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Abstract

Many businesses nowadays rely on large quantities of time series data making
time series forecasting an important research area. Global forecasting models and
multivariate models that are trained across sets of time series have shown huge
potential in providing accurate forecasts compared with the traditional univariate
forecasting models that work on isolated series. However, there are currently no
comprehensive time series forecasting archives that contain datasets of time series
from similar sources available for researchers to evaluate the performance of new
global or multivariate forecasting algorithms over varied datasets. In this paper, we
present such a comprehensive forecasting archive containing 25 publicly available
time series datasets from varied domains, with different characteristics in terms of
frequency, series lengths, and inclusion of missing values. We also characterise
the datasets, and identify similarities and differences among them, by conducting
a feature analysis. Furthermore, we present the performance of a set of standard
baseline forecasting methods over all datasets across ten error metrics, for the
benefit of researchers using the archive to benchmark their forecasting algorithms.

1 Introduction

Accurate time series forecasting is important for many businesses and industries to make decisions,
and consequently, time series forecasting is a popular research area. The field of forecasting has
traditionally been advanced by influential forecasting competitions. The most popular forecasting
competition series is the M-competition series [1–5]. Other well-known forecasting competitions
include the NN3 and NN5 Neural Network competitions [6], and Kaggle competitions such as the
Wikipedia web traffic competition [7].

The winning approaches of many of the most recent competitions such as the winning method of
the M4 by Smyl [8] and the winning method of the M5 forecasting competition [5], consist of
global forecasting models [9] which train a single model across all series that need to be forecast.
Compared with local univariate models, global forecasting models have the ability to learn cross-
series information during model training and can control model complexity and overfitting on a
global level [10]. This can be seen as a paradigm shift in forecasting. Over decades, single time
series were seen as a dataset that should be studied and modelled in isolation. Nowadays, we are
oftentimes interested in models built on sets of series from similar sources, such as series which are
all product sales from a particular store, or series which are all smart meter readings in a particular
city. Here, time series are seen as an instance in a dataset of many time series, to be studied and
modelled together.
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Closely related is the concept of multivariate forecasting, where multivariate models train and test over
time series that are all the same length and all aligned in time, so that dependencies between series
can be modelled. However, the concepts of global and multivariate models are in fact orthogonal,
with local-univariate models being models for single time series, global-univariate models being
models that train across series, but predict each series in isolation, with no need for the time series to
have the same length or to be aligned in time, local-multivariate models modelling series that are all
aligned in time and predicted together, and finally, global-multivariate models building one global
model across (un-aligned) multivariate series. For the sake of simplicity, in the rest of the paper,
we name local-univariate models as local or univariate models, global-univariate models as global
models, local-multivariate models as multivariate models, and we deem global-multivariate models
outside the scope of the paper. We further note that for each dataset for which multivariate methods
are applicable, also global methods are applicable, but not vice versa. Thus, global models are more
general than multivariate models.

Both global and multivariate models get attention lately in machine learning (especially deep learning),
with Li et al. [11], Rangapuram et al. [12], Wen et al. [13] presenting global models and Salinas
et al. [14], Sen et al. [15], Yu et al. [16], Zhou et al. [17] discussing novel approaches for multivariate
modelling. However, when it comes to benchmarking, these recent works use a mere two [13] to
seven [11] datasets to evaluate the performance of the new algorithms and the chosen datasets are
different in each work. The datasets mainly belong to the energy, transport, and sales domains,
and they do not include datasets from other domains such as banking, healthcare, or environmental
applications.

In contrast, other areas of machine learning, such as general classification and regression, or time
series classification, have greatly benefitted from established benchmark dataset archives, which
allow a much broader and more standardised evaluation. The University of California Irvine (UCI)
repository [18] is the most common and well-known benchmarking archive used in general machine
learning, with currently 507 datasets from various domains. In time series classification, the dataset
archives from the University of California Riverside (UCR) [19] and from the University of East
Anglia (UEA) [20], contain 128 sets of univariate time series, and 30 datasets with multivariate time
series, respectively, allowing routinely for much broader and more standardised evaluations of the
methods, and therewith enabling more streamlined, robust, and reliable progress in the field.

The time series classification datasets, though they contain time series, do usually not resemble
meaningful forecasting problems, so they cannot be used for the evaluation of forecasting methods.
Also in the time series forecasting space there are a number of benchmarking archives, but they
follow the paradigm of single series as datasets, and consequently contain mostly unrelated single
time series. Examples are the Time Series Data Library [21], ForeDeCk [22], and Libra [23].

To the best of our knowledge, there exist currently no comprehensive time series forecasting
benchmarking archives that focus on sets of time series to evaluate the performance of global
and multivariate forecasting algorithms. We introduce such an archive, available at https:
//forecastingdata.org/. The archive contains 25 datasets including both previously publicly
available time series datasets converted by us into a uniform format and made available at a central
repository, as well as datasets curated by us. The datasets cover varied domains, with both equal and
variable lengths time series. Many datasets have different versions based on the frequency and the
inclusion of missing values, resulting in a total of 58 dataset variations.

We also introduce a new format to store time series data, based on the Weka ARFF file format [24],
to overcome some of the shortcomings we observe in the .ts format used in the sktime time series
repository [25]. We use a .tsf extension for this new format. This format stores the meta-information
about a particular time series dataset such as dataset name, frequency, and inclusion of missing values
as well as series specific information such as starting timestamps, in a non-redundant way. The format
is very flexible and capable of including any other attributes related to time series as preferred by the
users.

Furthermore, we analyse the characteristics of different series to identify the similarities and dif-
ferences among them. For that, we conduct a feature analysis using tsfeatures [26] and catch22
features [27] extracted from all series of all datasets. The extracted features are publicly available
for further research use. The performance of a set of baseline forecasting models including both
traditional univariate forecasting models and global forecasting models are also evaluated over all
datasets across ten error metrics. The forecasts and evaluation results of the baseline methods are
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publicly available for the benefits of researchers that use the repository to benchmark their forecast-
ing algorithms. All implementations to replicate the benchmark results and feature extraction, as
well as code for loading the datasets into the R and Python environments, are publicly available at
https://github.com/rakshitha123/TSForecasting .

2 Data records

This section details the datasets in our time series forecasting archive. The current archive contains
25 time series datasets. Furthermore, the archive contains in addition 5 single very long time series.
As a large amount of data oftentimes renders machine learning methods feasible compared with
traditional statistical modelling, and we are not aware of good and systematic benchmark data in this
space either, these series are included in our repository as well. The datasets have different sampling
rates such as yearly, quarterly, and monthly, and even high-frequency data with the highest sampling
rate in the repository being a 4-secondly dataset. A summary of all primary datasets included in the
repository is shown in Table 1. The table also reports whether a dataset is multivariate or not, meaning
that it is aligned in time with known time stamps, and thus multivariate methods are applicable to the
dataset. Global and univariate methods are applicable to all datasets in the repository.

A total of 58 datasets have been derived from these 30 primary datasets. Nine datasets contain
time series belonging to different frequencies and the archive contains a separate dataset per each
frequency. Eleven of the datasets have series with missing values. The archive contains 2 versions of
each of these, one with and one without missing values. In the latter case, the missing values have
been replaced by using an appropriate imputation technique.

Table 1: Datasets in the current time series forecasting archive

Dataset Domain No: of Min. Max. No: of Missing Competition Multi-
Series Length Length Freq. variate

1 M1 Multiple 1001 15 150 3 No Yes No
2 M3 Multiple 3003 20 144 4 No Yes No
3 M4 Multiple 100000 19 9933 6 No Yes No
4 Tourism Tourism 1311 11 333 3 No Yes No
5 CIF 2016 Banking 72 34 120 1 No Yes No
6 London Smart Meters Energy 5560 288 39648 1 Yes No No
7 Aus. Electricity Demand Energy 5 230736 232272 1 No No No
8 Wind Farms Energy 339 6345 527040 1 Yes No No
9 Dominick Sales 115704 28 393 1 No No No
10 Bitcoin Economic 18 2659 4581 1 Yes No No
11 Pedestrian Counts Transport 66 576 96424 1 No No No
12 Vehicle Trips Transport 329 70 243 1 Yes No No
13 KDD Cup 2018 Nature 270 9504 10920 1 Yes Yes No
14 Weather Nature 3010 1332 65981 1 No No No
15 NN5 Banking 111 791 791 2 Yes Yes Yes
16 Web Traffic Web 145063 803 803 2 Yes Yes Yes
17 Solar Energy 137 52560 52560 2 No No Yes
18 Electricity Energy 321 26304 26304 2 No No Yes
19 Car Parts Sales 2674 51 51 1 Yes No Yes
20 FRED-MD Economic 107 728 728 1 No No Yes
21 San Francisco Traffic Transport 862 17544 17544 2 No No Yes
22 Rideshare Transport 2304 541 541 1 Yes No Yes
23 Hospital Health 767 84 84 1 No No Yes
24 COVID Deaths Nature 266 212 212 1 No No Yes
25 Temperature Rain Nature 32072 725 725 1 Yes No Yes
26 Sunspot Nature 1 73931 73931 1 Yes No No
27 Saugeen River Flow Nature 1 23741 23741 1 No No No
28 US Births Nature 1 7305 7305 1 No No No
29 Solar Power Energy 1 7397222 7397222 1 No No No
30 Wind Power Energy 1 7397147 7397147 1 No No No

Out of the 30 datasets, 7 have not been previously available in the current form, and we have
undertaken significant work to curate them, namely: Australian Electricity Demand, Wind Farms,
Bitcoin, Rideshare, Temperature Rain, Solar Power, and Wind Power. The remaining 23 datasets have
been publicly available before in different formats, and we have converted them into a unified format
and make them available at a unified source repository. From those, 8 originate from competition
platforms, 3 from research conducted by Lai et al. [28], 5 are taken from R packages, 1 is from
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the Kaggle platform [29], and 1 is taken from a Johns Hopkins repository [30]. The other datasets
have been extracted from corresponding domain specific platforms. The datasets mainly belong to 9
different domains: tourism, banking, web, energy, sales, economics, transportation, health, and nature.
Three datasets, the M1 [1], M3 [2], and M4 [3, 4] datasets, contain series belonging to multiple
domains. We furthermore ensured that all datasets have licenses that allow us to include them in the
repository. All datasets and the corresponding data collection procedures are explained in detail in
the Appendix (supplementary materials).

2.1 Data format

We introduce a new format to store time series data, based on the Weka ARFF file format [24]. We
use a .tsf file extension. Our format is comparable with the .ts format used in the sktime repository
[25], but we deem it more streamlined and more flexible. The basic idea of the file format is that
each data file can contain 1) attributes that are constant throughout the whole dataset (e.g., the
forecasting horizon, whether the dataset contains missing values or not), 2) attributes that are constant
throughout a time series (e.g., its name, its position in a hierarchy, product information for product
sales time series), and 3) attributes that are particular to each data point (the value of the series,
or timestamps for non-equally spaced series). An example of series in this format is shown in the
Appendix (supplementary materials).

Each .tsf file contains tags describing the meta-information of the corresponding dataset such as
@frequency (seasonality), @horizon (expected forecast horizon), @missing (whether the series
contain missing values) and @equallength (whether the series have equal lengths). We note that
in principle these attributes can be freely defined by the user and the file format does not need any
of these values to be defined in a certain way, though the file readers reading the files may rely on
existence of attributes with certain names and assume certain meanings. Next, there are attributes in
each dataset which describe series-wise properties, where the tag @attribute is followed by the name
and type. Examples are series_name (the unique identifier of a given series) and start_ timestamp
(the start timestamp of a given series). Again, the format has the flexibility to include any additional
series-wise attributes as preferred by the users.

Following the ARFF file format, the data are then listed under the @data tag after defining attributes
and meta-headers, and attribute values are separated by colons. The only extension that our format
has, compared with the original ARFF file format, is that the time series then are appended to their
attribute vector as a comma-separated variable-length vector. As this vector can have a different
length for each instance, this cannot be represented in the original ARFF file format. In particular, a
time series with m number of attributes and n number of values can be represented as:

< attribute1 >:< attribute2 >: ... :< attributem >:< s1, s2, ..., sn > (1)

The missing values in the series are indicated using the “?” symbol. Code to load datasets in
this format into R and Python is available in our github repository at https://github.com/
rakshitha123/TSForecasting.

3 Feature Analysis

This section details the feature analysis we conducted on the datasets in our repository and its results.

3.1 Feature analysis methodology

We characterise the datasets in our archive to analyse the similarities and differences between
them, to gain a better understanding on where gaps in the repository may be and what type of
data are prevalent in applications. This may also help to select suitable forecasting methods for
different types of datasets. We analyse the characteristics of the datasets using the tsfeatures [26] and
catch22 [27] feature extraction methods. All extracted features are publicly available on our website
https://forecastingdata.org/ for further research use. Due to the large size of the datasets,
we have not been able to extract features from the London smart meters, wind farms, solar power,
and wind power datasets, which is why we exclude them from this analysis.

We extract 42 features using the tsfeatures function in the R package tsfeatures [26] in-
cluding mean, variance, autocorrelation features, seasonal features, entropy, crossing points,
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flat spots, lumpiness, non-linearity, stability, Holt-parameters, and features related to the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [31] and the Phillips–Perron (PP) test [32]. For all
series that have a frequency greater than daily, we consider multi-seasonal frequencies when comput-
ing features. Therefore, the number of features extracted is higher for multi-seasonal datasets as the
seasonal features are individually calculated for each season presented in the series. Furthermore, if
a series is short and does not contain two full seasonal cycles, we calculate the features assuming
a non-seasonal series (i.e., setting its frequency to “one” for the feature extraction). We use the
catch22_all function in the R package Rcatch22 [33] to extract the catch22 features from a given
time series. The features are a subset of 22 features from the hctsa package [34] which includes the
implementations of over 7000 time series features. The computational cost of the catch22 features is
low compared with computing all features implemented in the hctsa package.

For the feature analysis, we consider 5 features, as suggested by Bojer and Meldgaard [35]: first
order autocorrelation (ACF1), trend, entropy, seasonal strength, and the Box-Cox transformation
parameter, lambda. The BoxCox.lambda function in the R package forecast [36] is used to extract the
Box-Cox transformation parameter from each series, with default parameters. The other 4 features are
extracted using tsfeatures. Since this feature space contains 5 dimensions, to compare and visualise
the features across multiple datasets, we reduce the feature dimensionality to 2 using Principal
Component Analysis [PCA, 37].

The numbers of series in each dataset are significantly different, e.g., the CIF 2016 monthly dataset and
M4 monthly dataset contain 72 and 48,000 series, respectively. Hence, if all series were considered
to calculate the PCA components, those components would be dominated by datasets that have
large amounts of series. Therefore, for datasets that contain more than 300 series, we randomly
take a sample of 300 series, before constructing the PCA components across all datasets. Once the
components are calculated, we map all series of all datasets into the resulting PCA feature space. We
note that we use PCA for dimensionality reduction over other advanced dimensionality reduction
algorithms such as t-Distributed Stochastic Neighbor Embedding [t-SNE, 38] due to this capability
of constructing the basis of the feature space with a reduced sample of series with the possibility to
then map all series into the space afterwards.

3.2 Feature analysis results

Figure 1 shows hexbin plots of the normalised density values of the low-dimensional feature space
generated by PCA across ACF1, trend, entropy, seasonal strength and Box-Cox lambda for 20
selected datasets (plots for all datasets are available in the Appendix in the supplementary material).
The figure highlights the characteristics among different datasets. For the M competition datasets,
the feature space is highly populated on the left-hand side and hence, denoting high trend and ACF1
levels in the series. The tourism yearly dataset also shows high trend and ACF1 levels. In contrast, the
car parts, hospital, and Kaggle web traffic datasets show high density levels towards the right-hand
side, indicating a higher degree of entropy. The presence of intermittent series can be considered as
the major reason for the higher degree of entropy in the Kaggle web traffic and car parts datasets.
The plots confirm the claims of prior similar studies [35, 39] that the M competition datasets are
significantly different from the Kaggle web traffic dataset.

The monthly datasets generally show high seasonal strengths compared with datasets of other
frequencies. Quarterly datasets also demonstrate high seasonal strengths except for the M4 quarterly
dataset. In contrast, the datasets with high frequencies such as weekly, daily, and hourly show low
seasonal strengths except for the NN5 weekly and NN5 daily datasets.

Related to the shapes of the feature space, the 3 yearly datasets: M3, M4, and tourism show very
similar shapes and density populations indicating they have similar characteristics. The M4 quarterly
dataset also shows a similar shape as the yearly datasets, even though it has a different frequency. The
other 2 quarterly datasets M3 and tourism are different, but similar to each other. The M3 and M4
monthly datasets are similar to each other in terms of both shape and density population. Furthermore,
the electricity hourly and traffic hourly datasets have similar shapes and density populations, whereas
the M4 hourly dataset has a slightly different shape compared with them. The daily datasets show
different shapes and density populations, where the NN5 daily dataset is considerably different from
the other 2 daily datasets: M4 and Kaggle web traffic, in terms of shape and all 3 daily datasets are
considerably different from each other in terms of density population. The weekly datasets also show
different shapes and density populations compared with each other.

5



Figure 1: Hexbin plots showing the normalised density values of the low-dimensional feature space
generated by PCA across ACF1, trend, entropy, seasonal strength, and Box-Cox lambda for 20
datasets. The dark and light hexbins denote the high and low density areas, respectively. The M3
Yearly facet shows the directions of the 5 features, which are the same across all facets.

4 Baseline evaluation

This section details the baseline evaluation we conducted on the datasets in our repository together
with a discussion of the results.

4.1 Baseline evaluation methodology

In the forecasting space, benchmarking against simple benchmarks is vital [40] as even simple
benchmarks can oftentimes be surprisingly competitive. However, many works in the machine
learning space are notoriously weak when it comes to proper benchmarking for time series forecasting
[41]. To fill this gap, we evaluate the performance of 13 different baseline forecasting models over the
datasets in our repository using a fixed origin evaluation scheme, so that researchers that use the data
in our repository can directly benchmark their forecasting algorithms against these baselines. The
baseline models include 6 traditional univariate forecasting models: Exponential Smoothing [ETS,
42], Auto-Regressive Integrated Moving Average [ARIMA, 43], Simple Exponential Smoothing

6



(SES), Theta [44], Trigonometric Box-Cox ARMA Trend Seasonal [TBATS, 45] and Dynamic
Harmonic Regression ARIMA [DHR-ARIMA, 46], and 7 global forecasting models: a linear Pooled
Regression model [PR, 47], a Feed-Forward Neural Network [FFNN, 48], CatBoost [49], DeepAR
[50], N-BEATS [51], a WaveNet [52], and a Transformer [53] method, covering a representative set
of state-of-the-art forecasting models from statistical, machine learning, and deep learning domains.

We use the R packages forecast [54], glmnet [55], and catboost [49] to implement the 6 traditional
univariate forecasting methods, the globally trained PR model, and CatBoost, respectively. For the
remaining global models, we use the implementations of FFNN, DeepAR, N-BEATS, WaveNet, and
Transformer available from the Python package GluonTS [56]. All models are executed with their
default parameters since we present them as benchmarks in our study and note that they could still
perform better on the datasets with additional hyperparameter tuning and deeper understanding of the
methods. Furthermore, we note that traditionally forecasters have focused on the R programming
language, and many of the statistical benchmarks from the forecast package have no direct correspon-
dence in the Python programming language, which may have been a contributing factor in the past
for weak forecasting evaluations. Thus, using the best implementations available across both Python
and R and making the code available accordingly is a particular feature of our work.

Again, we do not consider the London smart meters, wind farms, solar power, and wind power
datasets for both univariate and global model evaluations, the Kaggle web traffic daily dataset for
the global model evaluations and the solar 10 minutely dataset for the WaveNet evaluation, as the
computational cost of running these models was not feasible in our experimental environment. The
M4 yearly dataset is not considered for the neural network benchmarks implemented using GluonTS
since the corresponding implementations cannot handle the very long time series of the dataset
spanning over 600 years.

Theta, SES, TBATS, ETS and the 7 global models are used for all datasets. ETS is used as a
non-seasonal model for weekly and multi-seasonal datasets such as 10 minutely, half hourly, and
hourly as the corresponding implementation cannot handle seasonal cycles greater than 24. We use 2
versions of ARIMA. The general ARIMA method is used for yearly, quarterly, monthly, and daily
datasets whereas DHR-ARIMA is used for multi-seasonal datasets due to its capability of dealing
with multiple seasonalities [57]. DHR-ARIMA is also used for weekly datasets due to its capability
of dealing with long non-integer seasonal cycles present in weekly data [58].

Forecast horizons are chosen for each dataset to evaluate the model performance. For all competition
datasets, we use the forecast horizons originally employed in the competitions. For the remaining
datasets, 12 months ahead forecasts are obtained for monthly datasets, 8 weeks ahead forecasts
are obtained for weekly datasets, except the solar weekly dataset, and 30 days ahead forecasts are
obtained for daily datasets. For the solar weekly dataset, we use a horizon of 5 as the series in this
dataset are relatively short compared with other weekly datasets. For half-hourly, hourly and other
high-frequency datasets, we set the forecasting horizon to one week, e.g., 168 is used as the horizon
for hourly datasets.

The number of lagged values used in the global models are determined based on a heuristic suggested
in prior work [59]. Generally, the number of lagged values is chosen as the seasonality multiplied
with 1.25. If the datasets contain short series and it is impossible to use the above defined number
of lags, for example in the Dominick and solar weekly datasets, then the number of lagged values
is chosen as the forecast horizon multiplied with 1.25, assuming that the horizon is not arbitrarily
chosen but based on certain characteristics of the time series structure. When defining the number of
lagged values for multi-seasonal datasets, we consider the corresponding weekly seasonality value,
e.g., 168 for hourly datasets. If it is impossible to use the number of lagged values obtained with the
weekly seasonality due to high memory and computational requirements, for example with the traffic
hourly and electricity hourly datasets, then we use the corresponding daily seasonality value to define
the number of lags, e.g., 24 for hourly datasets. In particular, due to high memory and computational
requirements, the number of lagged values is chosen as 50 for the solar 10 minutely dataset which is
less than the above mentioned heuristics based on seasonality and forecasting horizon suggest.

4.2 Baseline evaluation results

It is very difficult to define error measures for forecasting that perform well under all situations [46],
in the sense that it is difficult to define a scale-free measure that works for any type of non-stationarity
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in the time series. Furthermore, choosing suitable error metrics for a given forecasting task, is highly
domain and application dependent. Thus, how to best evaluate forecasts is still an active area of
research, and (especially in the machine learning area) researchers often use ad-hoc, non-adequate
measures. For example, usage of the Mean Absolute Percentage Error (MAPE) for normalised
data between 0 and 1 may result in undefined or heavily skewed measures, or error measures using
the mean of a series like the Root Relative Squared Error [RSE, 28] will not work properly for
series where the mean is essentially meaningless, such as series with steep trends. To address these
issues, we analyse the performance of the baseline models over a broad range of error measures,
so that characteristics of different error measures can be assessed across a broad range of datasets
and forecasting methods, whereas the researchers can select a suitable error measure to benchmark
their algorithms, depending on their domain and application. In particular, we use four error metrics
that – while having their own problems – are common for evaluation in forecasting, namely the
Mean Absolute Scaled Error [MASE, 60], symmetric MAPE (sMAPE), Mean Absolute Error [MAE,
61], and Root Mean Squared Error (RMSE) to evaluate the performance of the thirteen baseline
forecasting models explained in Section 4.1. For datasets containing zeros, calculating the sMAPE
error measure may lead to divisions by zero. Hence, we also consider the variant of the sMAPE
proposed by Suilin [62] which overcomes the problems with small values and divisions by zero of
the original sMAPE. We report the original sMAPE only for datasets where divisions by zero do not
occur and the modified sMAPE (msMAPE) for all datasets. The definitions of all error metrics are
available in the Appendix (supplementary materials).

As a general guideline, scale-dependent error measures such as MAE and RMSE should be considered
first. They are easy to interpret and do not share many of the drawbacks of the other measures. MAE
is minimal for a forecast that is the median of the forecasting distribution, while RMSE is minimal for
its mean. As such, the only drawbacks are that the RMSE is more sensitive towards outliers and the
optimal MAE for a series with over 50% zeros (intermittent time series) will lead to a forecast heavily
biased towards zero. However, scale-dependent measures cannot be used to compare forecasts for
series with significantly different scales, across or within datasets. A scale-free measure that works
under any type of non-stationarity does not exist, to the best of our knowledge. Though the sMAPE
is popular, the sMAPE (and related measures such as MAPE) is not a good error metric for datasets
containing zero values (especially intermittent datasets) such as Kaggle web traffic and carparts. If
there is a zero in the actual data and if a model does not predict an exact zero, then sMAPE takes
its maximal value, 200, independent of the actual predicted value. Furthermore, sMAPE violates
symmetry as under-prediction gives higher errors compared to over-prediction even though the
absolute forecasting error is the same. However, a big advantage of the sMAPE is that it is bounded
with a maximal value of 200. The msMAPE addresses some of these issues but at the cost of not
having a theoretical underpinning as it does not optimise for a meaningful summary statistic of the
forecasting distribution (such as the mean or median). We include sMAPE and msMAPE mostly
for their popularity, to allow for easy comparisons. The MASE is arguably the closest measure to a
generally applicable scale-free measure for time series. It avoids the issues stated for the other error
metrics such as symmetry issues, scaling issues and division by zero; it is optimal for the median of
the forecast distribution. Its only problems arise if the naive forecast has very different performance
for different parts of a series (e.g., training and test sets), e.g., for very stable training periods that are
followed by very volatile test periods. Thus, where a scale-free measure is needed, we use the MASE
as the primary error metric of our study.

The MASE measures the performance of a model compared with the in-sample average performance
of a one-step-ahead naïve or seasonal naïve (snaïve) benchmark. For multi-seasonal datasets, we
use the length of the shortest seasonality to calculate the MASE. For the datasets where all series
contain at least one full seasonal cycle of data points, we consider the series to be seasonal and
calculate MASE values using the snaïve benchmark. Otherwise, we calculate the MASE using the
naïve benchmark, effectively treating the series as non-seasonal.

The error metrics are defined for each series individually. We further calculate the mean and median
values of the error metrics over the datasets to evaluate the model performance and hence, each
model is evaluated using 10 error metrics for a particular dataset: mean MASE, median MASE,
mean sMAPE, median sMAPE, mean msMAPE, median msMAPE, mean MAE, median MAE, mean
RMSE and median RMSE. Table 2 shows the mean MASE of the thirteen baselines on all datasets.
The results of all baselines across all datasets on all 10 error metrics are available in the Appendix.
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Table 2: Mean MASE results. The best model across each dataset is highlighted in boldface.

Dataset SES Theta TBATS ETS (DHR-) PR Cat FFNN Deep N- Wave Trans
ARIMA Boost AR BEATS Net former

M1 Yearly 4.938 4.191 3.499 3.771 4.479 4.588 4.427 4.355 4.603 4.384 4.666 5.519
M1 Quarterly 1.929 1.702 1.694 1.658 1.787 1.892 2.031 1.862 1.833 1.788 1.700 2.772
M1 Monthly 1.379 1.091 1.118 1.074 1.164 1.123 1.209 1.205 1.192 1.168 1.200 2.191
M3 Yearly 3.167 2.774 3.127 2.860 3.417 3.223 3.788 3.399 3.508 2.961 3.014 3.003
M3 Quarterly 1.417 1.117 1.256 1.170 1.240 1.248 1.441 1.329 1.310 1.182 1.290 2.452
M3 Monthly 1.091 0.864 0.861 0.865 0.873 1.010 1.065 1.011 1.167 0.934 1.008 1.454
M3 Other 3.089 2.271 1.848 1.814 1.831 2.655 3.178 2.615 2.975 2.390 2.127 2.781
M4 Yearly 3.981 3.375 3.437 3.444 3.876 3.625 3.649 - - - - -
M4 Quarterly 1.417 1.231 1.186 1.161 1.228 1.316 1.338 1.420 1.274 1.239 1.242 1.520
M4 Monthly 1.150 0.970 1.053 0.948 0.962 1.080 1.093 1.151 1.163 1.026 1.160 2.125
M4 Weekly 0.587 0.546 0.504 0.575 0.550 0.481 0.615 0.545 0.586 0.453 0.587 0.695
M4 Daily 1.154 1.153 1.157 1.239 1.179 1.162 1.593 1.141 2.212 1.218 1.157 1.377
M4 Hourly 11.607 11.524 2.663 26.690 13.557 1.662 1.771 2.862 2.145 2.247 1.680 8.840
Tourism Yearly 3.253 3.015 3.685 3.395 3.775 3.516 3.553 3.401 3.205 2.977 3.624 3.552
Tourism Quarterly 3.210 1.661 1.835 1.592 1.782 1.643 1.793 1.678 1.597 1.475 1.714 1.859
Tourism Monthly 3.306 1.649 1.751 1.526 1.589 1.678 1.699 1.582 1.409 1.574 1.482 1.571
CIF 2016 1.291 0.997 0.861 0.841 0.929 1.019 1.175 1.053 1.159 0.971 1.800 1.173
Aus. Elecdemand 1.857 1.867 1.174 5.663 2.574 0.780 0.705 1.222 1.591 1.014 1.102 1.113
Dominick 0.582 0.610 0.722 0.595 0.796 0.980 1.038 0.614 0.540 0.952 0.531 0.531
Bitcoin 4.327 4.344 4.611 2.718 4.030 2.664 2.888 6.006 6.394 7.254 5.315 8.462
Pedestrians 0.957 0.958 1.297 1.190 3.947 0.256 0.262 0.267 0.272 0.380 0.247 0.274
Vehicle Trips 1.224 1.244 1.860 1.305 1.282 1.212 1.176 1.843 1.929 2.143 1.851 2.532
KDD 1.645 1.646 1.394 1.787 1.982 1.265 1.233 1.228 1.699 1.600 1.185 1.696
Weather 0.677 0.749 0.689 0.702 0.746 3.046 0.762 0.638 0.631 0.717 0.721 0.650
NN5 Daily 1.521 0.885 0.858 0.865 1.013 1.263 0.973 0.941 0.919 1.134 0.916 0.958
NN5 Weekly 0.903 0.885 0.872 0.911 0.887 0.854 0.853 0.850 0.863 0.808 1.123 1.141
Kaggle Daily 0.924 0.928 0.947 1.231 0.890 - - - - - - -
Kaggle Weekly 0.698 0.694 0.622 0.770 0.815 1.021 1.928 0.689 0.758 0.667 0.628 0.888
Solar 10 Mins 1.451 1.452 3.936 1.451 1.034 1.451 2.504 1.450 1.450 1.573 - 1.451
Solar Weekly 1.215 1.224 0.916 1.134 0.848 1.053 1.530 1.045 0.725 1.184 1.961 0.574
Electricity Hourly 4.544 4.545 3.690 6.501 4.602 2.912 2.262 3.200 2.516 1.968 1.606 2.522
Electricity Weekly 1.536 1.476 0.792 1.526 0.878 0.916 0.815 0.769 1.005 0.800 1.250 1.770
Carparts 0.897 0.914 0.998 0.925 0.926 0.755 0.853 0.747 0.747 2.836 0.754 0.746
FRED-MD 0.617 0.698 0.502 0.468 0.533 8.827 0.947 0.601 0.640 0.604 0.806 1.823
Traffic Hourly 1.922 1.922 2.482 2.294 2.535 1.281 1.571 0.892 0.825 1.100 1.066 0.821
Traffic Weekly 1.116 1.121 1.148 1.125 1.191 1.122 1.116 1.150 1.182 1.094 1.233 1.555
Rideshare 3.014 3.641 3.067 4.040 1.530 3.019 2.908 4.198 4.029 3.877 3.009 4.040
Hospital 0.813 0.761 0.768 0.765 0.787 0.782 0.798 0.840 0.769 0.791 0.779 1.031
COVID 7.776 7.793 5.719 5.326 6.117 8.731 8.241 5.459 6.895 5.858 7.835 8.941
Temp. Rain 1.347 1.368 1.227 1.401 1.174 0.876 1.028 0.847 0.785 1.300 0.786 0.687
Sunspot 0.128 0.128 0.067 0.128 0.067 0.099 0.059 0.207 0.020 0.375 0.004 0.003
Saugeen 1.426 1.425 1.477 2.036 1.485 1.674 1.411 1.524 1.560 1.852 1.471 1.861
Births 4.343 2.138 1.453 1.529 1.917 2.094 1.609 2.032 1.548 1.537 1.837 1.650

Overall, SES shows the worst performance and Theta shows the second-worst performance across
all error metrics. TBATS, ETS and ARIMA show a mixed performance on the yearly, monthly,
quarterly, and daily datasets but all outperform SES and Theta. TBATS generally shows a better
performance than DHR-ARIMA on the high frequency datasets. For our experiments, we always set
the maximum order of Fourier terms used with DHR-ARIMA to k = 1. Based on the characteristics
of the datasets, k can be tuned as a hyperparameter and it may lead to better results compared with
our results. Compared with SES and Theta, DHR-ARIMA shows a superior performance.

The global models show a mixed performance compared with the traditional univariate forecasting
models. Overall, CatBoost and FFNN show the worst performance whereas the PR models show a
mixed performance. The deep learning models such as DeepAR, N-BEATS, WaveNet and Trans-
former models show a better performance compared to the other considered global benchmarks. The
performance of the global models is considerably affected by the number of lags used during model
training, performing better as the number of lags is increased. The number of lags we use during
model training is quite high with the high-frequency datasets such as hourly, compared with the other
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datasets and hence, global models generally show a better performance than the traditional univariate
forecasting models on all error metrics across those datasets. But on the other hand, the memory and
computational requirements are also increased when training global models with larger numbers of
lags. Furthermore, the global models show better performance across intermittent datasets such as
car parts, compared with the traditional univariate forecasting models. The error measures are not
directly comparable across datasets as we consider different forecasting horizons for varied datasets.

We see that the simple univariate forecasting models can provide better results for datasets with
short, unrelated, noisy series, such as many of the M-competition datasets, where in fact often the
simple Theta method still outperforms all more sophisticated methods. For the intermittent datasets
such as carparts, the performance of the included simple univariate benchmark models are relatively
worse, whereas global machine learning or deep learning models seem to be able to better handle the
intermittency without special adjustments. Relating these results to our feature analysis, in general,
we see the simple univariate benchmarks can properly learn the patterns in datasets with a higher
degree of trend and ACF1, whereas machine learning and deep learning models are generally better
at forecasting the datasets with a higher degree of entropy or uncertainty.

The execution times of the baselines across all datasets are available in the Appendix. The deep
learning models show competitive execution times compared to other baselines.

5 Conclusions and future research

Recently, global forecasting models and multivariate models have shown huge potential in providing
accurate forecasts for collections of time series compared with the traditional univariate benchmarks.
However, there are currently no comprehensive time series forecasting benchmark data archives
available that contain datasets to facilitate the evaluation of these new forecasting algorithms. In
this paper, we have presented the details of an archive that contains 25 publicly available time series
datasets with different frequencies from varied domains. We have also characterised the datasets
and have identified the similarities and differences among them by conducting a feature analysis
exercise using tsfeatures and catch22 features extracted from each series. Finally, we have evaluated
the performance of thirteen baseline forecasting models over all datasets across ten error metrics to
enable other researchers to benchmark their own forecasting algorithms directly against those.

Some areas for further research are as follows. In this research, we have only used univariate
forecasting benchmarks. Analysing the performance of multivariate forecasting benchmarks is also
an important possible future work. Furthermore, we have only considered point forecasts where
probabilistic forecasting performance of the benchmarks is also interesting to study.

We also expect to run new baseline models in the future and the results tables in our website will be
updated accordingly. The users are also invited to integrate new models to our framework based on
the instructions given in our code repository, and to send us the results of the new forecasting models.
If computationally feasible, we expect to re-execute the models and confirm the results. In the future,
we expect to maintain two results tables in our website with the confirmed and unconfirmed results of
the forecasting models.
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