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Abstract

Bateni et al. has recently introduced the weak-strong distance oracle model to
study clustering problems in settings with limited distance information. Given
query access to the strong-oracle and weak-oracle in the weak-strong oracle model,
the authors design approximation algorithms for k-means and k-center clustering
problems. In this work, we design algorithms with improved guarantees for k-
means and k-center clustering problems in the weak-strong oracle model. The
k-means++ algorithm is commonly used to solve k-means where complete distance
information is available. One of the main contributions of this work is to show
that k-means++ algorithm can be adapted to work in the weak-strong oracle
model using only a small number of strong-oracle queries, which is the critical
resource in this model. In particular, our k-means++ based algorithm gives a
constant approximation for k-means and uses O (k? log® n) strong-oracle queries.

This improves on the algorithm of Bateni et al. that uses O(k? log* nlog? log n)
strong-oracle queries for a constant factor approximation of k-means. For the k-
center problem, we give a simple ball-carving based 6(1 + ¢)-approximation

algorithm that uses O(k® log? nlog lo%) strong-oracle queries. This is an
improvement over the 14(1 + ¢)-approximation algorithm of Bateni ez al. that
uses O(k? log* nlog? k’%) strong-oracle queries. To show the effectiveness of
our algorithms, we perform empirical evaluations on real-world datasets and show

that our algorithms significantly outperform the algorithms of Bateni ef al.

1 Introduction

Clustering problems such as the k-means, k-median and k-center problems are often studied in full
information settings where the embeddings of the n points to be clustered are given as part of the input
to the problem. The k-clustering problems are normally formulated as minimizing some objective
function of the input. However, these problems often turn out to be NP-hard, and approximation
algorithms are designed to solve these problems. However, for many machine learning applications,
the assumption of complete knowledge of the dataset under consideration might be either infeasible
or very expensive to meet. This motivates the study of clustering problems in the partial information
setting where there is a tradeoff between the accuracy of the input data and the resulting cost of
clustering. The more accurate you want the clustering solution to be, the cost of collecting accurate
information about the dataset would become higher. Questions such as what is the best computational
guarantee (e.g., approximation factor) one can obtain within a budget, or what is the minimum
cost for obtaining a target guarantee, become meaningful. Such studies can also be interpreted as
computing with noisy information and are not entirely new (e.g., Feige et al. [12]]), and the problems
considered in these settings range from sorting and searching to graph problems ([[17],[18]).

Clustering problems have been studied in various partial information settings. In these works, one
typically assumes access to an oracle that provides some meaningful information about the underlying
clustering, and the goal is to obtain a good approximate clustering solution using only a small number
of oracle queries. A number of works studied variants of this problem with different assumptions
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about the oracle and the clustering objective. Liu and Mukherjee [19] give tight query complexity
bounds for the cluster recovery problem with a membership-query oracle, that on a query with any
two points, answers whether the points belong to the same cluster or not. When the goal is to obtain a
good approximate clustering solution, a number of works [4} 20] study clustering problems assuming
additional access to a noisy membership-query oracle, also known as the same-cluster query oracle.
Gamlath et al. [14] study algorithms for k-means where noisy labels are provided for each input point
using an adversarial or random perturbation of the labels.

In this work, we study clustering problems in the weak-strong oracle model introduced by Bateni et
al. [6]. The weak-strong oracle model has access to an expensive strong-oracle giving exact distances
between any two points and a cheaper weak-oracle that gives noisy answers for the distances. Given
that meaningful vector embeddings of varied accuracy are now frequently available in most ML
applications for various types of data, it makes sense to consider a noise model where the distances
(indicating dissimilarity) between data items are available, and accurate information comes at a cost.
This was the primary motivation behind the weak-strong oracle model given by [6]]. Next, we describe
more formally the clustering problems with access to distance oracles.

In the clustering with distance oracles problem, the algorithm is given as input the number 7 of points
in the dataset and the number & of clusters. We assume that the input points X belong to some metric
space (X, d). However, we don’t have direct access to their embeddings, and also we don’t know the
distances between any two of these points. We are given query access to distance oracles that, on a
query with any two points in X, respond with the distance between the two points. Each query has a
cost associated with it, and we assume the strong-oracle queries to be much more expensive compared
to the weak-oracle queries. We wish to design algorithms for clustering problems that make only a
small number of queries to these distance oracles and return good approximate solutions. The first
distance oracle we study is the strong-oracle SO that always returns the exact distance d(x, y) for
any two query points z,y € X.

Definition 1.1 (Strong-oracle model). In this model, an algorithm is given access to a strong-oracle
that for any x,y € X, returns SO(x,y) = d(z,y), the exact distance between the two points.

We first observe that O(nk) strong-oracle queries suffice to run the k-means++ algorithm, and
using known results, one gets a constant factor bi-criteria approximation for k-means [2] using
O(nk) strong-oracle queries. We also show that O(nk) strong-oracle queries are enough for a
2-approximation for k-center problem [15]]. However, as mentioned earlier, access to such strong-
oracles might be limited and quite expensive in practice. This motivates us to design algorithms that

access a much cheaper and possibly erroneous weak-oracle WO. For some fixed § € (0,1/2), given

two points x,y € X, the weak-oracle WO returns the exact distance d(z,y) between the two points
independently with probability (1 — §) and returns an arbitrary answer with the remaining probability.

Moreover, we also assume that the query answers of the weak-oracle WO are persistent in the sense
that the weak-oracle always returns the same answer to a query, even if asked multiple times.

Definition 1.2 (Weak-oracle model). In this model, an algorithm has access to a weak-oracle
WO that for any two points x,y € X, outputs d(x,y) with probability 1 — §, and with remaining
probability d, outputs an arbitrary value.

Weak-strong oracle model of Bateni ef al. [6]: An algorithm in this model is allowed to query
both the weak-oracle and the strong-oracle. We show that algorithms with good guarantees can be
designed for clustering problems in this model that use only a small number of strong-oracle queries.

1.1 Clustering problems

Let X be a set of n points in a metric space (X, d). The k-means cost of X with respect to any set
C C Xisgivenas ®(X,C) = > . d*(x,C), where d(z,C) = min.ec d(z, ¢). The k-means
clustering problem is defined as follows: Given a set X of n points in a metric space (X,d) and
an integer k, the objective in the k-means clustering problem is to output a set C of k centers for
which the k-means cost function (X, C) is minimized. The k-means clustering problem is very
well studied theoretically and has numerous applications in practice. This problem is known to be
NP-hard [9]]. The k-means++ algorithm is often used to solve k-means in practice [5]. The main
idea is to iteratively sample & points using a distribution called D?-distribution that is updated after
every iteration and depends on the previously chosen centers. It is known that k-means++ gives



O(log k)-approximation in expectation for k-means [5]]. Moreover, it can also be adapted to obtain a
constant factor bi-criteria approximation [2]] simply by oversampling centers (i.e., sample more than
k centers). We shall refer to this as oversampling-k-means++. An («, /3)-bi-criteria approximation
uses at most ak centers and returns a solution of cost at most 3 times the optimal k-means solution.
The (k, z)-clustering problem is a generalization of the k-means problem. In the (k, z)-clustering
problem, given a set X of n points from a metric space and an integer k, the objective is to return
aset C C X of k centers for which )\ d(z,C)* is minimized. For z = 2, this is the k-means
problem and for z = 1, this is the k-median problem.

Another way to formulate data clustering is using the k-center problem, where the goal is to optimize
the following cost function. The k-center cost of X with respect to a set C' C X is defined as
¢(X,C) = maxyex d(z,C), where d(z,C) = min.cc d(x, c). More specifically, the k-center
problem is defined as follows: Given a set X of n points in a metric space (X, d) and an integer k,
the objective in the k-center problem is to output a set C of k centers for which the k-center cost
Sunction ¢(X, C) is minimized. In other words, the goal is to find k points such that the radius of
the balls centered at these points that cover X, is minimized. The k-center problem is known to be
NP-hard and 2-approximation algorithms are known for the k-center problem [15].

1.2 Main results

Strong-oracle model: We note that strong-oracle model is precisely the well-known classical
model. So, let us remind ourselves of what is known. We observe that k-means++ algorithm can
be executed using O(nk) strong-oracle queries and using known results, one can show that it gives
an O(log k)-approximation in expectation for the k-means problem [3]. Further, the oversampling
version of k-means++ gives constant factor bi-criteria approximation for k-means using only O(nk)
strong-oracle queries [2]. We also note that a Q(nk) strong-oracle query lower bound for any
constant factor approximation of k-means follows from Mettu and Plaxton [21]. Even though we
state results only for the k-means problem, it is possible to extend these ideas to obtain a O(22%)
bi-criteria approximation in expectation for the (k, z)-clustering using O(nk) strong-oracle queries
[26]]. For the k-center problem, we observe that O (nk) strong-oracle queries suffice to run Gonzalez’s
farthest-point algorithm to obtain a 2-approximation [[15]]. These results are discussed in Appendix

Weak-strong oracle model: We design algorithms for k-means and k-center problems in this
model that use only a small number of strong-oracle queries while giving good approximate solutions.
Our results improve upon the work of Bateni ez al. [6]. We next state our main results for k-means
and k-centers problems, and describe them in detail in Section [2{and Section

Theorem 1.1 (Upper bound for k-means). There exists a constant factor approximation algorithm for
k-means problem that makes O(k? log® n/€%) strong-oracle queries and O(nk log n/€®) weak-oracle
queries in the weak-strong oracle model and succeeds with some constant probability.

Theorem 1.2 (Upper bound for k-center). There exists a 6(1 + €)-approximation algorithm for the

logn
€

logn

) strong-oracle and O (nk; log nlog T) weak-

k-center problem that makes O <k3 log® nlog
oracle queries in the weak-strong oracle model and succeeds with probability at least (1 — 1/n*)2.

Remark 1.1. We obtain the above results when the failure probability of the weak-oracle is 6 = 1/3.
We note that our algorithms can be extended to work with any 0 < § < 1/2. The dependency of § on
the sample complexity would become 1/(1/2 — §)? [6]].

Weak-oracle model: We show a lower bound result in the weak-oracle model proving that
any constant factor approximate clustering solution for k-means in this model requires to make
Q(nk/(1 — 26)?) weak-oracle queries. We prove the following result in Appendix [ECII

Theorem 1.3. Ler § € (0,1/2). Any randomized algorithm giving a O(1)-approximation for k-means
in weak-oracle model with probability at least 3 /4 requires expected Q(nk/(1 — 26)?) queries.

Our contributions and comparisons with known works In this work, we provide improved
algorithms for clustering problems in the weak-strong oracle model of Bateni et al. [6]. We highlight
the main contributions of our work and provide a detailed comparison of our results with [6]].

'[6] only mention a O(1)-approximation factor. We calculate the constant to be much larger than 40.



Problems | Results |  Approximation Guarantee Strong-oracle Queries Weak-oracle Queries

pemeans |81 | (O(log® nlog(*£2)), O] O(K?log" nlog?(£2)) | O(nklog® n log(**52))
Our (O(IOgn) 40(1 +¢)) O(klg#) O(M)

k-center | ) 141 +¢) O(k*log” nlog?(*%£™)) | O(nklog® nlog(*%™))
Our 6(1+e¢) O (K log?nlog %) | O (nklognlog logn)

Table 1: Comparison of approximation guarantees and query complexities for k-means and k-center
problems with Bateni ez al. [6] in the weak-strong oracle model. For k-means, we report the bi-criteria
approximation guarantees obtained by our algorithm as well as [6].

* k-means++ algorithm is widely used to solve k-means, primarily when complete distance
information is known. k-means++ algorithm has also been extended to work in presence
of outliers [[7,[11]], and when there are errors in the computation of the distribution [8 [16].
However, it was not known whether k-means++ works with unreliable distance estimates as
in the weak-strong model. Recall that k-means++ uses a non-uniform sampling algorithm,
D2-sampling, to sample centers. We show that even though the distance estimates given
by the weak-oracle are unreliable, it is possible to come up with a distance measure with
respect to which one can run the k-means++ algorithm to obtain a good approximation
guarantee for k-means. We believe one of the main contributions of this work is to adapt the
k-means++ algorithm to work in this restricted model.

« Bateni ez al. [6] give a constant approximation algorithm using O(k? log* n log?(log n/¢))
strong-oracle queries and O(nk log® n log(log n/€)) weak-oracle queries. Our algorithms

use O(k?log® n/e%) strong-oracle queries and O(nk logn/e*) weak-oracle queries to give
a constant approximation for k-means, where we also improve the constant factor.

* Our algorithm for k-means in the weak-strong oracle model can be generalized to obtain a
O(2%) factor approximation in expectation for the (k, z) clustering problem.

* Bateni ef al. [6] adapts Meyerson’s sketch for online facility location for k-means problem
in the weak-strong model [22]]. Their algorithm guesses the optimal value of k-means
solution, and using a bounded aspect-ratio assumption on the input instance, they show that
the number of such guesses is limited. Our algorithm doesn’t use any such assumption.

* For the k-center problem, we obtain the following improvements over Bateni et al. [6].
We give a 6(1 + ¢)-approximation for k-center using O(k:3 log? nlog log n/e) strong-
oracle queries and O(nklognloglogn/e) weak-oracle querles This is in contrast to
[6] who give a 14(1 + €)-approximation using O(k? log* nlog?(log n/€)) strong-oracle and
O(nklog® nlog(logn/e)) weak-oracle queries.

Experiments We experimentally verify the performance of our algorithms for k-means and k-center
problems on synthetic as well as real-world datasets. For experiments on synthetic datasets, we use
datasets generated using the stochastic block model ([24} [1]]). For experiments on real-world datasets,
we use MNIST dataset [10] with SVD and t-SNE embeddings [25]. We compare the experimental
results of our algorithms with those of of [6], and note that our algorithms use significantly fewer
number of queries to output clusterings of comparable cost. Our algorithms for k-means and k-center
use at least 38% and 12% fewer queries, respectively, compared to [6]]. The experimental details are
provided in Section [ and Appendix

1.3 Technical overview

In this section, we describe the main ideas of our algorithm for k-means in the weak-strong oracle
model. One of the most widely used algorithms for k-means is the k-means++ seeding algorithm
that works in k iterations. In the first iteration, it chooses a point uniformly at random. Each of
the remaining (k — 1) iterations samples a point following a non-uniform and adaptive sampling
distribution known as the D? distribution that depends on the previously chosen centers. Sampling a
point from the D2-distribution is called D?-sampling. The k points sampled using D?-sampling are
returned as the solution for k-means. The D?-distribution is such that the probability of choosing
a point z is proportional to the squared distance d(z,C)?, where C is a set of chosen centers



and d(z,C) = min.ec d(x,c). [2] showed a constant factor bi-criteria approximation for the
oversampling version of k-means++ in which O(k) iterations of D?-sampling are used.

One of the main contributions of this work is to show that one can adapt k-means++ to the weak-
strong oracle model. It is easy to observe that one can simulate k-means++ in the strong-oracle
model using O(nk) strong-oracle queries. However, things become complicated in the weak-strong
model, in which the distances returned by the weak-oracle cannot be trusted. To construct the
D2-sampling distribution, one must calculate d(x, C) for any point z and any set C of centers. Since
d(xz,C) = min.ecc d(z, ¢), if we want to compute this distribution exactly, it would require (nk)
strong-oracle queries. Since we don’t want to use too many strong-oracle queries, we proceed as
follows. Using weak-oracle query answers, we compute an estimate d¢! (x, C) such that with high

km

probability, d(z, C) and d{5! (z;, C') are within some small additive factor. We construct the sampling

distribution to be used by the algorithm using these d{*! (z;, C') values for all points .

Let us see how we compute d¢5t (z, C) for all z € X. The main idea here is to exploit the fact
that the weak-oracle distances are wrong independently with probability 6 < 1/2. Consider any
¢ € C. Let us obtain an estimate on d(z, ¢) using only weak-oracle queries. Suppose there are
many points in a ball B(c,r.) around center ¢ of radius r. for a reasonably small value of r.
More specifically, suppose . is such that B(c, r.) contains Q(logn) points. Then, the key idea
is that the median of the weak-oracle distance queries on pairs (z,y) with y € B(c,7.) is a good
estimate on d(z, ¢). More formally, we use d§! (x,c) = median{WO(z,y) : y € Bl(c,r.)} as
an estimate for d(z, ¢). We note that [6] also uses the median of query answers to estimate d(z, ¢).
However, their algorithm used these values differently, as we will see in the remaining discussion.
Since each weak-oracle query answer is wrong independently with probability at most 1/2, using
Chernoff bounds, one can show that for sufficiently large-sized ball B(c, r..), with high probability,
|d(z,c) — dst (@, )| < re. Now, to approximate d(x, C), we compute d$5t (z,c) + . forall c € C

km km
and set dS! (z,C') = mincec{dss! (x,¢) + r.}. Once we have the sampling distribution D? for
which a point z is sampled with probability proportional to d§s (x, C')2, we show that the approach
of [2]] can be adapted to obtain a constant factor bi-criteria approximation for k-means that succeeds
with high probability. Even though the analysis becomes non-trivial and we incur an approximation

loss, the high-level analysis ideas of [2] goes through.

The main idea is to run the oversampling k-means++ where we iteratively sample and update the
center set C. However, the sampling is with respect to d$5! (x, C')? instead of d(z, C)2. The goal is

to pick a good center from every optimal cluster. Let us see why oversampling using d$°! (x, C)? will
be sufficient to find good centers from every optimal cluster, and hence obtain a good approximation
guarantee. For the simplicity of discussion, let us first assume that every optimal cluster has Q(log n)
points. We will later see how to drop this assumption. Let us draw a parallel with oversampling
k-means++ that samples using accurate distance values. Why does it manage to pick good centers
from every optimal cluster? Consider an intermediate center set C. Certain optimal clusters will
have a good representative center in C, whereas others remain ‘uncovered’. Sampling using the D?
distribution boosts the probability of sampling from an uncovered cluster, so there is a good chance
that the next sample belongs to an uncovered cluster. Moreover, we can argue that given the next
sample is from an uncovered cluster, there is a good chance that it will be a good center from that
cluster. Let’s see whether the same argument applies when sampling uses d$*! (z, C')? instead of
d(z,C)2. If our center set C' has a single good center (or a few) from an optimal cluster, say A, can
we consider the cluster to be covered? No. The probability of sampling from A may remain high
since the distance estimate of points in A to the centers in C' N A may be completely off. When does
the distance estimate start becoming tighter? This happens when there are Q(logn) good centers
from A in C'. This is when we can call the cluster A ‘settled’. So, instead of ‘covering’ every cluster
(if correct distances are known), we care about ‘settling’ every cluster in our current model. So, let us
see if we can settle every cluster if we keep sampling centers. We can show that unless the current
center set C'is already good, there is a good chance that the next center will be sampled from one
of the unsettled optimal clusters. Further, we can also argue that conditioned on sampling from an
unsettled cluster, there is a good chance that the sampled center will be a good center (i.e., reasonably
close to the optimal center). So, as long as we sample sufficiently many centers, every optimal cluster
will get settled with high probability. The oversampling factor is O(logn), i.e., we end up with a
centre set C' with O(k log n) centers. Finally, we will use d¢ (z, C') to assign points z to centers
and create a weighted point set C' (the weight of a point in C' is the number of points assigned to it),
on which a standard constant approximation algorithm using strong-oracle queries is used to find the



final set of k centers. Since the set C' has O(k logn) points, we will need O(k? log® n) strong oracle
queries to find all the interpoint distances to run the constant approximation algorithm as well as the
distance estimates. Using known techniques, it can be shown that this final center set gives a constant
approximation. To drop the assumption that all optimal clusters have Q(log n) points, we argue if
an optimal cluster does not have adequate points, the oversampling procedure will sample all the
points from that cluster with high probability, which is also a favourable case. More discussions on
algorithmic ideas for the k-center algorithm and related results can be found in Appendix

1.4 Related works

Bateni er al. [0] initiate the study of clustering problems in the weak-strong oracle model and
design constant approximation algorithms for k-means and k-center problems. They also prove that
any constant factor approximation algorithm for k-means or the k-center problem requires Q(k?)
strong-oracle queries in the weak-strong model. Galhotra et al. [[13]] obtain the following results for
clustering problems in a related model. They design constant factor approximation algorithms for
k-means and k-center clustering problems given access to a quadruplet oracle that takes two pairs
(z1,y1) and (2, y2) of points as input and returns whether the pairwise distances are similar or far
from each other. A relatively detailed discussion on related works can be found in Appendix

2 Algorithms for k-means in weak-strong oracle model

In this section we design a constant factor bi-criteria approximate solution for k-means in the weak-
strong oracle model with the assumption that all optimal clusters have size at least 480 logn/e. We
remove this assumption later. We prove the following result.

Theorem 2.1. Let ¢ € (0,1), 6 < 1/3. There exists a randomized algorithm for k-means that
makes O(k*log® n/e*) strong-oracle queries and O(nklogn/e®) weak-oracle queries to give
a (O(log n/e?),40(1 + 6)) bi-criteria approximation for k-means and succeeds with constant
probability, assuming every optimal cluster has size at least 4801log n/e.

2.1 Algorithm and analysis

Since the weak-oracle gives a wrong answer to a query independently with probability § < 1/2, we
define an alternate distance measure between points and a set of centers that we use in our algorithm.
Let C denote a set of centers. For any x € X and any ¢ € C, we query for the distance between

2 and c to the weak oracle WO to obtain a possibly wrong answer WO(x, ¢). For any fixed z, we

query the weak-oracle for each center ¢ in C, and use these query answers WO(z, ¢) to come up
with an upper bound on the distance between a point x and a set C' of centers defined as follows. We
use 6 < 1/3 for this discussion.

Definition 2.1. Let x and y be any two points in X and we want to estimate the distance between x
and y. Let radius v, > 0 be such that the ball B(y, r,) contains at least 180 logn points. Then, for

any v € X, we define the distance from x to y as d$5¢ (z,y) = median{%(:ﬂ, z)|z € B(y,ry)}.

km

We make the following claim with respect to the above distance measure. A similar lemma was
proved in [6]. The proof can be found in the Appendix.

Lemma 2.1. Following Deﬁnition for any x € X, with probability at least (1 -1/ n5), we have
|din (,y) — d(z, y)| < 1y

We use the above definition to come up with an upper bound on the distance between a point = and a
set C of centers. For any ¢ € C, let r. denote a radius such that B(c, r.) has at least 180 log n points
inside it. We use Definition 2.1]to come up with an upper bound on the distance between z and any
ce Casdyt(z,c)+ r.. Following Lemma with high probability, this upper bound holds. That
is, with high probability, d(z, c) < dzjfl(x, ¢) + r.. Using an union bound over all ¢ € C, all these
upper bounds hold and hence, the minimum of these upper bounds would also hold. This motivates
the following definition on the distance between a point = and a set C of centers.

Definition 2.2. Let x be any point in X and let C be a set of centers of size at least 180 logn. For
any c € C, let r. denote a radius value such that the ball B(c,r.) contains at least 180 logn points.
We define the distance between x and C as A3 (z, C') = mineec{dg! (z,¢) + rc}.



We state the following lemma with respect to the above distance measure and prove it in Appendix.

Lemma 2.2. Let x be any point in X and let C denote a set of centers of size at least 180 logn.
Then, with probability at least (1 — 1/n*), d(z,C) < d$5t (x, C). In other words, with probability at
least (1 — 1/n*), there exists a center ¢ € C within a distance of d3st (z, C') from x.

Estimating d55' (z,C) in weak-strong oracle model Next, we describe how we estimate
dst(z,C) for all z € X in the weak-strong oracle model. We assume that there are at least
180log n centers in C'. Consider any ¢ € C'. We query the strong-oracle SO with all pairs ¢;, c; € C
to obtain the exact distances between centers ¢; and ¢; as SO(c;,¢;). For each ¢ € C, we find
the smallest r. such that B(c, r.) contains at least 180 logn points in C. Consider any x € X for
which we want to estimate d§’ (x, C'). We query the weak-oracle with z and y € B(c, 7.) to obtain

%(w, y) for all y € B(c,7.), and use these weak-oracle query answers to compute d{5f (z, c)
following Definition 2.1 We compute d53! (x, ¢) for all ¢ € C. Finally, to compute d5st (z, C'), we

find the minimum over all ¢ € C of d{%! (z, ¢) + r., as mentioned in Definition

Algorithm 1: Algorithm for k-means in weak-strong oracle model
Input :Dataset X and an integer k > 0, ¢ € (0,1), = 1/3.
Output : A set of O(klogn/e?) centers and an assignment of z € X to centers.
Let Cy be a set of 180 log n points chosen arbitrarily from X. /* Initial centers */
Set t = 4320 - 800000/¢? - k log n.
fori =1totdo
For each z € X, compute d§*t (z, C;) following Definition

Compute distribution D? that samples z € X with probability proportional to d5 (x, C;)?.

Sample a point s; € X using distribution D?. /* Sample new centers */
Make strong-oracle queries SO(s;, ¢) for all ¢ € C;.
Update Ci+1 < Cl @] {81}

end
Let {c1,ca,...,cp} be an arbitrary ordering of the centers in C;y1, where h = 180logn + t.
Initialize weights w(c;) = 0 for ¢ € [h].
for z € X do
Compute d¢t (z, Cy41) and find ¢, for which minimum is achieved in Definition
Assign x to ¢, .
Update w(c,) + w(cg) + 1. /* Construct weighted instance */
end

return C; 1 and assignment of points in x € X to centers in Cyy1 as determined above

We give a high-level description of Algorithm|[T} Algorithm (]starts with a set C' of 180log n centers

chosen from X, and computes d5! (x, C) for all z. It constructs the D2-sampling distribution for
which a point z € X is sampled with probability proportional to d{5! (z, C')?. Algorithm samples a
center in each of ¢ iterations and updates the center set C', and once the ¢ rounds of sampling are done,
it constructs a weighted instance. Finally, it returns this set of centers with an assignment of points to
these centers. The solution for k-means is obtained using a constant approximation algorithm on this
weighted instance. The detailed analysis of the algorithm is given in Appendix [E]

3 Algorithms for %£-center in weak-strong oracle model

We design a randomized algorithm in the weak-strong oracle model that gives a 6(1 + &)-
approximation for the k-center problem. The main idea of the algorithm can be better understood in
a simpler setting where accurate distances are known. Let us see an outline of this algorithm. We
assume that the optimal k-center radius r,,; is known. This is not an unreasonable assumption since
we can guess the optimal radius within a (1 =+ €)-factor by iterating over discrete choices of the radius.
The algorithm is a simple “greedy ball-carving” procedure that is commonly used in the context of
the k-center problem and can be stated as follows (also stated as Algorithm 3 in [6]): While all points
are not removed, pick a centre c and remove (carve-out) all points within 27,y of c. We can show
that this procedure outputs at most k centers that is a 2-approximate solution to the k-center problem.



Our 6(1 + ¢)-approximation algorithm follows the above template. The only complication is that
during the ball carving step, where we remove all points within the radius 2r,,;, we need accurate
distances, which we do not have in the weak-strong oracle model. Let us continue assuming that the
optimal radius 7., is known. We will give a 6-approximation under this assumption, which changes
to 6(1 4 ) when the assumption is dropped. To enable distance estimates, along with a center c;, we
must also pick a set of nearby points to ¢;, which will help in estimating the distance of any point y
to ¢; following Lemma[2.1} A reasonable way to do this would be to uniformly sample a set 7; of
points (instead of one), use the strong-oracle queries on the subset and pick a center ¢; € T; with the
largest number of points in 7; within a radius 2r,,:. Let S, denote the subset of points in 7; within
a distance of 2r,,¢ to ¢;. We can now obtain distance estimates using the tuple (c;, S, ) using the
weak-oracle queries as in Lemma[2.Tand carve out those points and assign them to ¢; that satisfy
d¢st (¢;, z) < r for an appropriate value of 7. Let ¢; belong to the optimal cluster X . What should
the appropriate value of r be such that the points in S N X are guaranteed to get carved out and
assigned to ¢;? Since the distance estimates are inaccurate, we must use r = 4r,,;. However, this
may cause a point that is 6r,,; away from c; to get carved out and assigned to c;. This is the reason
we obtain an approximation guarantee of 6. This high-level analysis lacks two relevant details: (i)
how do we eliminate the assumption that r,,; is known, and (ii) probability analysis for all points
being assigned a center within distance 6r,,;. We remove the assumption about 7,,; being known
by iterating over discrete choices Rad = (1 + €)Y, (1 +¢), (1 +¢)?,... and we argue that the ball
carving succeeds for Rad = r,p (1 + €) with high probability. Hence, the approximation guarantee
becomes 6(1 + ¢). Instead of iterating over the possible choices of Rad linearly, we can do that using
binary search, which results in the running time and query complexity getting multiplied by a factor
of O (loglog A/e), where A is the aspect ratio. Assuming A to be polynomially bounded, this factor
becomes O (loglogn/e). We describe our k-center algorithm as Algorithm and state the theorem
that we prove in Appendix

Algorithm 2: Weak-Greedy Ball Carving

Input :Set of points .S, radius Rad

Output: A set of C = {cy, ..., ¢y} centers and assignment of points in S to centers in C'

Initialize: C' = {}

while S is not empty do

If (|C| = k) abort

If (|S] < 180k log n), use strong-oracle queries to find remaining centers covering all points
in S within distance 2 Rad. If this is not possible, abort. Otherwise, output k centers.

Pick a subset 7' C S of size 180k log n uniformly at random

Query the strong-oracle to find distances between elements in 7" and use these to find a center
¢ € T such that |S,.| is maximised, where S, = |B(c,2Rad) N T.

If (|S.| < 1801logn) abort

Retain 180 log n points in S, (i.e., remove the extra point)

Assign any point s € S to center c if d§' (s, c¢) < 4Rad /* Recover cluster */

Add c to C' and remove all points assigned to ¢ from S.

end

return C and the assignments

Theorem 3.1. There exists a 6(1 + ¢)-approximation algorithm for the k-center problem that makes
0] (k3 log? n log & ") strong-oracle and O (nk log nlog

S

with probability at least (1 — 1/n*)2.

logn

T) weak-oracle queries and succeeds

4 Experimental Results

We run our algorithms for k-means and k-center problems on synthetic as well as real-world datasets
to demonstrate that our algorithms can be implemented efficiently in practice, and provide better
results compared to Bateni e al. [6]. Here, we provide experimental results only for k-means on
synthetic data. The experiments were conducted on a server with 1.5 TB RAM and 64 CPU cores.
More details about the experiments including results for k-means on MNIST dataset and experimental
results for k-center are given in Appendix [H]



Remark 4.1. To compare our results with Bateni et al. [|6]], we report the percentage of point queries
used by the algorithm in our experimental results, where a point query gives an embedding of a point.
This is in contrast to a strong-oracle query that gives the exact distance between two points.

Datasets We run our algorithms on synthetic as well as real-world datasets. We generate synthetic
data using the Stochastic Block Model (SBM) ([24! [1]]). We use three synthetic datasets in our
experiments with the number of points n being 10k, 20k and 50k. The number of clusters k is 7 and
the points belong to a 7-dimensional space. The points in the ith cluster of the datasets are drawn
from a Gaussian distribution N (p(?), I'), where (") [i] = 10° and p(¥)[j] = 0 for j # i.

Construction of the weak-oracle We create perturbed distance matrices M for the datasets using
which the weak-oracles answer queries. These matrices are initialized with actual distances between
points in the datasets. For the SBM-based dataset, for any two points i, j, independently with
probability §, M (i, j) = 10° if i and j belong to the same cluster and M (i, j) = 1 otherwise.

Baselines in our experiments Running k-means++ with the strong-oracle distances gives us the
strong-baseline for our experiments. We calculate the approximation factors by computing the ratio
of the cost of the algorithm with this strong baseline.

Experimental results on k-means clustering We run our k-means algorithm on SBM-based
synthetic datasets of size n = 10k, 20k and 50k where the failure probability § of the weak-oracle
is set to be 0.1, 0.2 and 0.3. For each of the above choices, we run our algorithm on the datasets
with varied number of point queries. Table 2] shows our experimental results on k-means clustering
on SBM-based datasets of size n = 10k, 20k and 50k. We conducted experiments for different
combinations of § and the number of point queries. In Table 2} we give the values for which the value
of (number of point queries X log(cost of clustering)) is minimized. We report variance figures in

Appendix

n % of point queries Approximation factor
0=0.1 0=0.2 0=0.3 0=0.1 0=0.2 0=0.3
10k | 0.77 0.79 0.79 0.38 0.388 0.379
20k | 0.045 0.047 0.0495 0.386 0.379 0.3769
50k | 0.02 0.021 0.0214 0.3819 0.3727 0.3842

Table 2: Performance of our k-means algorithm on SBM-based synthetic data

Comparison with Bateni et al. [6]: Figures [I|and 2| capture how k-means clustering cost varies
with the number of point queries when these algorithms are run on SBM-based synthetic datasets
of size 10k and 20k. The blue, green and red lines represent results for § = 0.1, § = 0.2, and
0 = 0.3, respectively. The solid lines represent the performance of our algorithm while the dashed
lines represent results from [6]. Bateni et al. [6] reported these values as a plot. In order to compare
our results with [6], we interpreted the values from those plots.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The abstract and the introduction provide informal summaries of the main
results presented in the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The models for which the results were obtained in this paper have been clearly
stated.

Guidelines:
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The main results have been stated in the main body and the complete proofs
are given in the appendices.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly described our experimental setup in Section[dand Appendix
[H] We are also submitting our code as part of the supplementary material so that results can
be reproduced.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: We clearly stated how the synthetic datasets were generated in Section ] and
Appendix [Hand for the real-world data, we used the MNIST dataset. We are also submitting
our code as part of the supplementary material for this submission.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: We provide all the details regarding the experiments in Sectiond]and Appendix

H
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We ran our algorithms five times for each setting of different parameters, and
reported the average values obtained during these runs as well as the variance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: These details are provided in Section 4] and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We read the code of ethics and are in agreement with it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The societal impact of this work is limited.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee any immediate misuse of this work.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use synthetic datasets and publicly available datasets in our experiments
and cite them.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs for this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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