si} to bi+1 = {si+1}. If the process reaches a terminal
condition or a child node does not exist, the tree is expanded by adding a new belief node with
associated action nodes based on L(nodeo). A rollout policy, typically a random action strategy
Rollout Random(·), is then simulated to estimate the value for the new node, followed by backup
operations to update the values for visited nodes along the episode path. Please refer to Algorithm 2.

Algorithm 2 Episode simulation(T , s, h)

Input: The belief tree T , sampled state s, history in
episode h

Output: The discounted reward value r, the updated
belief tree T

1: Observation node nodeo ← (N(nodeo), V
(nodeo)) based on history h

2: if nodea is False then
3: Get action nodes nodea ← (N(nodeo, a),

V (nodeo, a)) based on list L(nodeo)
4: return Rollout Random(s, h+ {a, o})
5: else

6: a∗ = argmaxa∈L(nodeo)
U(nodeo, a)

7: T ←Refine(T , nodeo, a∗)
8: a∗

u ←Action sam(a∗, center∗, range∗)
9: Get s′ and o based on a∗

u, T (s, a∗, s′), and
Z(s′, a∗, o)

10: if s is terminal state then
11: r ← γEpisode simulation(T , s′, h +

{a∗, o}) + R(s, a∗, s′)
12: Backup(T , nodeo, a∗, r, R(s, a∗, s′))
13: end if
14: end if

Action clustering and list initial update before MCTS: Our key idea is to identify the feasible
region X (Net sam(·)) and update the action list associated with belief nodes (Update(·)). Due to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the complexity of real world problems, X is difficult to describe and often has a complex shape.
A practical approach is to identify a set of potential actions Ar = {ai} with a high probability
of satisfying g(ai, s, α(P)) > 0 using NPs filtering. The algorithm to obtain these samples is
detailed in the Appendix G. The primary idea is to quickly obtain predicted mean and variance
values with a single network evaluation and then test them based on Theorem 1. Typically, samples
in the feasible region X form scattered clusters in the continuous action domain Ac, as shown by the
purple, red, and green regions in Fig. 2. We use the Elbow method Thorndike (1953) to determine
the optimal number of clusters ki and all clusters are enclosed within high-dimensional hyperspheres
with centers Ca and radii Ra. The feasible region X is then a subset of the space covered by these
hyperspheres, X ⊆

⋃
i H(centeri, rangei), centeri ∈ Ca, rangei ∈ Ra. The centers and radii

are recursively added to the action list L(nodeo) for observation nodes by traversing the entire tree.

Action selection strategy and list growing in MCTS: Inspired by the HOO idea Bubeck et al.
(2011) from the continuous-arm bandit problem, we select an action from list L(nodeo) by:

a∗ = argmaxa∈L(nodeo)
U(nodeo,a), (3)

where U(nodeo,a) = Q̂(nodeo,a)+ω1

√
logN(nodeo)
N(nodeo, a)

+ω2rangei, Q̂(nodeo,a) is the average
rewards received in rounds when this action node was chosen; U(nodeo,a) is the upper-confidence
bound for the maximum possible Q-value in the hypersphere region H(centeri, rangei), similar
to the UCB1 bound. Our bound also considers the effect of rangei for the i-th hypersphere follow-
ing the Lipschitz assumption; N(nodeo) and N(nodeo, a) represent the number of visits to the
observation node nodeo and its corresponding action node, respectively; ω1 and ω2 are coefficients.

Within the planning budget, the episodes keep running from the root node and the action selection
strategy in equation 3 is used for selecting the action node or expanding the belief tree T . The
action node will be refined and divided into several new clusters and hyperspheres, when an action
node, which is associated with a high-dimensional hypersphere H(center∗, range∗), is visited
more than: N(nodeo,a

∗) ≥ 1/(Crrange
∗2). Here, Cr is a self-defined exploration constant and

N(nodeo,a
∗) provides a rough estimate of the quality of the reward estimation Q̂(nodeo,a

∗),
which follows the adaptive refining strategy in Hoerger et al. (2022) to limit the growth of the dy-
namic list L(nodeo) and ensures that a hypersphere is only refined when this action node has been
visited sufficiently often. We also constrain the refining accuracy and limit the node number corre-
sponding to |L(nodeo)| by range∗ ≥ Dlim, where Dlim is the minimum radius for partitioning.

Assuming the action node nodea∗ containing N(nodeo,a
∗) episodes with the selected action a∗

and hypersphere H(center∗, range∗) needs refinement, these actions in this node are divided
into k clusters and then the corresponding hyperspheres are obtained with centers {△centeri}
and radii {△rangei}, i = 1, 2, · · · , k based on the KMeans algorithm. We then update the
action a∗ of dynamic list L(nodeo) and its corresponding hypersphere H(center∗, range∗)
by the alternative actions set {a∗, a|L(nodeo)|+2,, · · · , a|L(nodeo)|+k} and new hypersphere set
{H(△center1, flim(△range1)), · · · , H(△centerk, flim(△rangek))}, where flim(⋆) con-
trols the refinement rate, ensuring convergence and planning performance.

flim(⋆) = max(f ′
lim(⋆), Dlim), f ′

lim(⋆) =


ω̄1range

∗ if ⋆ ≥ ω̄1range
∗

⋆ if ω̄2range
∗ < ⋆ < ω̄1range

∗

ω̄2range
∗ if ⋆ ≤ ω̄2range

∗
(4)

Figure 3: The refining process using
clustered episode IDs.

where ω̄1 and ω̄2 are coefficients controlling the refining
velocity, with 0 ≤ ω̄2 < ω̄1 ≤ 1. The original sub-
tree with root node nodea∗ is copied and connected to
the observation node nodeo as an additional child node
based on actions a|L(nodeo)|+2, · · · ,a|L(nodeo)|+k. All
nodes generated from nodea∗ are updated based on the
clustered episode IDs, shown in Algorithm 3 and Fig. 3.

Action sampling and Backup: Because the selected action a∗ corresponds to the hypersphere
H(center∗, range∗) range, in order to execute the action in the POMDP problem, we assume
that the sampled action is uniformly distributed in the hypersphere H(center∗, range∗) and then
sample a discrete action in this hypersphere, similar to ellipsoid sampling. When each episode
reaches the terminal state, NPF-kCT framework updates the estimation reward Q̂(nodeo, a) as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 3 Refine(T , nodeo, a∗)

Input: The belief tree T , the observation node
nodeo, the selected action a∗

Output: The updated tree T with the refined nodes
1: Collects all applied actions S ′

r in previous
episodes passed leaf node of observation node
nodeo with its action a∗

2: if N(nodeo,a
∗) ≥ 1/(Crrange

∗2) and
range∗ > Dlim then

3: {△centeri}, {△rangei}, clustered episode
IDs← k-Clustering(S ′

r)
4: L(nodeo) ← L(nodeo)

⋃
{a|L(nodeo)|+2,,

· · · , a|L(nodeo)|+k}
5: H(center∗, flim(range∗)) ←

H(△center1, flim(△range1))

6: {H(centeri, flim(rangei))} ← {H
(centeri, flim(rangei))}

⋃
{H(△center2,

flim(△range2)), · · · ,H(△centerk,
flim(△rangek))}

7: Pick out sub-tree Tsub(nodeo, a
∗) using ob-

servation node nodeo and action a∗

8: Copy and generate new sub-trees based on
Tsub(nodeo, a

∗) and L(nodeo)
9: Revise all its nodes based on clustered episode

IDs, as shown in Fig. 3
10: Attach generated sub-trees to nodeo

11: return updated tree T
12: end if

well as visited numbers N(nodeo) and N(nodeo, a) of all nodes visited by this episode. Here,
we present two classical stochastic backup methods including the Bellman backup, which is used
in the ABT method and similar to the rule used in Q-learning, and the Monte-Carlo backup, which
is widely used in many outstanding POMDP solvers, like POMCP, POMCPOW, and VOMCPOW.
The detailed equations and some theoretical analysis of NPF-kCT are shown in Appendix H and I.

5 SIMULATION AND EXPERIMENTAL RESULTS

We validate our approach using Gazebo simulators and a real-world robot with C++ and Python.
Evaluations span diverse object configurations, comparing our method to continuous-action bench-
marks (POMCPOW and VOMCPOW) and classical POMDP methods with manually-set discrete
actions (POMCP and GPOMCP). Additional settings are in Appendix J.

Neural process for primitive action: This part presents the prediction performance of the trained
neural network in filtering meaningless primitives. Fig. 4 compares the observed test data with the
predicted Gaussian distribution. The red line represents the observed data, and the predicted 2-σ
bound, truncated to [0, 1], is shown in pink. The prediction accuracy, Acc = 1 − Prow, where
Prow is the probability of misclassifying efficient actions (observed probability>0.05) as useless
(mean < 0.05), is 99.02% for the test dataset. We also visualize results for two test samples. Overall,
our neural network accurately filters out useless actions, enhancing the efficiency of the NPF-kCT
solver by reducing the continuous action domain.

Figure 4: The NP results. Figure 5: The visual progress for Covered1 scenario.

(a) Loose1 (b) Loose2 (c) Hidden1 (d) Covered1 (e) Complex1
Figure 6: The planning environment (red box: continuous action domain for robot position)

Simulation Results: Many object search methods rely on the classical POMCP approach with a
discrete action domain. We compare our method with POMDP solvers in both discrete (POMCP,
GPOMCP) and continuous action domains (POMCPOW, VOMCPOW). All methods were tested on

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Discounted cumulative reward, steps, and successful rate (within 50 steps)
Scenarios Loose1 Complex1

POMCP 78629.6 ± 8472.1 | 7.2 ± 0.7 | 100% 27564.2 ± 7591.0 | 47.9 ± 3.2 | 25%
GPOMCP 79788.0 ± 4787.4 | 7.4 ± 0.6 | 100% 40278.0 ± 4957.7 | 42.9 ± 3.8 | 50%
POMCPOW 72612.0 ± 11102.2 | 9.4 ± 2.1 | 100% 37023.4 ± 6951.9 | 44.2 ± 3.4 | 75%
VOMCPOW 77622.9 ± 11406.1 | 8.5 ± 1.6 | 100% 40555.1 ± 6830.9 | 41.1 ± 4.4 | 90%

NPF-kCT 94795.1 ± 6350.6 | 6.0 ± 0.7 | 100% 44737.1 ± 6669.1 | 36.3 ± 5.1 | 95%

Scenarios Hidden1 Covered1

POMCP 45815.2 ± 7260.9 | 19.4 ± 2.8 | 100% 31506.9 ± 6249.7 | 32.3 ± 6.0 | 80%
GPOMCP 55574.8 ± 6225.3 | 15.3 ± 2.0 | 100% 34397.8 ± 7381.6 | 26.7 ± 4.8 | 95%
POMCPOW 61728.4 ± 8791.3 | 12.9 ± 2.7 | 100% 40762.1 ± 8401.1 | 23.9 ± 6.3 | 90%
VOMCPOW 58286.8 ± 10101.1 | 14.9 ± 3.1 | 100% 35725.4 ± 9880.5 | 25.2 ± 5.9 | 90%

NPF-kCT 83377.1 ± 6427.3 | 8.5 ± 1.4 | 100% 44966.1 ± 6340.2 | 21.7 ± 3.0 | 100%

Scenarios Loose2

POMCP 38462.6 ± 11221.2 | 23.2 ± 6.6 | 95%
GPOMCP 51574.1 ± 17930.9 | 17.4 ± 2.9 | 100%
POMCPOW 21785.1 ± 6783.1 | 32.7 ± 6.5 | 70%
VOMCPOW 26860.0 ± 5779.8 | 28.2 ± 6.0 | 85%

NPF-kCT 69992.7 ± 8185.8 | 11.4 ± 2.0 | 100% (b) Loose2 (Blue and purple dashed circles: two work areas)

scenarios with varying object and workspace counts, including Loose1 (4 objects, 1 workspace),
Loose2 (6 objects, 2 workspaces), Hidden1 (7 objects, 1 workspace), Covered1 (7 objects, 1
workspace), and Complex1 (15 objects, 1 workspace). For each scenario, shown in Fig. 6, we con-
ducted 20 trials and reported statistical results, including a 95% confidence interval for discounted
cumulative reward, steps, and success rate within 50 steps, as shown in Table 1. For all methods
reported in Table 1, the time allocated for each planning step is capped at 60 seconds. Our method
consistently outperforms others across all scenarios, thanks to efficient neural filtering and refined
clustering. To illustrate the process, we present the action sequence for the Covered1 scenario, com-
pleted in 18 steps by adjusting robot configurations, identifying obstacles and target objects, and
removing them (highlighted by yellow dashed circles) as shown in Fig. 5. Each step also includes
the odds value of the grid world Odd(G) (lower left) and the detected camera image (lower right).
The odds values converge near the target object. More details and results are shown in Appendix K.

Figure 7: The real-world
planning environment.

Experimental results: We applied it to both the Stretch robot simulator
and its real-world platform (Fig. 7) for validation. Simulation results are
in Appendix L. While object-level primitives are assumed to be fully im-
plemented (which is challenging in reality), performance will decrease
due to failed actions, and the success rate is not 100%. The goal of
the robot is to look for the red bottle. In 18 real-world trials, 10 were
successful, and 8 failed due to hardware or communication issues. For
successful trials, the discounted cumulative reward is 64890.7±17760.8
with 10.6± 3.3 steps. Visible experimental results are in the video.

Limitation: Our primary limitations stem from errors and failures in
perception, execution, and navigation, rather than our focused planning part. First, reliance on pre-
existing maps is challenging, as such maps may not be available for real-world robots; integrating
advanced SLAM techniques could address this. Second, achieving 100% success for primitive ac-
tions in real scenarios is unrealistic, impacting overall performance. Additionally, our point cloud
segmentation may produce inaccurate bounding boxes for objects with large contact areas, leading
to faulty data association and belief updates. Object detection methods (e.g., YOLO, SIFT, color
matching) also struggle in low-light conditions or environments with sparse features. We believe
these limitations can be mitigated through advancements in perception, navigation, and execution.

6 CONCLUSION

We propose NPF-kCT, a novel POMDP framework and solver for 3D object search with hybrid
actions. Combining MCTS, NPs, k-center clustering, and a revised UCB strategy, it selects optimal
actions based on maps, photos, and onboard sensors. Simulations and real-world tests show it out-
performs classical solvers, achieving higher rewards, fewer steps, and better success rates within the
same computational resources.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Alper Aydemir, Andrzej Pronobis, Moritz Göbelbecker, and Patric Jensfelt. Active visual object
search in unknown environments using uncertain semantics. IEEE Transactions on Robotics, 29
(4):986–1002, 2013.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal of
Machine Learning Research, 12(5), 2011.

Luke Burks, Hunter M Ray, Jamison McGinley, Sousheel Vunnam, and Nisar Ahmed. Harps: An
online pomdp framework for human-assisted robotic planning and sensing. IEEE Transactions
on Robotics, 2023.

Ruijie Chen, Ning Gao, Ngo Anh Vien, Hanna Ziesche, and Gerhard Neumann. Meta-learning
regrasping strategies for physical-agnostic objects. arXiv preprint arXiv:2205.11110, 2022.

Yongbo Chen and Hanna Kurniawati. Pomdp planning for object search in partially unknown envi-
ronment. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Yongbo Chen, Shoudong Huang, and Robert Fitch. Active slam for mobile robots with area coverage
and obstacle avoidance. IEEE/ASME Transactions on Mechatronics, 25(3):1182–1192, 2020.

Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo Rodrı́guez
Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar, Gennaro Raiola, Mathias
Lüdtke, and Enrique Fernandez Perdomo. ros control: A generic and simple control framework
for ros. Journal of Open Source Software, 2(20):456, 2017. doi: 10.21105/joss.00456.

Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Dieter Fox.
Online replanning in belief space for partially observable task and motion problems. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5678–5684. IEEE, 2020.

Wenqi Ge, Chao Tang, and Hong Zhang. Commonsense scene graph-based target localization for
object search. arXiv preprint arXiv:2404.00343, 2024.

Francesco Giuliari, Geri Skenderi, Marco Cristani, Alessio Del Bue, and Yiming Wang. Leveraging
commonsense for object localisation in partial scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(10):12038–12049, 2023.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 aaai fall symposium series, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Marcus Hoerger, Hanna Kurniawati, Dirk Kroese, and Nan Ye. Adaptive discretization using
voronoi trees for continuous-action pomdps. In International Workshop on the Algorithmic Foun-
dations of Robotics, pp. 170–187. Springer, 2022.

Mengxue Hou, Tony X. Lin, Haomin Zhou, Wei Zhang, Catherine R. Edwards, and Fumin Zhang.
Belief space partitioning for symbolic motion planning. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 8245–8251, 2021. doi: 10.1109/ICRA48506.2021.
9561121.

Huang Huang, Marcus Dominguez-Kuhne, Vishal Satish, Michael Danielczuk, Kate Sanders, Jef-
frey Ichnowski, Andrew Lee, Anelia Angelova, Vincent Vanhoucke, and Ken Goldberg. Mechan-
ical search on shelves using lateral access x-ray. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2045–2052. IEEE, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Huang Huang, Letian Fu, Michael Danielczuk, Chung Min Kim, Zachary Tam, Jeffrey Ichnowski,
Anelia Angelova, Brian Ichter, and Ken Goldberg. Mechanical search on shelves with efficient
stacking and destacking of objects. In The International Symposium of Robotics Research, pp.
205–221. Springer, 2022.

Yixuan Huang, Jialin Yuan, Chanho Kim, Pupul Pradhan, Bryan Chen, Li Fuxin, and Tucker Her-
mans. Out of sight, still in mind: Reasoning and planning about unobserved objects with video
tracking enabled memory models. In 2024 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 3108–3115. IEEE, 2024.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Andrey Kurenkov, Joseph Taglic, Rohun Kulkarni, Marcus Dominguez-Kuhne, Animesh Garg,
Roberto Martı́n-Martı́n, and Silvio Savarese. Visuomotor mechanical search: Learning to re-
trieve target objects in clutter. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 8408–8414. IEEE, 2020.

Hanna Kurniawati and Vinay Yadav. An online pomdp solver for uncertainty planning in dynamic
environment. In Robotics Research: The 16th International Symposium ISRR, pp. 611–629.
Springer, 2016.

Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation. Journal of field
robotics, 36(2):416–446, 2019.

Tuan Anh Le, Hyunjik Kim, Marta Garnelo, Dan Rosenbaum, Jonathan Schwarz, and Yee Whye
Teh. Empirical evaluation of neural process objectives. In NeurIPS workshop on Bayesian Deep
Learning, volume 4, 2018.

Yumeng Li, Ning Gao, Hanna Ziesche, and Gerhard Neumann. Category-agnostic 6d pose estima-
tion with conditional neural processes. arXiv preprint arXiv:2206.07162, 2022.

Michael H Lim, Claire J Tomlin, and Zachary N Sunberg. Voronoi progressive widening: efficient
online solvers for continuous state, action, and observation pomdps. In 2021 60th IEEE confer-
ence on decision and control (CDC), pp. 4493–4500. IEEE, 2021.

Pierre Manceron. Ikpy, May 2022. URL https://doi.org/10.5281/zenodo.6551158.

John Mern, Anil Yildiz, Zachary Sunberg, Tapan Mukerji, and Mykel J Kochenderfer. Bayesian
optimized monte carlo planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 11880–11887, 2021.

Pauline C Ng and Steven Henikoff. Sift: Predicting amino acid changes that affect protein function.
Nucleic acids research, 31(13):3812–3814, 2003.

Joni Pajarinen, Jens Lundell, and Ville Kyrki. Pomdp planning under object composition uncer-
tainty: Application to robotic manipulation. IEEE Transactions on Robotics, 39(1):41–56, 2022.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450, 1987.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger,
Rob Wheeler, and Ng Andrew. Ros navigation stack, 2009. URL http://wiki.ros.org/
navigation.

12

https://doi.org/10.5281/zenodo.6551158
http://wiki.ros.org/navigation
http://wiki.ros.org/navigation

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ahmed H. Qureshi, Jiangeng Dong, Austin Choe, and Michael C. Yip. Neural manipulation plan-
ning on constraint manifolds. IEEE Robotics and Automation Letters, 5(4):6089–6096, 2020. doi:
10.1109/LRA.2020.3010220.

Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In 2011 IEEE In-
ternational Conference on Robotics and Automation, pp. 1–4, 2011. doi: 10.1109/ICRA.2011.
5980567.

Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and Byron Boots. One-shot learning for
semantic segmentation. arXiv preprint arXiv:1709.03410, 2017.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. Advances in neural informa-
tion processing systems, 23, 2010.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. Despot: Online pomdp planning with
regularization. Advances in neural information processing systems, 26, 2013.

Gergely Sóti, Björn Hein, and Christian Wurll. Gradient based grasp pose optimization on a nerf
that approximates grasp success. arXiv preprint arXiv:2309.08040, 2023.

Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library. IEEE
Robotics & Automation Magazine, 19(4):72–82, December 2012. doi: 10.1109/MRA.2012.
2205651. https://ompl.kavrakilab.org.

Zachary Sunberg and Mykel Kochenderfer. Online algorithms for pomdps with continuous state,
action, and observation spaces. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 28, pp. 259–263, 2018.

Andreas Ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose detection in point
clouds. The International Journal of Robotics Research, 36(13-14):1455–1473, 2017.

Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.

Arthur Wandzel, Yoonseon Oh, Michael Fishman, Nishanth Kumar, Lawson LS Wong, and Stefanie
Tellex. Multi-object search using object-oriented pomdps. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 7194–7200. IEEE, 2019.

Yang Yang, Hengyue Liang, and Changhyun Choi. A deep learning approach to grasping the invis-
ible. IEEE Robotics and Automation Letters, 5(2):2232–2239, 2020.

Yigit Yildirim and Emre Ugur. Learning social navigation from demonstrations with conditional
neural processes. Interaction Studies, 23(3):427–468, 2022.

Liang Zhao, Yingyu Wang, and Shoudong Huang. Occupancy-slam: Simultaneously optimizing
robot poses and continuous occupancy map. arXiv preprint arXiv:2405.10743, 2024a.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024b.

Kaiyu Zheng, Yoonchang Sung, George Konidaris, and Stefanie Tellex. Multi-resolution pomdp
planning for multi-object search in 3d. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2022–2029. IEEE, 2021.

Kaiyu Zheng, Rohan Chitnis, Yoonchang Sung, George Konidaris, and Stefanie Tellex. Towards op-
timal correlational object search. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 7313–7319. IEEE, 2022.

13

https://ompl.kavrakilab.org

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A GRID WORLD

The belief of the position pp
o0 of the guessed target object is saved in a grid world Gf generated by

all workspaces W using many odds values Odd(Gf) with a given resolution. Inside each grid, the
position is sampled uniformly and its probability is obtained by its odds value. The odds values are
updated based on the FOV of the camera using real-world measurement in the excursion process,
which is similar to the update of the occupancy grid map Chen et al. (2020); Zhao et al. (2024a),
following:

logOdd(gi|z1:t) = logOdd(gi|zt) + logOdd(gi|z1:t−1)

Odd(gi|z1:t) = P (gi|z1:t)/P (¬gi|z1:t)
(5)

where P (gi|z1:t) and P (¬gi|z1:t) means the probability of the object belonging to and not belonging
to this grid gi based on multiple observations z1:t; Odd(gi|z1:t) is the corresponding odd value. In
the belief tree search, we do not update the odds values Odd(Gf) and it will be updated after real-
world excursion and observation using FOV. In the planning stage, this grid world is just used to
sample the potential position of the guessed target object in the root node. The guessed target object
is special with a constant (no need to estimate) orientation (set as (0, 0, 0, 1)), size (0.1, 0.1, 0.1), and
move-ability value (set as 100, movable). The grid values go0 and the declared value uo0 are update-
able in the belief tree search but need to be reinitialized as the given value after each excursion. The
guessed target object is not the really detected objects. Fig. 8 to show the scenario about grid world
for the guessed target object: The other object soi , i ̸= 0 ∈ R1×20 follows the same format and but

Figure 8: Grid world update in one frame for guessed target object

all parameters should be updated both in belief tree search and real-world excursion. It is noted that
the pose of the other objects soi is estimated based on the point cloud which is independent of the
grid world Gf .

B ACTION EXECUTION AND PERCEPTION WITH ON-BOARD SENSORS

Different from many state-of-the-art methods Zheng et al. (2021; 2022) considering the static objects
and no interaction between the robot with the target and obstacle objects, our method introduces
the robot arm action to remove obstacle objects and free the undetected space. Meanwhile, our
perception part is carefully explored with many useful outputs, like estimated object pose, estimated
object size, object move-ability, and object detector, fusing both point cloud data and the image data
without using manual marks.

B.1 ACTION EXECUTION

Our framework for object search is suitable for all mobile robots with 2D Lidar and RGBD cameras,
but specifically, we mainly consider the Fetch robot here. The move base action is implemented
using a ROS interface move base and the interaction with the AMCL-based navigation stack. The
robot lift height and head joints including pan and tilt angles are controlled by following the joint-
space trajectories on a group of joints based on a ROS interface ros control Chitta et al. (2017). The
removing action is to pick up the object and place it in some given areas outside the workspace.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Some examples about the move base action, joints controller, and removing object action are shown
in Fig. 9.

(a) Move base action (b) Joints controller (c) Removing action
Figure 9: Actions execution

B.2 SENSOR DATA OPERATIONS

In our framework, the point cloud map M of the robot environment with some furniture and known
objects, but not all objects, is assumed to be available before planning, which is a reasonable and
realistic assumption achieved by mapping the environment at any time before the tasks. In the online
planning and execution process, the point cloud Fj in j-th frame detected from the depth camera is
fused with the map M by iterative closest point (ICP) with random sample consensus (RANSAC).
The computed ICP transformation also helps to give a noisy measurement Zicp ∼ N (Z̄icp, σicp)
for robot pose the in the global frame, which will be fuse with the AMCL localization Zamcl ∼
N (Z̄amcl, σamcl) in the filter part of the POMDP framework. With the increase in the frame number,
the point cloud of objects and environment Pj = M

⋃
F0

⋃
· · ·

⋃
Fj is becoming more and more

complete. After removing the original map M′
c = Pj/M, the point clouds for n newly detected

objects {o0, o1, · · · , on} ∈ M′
c are extracted by point cloud segmentation using the Euclidean

cluster extraction method. Then, in order to estimate the object pose and size for performing further
manipulator interaction, the minimum oriented bounding box for each object is obtained by principal
component analysis. The above point cloud segmentation is implemented both on local and global
point clouds and then a data association, based on the Mahalanobis distance of their centriod points
and the point-wise mean distance, is introduced. The process to get measurement from point clouds
is shown in Fig. 10.

Figure 10: Measurement from point cloud

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 OBJECT DETECTOR

State-of-the-art real-time object detection systems, like YOLO, are commonly designed to divide
the objects into different classes and they are not matched with the target images. Meanwhile, we
have the 3D point clouds of the objects, which are helpful to divide the objects in the image. So
as to complete the given object detection task using several given images and some semantic words
(optional), we fuse the traditional feature-matching method and YOLO toolbox to complete the
object detection task.

Based on the previous point cloud segmentation, we perform it on the current visual local frame and
the separated point clouds in the local frame are re-projected to the image to bound the objects in the
RGB camera image forming a set of sub-images {Ip

i , i = 1, 2, · · · , n} using the camera configu-
ration and the perspective projection. Similar sub-images of this image {Iy

i , i = 1, 2, · · · , m} and
their corresponding semantic scores {s̄yi , i = 1, 2, · · · , m} can also be bounded and generated
using the YOLOv5 model with pre-trained parameters. Commonly, we have m ̸= n. A simple
data association method with the nearest images and enough common areas is presented to match
these two sets of sub-images. For the successful data association pair, we use the sub-image in the
local frame as the image corresponding to this object. These sub-images in the detected and asso-
ciated 2D boxes corresponding to different objects are matched with the target object using SIFT
descriptor. The rate between the number of matched scale-invariant features and the number of all
features is defined as the probability of object detection, denoted {s̄di , i = 1, 2, · · · , n}. If this
task offers the target type, like cup and laptop, we use the mean values between the semantic scores
{s̄yi , i = 1, 2, · · · , n} and the probability of object detection {s̄di , i = 1, 2, · · · , n}. The main
process of the object detector is given in Fig. 11. We find the current object matching is not robust
enough in the real world environment and the perception is not our main focused point, so we also
add the color matching for the detected object in real world experiments 7 when the offered object
detector fails.

Figure 11: Object detector

B.4 MOVE-ABILITY ESTIMATION

It is easy to know that, in the real-world environment, some objects in the workspace are not move-
able for the robot with a manipulator due to some physical limitations, such as the size limitation
of the object, the manipulator workspace limitation, and the mobile base motion limitation. In our
framework, we would like to manipulate the objects in the workspace to free some FOV, so it is better
to estimate the probability of the move-ability and then update their beliefs for POMDP planning.

Based on the point cloud segmentation for the fused global point cloud, we can obtain many sep-
arated point clouds for different objects. Then, facing each point cloud in the detected frame,
many candidate grasp poses are predicted by the learning-based Grasp Pose Detection (GPD) tool-
box Ten Pas et al. (2017). So as to reduce the computational complexity, we select k representative
grasp poses pg

i , i = 1, 2, · · · , k for each object using k-means clustering algorithm. These k grasp
poses are diverse with high scores in picking success rate. The point clouds of the obstacles in
the surrounding environment and these k representative grasp poses pg

i are transformed to the local
frames T g

r (p
g
i) based on the pre-visited robot poses pr

i during the task process. Here, it is noted

7In real-world experiments, we commonly use the target object with a large area of pure color, like the pure
red bottle.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

that only the pre-visited robot poses are considered because the poses generated by other methods
may not reachable based on the used move-base toolbox because of the error of the AMCL local-
ization and the complexity of the occupancy grid map. These pre-visited robot poses pr

i are safer
for implementation. Following, these transformed local poses T g

r (p
g
i) will be set as the plan tar-

get to the robot manipulator using moveit toolbox without execution in a given time limitation tm.
The planned moveit feedback will decide the probability of this detection about the move-ability
0 < rmove ≤ 1 based on distance. Otherwise, it will be set as 1. When no solution for moveit
toolbox, the move-ability rmove will get close to 0. In the planning stage, for each particle, we will
randomly sample a random value for this object and compare it with the move-ability rmove to iden-
tify the move-ability in this step. Objects with too large sizes will be considered to be non-moveable
rmove = 0, which is definitely not movable. In real-world experiments, for simplification, we use
all removable objects and the move-ability rmove is set to be 1. An example of the candidate grasp
poses is shown in Fig. 12.

Figure 12: Candidate grasp poses

C PROOF ABOUT THEOREM 1

Proof. We rewrite the formulation by g′(θ) ≜ g(a, s, α(P)) given fixed s and α(P). Based
on g′(θ) ∼ nn(µ(θ), σ(θ)), with the fix input θi and i ≤ 1, we have the Gaussian distribution
g′(θi) ∼ N(µ(θi), σ(θi)).

Let zi =
g′(θi)−µ(θi)

σ(θi)
∼ N(0, 1). For a Gaussian distribution with mean 0 and variance 1, we have:

Pr(zi > ηi) =

∫ +∞

ηi

1√
2π

exp−z2/2 dz

=

∫ +∞

ηi

1√
2π

exp−(z−ηi)
2/2−zηi+η2

i /2 dz

= exp−η2
i /2

∫ +∞

ηi

1√
2π

exp−(z−ηi)
2/2−zηi+η2

i dz

= exp−η2
i /2

∫ +∞

ηi

1√
2π

exp−(z−ηi)
2/2 exp−zηi+η2

i dz

(6)

Because we can set ηi > 0 and zi > ηi, we have: −zηi + η2i < 0. So, we have:

Pr(zi > ηi) ≤ exp−η2
i /2

∫ +∞

ηi

1√
2π

exp−(z−ηi)
2/2 dz = exp−η2

i /2 /2 (7)

Introduce zi =
g′(θi)−µ(θi)

σ(θi)
, we have:

Pr(g′(θi)− µ(θi) > ηiσ(θi)) ≤ exp−η2
i /2 /2

Pr(g′(θi)− µ(θi) < −ηiσ(θi)) ≤ exp−η2
i /2 /2

(8)

We have:
Pr(∥g′(θi)− µ(θi)∥ > ηiσ(θi)) ≤ exp−η2

i /2 (9)

The complementary set of ∥g′(θi) − µ(θi)∥ > ηiσ(θi) is ∥g′(θi) − µ(θi)∥ ≤ ηiσ(θi) and its
corresponding probability is bigger than 1− exp−η2

i /2. Let δ = exp−η2
i /2 ⇒ ηi =

√
−2 log(δ), we

have:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Pr(∥g′(θi)− µ(θi)∥ ≤ ηiσ(θi)) ≥ 1− δ (10)

We have the scoring function g′(θi) is bounded by (µ(θi) −
√

−2 log(δ)σ(θi), µ(θi) +√
−2 log(δ)σ(θi)) with a probability bigger than 1 − δ. So, if its lower bound µ(θi) −√
−2 log(δ)σ(θi) > 0 ⇔ µ(θi) >

√
−2 log(δ)σ(θi), the scoring function satisfying:

Pr(g′(θi) > 0) > 1− δ (11)

D STRUCTURAL GRAPH OF NPF-kCT

NPF-kCT follows a standard procedure with four alternating stages: planning, execution, obtaining
observations, and filtering, as shown in Algorithm 1. Its flow chart is shown as follows:

Figure 13: The main steps in NPF-kCT

E ALGORITHM TO GET THE SIMULATION DATASET

Algorithm 4 shows how to use Gazebo simulator to collect the data for scoring function. The input
of method including the 2D occupancy grid map, which is used to initialize the 3D ICP matching, 3D
point cloud map, which is used to get fused object point cloud by completing the scan matching with
current 3D camera point cloud and remove the points outside the workspace, Fetch simulator, which
offers all real-time sensor data, and some manually selected candidate actions Amanual. These
selected candidate actions Amanual are selected from some random generated actions with good
diversity. The outputs are the pairs for neural network mapping from robot state sr, generated grid
world Gf , the detected objects in workspace with a point cloud format M′

c, and the 8 grids status
of the target object compared with thresholds goi to the scoring value, which is the probability of
updating the grids of the target object. The whole process is shown in Algorithm 4.

F NETWORK STRUCTURE FOR SCORING FUNCTION

The structure of the used NPs model for the scoring function is shown in Fig. 15.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 4 Simulation dataset generator
Input: 2D occupancy grid map, corresponding 3D point cloud map, Fetch robot simulator in Gazebo environ-

ment, a set of manually selected candidate actions Amanual

Output: data mappings (sr, Gf , M′
c, goi)→ g(a, s, α(P))

1: while Dataset size is not enough do
2: Re-initialize the robot simulator and Gazebo environment with different object numbers and poses.
3: Randomly generate J classes of action sequences {aj

1, aj
2, . . . , aj

L}, aj
i ∈ Amanual ⊆ A, j =

1, 2, · · · , N from Amanual with limited I steps.
4: for i = 1 to I do
5: for j = 1 to J do
6: Set robot status based on the action aj

i with some noises.
7: Collect camera point cloudMj

i and fuse point cloudM′
c = fF (M′

c

⋃
Mj

i) after ICP and filtering
the point cloud outside the workspace.

8: Compute the odds update for the whole grid world about the grid world for guest target object Gf
based on FOV and object detection.

9: Remove the target object (identified) and undetected objects in Gazebo environment to make sure
that we just use the known information for data generation.

10: Collect and saveM′
c and Odd(Gf).

11: for k = 1 to K do
12: Uniformly sample configurations in continuous action domain sr ∼ Uniform(Ac).
13: Build a cube with 8 both red and green grids. The color distribution is decided by the compari-

son value fc(go0) ∈ {0, 1}1×8 between go0 and threshold.
14: Collect and save sr and fc(go0).
15: scored ← 0
16: for l = 1 to L do
17: Sample the position of the cube with 8 grids in different positions based on odds value

Odd(Gf) and grid colors are set based on fc(goi). Only the unobserved grids, of which
the value is smaller than threshold, are set as green for matching. Otherwise, the grids are set
as red.

18: if Object detection finds the green area based on the collected RGBD image is True then
19: scored ← scored + 1
20: end if
21: end for
22: g(a, s, α(P))← scored

L
× 100%.

23: Collect and save g(a, s, α(P)).
24: end for
25: Rearrange all objects based on their original poses before removing them.
26: end for
27: end for
28: for m = 1 to M = I × J ×K × L do
29: Normalize the following data mappings: (sr, Odd(Gf),M′

c, go0)→ g(a, s, α(P)).
30: end for
31: return Saved data pairs by tensor format
32: end while

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 14: Robot successfully detects the green grids in this scene and “scored” adds 1 in
Algrithm 4.

G NETWORK TO SAMPLE THE CANIDATE ACTIONS

The main algorithm to get the samples {ai} is shown in Algorithm 5.

Algorithm 5 Net sam(Odd(Gf), Pj , b,)

Input: The trained network nn(µ(a), σ(a)), the odds update for the whole grid world about the fake object
Odd(Gf), belief b = {si}, fused point cloudM′

c, throushold Cthreshold

Output: A set of potential actions {ai} satisfy the following condition Pr[g(ai, si, αi(P)) > 0, ∀i] ≥
Cthreshold

1: Transform odds value for the grid world as an image and save as repeated tensor Todd.
2: Repeats the fused point cloud and saves it as a tensor Tpoint.
3: Samples a class of states {si}.
4: {sr}, {go0} ← {si} and gets the robot state tensor Tr and 8 grids odds tensor Tg .
5: Gets the predicted mean Tµ and variance tensors Tσ based on Tr , Todd, Tpoint, Tg and the trained network

nn(µ(a), σ(a)).
6: for µ(ai)← Tµ, σ(ai)← Tσ do
7: β∗

i ← (2 log(1/(1− Cthreshold))
1
2

8: Check µ(a) > β∗σ(a) and collect the ones satisfying this condition to {ai}.
9: if satisfying the number limitation then

10: return selected action set {ai}.
11: end if
12: end for
13: return action set {ai} with highest score.

H BACKUP

When each episode reaches the terminal state, our NPF-kCT framework updates the estimation
reward Q̂(nodeo, a) as well as the visited numbers N(nodeo) and N(nodeo, a) of all nodes
visited by this episode. Here, we present two classical stochastic backup methods including the
Bellman backup (Algorithm 6), which is used in the ABT method and similar to the rule used in
Q-learning, and the Monte-Carlo backup (Algorithm 6), which is widely used in many outstanding
POMDP solvers, like POMCP, POMCPOW, and VOMCPOW. The Bellman update naturally follows
the objective function of the POMDP formulation that aims to pursue optimal action in each step
of the long-term planning. It helps the solver to explore deeper by focusing its search on promising
parts of the belief tree. The main challenge for the Bellman backup is when facing unexpected
observations, a lot of deeply explored belief trees will be frequently cut and this case causes poor
planning performance. Hence, the Bellman backup gets a better performance when the good rewards
are sparse in the belief tree, but it is not stable enough for the poor observation prediction. In contrast
to selecting the reward with optimal action, the Monte-Carlo backup computes the average reward
along with different action episodes, which means that the generated belief tree will be more robust
when facing unexpected uncertainty in received observation. In our application for object search, the
real visual observation is not well predictable for the observation model in the POMDP formulation
and the robot camera will frequently receive unexpected measurements, which may not be deeply

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 15: Used network.

explored in the belief tree and breaks the advantage of the Bellman update. We use the Monte-Carlo
backup in our problem but the Bellman backup is commonly superior in other applications, so we
present both two backup ways here.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 6 Backup(T , nodeo, a∗, r, R)
Input: The belief tree T , the observation mode nodeo, the selected action a∗, the accumulated reward r, and

the immediate reward R
Output: The updated tree T with updated values
1: N(nodeo)← N(nodeo) + 1 and N(nodeo, a

∗)← N(nodeo, a
∗) + 1

2: if Use Monte-Carlo backup then
3: Q̂(nodeo,a

∗)← Q̂(nodeo,a
∗) + r−Q̂(nodeo,a

∗)
N(nodeo, a∗)

4: else
5: node′

o is the child of nodeo

6: Q̂(nodeo,a
∗)← Q̂(nodeo,a

∗) +
R+γV̂ ∗(node′

o)−Q̂(nodeo,a
∗)

N(nodeo, a∗)

7: V̂ ∗(nodeo)← maxa∈L(nodeo) Q̂(nodeo,a)
8: end if

I THEORETICAL ANALYSIS

In this section, we aim to analyze the convergence of the proposed solver with some assumptions to
improve the compact of this work. The key point is to answer the following question:

Question 1. Does the NPF-kCT algorithm converge in probability to the optimal value function in
POMDPs?

Let’s recall our key steps in NPF-kCT algorithm related to the convergence, including network
filtering, k clustering for hierarchical partition, and the revised UCB strategy. It is easy to know that
the prediction accuracy of the neural network will directly affect the performance of the method.

Assumption 1. The neural network used for action filtering does not filter the optimal action. The
obtained feasible region X satisfies a∗ ∈ X , a∗ = argmaxa∈AQ(b, a).

Satisfying assumption 1, the network filtering will not affect the convergence of the NPF-kCT algo-
rithm to the optimal result. The problem just has a smaller action domain with the same configura-
tion. To answer Question 1 is equal to answer Question 2:

Question 2. Without considering network filtering, does the NPF-kCT algorithm with k-center
clustering and the revised UCB strategy converge in probability to the optimal value function in
POMDPs?

Based on Silver & Veness (2010), we can answer Qusetion 2 by considering POMDPs as a derived
MDP. Let’s consider Lemma 1 about the value function and Lemma 2 about the rollout distribu-
tion Silver & Veness (2010):

Lemma 1. Given a POMDP M =< S, A, O, T, Z, R >8 consider the derived
MDP with histories as states, M̃ =< H, A, T̃ , R̃ >, where T̃ (h, a, hao) =∑

s∈S
∑

s′∈S b(s, h)T (s, a, s′)Z(s′, a, o), where b(s, h) = Pr(s|h), h is the given history, hao
means the updated history pruning the tree by a and o, and R̃(h, a) =

∑
s∈S b(s, h)R(s, a, s′) =∑

s∈S b(s, h)R(s, a). Then the value function Q̄π(h) of the derived MDP is equal to the value
function Qπ(h) of the POMDP, ∀ policy π Q̄π(h) = Qπ(h).

Lemma 2. For any rollout policy π, the POMDP rollout distribution is equal to the derived MDP
rollout distribution, ∀π Dπ(hT) = D̃π(hT).

Based on Lemma 1 and Lemma 2, we can find that proving the convergence of POMDP solvers for
a given POMDP is equal to proving the convergence of corresponding MDP solvers for the driver
MDP. Hence, we have the following new question to replace Question 2:

Question 3. Does the NPF-kCT algorithm converge in probability to the optimal value function in
MDPs?

In order to connect our NPF-kCT algorithm with some existing MDP solvers, we present the fol-
lowing assumption:

8ignore initial belief b0 and the discounted factor γ here.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Assumption 2. The action partitioning results Xd,ij , j = 1, · · · , k generated by all k center clus-
tering operations for the action domain Xd−1,i follow the properties of the hierarchical partitioning,
satisfying Xd,ij

⋂
Xd,i′j

= ∅ for ∀ij , i′j ∈ {i1, · · · , ik} and
⋃

j=1,··· ,k Xd,ij = Xd−1,i.

Based on Assumption 2, we can consider the k center clustering as the hierarchical partitioning. With
hierarchical partitioning, our method follows the same search strategy as the HOO method but with
different partitioning ways. Because we limit the refining accuracy rangei and the corresponding
list dimension |L(nodeo)|, we can consider the same problem with the finite discrete actions and
each action a is a range instead of a value. We have the following new questions:

Question 4. Does the action selection strategy equation 3 in the NPF-kCT algorithm converge in
probability to the optimal value function in MDPs with discrete action domains?

When the number of visits N(nodeo) approaches infinity, the action range rangei will be the con-
stant limitation Dlim ∈ R. For the action selection strategy equation 3, with a given coefficient
ω2, we can ignore the region-related terms ω2rangei due to the same constant value for all candi-
date action ranges. In this way, the action selection strategy becomes the standard UCB1 bound:

Q̂(nodeo,a) + ω1

√
logN(nodeo)
N(nodeo, a)

+ ω2rangei → Q̂(nodeo,a) + ω1

√
logN(nodeo)
N(nodeo, a)

+ ω2Dlim.
So it follows the convergence analysis for the UCB1 in Kocsis & Szepesvári (2006) and Silver &
Veness (2010), following:

Lemma 3. For a suitable choice of ω1, the value function constructed by UCT converges in proba-
bility to the optimal value function. As the number of visits N(nodeo) approaches infinity, the bias
of the value function is O(log N(nodeo)/N(nodeo)).

This convergence result means that the method can find the optimal range action Aopt that has the
largest mean value for all refined ranges with some probability.

Assumption 3. The obtained mean values Q̄(b, Aopt) and Q̄(b, Asub) corresponding the optimal
action range Aopt and any sub-optimal action range Asub satisfy:

Q̄(b, Aopt)− Q̄(b, Asub) ≥ ηDlim (12)

Based on Lipschitz continuous, we have any action a ∈ Asub in the sub-optimal range Asub

satisfies: Q(b, a) ≤ Q̄(b, Asub) + ηDlim. Then, considering Assumption 3, we will have:
Q̄(b, Aopt) ≥ ηDlim + Q̄(b, Asub) ≥ Q(b, a). Because the best action ã∗ ∈ Aopt in the optimal
action range Aopt satisfy Q(b, ã∗) ≥ Q̄(b, Aopt), finally, for any action a ∈ Asub

⋃
Aopt in both

sub-optimal range Asub and optimal range Aopt, we have: ã∗ = a∗ and Q(b, ã∗) = Q(b, a∗) ≥
Q(b, a), which means the obtained optimal range Aopt definitely includes the optimal action a∗.
In short, based on previous assumptions, the NPF-kCT method can converge in probability to the
small range including the optimal solution for POMDPs with continuous action domains.

J CONFIGURATIONS FOR SIMULATIONS AND EXPERIMENTS

In Section 5, we utilize the Fetch robot simulator to validate the effectiveness of our approach within
the Gazebo environment based on C++ and Python codes. The neural process network undergoes
training for a total of 3000 iterations (about 4 hours), executed on a single NVIDIA 3090 GPU. Post-
training, we execute our project on a desktop machine, utilizing only the CPU, operating on Ubuntu
18.04, and powered by an Intel Core i7-13700k processor. The evaluation of our methodology spans
diverse object configurations in various scenarios, with a comparative comparison against several
technologies, including continuous action domain benchmark methods (POMCPOW and Voronoi
Optimistic Monte Carlo Planning with Observation Weighting, VOMCPOW) and classical POMDP
methods with manual-setting discrete action domain (POMCP and GPOMCP)9.

9For the POMCP and GPOMCP methods, the changing robot configuration is divided into 4 manually
selected robot poses, 3 candidate robot lift heights, 9 candidate robot head orientations, which can not cover
the whole continuous action domain A. Therefore, the comparison between discrete and continuous action
methods is not very fair due to the manual selection of the discrete actions and the separation of the base and
head actions, but we can directly see the benefit of a wider continuous action domain from these experiments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

The simulations are conducted within a realistic Gazebo living environment, featuring diverse object
configurations. Navigation is facilitated by a point cloud map and a 2D occupancy grid map, incor-
porating furniture and certain known objects, though not encompassing all objects present. The
surfaces of the large furniture form the workspaces and some unknown objects including a target
object and some obstacles are set inside the workspaces with different positions. All methods are
tested in 5 different scenarios. Considering the blue snack box as the target object, the candidate
position spaces for the robot are 4 red rectangles surrounding each workspace and the orientation
is unrestricted. Expect for the parameter sensitive analysis, the cluster number k for all simulations
and experiments is set as 3 10. The candidate robot head motion is confined to lp ∈ (− π

12 ,
π
12),

lt ∈ (−0.5, 0.5), and the lift motion lh is constrained within (0.0, 0.4). In the context of POMDP
models for exploration, the hexahedron FOV is defined by a 60-degree horizontal view angle and a
vertical range with a height-width ratio of 480/600. The nearest and farthest planes to the camera
center are set at 0.5 meters and 1.7 meters, respectively. The grid size of the grid world for the
guessed target object is set as 2 cm. Key parameters include grid updating thresholds vp = 0.1
and vn = −0.1, re-initialized grid values for the guessed target object set at 0.2, and reward values
following Rmax = 105, Rct = 5× 104, Rco = 104, Rmin = −1, and Rill = −103.

Our solver relies on 7 parameters, including the refining clustering number k, coefficients ω1 and ω2

for the MCTS action selection strategy, a self-defined exploration constant Cr, the minimum radius
for partitioning Dlim, and two coefficients controlling the refining velocity, with 0 ≤ ω̄2 < ω̄1 ≤ 1.
Most of these parameters were not fine-tuned for optimal performance; instead, they were quickly
identified or chosen intuitively. Here, we would like to add some explanations to help the users
to quickly determine the parameters within a short time, like 20 minutes. Let’s go through each
parameter:

Refining Clustering Number k:

Fig. 18 shows that k = 3, 4, and 5 result in similar performance, indicating robustness and flexibility
in selecting this parameter. For general POMDP problems, I recommend using the default value
k = 3 (chosen arbitrarily before parameter experiments) or the optimal clustering value, obtained
during the list initialization update before MCTS, which ki = 4 in our paper. If the value ki = 4
obtained in the list initial update before MCTS is used, this parameter k becomes non-heuristic and
consistently achieves good performance.

Coefficients ω1 and ω2:

These coefficients are straightforward to select. Without specific domain knowledge, I use the com-
mon value ω1 =

√
2, derived theoretically from the multi-armed bandit problem based on Hoeffd-

ing’s inequality. For ω2, ensure that ω2rangei is comparable to the other two terms: Q̂(nodeo,a)

and ω1

√
logN(nodeo)
N(nodeo, a)

.

Self-Defined Exploration Constant Cr:

To determine Cr, users can follow this simple process:

• Run the POMDP problem for one step within the time limit and identify the number of
their commonly used particles, like Np = 150.

• Estimate the mean partitioning radius based on the problem setting, like mean(range∗) is
about 0.5.

• The selection of Cr is to make sure that 1/(Crmean(range∗)2) is about 30%-50% of the
particle number Np. This ensures partitioning refines the continuous action domain at least
3-4 times.

• We have the selection Cr is set as 1/((0.3 to 0.5)Npmean(range∗)2).

Coefficients for Refining Velocity ω̄2 and ω̄1:

The coefficients ω̄2 = 0.3 and ω̄1 = 0.6 were chosen arbitrarily, without extensive consideration.
Other similar settings should also work well.

10In fact, because the workspace is located in 4 areas, the suitable parameters k should be equal to 4, which
will be shown in Section K. Without loss of generality, we use 3 to get our main results, which still shows the
dominant performance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Minimum Radius for Partitioning Dlim:

In this paper, Dlim is set to 0.2 without significant adjustments. This value covers a small re-
gion in R9, including 6D base pose, p, lift height lh, and the pan and tilt angles lp and lt of the
robot’s head, as demonstrated with the Fetch robot. For example, two configurations with a dis-
tance of 0.2 might differ by 0.05 meters in x, y axis, 0.1 radians (about 5.7 degree) in orienta-
tion, 0.05 meters in lh, 0. 1 radians in lp, 0. 1 radians in lt. The resulting Euclidean distance
is
√

(0.05)2 + (0.05)2 + (0.1)2 + (0.05)2 + (0.1)2 + (0.1)2 = 0.194, which are within this small
range. For other POMDP problems, users can adjust Dlim to ensure actions within this range have
similar physical meanings with acceptable differences.

K RESULTS FOR FETCH SIMULATOR WITH DIFFERENT PARAMETERS AND
ABLATION STUDY

For our framework, the final performance of the proposed framework is commonly robust to the
manual setting parameters. For example, the performance is nearly consistent, if orders of magnitude
between Rmax and Rmin satisfy Rmax >> Rmin. When Rmin changes from -1 to -20, the final
output performance is similar. We show the comparison results for the Hidden1 case in Table 3.
This good robustness is inherited from the compact of the POMDP framework.

Table 2: 95% confidence interval of discounted cumulative reward, steps, and successful rate (within
50 steps)

Scenarios Hidden1

Rmin = −1 83377.1± 6427.3 | 8.5± 1.4 | 100%
Rmin = −20 84272.3± 7170.9 | 8.8± 1.9 | 100%

We also report very few cases in which parameters can significantly influence the method’s perfor-
mance, such as the threshold of declaring actions. This threshold governs the number of grid values
used for comparison, which is crucial for determining the success of declared actions. The smaller
nodds will make the task more challenging because we need to complete object detection from dif-
ferent orientations for each object. A smaller nodds makes the task more challenging, demanding
object detection from various orientations for each object. To investigate the impact of this parame-
ter, we conducted statistical analyses in Fig. 17 with nodds set to 2, 4, and 6 for several representative
methods in a scenario featuring 6 objects (refer to Fig. 16). The successful rates for all methods in
all these scenarios with different nodds are 100%. The advantage of our method reduces a lot with
an easy nodds setting. In our final real world experiments using stretch robot, shown in Fig. 7, nodds

is set as 6.

Figure 16: The scenario with 6 objects with candidate continuous position domain (red rectangles)
and discrete pose domain (white triangles).

If we focus on our NPF-kCT method, the parameter k is important to the refining speed of the con-
tinuous action domain and further decides the performance of the method facing different problems.
In order to observe its effect, we change the clustering number k from 2 to 8. For the scenario with
6 objects within Fig. 16, the comparison results about 95% confidence interval of the discounted
cumulative rewards (Black line) and steps (Red line) are shown in Fig. 18. The results bounded in
a colored dashed box are corresponding to the clustering number with the same color. We can find

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(a) Average step (b) Average reward
Figure 17: Results for different nodd values.

that the most suitable number for this task is 4. Too large and too small clustering numbering will
reduce the solver’s performance.

Figure 18: Results for different cluster numbers k.

Here, we would like to add experiments to complete the ablation study. It is easy to know that the
neural process is definitely useful for the task, so we do not remove the neural process part and the
main ablation is implemented for the k-center clustering. We remove the k-center clustering for
refining the continuous action domain, which is described in Refine(T , nodeo, a∗) in Algorithm 2
and Algorithm 3 and remain the action clustering and list initial update before MCTS to summarize
the samples from neural process, named as NPF method. The comparison results for the Loose1 and
Hidden1 cases are reported:

Table 3: Ablation study by removing function Refine(T , nodeo, a∗)

Scenarios Loose1 Hidden1

NPF 88653.8± 6812.4 | 6.7± 0.9 | 100% 75139.5± 11521.5 | 11.4± 2.7 | 100%

The result shows that the k-center clustering for refining the continuous action domain is useful and
can improve the performance of our POMDP solver.

L RESULTS USING STRETCH ROBOT SIMULATOR

As mentioned before, our proposed method is not only limited to be used for the Fetch robot plat-
form. Our NPF-kCT method can be transplanted to any mobile robot with the same sensor kinds
and similar configuration. As an example, the Stretch robot simulator and its real-world platform
are connected with our method to further verify the practice of the proposed framework. Even
though the constructions of the Stretch robot and the Fetch robot are greatly different, we test the
existing network pre-trained based on the Fetch simulator without recollecting the new data to eval-
uate the generalization ability of the scoring network in updating the grid belief using the head
camera. We follow all the problem settings shown in Appendix J, but the lift motion lh is re-
moved in the observation function. Based on the Loose1 and Fig. 16 scenarios and the Stretch

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

robot, the discounted cumulative reward, steps, and successful rate of the NPF-kCT method are
85578.6± 8853.5 | 7.3± 1.3 | 100% (Loose1) and 52820.7± 8146.1 | 17.6± 4.2 | 100% (Fig. 16).
We can find that, due to the great configuration differences, the performance of the NPF-kCT method
reduces a little compared with the results using the Fetch robot reported in Table 1 and Fig. 17. We
recollect the data using the Stretch robot simulator, re-train the network with the same settings, and
finally re-run the whole planning. The new results are 90233.7±4204.3 | 6.5±0.7 | 100% (Loose1)
and 63855.1 ± 8922.9 | 14.0 ± 2.7 | 100% (Fig. 16), which shows similar performance than the
result using the Fetch robot. A visual process of completing the object search task in 6 steps with
the Stretch simulator for the Loose1 scenario is shown in Fig. 19.

Figure 19: The visual progress for Loose1 scenario using the Stretch robot.

In the environment shown in Fig. 7, the 2D occupancy grid map and the point cloud map generated
using RTAB-SLAM Labbé & Michaud (2019) are shown in Fig. 20 a and b for localization. In the
navigation, we fuse these two maps to have a larger and safer map in Fig. 20 c and d.

Figure 20: The used maps in real world experiments.

27

	Introduction
	Related Work
	Problem Formulation for Object Search
	NPF-kCT solver
	NPF-kCT: Neural Process Network for Filtering
	NPF-kCT: Belief Tree Construction

	Simulation and experimental results
	Conclusion
	Grid world
	Action execution and perception with on-board sensors
	Action execution
	Sensor data operations
	Object detector
	Move-ability estimation

	Proof about Theorem 1
	Structural graph of NPF-kCT
	Algorithm to get the simulation dataset
	Network structure for scoring function
	Network to sample the canidate actions
	Backup
	Theoretical analysis
	Configurations for simulations and experiments
	Results for Fetch simulator with different parameters and ablation study
	Results using Stretch robot simulator

