
Improved Algorithms for Clustering with Distance Oracles

Anonymous

Abstract

Bateni *et al.* has recently introduced the *weak-strong distance oracle model* to study clustering problems in settings with limited distance information. Given query access to the strong-oracle and weak-oracle in the weak-strong oracle model, the authors design approximation algorithms for k -means and k -center clustering problems. In this work, we design algorithms with improved guarantees for k -means and k -center clustering problems in the weak-strong oracle model. The k -means++ algorithm is commonly used to solve k -means where complete distance information is available. One of the main contributions of this work is to show that k -means++ algorithm can be adapted to work in the weak-strong oracle model using only a small number of strong-oracle queries, which is the critical resource in this model. In particular, our k -means++ based algorithm gives a constant approximation for k -means and uses $O(k^2 \log^2 n)$ strong-oracle queries. This improves on the algorithm of Bateni *et al.* that uses $O(k^2 \log^4 n \log^2 \log n)$ strong-oracle queries for a constant factor approximation of k -means. For the k -center problem, we give a simple *ball-carving* based $6(1 + \varepsilon)$ -approximation algorithm that uses $O(k^3 \log^2 n \log \frac{\log n}{\varepsilon})$ strong-oracle queries. This is an improvement over the $14(1 + \varepsilon)$ -approximation algorithm of Bateni *et al.* that uses $O(k^2 \log^4 n \log^2 \frac{\log n}{\varepsilon})$ strong-oracle queries. To show the effectiveness of our algorithms, we perform empirical evaluations on real-world datasets and show that our algorithms significantly outperform the algorithms of Bateni *et al.*

1 Introduction

Clustering problems such as the k -means, k -median and k -center problems are often studied in *full information* settings where the embeddings of the n points to be clustered are given as part of the input to the problem. The k -clustering problems are normally formulated as minimizing some objective function of the input. However, these problems often turn out to be NP-hard, and approximation algorithms are designed to solve these problems. However, for many machine learning applications, the assumption of complete knowledge of the dataset under consideration might be either infeasible or very expensive to meet. This motivates the study of clustering problems in the *partial information* setting where there is a tradeoff between the accuracy of the input data and the resulting cost of clustering. The more accurate you want the clustering solution to be, the cost of collecting accurate information about the dataset would become higher. Questions such as *what is the best computational guarantee (e.g., approximation factor) one can obtain within a budget*, or *what is the minimum cost for obtaining a target guarantee*, become meaningful. Such studies can also be interpreted as computing with noisy information and are not entirely new (e.g., Feige *et al.* [12]), and the problems considered in these settings range from sorting and searching to graph problems ([17],[18]).

Clustering problems have been studied in various partial information settings. In these works, one typically assumes access to an oracle that provides some meaningful information about the underlying clustering, and the goal is to obtain a good approximate clustering solution using only a small number of oracle queries. A number of works studied variants of this problem with different assumptions

about the oracle and the clustering objective. Liu and Mukherjee [19] give tight query complexity bounds for the cluster recovery problem with a membership-query oracle, that on a query with any two points, answers whether the points belong to the same cluster or not. When the goal is to obtain a good approximate clustering solution, a number of works [4, 20] study clustering problems assuming additional access to a noisy membership-query oracle, also known as the same-cluster query oracle. Gamlath *et al.* [14] study algorithms for k -means where noisy labels are provided for each input point using an adversarial or random perturbation of the labels.

In this work, we study clustering problems in the *weak-strong oracle model* introduced by Batoni *et al.* [6]. The weak-strong oracle model has access to an expensive strong-oracle giving exact distances between any two points and a cheaper weak-oracle that gives noisy answers for the distances. Given that meaningful vector embeddings of varied accuracy are now frequently available in most ML applications for various types of data, it makes sense to consider a noise model where the distances (indicating dissimilarity) between data items are available, and accurate information comes at a cost. This was the primary motivation behind the weak-strong oracle model given by [6]. Next, we describe more formally the clustering problems with access to distance oracles.

In the clustering with distance oracles problem, the algorithm is given as input the number n of points in the dataset and the number k of clusters. We assume that the input points X belong to some metric space (\mathcal{X}, d) . However, we don't have direct access to their embeddings, and also we don't know the distances between any two of these points. We are given query access to distance oracles that, on a query with any two points in \mathcal{X} , respond with the distance between the two points. Each query has a cost associated with it, and we assume the strong-oracle queries to be much more expensive compared to the weak-oracle queries. We wish to design algorithms for clustering problems that make only a small number of queries to these distance oracles and return good approximate solutions. The first distance oracle we study is the strong-oracle SO that always returns the exact distance $d(x, y)$ for any two query points $x, y \in \mathcal{X}$.

Definition 1.1 (Strong-oracle model). *In this model, an algorithm is given access to a strong-oracle that for any $x, y \in \mathcal{X}$, returns $SO(x, y) = d(x, y)$, the exact distance between the two points.*

We first observe that $O(nk)$ strong-oracle queries suffice to run the k -means++ algorithm, and using known results, one gets a constant factor bi-criteria approximation for k -means [2] using $O(nk)$ strong-oracle queries. We also show that $O(nk)$ strong-oracle queries are enough for a 2-approximation for k -center problem [15]. However, as mentioned earlier, access to such strong-oracles might be limited and quite expensive in practice. This motivates us to design algorithms that access a much cheaper and possibly erroneous weak-oracle \widetilde{WO} . For some fixed $\delta \in (0, 1/2)$, given two points $x, y \in \mathcal{X}$, the weak-oracle \widetilde{WO} returns the exact distance $d(x, y)$ between the two points independently with probability $(1 - \delta)$ and returns an arbitrary answer with the remaining probability. Moreover, we also assume that the query answers of the weak-oracle \widetilde{WO} are *persistent* in the sense that the weak-oracle always returns the same answer to a query, even if asked multiple times.

Definition 1.2 (Weak-oracle model). *In this model, an algorithm has access to a weak-oracle \widetilde{WO} that for any two points $x, y \in \mathcal{X}$, outputs $d(x, y)$ with probability $1 - \delta$, and with remaining probability δ , outputs an arbitrary value.*

Weak-strong oracle model of Batoni *et al.* [6]: An algorithm in this model is allowed to query both the weak-oracle and the strong-oracle. We show that algorithms with good guarantees can be designed for clustering problems in this model that use only a small number of strong-oracle queries.

1.1 Clustering problems

Let X be a set of n points in a metric space (\mathcal{X}, d) . The k -means cost of X with respect to any set $C \subset \mathcal{X}$ is given as $\Phi(X, C) = \sum_{x \in X} d^2(x, C)$, where $d(x, C) = \min_{c \in C} d(x, c)$. The k -means clustering problem is defined as follows: *Given a set X of n points in a metric space (\mathcal{X}, d) and an integer k , the objective in the k -means clustering problem is to output a set C of k centers for which the k -means cost function $\Phi(X, C)$ is minimized.* The k -means clustering problem is very well studied theoretically and has numerous applications in practice. This problem is known to be NP-hard [9]. The k -means++ algorithm is often used to solve k -means in practice [5]. The main idea is to iteratively sample k points using a distribution called D^2 -distribution that is updated after every iteration and depends on the previously chosen centers. It is known that k -means++ gives

$O(\log k)$ -approximation in expectation for k -means [5]. Moreover, it can also be adapted to obtain a constant factor bi-criteria approximation [2] simply by oversampling centers (i.e., sample more than k centers). We shall refer to this as oversampling- k -means++. An (α, β) -bi-criteria approximation uses at most αk centers and returns a solution of cost at most β times the optimal k -means solution. The (k, z) -clustering problem is a generalization of the k -means problem. In the (k, z) -clustering problem, given a set X of n points from a metric space and an integer k , the objective is to return a set $C \subset X$ of k centers for which $\sum_{x \in X} d(x, C)^z$ is minimized. For $z = 2$, this is the k -means problem and for $z = 1$, this is the k -median problem.

Another way to formulate data clustering is using the k -center problem, where the goal is to optimize the following cost function. The k -center cost of X with respect to a set $C \subset \mathcal{X}$ is defined as $\phi(X, C) = \max_{x \in X} d(x, C)$, where $d(x, C) = \min_{c \in C} d(x, c)$. More specifically, the k -center problem is defined as follows: *Given a set X of n points in a metric space (\mathcal{X}, d) and an integer k , the objective in the k -center problem is to output a set C of k centers for which the k -center cost function $\phi(X, C)$ is minimized.* In other words, the goal is to find k points such that the radius of the balls centered at these points that cover X , is minimized. The k -center problem is known to be NP-hard and 2-approximation algorithms are known for the k -center problem [15].

1.2 Main results

Strong-oracle model: We note that strong-oracle model is precisely the well-known classical model. So, let us remind ourselves of what is known. We observe that k -means++ algorithm can be executed using $O(nk)$ strong-oracle queries and using known results, one can show that it gives an $O(\log k)$ -approximation in expectation for the k -means problem [5]. Further, the oversampling version of k -means++ gives constant factor bi-criteria approximation for k -means using only $O(nk)$ strong-oracle queries [2]. We also note that a $\Omega(nk)$ strong-oracle query lower bound for any constant factor approximation of k -means follows from Mettu and Plaxton [21]. Even though we state results only for the k -means problem, it is possible to extend these ideas to obtain a $O(2^{2z})$ bi-criteria approximation in expectation for the (k, z) -clustering using $O(nk)$ strong-oracle queries [26]. For the k -center problem, we observe that $O(nk)$ strong-oracle queries suffice to run Gonzalez's farthest-point algorithm to obtain a 2-approximation [15]. These results are discussed in Appendix D.

Weak-strong oracle model: We design algorithms for k -means and k -center problems in this model that use only a small number of strong-oracle queries while giving good approximate solutions. Our results improve upon the work of Bateni *et al.* [6]. We next state our main results for k -means and k -centers problems, and describe them in detail in Section 2 and Section 3.

Theorem 1.1 (Upper bound for k -means). *There exists a constant factor approximation algorithm for k -means problem that makes $O(k^2 \log^2 n / \epsilon^6)$ strong-oracle queries and $O(nk \log n / \epsilon^3)$ weak-oracle queries in the weak-strong oracle model and succeeds with some constant probability.*

Theorem 1.2 (Upper bound for k -center). *There exists a $6(1 + \epsilon)$ -approximation algorithm for the k -center problem that makes $O\left(k^3 \log^2 n \log \frac{\log n}{\epsilon}\right)$ strong-oracle and $O\left(nk \log n \log \frac{\log n}{\epsilon}\right)$ weak-oracle queries in the weak-strong oracle model and succeeds with probability at least $(1 - 1/n^4)^2$.*

Remark 1.1. *We obtain the above results when the failure probability of the weak-oracle is $\delta = 1/3$. We note that our algorithms can be extended to work with any $0 < \delta < 1/2$. The dependency of δ on the sample complexity would become $1/(1/2 - \delta)^2$ [6].*

Weak-oracle model: We show a lower bound result in the weak-oracle model proving that any constant factor approximate clustering solution for k -means in this model requires to make $\Omega(nk/(1 - 2\delta)^2)$ weak-oracle queries. We prove the following result in Appendix F.

Theorem 1.3. *Let $\delta \in (0, 1/2)$. Any randomized algorithm giving a $O(1)$ -approximation for k -means in weak-oracle model with probability at least $3/4$ requires expected $\Omega(nk/(1 - 2\delta)^2)$ queries.*

Our contributions and comparisons with known works In this work, we provide improved algorithms for clustering problems in the weak-strong oracle model of Bateni *et al.* [6]. We highlight the main contributions of our work and provide a detailed comparison of our results with [6].

¹[6] only mention a $O(1)$ -approximation factor. We calculate the constant to be much larger than 40.

Problems	Results	Approximation Guarantee	Strong-oracle Queries	Weak-oracle Queries
k -means	[6]	$(O(\log^2 n \log(\frac{\log n}{\epsilon})), O(1))^1$	$O(k^2 \log^4 n \log^2(\frac{\log n}{\epsilon}))$	$O(nk \log^2 n \log(\frac{\log n}{\epsilon}))$
	Our	$(O(\frac{\log n}{\epsilon^3}), 40(1 + \epsilon))$	$O(\frac{k^2 \log^2 n}{\epsilon^6})$	$O(\frac{nk \log n}{\epsilon^3})$
k -center	[6]	$14(1 + \epsilon)$	$O(k^2 \log^4 n \log^2(\frac{\log n}{\epsilon}))$	$O(nk \log^2 n \log(\frac{\log n}{\epsilon}))$
	Our	$6(1 + \epsilon)$	$O(k^3 \log^2 n \log \frac{\log n}{\epsilon})$	$O(nk \log n \log \frac{\log n}{\epsilon})$

Table 1: Comparison of approximation guarantees and query complexities for k -means and k -center problems with Bateni *et al.* [6] in the weak-strong oracle model. For k -means, we report the bi-criteria approximation guarantees obtained by our algorithm as well as [6].

- k -means++ algorithm is widely used to solve k -means, primarily when complete distance information is known. k -means++ algorithm has also been extended to work in presence of outliers [7, 11], and when there are errors in the computation of the distribution [8, 16]. However, it was not known whether k -means++ works with unreliable distance estimates as in the weak-strong model. Recall that k -means++ uses a non-uniform sampling algorithm, D^2 -sampling, to sample centers. We show that even though the distance estimates given by the weak-oracle are unreliable, it is possible to come up with a distance measure with respect to which one can run the k -means++ algorithm to obtain a good approximation guarantee for k -means. We believe one of the main contributions of this work is to adapt the k -means++ algorithm to work in this restricted model.
- Bateni *et al.* [6] give a constant approximation algorithm using $O(k^2 \log^4 n \log^2(\log n/\epsilon))$ strong-oracle queries and $O(nk \log^2 n \log(\log n/\epsilon))$ weak-oracle queries. Our algorithms use $O(k^2 \log^2 n/\epsilon^6)$ strong-oracle queries and $O(nk \log n/\epsilon^3)$ weak-oracle queries to give a constant approximation for k -means, where we also improve the constant factor.
- Our algorithm for k -means in the weak-strong oracle model can be generalized to obtain a $O(2^{2z})$ factor approximation in expectation for the (k, z) clustering problem.
- Bateni *et al.* [6] adapts Meyerson’s sketch for online facility location for k -means problem in the weak-strong model [22]. Their algorithm guesses the optimal value of k -means solution, and using a bounded aspect-ratio assumption on the input instance, they show that the number of such guesses is limited. Our algorithm doesn’t use any such assumption.
- For the k -center problem, we obtain the following improvements over Bateni *et al.* [6]. We give a $6(1 + \epsilon)$ -approximation for k -center using $O(k^3 \log^2 n \log \log n/\epsilon)$ strong-oracle queries and $O(nk \log n \log \log n/\epsilon)$ weak-oracle queries. This is in contrast to [6] who give a $14(1 + \epsilon)$ -approximation using $O(k^2 \log^4 n \log^2(\log n/\epsilon))$ strong-oracle and $O(nk \log^2 n \log(\log n/\epsilon))$ weak-oracle queries.

Experiments We experimentally verify the performance of our algorithms for k -means and k -center problems on synthetic as well as real-world datasets. For experiments on synthetic datasets, we use datasets generated using the stochastic block model ([24, 1]). For experiments on real-world datasets, we use MNIST dataset [10] with SVD and t-SNE embeddings [25]. We compare the experimental results of our algorithms with those of [6], and note that our algorithms use significantly fewer number of queries to output clusterings of comparable cost. Our algorithms for k -means and k -center use at least 38% and 12% fewer queries, respectively, compared to [6]. The experimental details are provided in Section 4 and Appendix H.

1.3 Technical overview

In this section, we describe the main ideas of our algorithm for k -means in the weak-strong oracle model. One of the most widely used algorithms for k -means is the k -means++ seeding algorithm that works in k iterations. In the first iteration, it chooses a point uniformly at random. Each of the remaining $(k - 1)$ iterations samples a point following a non-uniform and adaptive sampling distribution known as the D^2 distribution that depends on the previously chosen centers. Sampling a point from the D^2 -distribution is called D^2 -sampling. The k points sampled using D^2 -sampling are returned as the solution for k -means. The D^2 -distribution is such that the probability of choosing a point x is proportional to the squared distance $d(x, C)^2$, where C is a set of chosen centers

and $d(x, C) = \min_{c \in C} d(x, c)$. [2] showed a constant factor bi-criteria approximation for the oversampling version of k -means++ in which $O(k)$ iterations of D^2 -sampling are used.

One of the main contributions of this work is to show that one can adapt k -means++ to the weak-strong oracle model. It is easy to observe that one can simulate k -means++ in the strong-oracle model using $O(nk)$ strong-oracle queries. However, things become complicated in the weak-strong model, in which the distances returned by the weak-oracle cannot be trusted. To construct the D^2 -sampling distribution, one must calculate $d(x, C)$ for any point x and any set C of centers. Since $d(x, C) = \min_{c \in C} d(x, c)$, if we want to compute this distribution exactly, it would require $\Omega(nk)$ strong-oracle queries. Since we don't want to use too many strong-oracle queries, we proceed as follows. Using weak-oracle query answers, we compute an estimate $d_{km}^{est}(x, C)$ such that with high probability, $d(x, C)$ and $d_{km}^{est}(x, C)$ are within some small additive factor. We construct the sampling distribution to be used by the algorithm using these $d_{km}^{est}(x, C)$ values for all points x .

Let us see how we compute $d_{km}^{est}(x, C)$ for all $x \in X$. The main idea here is to exploit the fact that the weak-oracle distances are wrong independently with probability $\delta < 1/2$. Consider any $c \in C$. Let us obtain an estimate on $d(x, c)$ using only weak-oracle queries. Suppose there are many points in a ball $B(c, r_c)$ around center c of radius r_c for a reasonably small value of r_c . More specifically, suppose r_c is such that $B(c, r_c)$ contains $\Omega(\log n)$ points. Then, the key idea is that the median of the weak-oracle distance queries on pairs (x, y) with $y \in B(c, r_c)$ is a good estimate on $d(x, c)$. More formally, we use $d_{km}^{est}(x, c) = \text{median}\{\widetilde{WO}(x, y) : y \in B(c, r_c)\}$ as an estimate for $d(x, c)$. We note that [6] also uses the median of query answers to estimate $d(x, c)$. However, their algorithm used these values differently, as we will see in the remaining discussion. Since each weak-oracle query answer is wrong independently with probability at most $1/2$, using Chernoff bounds, one can show that for sufficiently large-sized ball $B(c, r_c)$, with high probability, $|d(x, c) - d_{km}^{est}(x, c)| \leq r_c$. Now, to approximate $d(x, C)$, we compute $d_{km}^{est}(x, c) + r_c$ for all $c \in C$ and set $d_{km}^{est}(x, C) = \min_{c \in C} \{d_{km}^{est}(x, c) + r_c\}$. Once we have the sampling distribution \widetilde{D}^2 for which a point x is sampled with probability proportional to $d_{km}^{est}(x, C)^2$, we show that the approach of [2] can be adapted to obtain a constant factor bi-criteria approximation for k -means that succeeds with high probability. Even though the analysis becomes non-trivial and we incur an approximation loss, the high-level analysis ideas of [2] goes through.

The main idea is to run the oversampling k -means++ where we iteratively sample and update the center set C . However, the sampling is with respect to $d_{km}^{est}(x, C)^2$ instead of $d(x, C)^2$. The goal is to pick a good center from every optimal cluster. Let us see why oversampling using $d_{km}^{est}(x, C)^2$ will be sufficient to find good centers from every optimal cluster, and hence obtain a good approximation guarantee. For the simplicity of discussion, let us first assume that every optimal cluster has $\Omega(\log n)$ points. We will later see how to drop this assumption. Let us draw a parallel with oversampling k -means++ that samples using accurate distance values. Why does it manage to pick good centers from every optimal cluster? Consider an intermediate center set C . Certain optimal clusters will have a good representative center in C , whereas others remain 'uncovered'. Sampling using the D^2 distribution boosts the probability of sampling from an uncovered cluster, so there is a good chance that the next sample belongs to an uncovered cluster. Moreover, we can argue that given the next sample is from an uncovered cluster, there is a good chance that it will be a good center from that cluster. Let's see whether the same argument applies when sampling uses $d_{km}^{est}(x, C)^2$ instead of $d(x, C)^2$. If our center set C has a single good center (or a few) from an optimal cluster, say A , can we consider the cluster to be covered? No. The probability of sampling from A may remain high since the distance estimate of points in A to the centers in $C \cap A$ may be completely off. When does the distance estimate start becoming tighter? This happens when there are $\Omega(\log n)$ good centers from A in C . This is when we can call the cluster A 'settled'. So, instead of 'covering' every cluster (if correct distances are known), we care about 'settling' every cluster in our current model. So, let us see if we can settle every cluster if we keep sampling centers. We can show that unless the current center set C is already good, there is a good chance that the next center will be sampled from one of the unsettled optimal clusters. Further, we can also argue that conditioned on sampling from an unsettled cluster, there is a good chance that the sampled center will be a good center (i.e., reasonably close to the optimal center). So, as long as we sample sufficiently many centers, every optimal cluster will get settled with high probability. The oversampling factor is $O(\log n)$, i.e., we end up with a centre set C with $O(k \log n)$ centers. Finally, we will use $d_{km}^{est}(x, C)$ to assign points x to centers and create a weighted point set C (the weight of a point in C is the number of points assigned to it), on which a standard constant approximation algorithm using strong-oracle queries is used to find the

final set of k centers. Since the set C has $O(k \log n)$ points, we will need $O(k^2 \log^2 n)$ strong oracle queries to find all the interpoint distances to run the constant approximation algorithm as well as the distance estimates. Using known techniques, it can be shown that this final center set gives a constant approximation. To drop the assumption that all optimal clusters have $\Omega(\log n)$ points, we argue if an optimal cluster does not have adequate points, the oversampling procedure will sample *all* the points from that cluster with high probability, which is also a favourable case. More discussions on algorithmic ideas for the k -center algorithm and related results can be found in Appendix C.

1.4 Related works

Bateni *et al.* [6] initiate the study of clustering problems in the weak-strong oracle model and design constant approximation algorithms for k -means and k -center problems. They also prove that any constant factor approximation algorithm for k -means or the k -center problem requires $\Omega(k^2)$ strong-oracle queries in the weak-strong model. Galhotra *et al.* [13] obtain the following results for clustering problems in a related model. They design constant factor approximation algorithms for k -means and k -center clustering problems given access to a *quadruplet oracle* that takes two pairs (x_1, y_1) and (x_2, y_2) of points as input and returns whether the pairwise distances are similar or far from each other. A relatively detailed discussion on related works can be found in Appendix B.

2 Algorithms for k -means in weak-strong oracle model

In this section we design a constant factor bi-criteria approximate solution for k -means in the weak-strong oracle model with the assumption that all optimal clusters have size at least $480 \log n / \epsilon$. We remove this assumption later. We prove the following result.

Theorem 2.1. *Let $\epsilon \in (0, 1)$, $\delta \leq 1/3$. There exists a randomized algorithm for k -means that makes $O(k^2 \log^2 n / \epsilon^4)$ strong-oracle queries and $O(nk \log n / \epsilon^2)$ weak-oracle queries to give a $(O(\log n / \epsilon^2), 40(1 + \epsilon))$ bi-criteria approximation for k -means and succeeds with constant probability, assuming every optimal cluster has size at least $480 \log n / \epsilon$.*

2.1 Algorithm and analysis

Since the weak-oracle gives a wrong answer to a query independently with probability $\delta < 1/2$, we define an alternate distance measure between points and a set of centers that we use in our algorithm. Let C denote a set of centers. For any $x \in X$ and any $c \in C$, we query for the distance between x and c to the weak oracle \tilde{WO} to obtain a possibly wrong answer $\tilde{WO}(x, c)$. For any fixed x , we query the weak-oracle for each center c in C , and use these query answers $\tilde{WO}(x, c)$ to come up with an upper bound on the distance between a point x and a set C of centers defined as follows. We use $\delta \leq 1/3$ for this discussion.

Definition 2.1. *Let x and y be any two points in X and we want to estimate the distance between x and y . Let radius $r_y \geq 0$ be such that the ball $B(y, r_y)$ contains at least $180 \log n$ points. Then, for any $x \in X$, we define the distance from x to y as $d_{km}^{est}(x, y) = \text{median}\{\tilde{WO}(x, z) | z \in B(y, r_y)\}$.*

We make the following claim with respect to the above distance measure. A similar lemma was proved in [6]. The proof can be found in the Appendix.

Lemma 2.1. *Following Definition 2.1, for any $x \in X$, with probability at least $(1 - 1/n^5)$, we have $|d_{km}^{est}(x, y) - d(x, y)| \leq r_y$.*

We use the above definition to come up with an upper bound on the distance between a point x and a set C of centers. For any $c \in C$, let r_c denote a radius such that $B(c, r_c)$ has at least $180 \log n$ points inside it. We use Definition 2.1 to come up with an upper bound on the distance between x and any $c \in C$ as $d_{km}^{est}(x, c) + r_c$. Following Lemma 2.1, with high probability, this upper bound holds. That is, with high probability, $d(x, c) \leq d_{km}^{est}(x, c) + r_c$. Using an union bound over all $c \in C$, all these upper bounds hold and hence, the minimum of these upper bounds would also hold. This motivates the following definition on the distance between a point x and a set C of centers.

Definition 2.2. *Let x be any point in X and let C be a set of centers of size at least $180 \log n$. For any $c \in C$, let r_c denote a radius value such that the ball $B(c, r_c)$ contains at least $180 \log n$ points. We define the distance between x and C as $d_{km}^{est}(x, C) = \min_{c \in C} \{d_{km}^{est}(x, c) + r_c\}$.*

We state the following lemma with respect to the above distance measure and prove it in Appendix.

Lemma 2.2. *Let x be any point in X and let C denote a set of centers of size at least $180 \log n$. Then, with probability at least $(1 - 1/n^4)$, $d(x, C) \leq d_{km}^{est}(x, C)$. In other words, with probability at least $(1 - 1/n^4)$, there exists a center $c \in C$ within a distance of $d_{km}^{est}(x, C)$ from x .*

Estimating $d_{km}^{est}(x, C)$ in weak-strong oracle model Next, we describe how we estimate $d_{km}^{est}(x, C)$ for all $x \in X$ in the weak-strong oracle model. We assume that there are at least $180 \log n$ centers in C . Consider any $c \in C$. We query the strong-oracle SO with all pairs $c_i, c_j \in C$ to obtain the exact distances between centers c_i and c_j as $SO(c_i, c_j)$. For each $c \in C$, we find the smallest r_c such that $B(c, r_c)$ contains at least $180 \log n$ points in C . Consider any $x \in X$ for which we want to estimate $d_{km}^{est}(x, C)$. We query the weak-oracle with x and $y \in B(c, r_c)$ to obtain $\tilde{WO}(x, y)$ for all $y \in B(c, r_c)$, and use these weak-oracle query answers to compute $d_{km}^{est}(x, c)$ following Definition 2.1. We compute $d_{km}^{est}(x, c)$ for all $c \in C$. Finally, to compute $d_{km}^{est}(x, C)$, we find the minimum over all $c \in C$ of $d_{km}^{est}(x, c) + r_c$, as mentioned in Definition 2.2.

Algorithm 1: Algorithm for k -means in weak-strong oracle model

Input :Dataset X and an integer $k > 0$, $\epsilon \in (0, 1)$, $\delta = 1/3$.
Output :A set of $O(k \log n / \epsilon^2)$ centers and an assignment of $x \in X$ to centers.
 Let C_1 be a set of $180 \log n$ points chosen arbitrarily from X . /* **Initial centers** */
 Set $t = 4320 \cdot 800000 / \epsilon^2 \cdot k \log n$.
for $i = 1$ **to** t **do**
 | For each $x \in X$, compute $d_{km}^{est}(x, C_i)$ following Definition 2.2.
 | Compute distribution \tilde{D}^2 that samples $x \in X$ with probability proportional to $d_{km}^{est}(x, C_i)^2$.
 | Sample a point $s_i \in X$ using distribution \tilde{D}^2 . /* **Sample new centers** */
 | Make strong-oracle queries $SO(s_i, c)$ for all $c \in C_i$.
 | Update $C_{i+1} \leftarrow C_i \cup \{s_i\}$.
end
 Let $\{c_1, c_2, \dots, c_h\}$ be an arbitrary ordering of the centers in C_{t+1} , where $h = 180 \log n + t$.
 Initialize weights $w(c_i) = 0$ for $i \in [h]$.
for $x \in X$ **do**
 | Compute $d_{km}^{est}(x, C_{t+1})$ and find c_x for which minimum is achieved in Definition 2.2.
 | Assign x to c_x .
 | Update $w(c_x) \leftarrow w(c_x) + 1$. /* **Construct weighted instance** */
end
return C_{t+1} and assignment of points in $x \in X$ to centers in C_{t+1} as determined above

We give a high-level description of Algorithm 1. Algorithm 1 starts with a set C of $180 \log n$ centers chosen from X , and computes $d_{km}^{est}(x, C)$ for all x . It constructs the \tilde{D}^2 -sampling distribution for which a point $x \in X$ is sampled with probability proportional to $d_{km}^{est}(x, C)^2$. Algorithm 1 samples a center in each of t iterations and updates the center set C , and once the t rounds of sampling are done, it constructs a weighted instance. Finally, it returns this set of centers with an assignment of points to these centers. The solution for k -means is obtained using a constant approximation algorithm on this weighted instance. The detailed analysis of the algorithm is given in Appendix E.

3 Algorithms for k -center in weak-strong oracle model

We design a randomized algorithm in the weak-strong oracle model that gives a $6(1 + \epsilon)$ -approximation for the k -center problem. The main idea of the algorithm can be better understood in a simpler setting where accurate distances are known. Let us see an outline of this algorithm. We assume that the optimal k -center radius r_{opt} is known. This is not an unreasonable assumption since we can guess the optimal radius within a $(1 \pm \epsilon)$ -factor by iterating over discrete choices of the radius. The algorithm is a simple “greedy ball-carving” procedure that is commonly used in the context of the k -center problem and can be stated as follows (also stated as Algorithm 3 in [6]): *While all points are not removed, pick a centre c and remove (carve-out) all points within $2r_{opt}$ of c .* We can show that this procedure outputs at most k centers that is a 2-approximate solution to the k -center problem.

Our $6(1 + \varepsilon)$ -approximation algorithm follows the above template. The only complication is that during the ball carving step, where we remove all points within the radius $2r_{opt}$, we need accurate distances, which we do not have in the weak-strong oracle model. Let us continue assuming that the optimal radius r_{opt} is known. We will give a 6-approximation under this assumption, which changes to $6(1 + \varepsilon)$ when the assumption is dropped. To enable distance estimates, along with a center c_i , we must also pick a set of nearby points to c_i , which will help in estimating the distance of any point y to c_i following Lemma 2.1. A reasonable way to do this would be to uniformly sample a set T_i of points (instead of one), use the strong-oracle queries on the subset and pick a center $c_i \in T_i$ with the largest number of points in T_i within a radius $2r_{opt}$. Let S_{c_i} denote the subset of points in T_i within a distance of $2r_{opt}$ to c_i . We can now obtain distance estimates using the tuple (c_i, S_{c_i}) using the weak-oracle queries as in Lemma 2.1 and carve out those points and assign them to c_i that satisfy $d_{km}^{est}(c_i, z) \leq r$ for an appropriate value of r . Let c_i belong to the optimal cluster X_i^* . What should the appropriate value of r be such that the points in $S \cap X_i^*$ are guaranteed to get carved out and assigned to c_i ? Since the distance estimates are inaccurate, we must use $r = 4r_{opt}$. However, this may cause a point that is $6r_{opt}$ away from c_i to get carved out and assigned to c_i . This is the reason we obtain an approximation guarantee of 6. This high-level analysis lacks two relevant details: (i) how do we eliminate the assumption that r_{opt} is known, and (ii) probability analysis for all points being assigned a center within distance $6r_{opt}$. We remove the assumption about r_{opt} being known by iterating over discrete choices $Rad = (1 + \varepsilon)^0, (1 + \varepsilon), (1 + \varepsilon)^2, \dots$ and we argue that the ball carving succeeds for $Rad = r_{opt}(1 + \varepsilon)$ with high probability. Hence, the approximation guarantee becomes $6(1 + \varepsilon)$. Instead of iterating over the possible choices of Rad linearly, we can do that using binary search, which results in the running time and query complexity getting multiplied by a factor of $O(\log \log \Delta/\varepsilon)$, where Δ is the aspect ratio. Assuming Δ to be polynomially bounded, this factor becomes $O(\log \log n/\varepsilon)$. We describe our k -center algorithm as Algorithm 2 and state the theorem that we prove in Appendix G.

Algorithm 2: Weak-Greedy Ball Carving

Input : Set of points S , radius Rad
Output : A set of $C = \{c_1, \dots, c_m\}$ centers and assignment of points in S to centers in C
Initialize: $C = \{\}$
while S is not empty **do**
 If ($|C| = k$) **abort**
 If ($|S| \leq 180k \log n$), use strong-oracle queries to find remaining centers covering all points in S within distance $2Rad$. If this is not possible, **abort**. Otherwise, output k centers.
 Pick a subset $T \subset S$ of size $180k \log n$ uniformly at random
 Query the strong-oracle to find distances between elements in T and use these to find a center $c \in T$ such that $|S_c|$ is maximised, where $S_c \equiv |\mathcal{B}(c, 2Rad) \cap T|$.
 If ($|S_c| < 180 \log n$) **abort**
 Retain $180 \log n$ points in S_c (i.e., remove the extra point)
 Assign any point $s \in S$ to center c if $d_{km}^{est}(s, c) \leq 4Rad$ /* Recover cluster */
 Add c to C and remove all points assigned to c from S .
end
return C and the assignments

Theorem 3.1. *There exists a $6(1 + \varepsilon)$ -approximation algorithm for the k -center problem that makes $O\left(k^3 \log^2 n \log \frac{\log n}{\varepsilon}\right)$ strong-oracle and $O\left(nk \log n \log \frac{\log n}{\varepsilon}\right)$ weak-oracle queries and succeeds with probability at least $(1 - 1/n^4)^2$.*

4 Experimental Results

We run our algorithms for k -means and k -center problems on synthetic as well as real-world datasets to demonstrate that our algorithms can be implemented efficiently in practice, and provide better results compared to Bateni *et al.* [6]. Here, we provide experimental results only for k -means on synthetic data. The experiments were conducted on a server with 1.5 TB RAM and 64 CPU cores. More details about the experiments including results for k -means on MNIST dataset and experimental results for k -center are given in Appendix H.

Remark 4.1. To compare our results with Bateni et al. [6], we report the percentage of point queries used by the algorithm in our experimental results, where a point query gives an embedding of a point. This is in contrast to a strong-oracle query that gives the exact distance between two points.

Datasets We run our algorithms on synthetic as well as real-world datasets. We generate synthetic data using the Stochastic Block Model (SBM) ([24, 1]). We use three synthetic datasets in our experiments with the number of points n being $10k$, $20k$ and $50k$. The number of clusters k is 7 and the points belong to a 7-dimensional space. The points in the i th cluster of the datasets are drawn from a Gaussian distribution $N(\mu^{(i)}, I)$, where $\mu^{(i)}[i] = 10^5$ and $\mu^{(i)}[j] = 0$ for $j \neq i$.

Construction of the weak-oracle We create perturbed distance matrices M for the datasets using which the weak-oracles answer queries. These matrices are initialized with actual distances between points in the datasets. For the SBM-based dataset, for any two points i, j , independently with probability δ , $M(i, j) = 10^5$ if i and j belong to the same cluster and $M(i, j) = 1$ otherwise.

Baselines in our experiments Running k -means++ with the strong-oracle distances gives us the *strong-baseline* for our experiments. We calculate the approximation factors by computing the ratio of the cost of the algorithm with this strong baseline.

Experimental results on k -means clustering We run our k -means algorithm on SBM-based synthetic datasets of size $n = 10k$, $20k$ and $50k$ where the failure probability δ of the weak-oracle is set to be 0.1 , 0.2 and 0.3 . For each of the above choices, we run our algorithm on the datasets with varied number of point queries. Table 2 shows our experimental results on k -means clustering on SBM-based datasets of size $n = 10k$, $20k$ and $50k$. We conducted experiments for different combinations of δ and the number of point queries. In Table 2, we give the values for which the value of (number of point queries $\times \log(\text{cost of clustering})$) is minimized. We report variance figures in Appendix H.

n	% of point queries			Approximation factor		
	$\delta = 0.1$	$\delta = 0.2$	$\delta = 0.3$	$\delta = 0.1$	$\delta = 0.2$	$\delta = 0.3$
$10k$	0.77	0.79	0.79	0.38	0.388	0.379
$20k$	0.045	0.047	0.0495	0.386	0.379	0.3769
$50k$	0.02	0.021	0.0214	0.3819	0.3727	0.3842

Table 2: Performance of our k -means algorithm on SBM-based synthetic data

Comparison with Bateni et al. [6]: Figures 1 and 2 capture how k -means clustering cost varies with the number of point queries when these algorithms are run on SBM-based synthetic datasets of size $10k$ and $20k$. The blue, green and red lines represent results for $\delta = 0.1$, $\delta = 0.2$, and $\delta = 0.3$, respectively. The solid lines represent the performance of our algorithm while the dashed lines represent results from [6]. Bateni et al. [6] reported these values as a plot. In order to compare our results with [6], we interpreted the values from those plots.

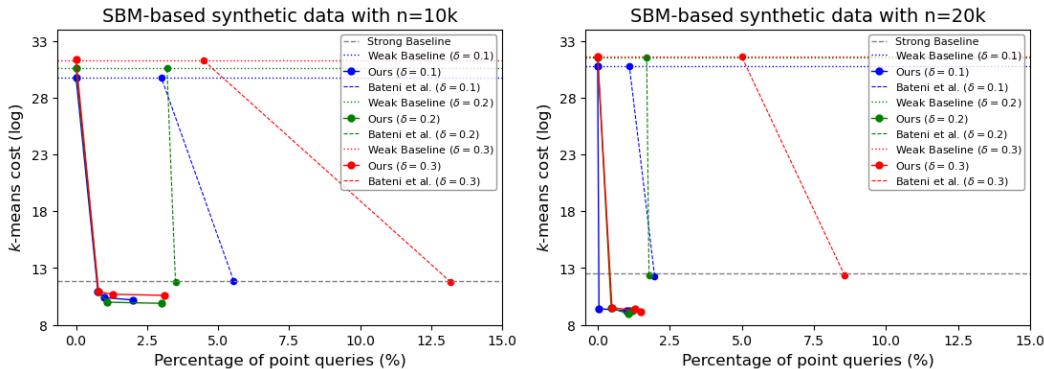


Figure 1: k -means on SBM dataset with $n = 10k$

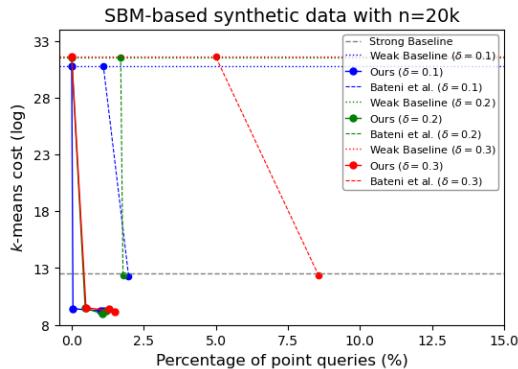


Figure 2: k -means on SBM dataset with $n = 20k$

References

- [1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. *Journal of Machine Learning Research*, 18(177):1–86, 2018.
- [2] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clustering. In *Proceedings of the 12th International Workshop and 13th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, pages 15–28, 2009.
- [3] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-means and euclidean k-median by primal-dual algorithms. *SIAM Journal on Computing*, 49(4):FOCS17–97, 2019.
- [4] Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering with same-cluster queries. In *9th Innovations in Theoretical Computer Science Conference (ITCS 2018)*. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2018.
- [5] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, New Orleans, Louisiana, 2007*, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.
- [6] MohammadHossein Bateni, Prathamesh Dharangutte, Rajesh Jayaram, and Chen Wang. Metric clustering and mst with strong and weak distance oracles. In *The Thirty Seventh Annual Conference on Learning Theory*, pages 498–550. PMLR, 2024.
- [7] Aditya Bhaskara, Sharvaree Vadgama, and Hong Xu. Greedy sampling for approximate clustering in the presence of outliers. *Advances in Neural Information Processing Systems*, 32, 2019.
- [8] Anup Bhattacharya, Jan Eube, Heiko Röglin, and Melanie Schmidt. Noisy, greedy and not so greedy k-means++. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, *28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference)*, pages 18:1–18:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
- [9] Sanjoy Dasgupta. The hardness of k-means clustering. 2008.
- [10] Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. *IEEE signal processing magazine*, 29(6):141–142, 2012.
- [11] Amit Deshpande and Rameshwar Pratap. Improved outlier robust seeding for k-means. *arXiv preprint arXiv:2309.02710*, 2023.
- [12] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy information. *SIAM Journal on Computing*, 23(5):1001–1018, 1994.
- [13] Sainyam Galhotra, Rahul Raychaudhury, and Stavros Sintos. k-clustering with comparison and distance oracles. *Proceedings of the ACM on Management of Data*, 2(5):1–26, 2024.
- [14] Buddhima Gamlath, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Approximate cluster recovery from noisy labels. In Po-Ling Loh and Maxim Raginsky, editors, *Proceedings of Thirty Fifth Conference on Learning Theory*, volume 178 of *Proceedings of Machine Learning Research*, pages 1463–1509. PMLR, 02–05 Jul 2022.
- [15] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. *Theoretical computer science*, 38:293–306, 1985.
- [16] Christoph Grunau, Ahmet Alper Özüdogru, and Václav Rozhon. Noisy k-means++ revisited. In Inge Li Görtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, *31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands*, pages 55:1–55:7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[17] Yuzhou Gu and Yinzhan Xu. Optimal bounds for noisy sorting. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, pages 1502–1515, 2023.

[18] Richard M Karp and Robert Kleinberg. Noisy binary search and its applications. In *Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms*, pages 881–890. Citeseer, 2007.

[19] Xizhi Liu and Sayan Mukherjee. Tight query complexity bounds for learning graph partitions. In *Conference on Learning Theory*, pages 167–181. PMLR, 2022.

[20] Arya Mazumdar and Barna Saha. Clustering with noisy queries. *Advances in Neural Information Processing Systems*, 30, 2017.

[21] Ramgopal R Mettu and C Greg Plaxton. Optimal time bounds for approximate clustering. *Machine Learning*, 56(1):35–60, 2004.

[22] Adam Meyerson. Online facility location. In *Proceedings 42nd IEEE Symposium on Foundations of Computer Science*, pages 426–431. IEEE, 2001.

[23] Michael Mitzenmacher and Eli Upfal. *Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis*. Cambridge university press, 2017.

[24] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted bisection model. In *Proceedings of the forty-seventh annual ACM symposium on Theory of computing*, pages 69–75, 2015.

[25] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.

[26] Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. *Advances in neural information processing systems*, 29, 2016.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and the introduction provide informal summaries of the main results presented in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: The models for which the results were obtained in this paper have been clearly stated.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: **[Yes]**

Justification: The main results have been stated in the main body and the complete proofs are given in the appendices.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: We have clearly described our experimental setup in Section 4 and Appendix H. We are also submitting our code as part of the supplementary material so that results can be reproduced.

Guidelines:

- The answer NA means that the paper does not include experiments.

- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: We clearly stated how the synthetic datasets were generated in Section 4 and Appendix H and for the real-world data, we used the MNIST dataset. We are also submitting our code as part of the supplementary material for this submission.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: We provide all the details regarding the experiments in Section 4 and Appendix H.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: We ran our algorithms five times for each setting of different parameters, and reported the average values obtained during these runs as well as the variance.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: These details are provided in Section 4 and Appendix H.

Guidelines:

- The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: We read the code of ethics and are in agreement with it.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The societal impact of this work is limited.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee any immediate misuse of this work.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: **[Yes]**

Justification: We use synthetic datasets and publicly available datasets in our experiments and cite them.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: **[NA]**

Justification: **[NA]**

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs for this work.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.