
Reincarnating Reinforcement Learning Workshop at ICLR 2023

BEYOND TEMPORAL CREDIT ASSIGNMENT IN REIN-
FORCEMENT LEARNING

Sephora Madjiheurem, Kimberly L. Stachenfeld, Peter W. Battaglia & Jessica B. Hamrick
DeepMind, London, UK
{sephoram,stachenfeld,peterbattaglia,jhamrick}@deepmind.com

ABSTRACT

In reinforcement learning, traditional value-based methods rely heavily on time as
the main proxy for propagating information across the state space. This often re-
sults in slow learning and does not scale to large and complex environments. Here,
we propose to leverage prior information about the structure of the the environ-
ment to assign credit non-temporally to improve learning efficiency. Specifically,
we introduce the concept of structural neighbours, which are sets of states with
similar semantic structures and which have equivalent values under the optimal
policy. We augment traditional value-based RL methods (TD(0), Dyna and Duel-
ing DQN) with a learning mechanism based on structural neighbours. Our empir-
ical results show that by incorporating structural updates, learning efficiency can
be greatly improved on a variety of environments ranging from simple tabular grid
worlds to those which require function approximation, including the complex and
high-dimensional game of Solitaire.

1 INTRODUCTION

Reinforcement learning (RL) has seen immense interest over the last decade, demonstrating that
given enough engineering and compute, RL agents can solve just about any environment they are
presented with (Silver et al., 2016; Berner et al., 2019; Baker et al., 2020; Akkaya et al., 2019;
Vinyals et al., 2019; Schmid et al., 2021). Yet despite these successes, this approach only scales
so far: it is simply not feasible to solve every problem from scratch by brute force. As a field,
it is crucial to develop methods which can more effectively leverage prior knowledge to speed up
learning and make RL more tractable on a wider variety of problems.

(a) (b)

Figure 1: A motivating example for structural up-
dates. If we are in a world in which rewards always
exist in the top right corner of a room, then after ex-
periencing a rewarding trajectory with the state in
(a), we should immediately be able to transfer that
knowledge to the state in (b).

Here, we question an assumption made by
traditional RL methods that limits their learn-
ing speed, which is that time ought to be the
primary dimension along which to propagate
information about reward. Temporal credit
assignment can be incredibly slow because at
each iteration of the learning algorithm, only
a small set of states—those encountered dur-
ing the rewarding trajectory—are updated.
This issue is compounded in environments
with large state spaces and sparse rewards
(van Hasselt et al., 2021). As such, we ask
the question: can we speed up learning by ad-
ditionally assigning credit non-temporally? It
is straightforward to see that many environ-
ments exhibit non-temporal structures, for example: states that are all equidistant to a goal (e.g.
Figure 1); states that are observed under different environmental conditions (e.g. lighting, view-
point, etc.); and states that share other structural similarities (e.g., cooking the same meal on two
different stoves, or sorting laundry into the same piles but in different places on the floor). We
believe that these non-temporal structures can be effectively leveraged to accelerate learning.

1

Reincarnating Reinforcement Learning Workshop at ICLR 2023

In this paper, we propose treating states with non-temporal similarities as structural neighbours and
propagate reward information to them as well as to temporal neighbours. We make the particu-
lar assumption that, under the optimal policy, structural neighbours are states which have equiva-
lent values; thus, any update to the value of one state should be applicable to all of its structural
neighbours. We show that structural updates can be easily incorporated into any value-based RL
algorithm, including Dyna (Sutton et al., 1999), TD(0) (Sutton & Barto, 2018), and Dueling DQN
(Wang et al., 2015). Using structural updates, we demonstrate vastly improved learning efficiency
in tabular grid worlds, a miniature tabular version of Solitaire, and the full version of Solitaire with
function approximation. We close with a discussion of our results and some thoughts on how such
prior structural knowledge might be extracted from pre-trained systems such as LLMs.

2 RELATED WORK

Equivariant RL This work is by no means the first to identify that some RL environments con-
tain non-temporal symmetries relevant to the learning of the value function and policy. Work by
van der Pol et al. (2020) introduce a way to build in this prior knowledge into policy and value
networks. Mondal et al. (2022) propose to learn symmetry transformations of the state-action pairs
alongside representations that are equivariant to the agent’s actions. However, these works assume
the existence of discoverable action (or state-action) mappings. Our approach generalises this con-
cept by proposing a way of using structural information present in the state space without requiring
similar knowledge about the actions. More similar to our approach would be to use an equivariant
state value function; however, structural updates allow us to relax the strict equivariance assumption
while still accelerating learning.

Long-term credit assignment The general problem of credit assignment in RL has, similarly,
long been of interest. Recently, Raposo et al. (2021) proposed a state-associative learning mech-
anism which models the contribution of past states to the current reward. This model then allows
for credit to be assigned to states that are arbitrarily distant from future rewards. van Hasselt et al.
(2021) introduced the notion of expected eligibility traces, which extend instantaneous eligibility
traces by also capturing counterfactual past states that could have led to the same outcome. In this
way, the rewarding information can be propagated more broadly through the state space. Unlike our
work, these methods only address a limitation of temporal credit assignment, and do not consider
assigning credit to states that might be temporally completely unrelated to the current reward.

Experience replay and memory In RL, the use of a replay buffer allows us to learn from past
experience that are arbitrary far back in time. Work by Schaul et al. (2016) and Andrychowicz
et al. (2017) introduce mechanisms for selecting past experiences that are most relevant for policy
learning. Pritzel et al. (2017) propose a representation of its experience which possesses features of
episodic memory and allows to retain successful strategies as soon as they are experienced. Goyal
et al. (2022) propose to train a retrieval process to map past experiences to optimal behavior. While
experience replay and memory are helpful to combat some of the limitations of traditional online
temporal learning, they still only allow us to update states that were visited at least once. Our
method uses structural knowledge to update states that might not be present in the agent’s memory.
Put another way, existing methods support more rapid consolidation of prior experience, while our
method supports generalization of experience.

Other ways of leveraging prior knowledge There are many ways to incorporate prior knowledge
into RL agents, including architectural priors (Wang et al., 2018; Almasan et al., 2019), model-based
RL (Schrittwieser et al., 2019), pre-training (Agarwal et al., 2021; Higgins et al., 2017; Parisi et al.,
2022), and recently, interfacing with large language models (LLMs) (Huang et al., 2022; Fan et al.,
2022). All of these methods aim to leverage better representations of the task while leaving the core
reinforcement learning algorithm unchanged. Here, we consider the inverse approach: incorporating
prior knowledge into the reinforcement learning or credit assignment algorithm itself.

2

Reincarnating Reinforcement Learning Workshop at ICLR 2023

3 BACKGROUND AND MOTIVATION

We define a discrete MDP by the tuple M = (S,A, P,R), where S is a finite set of discrete states,
A a finite set of actions, P describes the transition model (with P (s, a, s′) giving the probability of
moving from state s to s′ given action a), and R describes the reward function (with R(s, a) giving
the immediate reward from taking action a in state s). Solving this MDP involves finding a policy
π : S 7→ A which maximizes the expected discounted sum of rewards.

A common class of methods for solving MDPs are known as value-based methods because they
estimate a value function Vπ : S 7→ R describing the expected long-term discounted sum of re-
wards observed by the agent in any given state s when following policy π. In value-based methods,
the goal is to find the optimal value function V ∗ satisfying the Bellman optimality equation (and
corresponding to the optimal policy π∗):

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S

P (s, a, s′)V ∗(s′)
)
. (1)

As described in the following section, different methods take different approaches to finding V ∗.

3.1 VALUE-BASED REINFORCEMENT LEARNING

Value Iteration In tabular settings where the reward and transition functions are known, the value
function in Equation 1 can be computed by dynamic programming, iteratively evaluating the value
functions for all states:

V (s)← max
a

(
R(s, a) + γ

∑
s′

P (s, a, s′)V (s′)
)
,∀s ∈ S (2)

This is the value iteration algorithm and is shown to converge to the optimal value function with an
infinite number of steps (Sutton & Barto, 2018).

Dyna Approximate dynamic programming methods such as Dyna (Sutton, 1990) have been de-
veloped to solve RL problems when the reward and/or transition functions are unknown. These
methods use past experiences to learn a model of the environment (i.e. approximations of reward
function R and/or the transition dynamic P), and use this model to update the state value estimates.

Temporal-Difference learning Temporal-Difference (TD) learning learning provides a way of
learning the value function from experience, in the absence of a model and without requiring to
sample full trajectories. TD learning achieves such online learning via bootstrapping, by updating
the current value estimates towards a predicted return based on the current value estimates. The TD
prediction update is as follows:

V (st)← V (st) + α
[
Rt+1 + γV (st+1)− V (st)︸ ︷︷ ︸

TD-error

]
. (3)

To recover the optimal policy, we may alternately seek to learn a function Q : S × A 7→ R, which
describes the value at a given state when taking the specific action. The corresponding TD learning
method for control is known as Q-learning (Sutton & Barto, 2018), and the update at time t is:

Q(st, at)← Q(st, at) + α
[
Rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(4)

Function approximation In practice, as the state and action spaces grow, tabular methods become
infeasible and function approximation is often used to mitigate the issue. For instance, instead of
learning a direct mapping V : S 7→ R, a parameterised function is learned instead: Vθ(s) ≈ V (s),
with θ the learned parameters. Similarly, the Q function can be approximated by a parameterised
function, such as a deep neural network (Mnih et al., 2015; Wang et al., 2015).

3.2 LIMITATIONS OF TEMPORAL CREDIT ASSIGNMENT

The RL methods described in the previous section rely on time as proxy to propagate reward infor-
mation across the state space. In large state spaces with sparse reward, this results in slow informa-
tion propagation: when a rewarding event is observed, only previous states in the current trajectory

3

Reincarnating Reinforcement Learning Workshop at ICLR 2023

will be updated. However, the experience of visiting a rewarding state might tell us more than just
that visited states led to a reward. We might also be able to leverage prior knowledge to infer that
similar states could lead to rewards, too.

As a motivating example, consider the environment in Figure 1. In this environment, the agent
finds itself in a room of a random size. In every room, there exists a reward in the top right corner.
In a traditional RL approach, the agent must experience many different rooms of different sizes
in order to eventually learn that states (a) and (b) in the figure have the same value (because the
agent is equally far away from the reward). However, if we are told explicitly that the rewards are
always in the same place, then this knowledge should be exploitable: after experiencing a rewarding
trajectory containing (a), the agent ought to be able to use this information to know what to do when
encountering (b) even when the reward in the top right corner is never directly observed.

♣

"
♦♥♠

&'()*+

Stock Waste

Tableau

Foundation

Figure 2: An example initial Solitaire game. The
goal is to move all cards to the foundation such
that they are separated by suit and sorted by rank,
with aces on the bottom and kings on the top. To
play, cards may be drawn from the stock pile and
either placed on top of another visible card, or on
the waste pile. In the tableau, cards may be placed
under the constraint that visible cards must alternate
colors and be placed in increasing order. Full piles
of visible cards may also be moved at the same time.
If a hidden card in the tableau becomes the top card,
then it may be revealed. Valid moves in this board
would be to move the 8 of Diamonds on top of the 9
of Clubs, or to draw a card from the stock pile. After
moving the 8 of Diamonds, the hidden card beneath
it may be revealed.

In theory, function approximation should
help with this issue of assigning credit to sim-
ilar states: states with similar feature vectors
should also see their values updated. How-
ever, using function approximation in this
way to speed up learning—particularly at the
beginning of training—poses a chicken-and-
egg problem. To help with assigning credit,
we already need to have a good representa-
tion, but to get a good representation, we need
high-quality data across a diversity of states
in regions of non-zero reward, which is usu-
ally only available after we have already had
some success with assigning credit!

Our intuition is that we should explicitly con-
sider a set of related or similar states, rather
than implicitly considering them through
function approximation. In particular, our ap-
proach is motivated by the idea that each en-
countered state should lead to multiple up-
dates: one for each related state. In our moti-
vating example, we would not simply update
the state shown in Figure 1a, but all states in
which the agent is equidistant to the top right
corner (regardless of room size).

The idea of encoding prior knowledge as sets
of related states is highly general and allows
us to capture complex relationships between
different states that might not be easily ex-
pressed using alternate schemes. For exam-
ple, in Figure 1, we could alternately encode
prior information about the rewarding corner
using a given reward function, or using an egocentric representation. Yet consider more complicated
settings, such as card games like Solitaire (Figure 2). Experienced players know that, regardless of
the particular rules, various relationships between the cards exist across games: cards may be or-
dered by suit, they can be placed in piles, they can be face up or face down, etc. Moreover, the rules
are often equivariant with respect to particular ranks or suits (e.g., if you can place a heart on top of
a heart, then it is likely that you can place a spade on top of a spade). These types of relationships
are not easily captured by the reward function because they are about the rules of the game more
generally. However, they can be captured through the idea of sets of related states.

4

Reincarnating Reinforcement Learning Workshop at ICLR 2023

4 STRUCTURAL REINFORCEMENT LEARNING

We are now ready to formally define the notion of structural neighbours. We will also explain how
to use this concept to build structural updates that can be plugged into traditional RL algorithms to
improve learning efficiency.

Definition 1. A structural transformation is a transformation Tk : S 7→ S such that V (s) =
V (Tk(s)), in other words, a state transformation to which the value function is invariant.

Definition 2. The structural neighbours of state si are a set of size K denoted by
NK(si), and are constructed by applying by K different structural transformations to si, i.e.
NK(si) = {T1(si), T2(si), . . . , TK(si)}.

Note that the notion of structural neighbours relates to state value similarity and does not imply state-
action similarity (i.e. Q(si, a) need not to be equal to Q(sj , a) for any a ∈ A). In the remaining
of the paper, we assume that we have access to a pre-computed neighbourhood function NK . For
ease of reading, we omit the subscript and write N . We will return to the question of where these
neighbourhood functions might come from in the discussion.

Structural Dyna We consider first the simple scenario of solving the value prediction problem
in tabular environments with known transition function and unknown reward function. We propose
to use a type of Dyna architecture (Sutton, 1990) which alternates between (1) learning a reward
model R̂ from experienced trajectories with a regression loss, and (2) using this reward model to
update value estimates according to the value iteration update Equation 2. We propose to increase
the propagation of reward information beyond sampled states by incorporating following structural
updates to the Dyna algorithm:

R̂(sj) = ηR̂(st) + (1− η)R̂(sj) ,∀sj ∈ N (st) (5)

where η ∈ [0, 1] is a mixing factor such that η = 0 corresponds to no structural updates, and η = 1
corresponds to no temporal updates. We call this algorithm Structural Dyna. Note that if whenever
R(si) ̸= 0 we have that si is a terminating state, then it follows that if si and sj are structural
neighbours, R(si) = R(sj) and we can set η = 1. Structural Dyna can be extended to non-
tabular environments by learning a parametrised reward function Rθ, and updating the parameters
via gradient descent methods, where at time t the regression targets are ηRθ(st) + (1 − η)Rθ(sj)
for all sj ∈ N (st).

Structural TD learning Structural prior knowledge about the environment can also be used in
model-free RL, where we directly learn the value function without having access to, or learning, a
model of the environment. We propose to augment TD methods with a structural update immediately
following the temporal update. The idea is to propagate at each time step the estimate of the value
at the current state st onto its structural neighbours using the following updates:

V (st)← V (st) + α
[
Rt+1 + γV (st+1)− V (st)

]
(temporal update) (6)

V (sj)← ηV (st) + (1− η)V (sj), ∀sj ∈ N (st) (structural updates) (7)

where η ∈ [0, 1] is a mixing factor where, as before η = 0 corresponds to no structural updates and
η = 1 corresponds to fully overwriting temporal values with those from structural neighbors.

In the function approximation case where the value function is approximated by a parametric func-
tion Vθ, the structural updates consists in taking a gradient step with respect to the parameters θ
towards minimising the following structural difference loss:

ℓSD(st) =
1

|N (st)|
∑

sj∈N (st)

(
ηVθ(st) + (1− η)Vθ(sj)− Vθ(sj)

)2
(8)

We call this augmented version of TD learning Structural TD learning.

Structural Dueling DQN We now demonstrate how the structural updates can be integrated into
a deep RL algorithm for control. Value based methods for control seek to find the optimal state
value function by updating estimates according to Equation 4. Note however that we do not impose

5

Reincarnating Reinforcement Learning Workshop at ICLR 2023

… …
♠"

#$%
♠&

#$%

♠& "
#$%'' '

(column permutation) (column permutation)

(suit permutation) (column & suit permutation)

♠& "
#$%'

♠& "
#$% '

('&
% ♥ *

$ ('&

♥ *%
$

Figure 3: Illustration of the different types of state neighbours in Mini Solitaire. The temporal
neighbours are shown in gray boxes, while the structural neighbours are shown in yellow boxes.
The values of the temporally connected states are related according to Bellman’s Equation 1. The
values of the structural neighbours are exactly equivalent.

any a priori knowledge about the state-action structural mappings (meaning that sj ∈ N(si) does
not necessarily imply that Q(si, a) = Q(sj , a)). This prevents us from applying structural updates
directly to the Q-function. We therefore adopt the following decomposition of the Q-function:
Qθ(s, a) = Vθ(s) + Aθ(s, a). Here, A is the advantage function, describing the importance of
an action a at state s. Deep RL algorithms using this decomposition to learn the Q-function are
known as Dueling Deep Q-Networks (DQNs) (Wang et al., 2015). With this decomposition, we can
apply our structural updates according to Equation 6 to the value head of the network only (back-
propagating through the shared torso), while the rest of the network is updated only with temporal
updates. In this way, we allow for value information through propagate across structural neighbours
without influencing the effect of the actions. We call this algorithm Structural Dueling DQN.

Proof of convergence Given our definition of structural updates as being a weighted combination
of temporally-derived values and values from structural neighbors, we can show that using struc-
tural updates will under certain assumptions provably converge to the optimal value function. See
Appendix D for details.

5 RESULTS

5.1 ENVIRONMENTS

Rooms We consider a modification of the four rooms domain (Sutton et al., 1999). This environ-
ment is a grid world divided into four rooms connected by doorways. The whole grid is of size
10x10, with each room being 5x5. There are four actions at each state: move up, move right, move
down and move left. There is a single reward per room, always located at the same location within
a room (e.g. always in the upper right corner, or always in lower right corner, etc.). The agent
is initially placed randomly at a non rewarding state, and has to navigate the environment until a
reward is found. In this environment, due to the fact that rewards are placed at the same location
within rooms, a structural transformation applied to state si in a given room consist in taking the
state at the same location location as si in any other room. We construct a structural neighbourhood

6

Reincarnating Reinforcement Learning Workshop at ICLR 2023

iteration 3iteration 1 iteration 2 iteration 8

Dyna

Structural Dyna

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: State values at different iterations of Dyna (top row) and Structural Dyna (bottom row)
on Rooms environment. Yellow indicates a high value, while purple indicates a low value. In this
setting, we know that rewards always occur in the same corners of every room. After the agent
observes a reward at the lower right corner, Structural Dyna is able to use this prior knowledge to
propagate values to all rooms, while regular Dyna is not able to do so.

of si by considering all three other states at the identical location in the other rooms. Note that
this environment is not strictly equivariant: the passages between rooms are not in the same places,
therefore the state values near those passages will not be strictly equivalent under the optimal value
function. This environment therefore serves as a test of the robustness of structural updates when its
underlying assumptions are violated.

Solitaire Solitaire (Figure 2) is a one player game in which cards from a standard deck are
initially shuffled and then laid out in a specific arrangement across a board. The board is arranged
in four categories: the tableau, the stock, the waste, and the foundation. The goal is to sort all
the cards by suit in increasing rank ordering into four piles in the foundation (one for each suit)
by sequentially moving and revealing cards. The rules of the game are detailed in Appendix A.
We model the MDP environment with a symbolic implementation of Solitaire, in which each
card is represented by a unique encoding and a state observation is a concatenation of the visible
cards on the board. See Appendix A for a description of the state and action spaces and the
rewards. In this game, permuting suits of similar colour does not affect the state value: a state
in which the diamonds are replaced with hearts should have the same value as the original state
with diamonds. Thus, we define the structural neighbourhood of state si to be all states with
equivalent layouts, but with suits permuted. For each state, there are 5 such valid suit permutations:
{(♥ ↔ ♦), (♣ ↔ ♠), (♥ ↔ ♦ and ♣ ↔ ♠), (♥ ↔ ♣ and ♦ ↔ ♠), (♥ ↔ ♠ and ♦ ↔ ♣)}.

Mini Solitaire This game is played with a deck of eight standard playing cards consisting of two
suits of different colour (Spades and Hearts) and four ranks (Ace, 1, 2, 3). The rules of the game
are the same as the full version of Solitaire, but with reduced number of piles on the board (two
foundation piles and three tableau piles). Initially, the first tableau pile has 1 card, the second had 2
cards and the third has 3, and only the last card of each tableau the pile is visible. In Mini Solitaire,
there are 166124 valid configurations of the cards and there are 41 possible actions. The reward
function is similar as that of Solitaire (Appendix A). In Mini Solitaire, since we only have 2 suits,
there is only one valid suit permutation. We therefore consider another kind of transformation:
tableau columns permutations. Indeed, a state with identical layout but where the columns in the
tableau are permuted preserves state equivalence (see Figure 3 for an illustration). We construct the
state neighbourhoods N11(·) by applying 11 transformations (permutation of the suits, 5 columns
permutation of the order of the tableau piles, and 5 columns permutation of the order of the tableau
piles with permuted suits).

7

Reincarnating Reinforcement Learning Workshop at ICLR 2023

η = 0.0
η = 0.1
η = 0.5
η = 1.0

(a) Mini Solitaire (b) Solitaire

Figure 5: Structural Dueling DQN on (a) Mini Solitaire and (b) Solitaire. In both plots, η = 0
corresponds to no structural updates, while increasing values of η correspond to increasing weight
given to structural information. The x-axes show the number of frames, and the y-axes shows total
return. The bold lines are average over 5 random seeds, and the shaded areas are the standard errors.
In all cases, incorporating structural information enables the agent to learn much more quickly and
achieve higher rewards.

5.2 EXPERIMENTS

Structural Dyna To validate our intuitions about structural neighbours, we run a simple experi-
ment on the Rooms environment in which we consider only a single trajectory encountering a single
rewarding corner. Figure 4 shows the value function at different stages of learning for both Dyna
and Structural Dyna. As we would expect, Structural Dyna allows the state values to accurately
propagate beyond temporally connected states. This is true even though the optimal value function
of this environment does not exhibit strict equivariance, as discussed in Section 5.1. In contrast,
Dyna can only propagate seen rewards through time.

Structural Dueling DQN We also evaluate Structural Dueling DQN on Mini Solitaire and Soli-
taire. All models have the same architecture: a torso state encoder MLP network consisting of 3
layers of 512 units, a value head and an attention head of 512 units and a final layer of size 161 (the
number of possible actions). The network is trained with a batch size of 32, using experience replay
and a target network (Mnih et al., 2015; Wang et al., 2015). We update the target network every
1000 training steps. We adopt a ϵ-greedy strategy, starting with ϵ = 1.0 and decaying over the first
2% of the total number of training steps to ϵ = 0.01. The learning rate for the temporal updates is
0.003, and the learning rate for the structural updates is 0.01.

Figure 5 shows the results. In both environments, the benefit of having structural updates in addition
to temporal updates is apparent: Structural Dueling DQN (η > 0) reaches a high total return in
considerably fewer training steps. Without structural updates (η = 0), we find that the agent is quite
slow and did not even converge in the allotted training time.

6 CONCLUSION

In this paper, we introduced the concept of non-temporal credit assignment via structural neigh-
bours: sets of states with structural equivalencies such that their values under the optimal policy are
the same. We showed how structural updates can be easily added to existing value-based RL al-
gorithms, and demonstrated empirically how structural updates can accelerate learning across three
environments.

In all our experiments, we assumed access to a structural transformation function that maps from
states to structural neighbours. This is a big assumption, and such a function might not be readily
available, especially in non-symbolic environments. However, with recent advances in large models,
we are optimistic that constructing structural transformations automatically may not be that far out
of reach. For example, recent models for large-scale retrieval are able to leverage large bodies of
experience to retrieve not just to retrieve similar states with superficial differences, but with structural

8

Reincarnating Reinforcement Learning Workshop at ICLR 2023

similarities too (Humphreys et al., 2022) and thus could potentially be used to retrieve our structural
neighbourhoods, too. Another possibility could build on foundation models: for example, we could
ask a large language model like ChatGPT (OpenAI, 2022) to describe similar states to the current
state, and then, conditioned on its response, ask a diffusion-based image editing model (Kawar
et al., 2022) to transform the current state to structural neighbours. We consider such methods for
automatic structural transformations to be a key area of future work.

Overall, we believe that the speed of RL is limited by an over-reliance on temporal credit assignment.
By developing new approaches to distribute credit non-temporally, we take a step towards more
flexible, adaptive learning systems which rapidly consolidate and generalize new experiences.

REFERENCES

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G. Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In International
Conference on Learning Representations, 2021. Cited on page 2.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019. Cited on page 1.

Paul Almasan, José Suárez-Varela, Krzysztof Rusek, Pere Barlet-Ros, and Albert Cabellos-Aparicio.
Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use
case. Comput. Commun., 196:184–194, 2019. Cited on page 2.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 5055–5065, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964. Cited on page 2.

Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-agent autocurricula. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net, 2020. URL https://openreview.net/forum?id=SkxpxJBKwS. Cited on
page 1.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edi-
tion, 1957. Cited on page 16.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott
Gray, Catherine Olsson, Jakub W. Pachocki, Michael Petrov, Henrique Pond’e de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. ArXiv, abs/1912.06680, 2019. Cited on page 1.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended em-
bodied agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022. URL https://openreview.
net/forum?id=rc8o_j8I8PX. Cited on page 2.

Anirudh Goyal, Abram Friesen, Andrea Banino, Theophane Weber, Nan Rosemary Ke, Adria Puig-
domenech Badia, Arthur Guez, Mehdi Mirza, Peter C Humphreys, Ksenia Konyushova, et al.
Retrieval-augmented reinforcement learning. In International Conference on Machine Learning,
pp. 7740–7765. PMLR, 2022. Cited on page 2.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving zero-
shot transfer in reinforcement learning. In Doina Precup and Yee Whye Teh (eds.), Proceed-
ings of the 34th International Conference on Machine Learning, volume 70 of Proceedings

9

https://openreview.net/forum?id=SkxpxJBKwS
https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX

Reincarnating Reinforcement Learning Workshop at ICLR 2023

of Machine Learning Research, pp. 1480–1490. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/higgins17a.html. Cited on page 2.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and brian ichter. Inner monologue: Embodied reasoning
through planning with language models. In 6th Annual Conference on Robot Learning, 2022.
URL https://openreview.net/forum?id=3R3Pz5i0tye. Cited on page 2.

Peter C Humphreys, Arthur Guez, Olivier Tieleman, Laurent Sifre, Théophane Weber, and Timothy
Lillicrap. Large-scale retrieval for reinforcement learning. arXiv preprint arXiv:2206.05314,
2022. Cited on page 9.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models. arXiv preprint
arXiv:2210.09276, 2022. Cited on page 9.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236. Cited on pages 3 and 8.

Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. EqR: Equivari-
ant representations for data-efficient reinforcement learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 15908–15926. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/mondal22a.html. Cited on page 2.

OpenAI. ChatGPT: Optimizing language models for dialogue. https://openai.com/blog/
chatgpt/, 2022. Accessed: 2023-02-08. Cited on page 9.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th Inter-
national Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 17359–17371. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/parisi22a.html. Cited on page 2.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adrià Puigdomènech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In International
Conference on Machine Learning, 2017. Cited on page 2.

David Raposo, Sam Ritter, Adam Santoro, Greg Wayne, Theophane Weber, Matt Botvinick, Hado
van Hasselt, and Francis Song. Synthetic returns for long-term credit assignment, 2021. URL
https://arxiv.org/abs/2102.12425. Cited on page 2.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.
URL http://arxiv.org/abs/1511.05952. Cited on page 2.

Martin Schmid, Matej Moravcik, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan
Bard, Finbarr Timbers, Marc Lanctot, Zach Holland, et al. Player of games. arXiv preprint
arXiv:2112.03178, 2021. Cited on page 1.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, L. Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588 7839:604–609, 2019. Cited on page 2.

10

https://proceedings.mlr.press/v70/higgins17a.html
https://proceedings.mlr.press/v70/higgins17a.html
https://openreview.net/forum?id=3R3Pz5i0tye
http://dx.doi.org/10.1038/nature14236
https://proceedings.mlr.press/v162/mondal22a.html
https://proceedings.mlr.press/v162/mondal22a.html
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://proceedings.mlr.press/v162/parisi22a.html
https://proceedings.mlr.press/v162/parisi22a.html
https://arxiv.org/abs/2102.12425
http://arxiv.org/abs/1511.05952

Reincarnating Reinforcement Learning Workshop at ICLR 2023

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, Jan 2016. ISSN 0028-0836.
doi: 10.1038/nature16961. Cited on page 1.

Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.
Cited on pages 2 and 6.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Bruce Porter and Raymond Mooney (eds.), Machine Learning Pro-
ceedings 1990, pp. 216–224. Morgan Kaufmann, San Francisco (CA), 1990. ISBN 978-1-55860-
141-3. doi: https://doi.org/10.1016/B978-1-55860-141-3.50030-4. URL https://www.
sciencedirect.com/science/article/pii/B9781558601413500304. Cited on
pages 3 and 5.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html. Cited on pages 2 and 3.

Koundinya Vajjha, Avraham Shinnar, Vasily Pestun, Barry M. Trager, and Nathan Fulton. Certrl:
Formalizing convergence proofs for value and policy iteration in coq. CoRR, abs/2009.11403,
2020. URL https://arxiv.org/abs/2009.11403. Cited on page 16.

Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A. Oliehoek, and Max Welling. Mdp
homomorphic networks: Group symmetries in reinforcement learning. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546. Cited on page 2.

Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, and Diana
Borsa. Expected eligibility traces. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
Virtual Event, February 2-9, 2021, pp. 9997–10005. AAAI Press, 2021. URL https://ojs.
aaai.org/index.php/AAAI/article/view/17200/. Cited on pages 1 and 2.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, pp. 1–5, 2019.
Cited on page 1.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=S1sqHMZCb. Cited on page 2.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning, 2015. URL http://arxiv.
org/abs/1511.06581. cite arxiv:1511.06581Comment: 15 pages, 5 figures, and 5 tables.
Cited on pages 2, 3, 6, and 8.

11

https://www.sciencedirect.com/science/article/pii/B9781558601413500304
https://www.sciencedirect.com/science/article/pii/B9781558601413500304
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2009.11403
https://ojs.aaai.org/index.php/AAAI/article/view/17200/
https://ojs.aaai.org/index.php/AAAI/article/view/17200/
https://openreview.net/forum?id=S1sqHMZCb
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

Reincarnating Reinforcement Learning Workshop at ICLR 2023

A SOLITAIRE

The board is arranged in four categories: the tableau, the stock, the waste, and the foundation. The
tableau is made of seven piles. At the start of the game, the first pile has one card, the second pile
has two cards, the third pile has three cards, and so on until the seventh pile. All cards except the last
of each pile is face down. The remaining cards are faced down in the stock pile. For a card on the
top of a pile, the player can either move it (if it is face up) or reveal it (if it is face down). The rule
for moving a card is as follows: Cards from the tableau or the waste pile can either be moved onto a
different pile on the tableau in increasing rank order and alternating suit colour, or moved onto the
foundation in increasing rank order of matching suit. Cards from the stock pile can be moved to the
same manner or discarded into the waste pile. Cards from the foundation can be moved back into the
tableau, respecting the increasing rank order and alternating suit colour. Visible cards on the tableau
from the same pile can also be moved all at once and put in a different pile in the tableau, respecting
the ranking and alternating suit colour rules (note that our Solitaire implementation does not allow
for piles to be split: we can either move the last card in a tableau pile or all the visible cards).

There are 97 cards position on the board at a given time (accounting for visible cards, hidden cards,
and empty slots where cards could go), 6 suits (Hearts, Spades, Diamonds, Clubs, hidden, empty)
and 15 ranks (Ace, 1, 2, ..., Jack, Queen, King, hidden and empty). A state is thus represented as
binary vector of size (97, 21). An action is defined by three numbers (a1, a2, a3), a1 represents the
location of the card or cards to be moved or revealed, a2 is the destination location, and a2 indicates
whether to move one card or the whole pile. In practice, we only consider valid actions and convert
this tuple into an integer. There are 161 valid actions in total. The agent receives a reward of +10
for revealing a new hidden card from the tableau, +20 for stacking a new card into a foundation
pile,−20 for removing a card from the foundation, and 500 for putting the last card from the tableau
onto the foundation.

12

Reincarnating Reinforcement Learning Workshop at ICLR 2023

B PSEUDOCODE

Algorithm 1 Structural Dyna
Input:
π: exploratory policy,
P : transition dynamic,
N : number of episodes,
M : Number of iterations
Initialise: V (s) = 0, R(s) = 0∀s, s ∼ S, r = 0, a ∼ π(s)
Output: estimated optimal value function V
for N episodes do

while s is not terminal do
s, r = step(a)
R(s) = r
a ∼ π

end while
end for
for M iterations do

for each state s do
V (s) = maxa(R(s, a) + γ

∑
s′ P (s, a, s′)V (s))

if R(s) ̸= 0 then
for n ∈ N (s) do

R(n) = ηR(s) + (1− η)R(n)
end for

end if
end for

end for

Algorithm 2 Structural Tabular TD(λ)
1: initialise v(s) = 0 ∀s
2: for M episodes do
3: initialise e = 0
4: observe initial state s
5: repeat for each step in episode m
6: generate R and st+1

7: δt ← Rt + γv(st+1)
8: e← γλe+ ϕ(s)
9: v(st)← v(st) + αδe

10: for sk in N (st) do
11: v(sk)← (1− η)v(st) + ηv(sk)
12: end for
13: until s is terminal
14: end for
15: Return w

13

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Algorithm 3 Structural TD(λ) with function approximation
1: initialise w
2: for M episodes do
3: initialise e = 0
4: observe initial state s
5: repeat for each step in episode m
6: generate R and st+1

7: δt ← Rt + γvw(st+1)
8: e← γλe+∇wvw(s)
9: w← w + αδe

10: for sk in N (st) do
11: take gradient step wrt w minising ℓsd =

(
ηvw(st) + (1− η)vw(sk)

)
− vw(sk)

12: end for
13: until s is terminal
14: end for
15: Return w

Algorithm 4 Structural Dueling Q learning +
1: initialise w
2: initialise e = 0
3: observe initial state S
4: pick action A ∼ π(qw(S))
5: v ← maxa qw(S, a)
6: γ = 0
7: repeat
8: take action A, observe R, and S′

9: v′ ← maxa qw(S′, a)
10: δ ← R+ γv′

11: take gradient step wrt wq minising ℓtd = δ − qw(S,A)
12: repeat for all sk ∈ N (st)
13: take gradient step wrt wv minising ℓsd =

(
ηvw(st) + (1− η)vw(sk)

)
− vw(sk)

14: until
15: until done

14

Reincarnating Reinforcement Learning Workshop at ICLR 2023

C MODELS HYPERPARAMETERS

STRUCTURAL DUELING DQN

exploration strategy ϵ-greedy with linearly decaying epsilon from
1. to 0.01 in first 10% steps

maximum number of steps per episode 10,000
number of hidden units in dense layers 512
number of dense layers in torso 3
number of dense layer in dueling heads 1
replay capacity 10,000
batch size 32
update target network frequency 400 steps
optimiser RMS prop
initial learning rate (temporal updates) 0.0001
initial learning rate (structural updates) 0.01

15

Reincarnating Reinforcement Learning Workshop at ICLR 2023

D CONVERGENCE OF STRUCTURED VALUE ITERATION

The convergence argument for value iteration demonstrates first that policy evaluation under the
Bellman Equation is a contraction mapping, meaning that its repeated iteration will converges to a
single point, and that this point is the value function under the current policy. It then demonstrates
that the outer loop of value iteration similarly converges to a single point, which is the optimal value
function (Bellman, 1957; Vajjha et al., 2020).

D.1 PROOF THAT POLICY EVALUATION CONVERGES

Like Bellman policy evaluation, we can show that policy evaluation with structural constraints is
a contraction mapping (under some assumptions). First, we recall the proof that Bellman policy
evaluation is contractive. A contraction mapping is any operator F on a vector space V with a norm
∥ · ∥ such that for some γ ∈ (0, 1) and for all v, u ∈ V ,

∥F (v)− F (u)∥ ≤ γ∥v − u∥ (9)

For the Bellman Equation in a tabular environment, we consider two value functions that are vectors
v, u ∈ V , where V has dimensionality equal to the number of states. If the mapping Ft is the
Bellman equation (where the subscript t is for temporal credit assignment), Ft(v) = rπ + γPπv,
for reward vector rπ and transition matrix Pπ under a given policy, we can write:

∥Ft(v)− Ft(u)∥ = ∥(rπ + γPπv)− (rπ + γPπu)∥ = ∥γPπ(v − u)∥ (10)

We consider the l∞ norm ∥ · ∥∞, in which the norm of a vector is equal to the maximum absolute
value of its entries. Furthermore, we know that each row of the transition matrix Pπ sums to 1, such
that Pπ

1 = 1. We then recall:

∥F (v)− F (u)∥ = ∥γPπ(v − u)∥ ≤ ∥γPπ
1∥v − u∥∥ = ∥γ1∥v − u∥∥ = γ∥v − u∥ (11)

Now, we turn to structured updates. We constrain our structured neighbours to have the same value
as each other, meaning that values for neighbour states si are interchangeable with that of its neigh-
bours, sj ∈ N (si). One way of saying this is that for any combination of weights wj such that∑

j wj = 1, V (si) =
∑

sj∈N wjV (sj). We can write this in linear algebra form as v = Wv,
where W is a non-negative matrix of weights in which Wij > 0 only if sj is a neighbor of si
and W1 = 1 (we assume each state can be its own structured neighbor). The Bellman operator
Ft(v) = rπ + γPπv can therefore be expanded to Fs(v) = W (rπ + γPπv), where W denotes any
valid broadcasting of reward and value information to structural neighbors. Following the previous
steps from the previous proof:

∥Fs(v)− Fs(u)∥ = ∥W (rπ + γPπv)−W (rπ + γPπu)∥
= ∥γWPπ(v − u)∥ ≤ ∥γWPπ

1∥v − u∥∥
= ∥γW1∥v − u∥∥
= ∥γ1∥v − u∥∥
= γ∥v − u∥

This proves that VI and Structural VI converge to a single point.

D.2 PROOF THAT POLICY EVALUATION CONVERGES TO THE CORRECT VALUE FUNCTION

The proof that the point at which VI converges is the actual value function vπ is given by the fact that
vπ is a fixed point of the Bellman equation, because vπ = rπ + Pπvπ . Generalizing this step to the
case of structured updates requires us to make a further assumption. Under the optimal policy π∗,
we know that v∗ = W (rπ

∗
+Pπ∗

v∗); by construction, the optimal value of all structured neighbors
are equal.

However, it may not be the case that the value of all structured neighbors are equal under every
policy. Consider an environment with two rewarded ends of a linear track MDP: Each state will
share value with their symmetric counterparts on the other side of the track, but not under a policy
in which the agent moves away from one end and towards the other.

16

Reincarnating Reinforcement Learning Workshop at ICLR 2023

It is not clear how likely such a policy is to be encountered during learning, especially early on when
the network is close to its random initialization. Because we only constrain value to be transforma-
tion invariant, but do not explicitly constrain policy to be equivariant, the value function, not the
policy, is explicitly forced to respect the symmetry constraints. As the value function learns, and
value is shared among neighbours, affecting policy, this assumption is increasingly valid.

Our empirical observation is that the assumption suffices for performance and sufficiency gains.
However, the extent to which the policies (modulo the equivariant transformation) differ may con-
tribute to the convergence time and stability, and perhaps suggest the optimal value of η. We could
also enforce policy equivariance among our structured neighbors, which might further improve per-
formance and provide additional theoretical guarantees, but would require additional label informa-
tion to be provided and hard-coded into the agent architecture. We consider an exploration of these
considerations an important area for future work.

D.3 PROOF VALUE ITERATION CONVERGES TO THE OPTIMAL VALUE FUNCTION

That value iteration provably converges to the optimal policy will hold in the case of structured
updates as well, given the same assumptions as above. The proof that standard value iteration
converges to the optimal value function has a similar form to the proof that policy evaluation con-
verges to the current value function. The operator Fvi is given by the Bellman optimality operator
(Fvi(q))(s) = r(s) + γmaxa q(s, a) (Equation 2). We can show that Fvi is also a contraction
mapping with Q-functions qv and qu (corresponding to state value functions v and u):

∥(Fviv)(s)− (Fviu)(s)∥ = ∥γ(max
a

qv(s, a)−max
a

qu(s, a))∥

≤ γ∥max
a

qv(s, a)−max
a

qu(s, a)∥

≤ γmax
a
∥qv(s, a)− qu(s, a)∥

≤ γ∥v(s)− u(s)∥

Thus, ∥Fviv − Fviu∥ ≤ γ∥v − u∥. Thus, this operator will contract to a point, and the point will be
that at which taking the maximum value over available actions does not change the value, which is
necessarily the optimal value function.

Replacing v with a structurally updated Wv allows Fvi,s to remain a contraction operator:

∥Fvi,sv − Fvi,su∥ ≤ γ∥v − u∥
= γ∥W1∥(v − u)∥∥

= γ∥1∥(v − u)∥∥
= γ∥(v − u)∥

And by construction, since v∗ = Wv∗ at the optimal value function v∗, the convergence point
should be the same. As noted above, this requires the assumption that the value of each state is
equal to that of its structured neighbors, which is only true at the optimal value function. However,
the optimal value function is the point of convergence, meaning structured updates should not keep
value iteration from converging to the optimal value function.

17

	Introduction
	Related Work
	Background and Motivation
	Value-Based Reinforcement Learning
	Limitations of Temporal Credit Assignment

	Structural Reinforcement Learning
	Results
	Environments
	Experiments

	Conclusion
	Solitaire
	Pseudocode
	Models Hyperparameters
	Convergence of Structured Value Iteration
	Proof that policy evaluation converges
	Proof that policy evaluation converges to the correct value function
	Proof value iteration converges to the optimal value function

