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Figure 1: U2UData is collected by performing swarm UAVs autonomous flight tasks in the U2USim environment. Top left:
Swarm UAVs autonomous flight task, where each UAV protects an animal based on the arrow. Top right: First-person views
and LiDAR images of each UAV. Bottom left: U2USim, a real-world mapping swarm UAVs simulation environment. Bottom

right: Swarm UAVs cooperative perception benchmark.

Abstract

Modern perception systems for autonomous flight are sensitive to
occlusion and have limited long-range capability, which is a key

bottleneck in improving low-altitude economic task performance.
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Recent research has shown that the UAV-to-UAV (U2U) coopera-
tive perception system has great potential to revolutionize the au-
tonomous flight industry. However, the lack of a large-scale dataset
is hindering progress in this area. This paper presents U2UData,
the first large-scale cooperative perception dataset for swarm UAVs
autonomous flight. The dataset was collected by three UAVs fly-
ing autonomously in the U2USim, covering a 9 km? flight area. It
comprises 315K LiDAR frames, 945K RGB and depth frames, and
2.41M annotated 3D bounding boxes for 3 classes. It also includes
brightness, temperature, humidity, smoke, and airflow values cover-
ing all flight routes. U2USim is the first real-world mapping swarm
UAVs simulation environment. It takes Yunnan Province as the pro-
totype and includes 4 terrains, 7 weather conditions, and 8 sensor
types. U2UData introduces two perception tasks: cooperative 3D
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object detection and cooperative 3D object tracking. This paper pro-
vides comprehensive benchmarks of recent cooperative perception
algorithms on these tasks.

CCS Concepts

+ Computing methodologies — Cognitive robotics; Coopera-
tion and coordination; Robotic planning.
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1 Introduction

Perception is critical in the autonomous flight task of Unmanned
Aerial Vehicles (UAVs) for accurate navigation and safe planning|[3,
4]. The recent development of deep learning brings significant
breakthroughs in various perception tasks such as 3D object detec-
tion[5], object tracking[6], and semantic segmentation[7]. However,
single-UAV vision systems still suffer from many real-world chal-
lenges, such as occlusion and short-range perception capability[1, 2,
8], which can cause catastrophic accidents and are key bottlenecks
in improving low-altitude economic task performance. The short-
comings are mainly due to the limited field-of-view of individual
UAVs, resulting in an incomplete understanding of the environment.

A growing interest and recent advances in cooperative percep-
tion systems[9-12] have enabled a new paradigm that can poten-
tially overcome the limitations of single-UAV perception. By lever-
aging UAV-to-UAV (U2U) technologies, multiple connected and
automated UAVs (UAVs) can communicate and share captured sen-
sor information simultaneously. As shown in Figure 1, swarm UAVs
flying autonomously in a dynamic open environment, the ego UAV
(blue) struggles to perceive the tracking object (deer) due to leaf
obstruction and snow interference. Incorporating the multimodal
features of the nearby UAVs (yellow or red) can further distrib-
ute multiple tasks and achieve greater flexibility, robustness, and
perceptual range, leading to significant advantages in harsh and
complex environments.

However, despite the great promise, cooperative perception is
mainly focused on the vehicles and ignores the UAV literature,
which remains challenging to validate U2U perception in real-world
scenarios due to the lack of public datasets. Existing U2U coopera-
tive perception datasets, as shown in Table 1, CoPerception-UAVs[1]
and CoPerception-UAVs+[2] rely on open-source simulators such as
AirSim[13] and CARLA[14] and consider only 1 terrain, 1 weather,
and 1 to 2 sensor types; they collect datasets using fixed altitude
and consistent or fixed formation mode. In real-world scenarios,
compared to autonomous driving, autonomous flight has more free-
dom, faces more complex environments, and is more susceptible
to the influence of temperature, humidity, and airflow due to its
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smaller size. Obviously, there will be a clear domain gap between
existing synthetic data and real-world data. As a result, models
trained on these datasets may not generalize well to realistic flight
situations.

To further advance innovative research on U2U cooperative per-
ception, 1) we present a large-scale cooperative perception dataset
(U2UData) for swarm UAVs autonomous flight. It is collected by
three UAVs flying autonomously in the U2USim, covering a 9 km?
flight area, comprising 315K LiDAR frames, 945K RGB and depth
frames, 2.41M annotated 3D bounding boxes for 3 classes, and in-
cluding brightness, temperature, humidity, smoke, airflow values
covering all flight paths. Compared with fixed altitude and consis-
tent or fixed formation mode flying, autonomous flight can more
comprehensively explore harsh and complex environments, allow-
ing perception models to achieve higher flexibility and stronger
robustness. 2) Brightness, temperature, humidity, smoke, and air-
flow modalities can greatly affect UAV flight control. However, they
are closely related to terrain and meteorology, and have strong
interactions with each other, making them difficult to collect. We
build the first real-world mapping swarm UAVs simulation environ-
ment, U2USim, including 4 terrains, 7 weather conditions, and 8
sensor types. It takes Yunnan Province as the prototype and uses the
real meteorological data of Yunnan Province collected by the China
Meteorological Center! to map the simulation environment based
on longitude and latitude. It enables UAVSs to perceive the world like
humans and make optimal decisions. 3) U2UData introduces two
perception tasks: cooperative 3D object detection and cooperative
3D object tracking. 4) We have provided 8 state-of-the-art coopera-
tive perception algorithms for benchmarking, and will make all the
data, benchmarks, and models publicly available worldwide.

Our contributions can be summarized as follows:

e Dataset. We present U2UData, the first large-scale coopera-
tive perception dataset for swarm UAVs autonomous flight.

e Simulation. We build U2USim, the first real-world map-
ping swarm UAVs simulation environment, taking Yunnan
Province as the prototype, including 4 terrains, 7 weather
conditions, and 8 sensor types.

e Benchmark. We introduce two cooperative perception tasks,
including cooperative 3D object detection and cooperative
3D object tracking, and provide comprehensive benchmarks
with 8 SOTA models. The results show the effectiveness of
U2UData in multiple tasks.

2 Related Work

Cooperative perception. Due to the inherent limitations of an
agent’s own sensors (e.g., camera/LiDAR), occlusions, sensor degra-
dation or failure, and long-range perception are extremely chal-
lenging for single-agent systems, with potentially disastrous conse-
quences in harsh and complex environments. Cooperative percep-
tion systems can learn how to share information among multiple
agents to perceive the environment better than individually. Exist-
ing cooperative perception approaches can be roughly divided into
three categories: (1) Early Fusion[21]. Agents transmit raw sensor
data directly to other collaborators, and the ego agent makes task
decisions based on the fused raw data, which preserves complete

!https://data.cma.cn/
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Table 1: A detailed comparison between autonomous flight-related datasets. - indicates that specific information is not pro-
vided. DF: Discipline formation mode, where swarm UAVs keep a consistent and relatively static array; FF: Fixed formation
mode, where each UAV navigates independently with a fixed path; AF: Autonomous formation mode, where each UAV flies
autonomously. D: 3D object detection; T: 3D object tracking; S: semantic segmentation.

Datasets Year Real data Simulation UAVs  Altitudes  Formation Sample Terrains weather Sensors Tasks
CoPerception-UAVs[1] 2022 - AirSim + Carla 5 Fixed DF, FF 4s 1 1 1 D,S
CoPerception-UAVs+[2] 2023 - AirSim + Carla 10 Fixed DF, FF 4s 1 1 2 D,S

U2UData (our) 2024 China U2USim 3 [56.6,3000] DF, FF, AF 0.03s 4 7 8 D,S, T

Table 2: A detailed comparison between simulators related to autonomous flight. H: High; M: Medium; L: Low. U2USim takes
Yunnan Province as the prototype and uses the real meteorological data of Yunnan Province collected by the China Meteoro-
logical Center to map the simulation environment based on longitude and latitude. U2USim includes dynamic temperature,

humidity, smoke, and airflow sensor information.

Simulator FightGear[15] XPlan[16] Jmavsim[17] Gazebo[18] AirSim[13] RflySim[19] Isaac Sim[20] U2USim (Our)
Open Source - v v v v v v v/
ROS - - v v v v v v
Sensor Output - - - v v v v v
Physical Collision - - - v v v v v
Records - - - - v v v v
Weather - - - - N v v v

Real Data - - - - - - Digital Twin Mapping

Altitude - - - - - - v 4
Temperature Sensor - - - - - - - v
Humidity Sensor - - - - - - - v
Smoke Sensor - - - - - - - v
Airflow Sensor - - - - - - - v/
Fidelity L H L M H H H H
Richness L H L M H H H H

information but requires a large bandwidth. (2) Late Fusion[22].
Each agent makes task decisions using its sensor data and delivers
the decision results to others. The ego agent applies Non-maximum
suppression to produce the final outputs, which maintain small
transmission bandwidths but cannot achieve deep fusion of sensor
information. (3) Intermediate fusion[1, 7, 9-12]. Adjacent UAVs uti-
lize a neural feature extractor to derive intermediate features, which
are then compressed and sent to the ego UAV for cooperative fea-
ture fusion. This method maximizes the benefits of both early and
late fusion and is well-suited for extensive deployment scenarios.
However, despite its great promise, cooperative perception mainly
focuses on vehicles and ignores the UAV literature, which remains
challenging to validate U2U perception in real-world scenarios due
to the lack of public datasets.

Cooperative perception datasets. Collecting datasets[23-29]
is crucial for advancing algorithmic research. Public cooperative
perception datasets have significantly accelerated progress in au-

tonomous driving technologies in recent years. For instance, OPV2V[30]

introduced the first 3D cooperative perception dataset, leverag-
ing CARLA[14] and OpenCDA[31] joint simulation environment.
DAIR-V2X pioneered real-world datasets for cooperative detection.
V2x-seq[32] developed the initial sequential dataset for vehicle-
infrastructure cooperative perception and forecasting. V2X-Sim[33]
further explored vehicle-to-everything perception feasibility using

synthesized data from the CARLA simulator[34]. V2V4Real[35]
established the first large-scale real-world dataset for vehicle-to-
everything cooperative perception. However, cooperative percep-
tion datasets in autonomous flight scenarios remain scarce. Exist-
ing U2U cooperative perception datasets, such as CoPerception-
UAVs[1] and CoPerception-UAVs+[2], rely on open-source simu-
lators like AirSim[13] and CARLA[14], featuring limited terrain,
weather, and sensor types. These datasets collect data at fixed al-
titudes and in consistent or fixed formation modes. In contrast
to autonomous driving, UAVs’ autonomous flight presents greater
freedom, encounters more complex environments, and is more in-
fluenced by natural weather due to their smaller size. Hence, there
exists a notable domain gap between existing synthetic data and
real-world data, potentially limiting the generalization of models
trained on these datasets to realistic flying scenarios. In this paper,
we introduce the first large-scale cooperative perception dataset
for swarm UAVs autonomous flight.

3 U2USim Environment

A simulator for swarm-UAVs must be able to more realistically
simulate dynamic physical characteristics[20] (such as collision);
sensors such as IMU[15], camera[16, 17], GPS[18], lidar[13] etc; and
interaction with the ROS ecosystem[19]. In real-world scenarios,
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Figure 2: U2USim overview. The upper left is U2USim’s topographic map, the upper middle is U2USim’s vegetation conditions,
and the upper right is U2USim’s tasks. Below are 6 weather views, from left to right: sunny, rain, snow, fog, sandstorm, and

thunder. Since wind is invisible, there is no collection view.

UAVs are extremely sensitive to the effects of temperature, humid-
ity, and airflow due to their small size. Existing UAV simulators, as
shown in Table 2, can visually realize digital twins[20] of the real
world through GPU rendering, but it is difficult to provide modal
information other than visual and LiDAR modalities. Many existing
studies manually set values based on experience for temperature,
humidity, brightness, smoke, and airflow modalities. However, be-
cause sensors are closely related to terrain and meteorology, and
have strong interactions between modalities, the model trained by
existing simulators is difficult to deploy in the real world.

In this section, we build U2USim, the first real-world mapping
swarm-UAVs simulation environment, taking Yunnan Province as
the prototype, including 4 terrains, 7 weather conditions, and 8 sen-
sor types. We use actual meteorological data from Yunnan Province
collected by the China Meteorological Center to map the simulation
environment based on longitude and latitude. U2USim can not only
significantly reduce the domain gap, but UAVs can also use it to
perceive the world and make optimal decisions like humans.

3.1 U2USim Design

U2USim map. Yunnan Province is located in southwest China,
with high terrain in the northwest and low terrain in the southeast;
the elevation range is [76.4, 6740]m. Yunnan Province has a sub-
tropical plateau monsoon climate with significant vertical climate
characteristics. The temperature changes vertically with the terrain,
so the map of Yunnan Province is an excellent real-world scene for
constructing a simulation environment.

As shown in Figure 2, U2USim uses Unreal Engine (UE) 5.22
to construct a scaled-down 3km*3km simulated environment map
based on the map of Yunnan Province. U2USim includes 4 types
of terrain: mountains, hills, plains and basins. The elevation range
is [56.6, 3000]m. Based on the vegetation distribution in Yunnan,
58 types of original forest vegetation assets were constructed, and
more than 15 superposition methods were used to combine them,
including epiphytic growth, diagonal staggered growth, and so on.
Among them, the leaves of each plant will dynamically change
with wind, rain, snow, and other weather conditions. U2USim takes

https://www.unrealengine.com/en-US/unreal-engine-5

Yunnan Province as a prototype, including 4 terrains, 7 weather
conditions, and 8 sensor types. It uses the real meteorological data
of Yunnan Province collected by the China Meteorological Center
to map the simulation environment based on longitude and latitude.

7 weather conditions. The weather system is designed to sim-
ulate the dynamic weather environment in Yunnan Province. It
consists of two parts: the practical code and the artistic perfor-
mance. To create these impressive weather effects, 19 materials and
78 textures were used. To imitate reality, the simulation includes
effects that occur from the sky to the ground, such as wet leaves and
muddy floors after heavy rain in Yunnan Province. In addition, there
are eight highly customized particle systems to simulate rain, snow,
dust, and fog at specific positions within the simulation environ-
ment. All of these effects are primarily based on Unreal Blueprints?,
which can reduce the time required to modify complex code. This
allows visual designers to participate more in the programming
process and easily change the value for realistic modification.

8 sensor types. The sensors in U2USim are based on the Unreal
Engine, which allows cross-platform compatibility and provides
accurate data due to the engine’s strong physics calculation capabil-
ities. The LiDAR sensor primarily uses ray detection, and with the
powerful engine, it can save a lot of time in tracking and calculating
each ray. All image-based data, including depth and flare, are gener-
ated using Unreal rendering techniques. The flare image is created
through the ID segmentation process, where objects are rendered
using mapped temperature colors and output. The depth image
is captured during the depth test process. The Luminance sensor
uses a camera on the drone to capture live textures and calculate
the average brightness and smoke concentration of each pixel. The
brightness function is based on the color stimulus curve[36] of
the human eye. The smoke concentration function is based on the
Laplacian gradient sum algorithm. To enhance the credibility of the
data captured by the sensors, including temperature, humidity and
airflow, weather data from Yunnan Province was used to map into
the simulator environment (as shown in subsection 3.2).

These sensors are installed on the multirotor to explore the
simulator map and collect data at 0.02-second intervals, which

3https://www.unrealengine.com/marketplace/en-US/content-cat/assets/blueprints
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can be customized using a JSON settings file. Sensor mounting is
also customizable; users can edit the JSON file to customize their
own multirotor by selecting practical sensors from 9 templates and
designing the sensor accuracy and return rate.

3.2 Real-world mappinng

We use the real meteorological data of Yunnan Province collected
by the China Meteorological Center to map the simulation envi-
ronment based on longitude and latitude. First, the temperature,
humidity, pressure, wind speed, and wind direction data collected
by weather stations in Yunnan Province from March 5 to 10, 2024,
released by the National Meteorological Information Center are
downloaded. The real sensor information is then mapped into the
U2USim based on the latitude and longitude information of the real
map. Among them, temperature and humidity are scalars, and miss-
ing values are filled by the moving average method (interval 5m).
For wind speed and direction, assuming that the latitudinal wind
speed of a location on March 5, 2024 is uy, m/s and the longitudinal
wind speed is vy, m/s, the formulas for the synthesized wind speed
v, and wind direction 6}, are as follows:

Vi =,/u}21+vi (1)

U 180
a = arctan (—h) X — (2)
op T
0 (up = 0,0, < 0)
90 (up, < 0,0, =0)
) 270 (up, > 0,0, =0)
h=1 180+« (v, > 0) )
360+a (up > 0,05 <0)
o (up, < 0,05 < 0)

where « is the angular parameter. The equations for latitudinal
wind speed uy, and longitudinal wind speed v}, for missing values
are as follows:

w1 X (Hp — Hi) + Y=g i X (Hix1 — Hiz1) + un X (Hp — Hp—1)

Yh = 2 % (Hp — Hy)
4
oy = 01 X (Hy — Hy) + 2= 0i X (Hiy1 — Hi—1) + 0y X (Hp — Hp—1)
2 (Hn - Hl)
(5

where Hj, is the potential height of isobars (obtained by sliding
average of neighboring sampling points based on distance), n is the
number of isobars, and i is the isobar at the missing value location,
and the synthetic wind speed and direction are calculated according
to Egs. (1-3).

4 U2Udata Dataset

To expedite progress in U2U cooperative perception, we propose
U2UData, the large-scale, autonomously flying, real2sim, multi-
modal dataset with different weather scenarios. This dataset is
meticulously annotated with 3D bounding boxes to facilitate re-
search on swarm-UAVs cooperative perception.

Sensor setup. We collect the U2UData using three UAVs flying
autonomously in the U2USim. All UAVs are equipped with 5 RGBD
cameras (front, back, left, right, and bottom), a 64-LiDAR sensor
(top), 1 brightness, temperature, humidity, and smoke sensor (bot-
tom), 2 airflow sensors (back and right), and GPS/IMU systems.
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Figure 3: Sensor setup for our data collection platform.

Table 3: Sensor specifications for each UAV.

Sensors ‘ Details
5x Camera RGBD, 1920x1080, FOV: 90, 30Hz
64 channels, 1 M points per second,
1x LiDAR 200m capturing range, 30° to 30° vertical FOV,

180° to 180° horizontal FOV, +3cm error, 10 Hz
2x Airflow sensor | latitudinal wind speed, longitudinal wind speed
1x brightness, 1x temperature, 1x humidity,
and 1x smoke sensor

Other Sensors

GPS & IMU Odometry

Figure 3 illustrates the sensor layout configuration, while Table 3
provides a detailed breakdown of the parameters.

Formation mode. The existing UAV flight modes of data collec-
tion mainly adopt discipline formation and fixed formation modes.
As shown in Figure 4, in discipline formation mode, the swarm
UAVs maintain a consistent and relatively static array, which has
the same height, fixed spacing, and the same speed. In fixed forma-
tion mode, each UAV navigates independently with a fixed path,
having the same height and speed. However, in a dynamic and open
real-world environment, such as UAV delivery tasks, it is difficult
for swarm UAVs to maintain a fixed height, speed, and path. In
U2UData, we have adopted a new autonomous formation mode in
which each UAV flies autonomously. Compared with fixed altitude
and discipline or fixed formation mode flying, autonomous flight
can more comprehensively explore harsh and complex environ-
ments, allowing perception models to achieve higher flexibility and
stronger robustness.

Data collection. For the 7 representative weather conditions
in U2USim, we manually selected 100 scenarios for each weather
condition, including different altitudes and different vegetation cov-
erage, covering a 9 km? flight area. For each scenario, we collected
15 seconds of swarm UAVs cooperative perception data. As shown
in Table 4, we sample the image frames at 30Hz, comprising a total
945K RGB frames and 945K depth frames. We collect 315K liDAR
frames at a sampling frequency of 10Hz, including 2.41M annotated
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Figure 4: Three types of swarm-UAVs formation. Left: Discipline formation mode, where swarm-UAVs keep a consistent and
relatively static array; Medium: Fixed formation mode, where each UAV navigates independently with a fixed path; Right:
Autonomous formation mode, where each UAV flies autonomously.

Table 4: A detailed data comparison between autonomous flight-related datasets.

RGB sensor LiDAR
D Y Depth Airfl Brigh T Humidi k
atasets ear RGB _ Resolution ept LiDAR 3D boxes irtflow rightness emperature umidity Smoke
CoPerception-UAVs[1] 2022 131.9K  800*450 - - 1.94M - - - - -
CoPerception-UAVs+[2] 2023 52.76K 800450 52.76K - - - - - - -
U2UData 2024 945K 1920"1080 945K 315K 2.41IM 1.89M 945K 945K 945K 945K

3D bounding boxes for 3 classes. The 945K brightness, 945K temper-
ature, 945K humidity, 945K smoke, and 1.89M airflow values were
collected through real-world mapping according to the acquisition
coordinates of each image.

3D bounding boxes annotation. For annotating 3D bounding
boxes on the gathered LiDAR data, we utilize SusTechPoint[37],
a robust open-source labeling tool. We also manually refine the
annotations. There are a total of three object classes, including bear,
deer, and wolf. For each object, we annotate its 3D bounding box
with 7 degrees of freedom, encompassing its location (x, y, z) and
rotation (expressed as quaternions: w, x, y, z). The location (x, y, z)
corresponds to the center of the bounding box. These 3D bounding
boxes are annotated separately based on the global coordinate
system of each UAV. This approach enables the sensor data from
each UAV to be treated independently as a single-agent detection
task. We initialize the relative pose of the two UAVs for each frame
using positional information provided by the GPS on both UAVs.

Data usage. In total, U2UData has 315K LiDAR frames, 945K
RGB and depth frames, 2.41M 3D bounding boxes, 1.89M airflow
value, 945K brightness, temperature, humidity, and smoke values.
We randomly divide it into training sets/validation sets/test sets
according to the ratio of 0.7/0.15/0.15. It can greatly facilitate the
credibility of algorithm performance compared to different papers.

5 Tasks
5.1 Cooperative 3D Object Detection

Several prior works have demonstrated the efficacy of cooperative
perception utilizing LIDAR sensors[1, 2, 8]. Nevertheless, whether,
when, and how this U2U cooperation using other modalities percep-
tion systems has few explored works. In this paper, each UAV first
extracts LIDAR modal features through feature encoders and trans-
mits them to adjacent UAVs. In the future, multimodal collaborative
perception algorithms can be designed based on this dataset.

Challenge. In contrast to the single-UAV detection task, coop-
erative detection presents several domain-specific challenges:

e Bandwidth limitation. Conventional U2U communication
technologies often operate within narrow bandwidth cons-
traints[7, 9, 10] and cooperative detection algorithms need to
balance between precision and the bandwidth cost carefully.

e Location error. Due to environmental disturbances, inherent
errors[38] in the adjacent UAVs’ relative poses will lead to
coordinate system mapping errors.

e Asynchronicity. Heterogeneous UAVs[2] are inevitable and
the distance between UAVs is variable. Different sensor sam-
pling frequencies and transmission latencies will cause UAVs
asynchronous.

SOTA methods. We evaluate four categories of outstanding
multi-agent embodied cooperative perception methods:

o No Fusion. We exclusively utilize the multimodal data from
the ego UAV for object detection, establishing this approach
as the baseline strategy.

Early Fusion. Each UAV will transmit raw multimodal infor-

mation directly to other collaborators[21], and the ego UAV

aggregates all multimodal features to its own feature map.

o Late Fusion. Each UAV makes task decisions utilizing its
multimodal information and delivers the decision results to
others[22], and the ego UAV applies non-maximum suppres-
sion to produce the final results.

o Intermediate Fusion. Adjacent UAVs employ a neural feature
extractor to derive intermediate features, which are subse-
quently compressed and broadcasted to the ego UAV for
cooperative feature fusion. It can fully exploit the advan-
tages of early and late fusion and is suitable for large-scale
deployment. We benchmark some outstanding intermediate
fusion methods, including When2Com[12], DiscoNet[11],
V2VNet[9], V2X-ViT[10], CoBEVT[7], and Where2com[1].
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Table 5: Synchronous cooperative 3D object detection benchmark.

AP@IoU=0.5 AP@IoU=0.7
Method Comm | erall 0-30m  30-50m  50-100m | Overall 0-30m  30-50m  50-100m
No Fusion 0 23.04 59.69 20.65 1.82 14.00 37.73 10.43 0.30
Late Fusion 0.003 45.73 70.59 40.89 22.65 21.40 33.44 11.09 2.84
Early Fusion 0.82 49.18 74.32 38.41 26.80 35.14 36.74 15.22 7.73
When2Com|[12] 0.12 47.83 65.69 37.24 29.54 37.37 34.84 16.71 9.70
DiscoNet[11] 0.13 53.65 70.75 44.06 33.74 52.36 43.18 19.53 12.10
V2VNet[9] 0.13 59.00 71.32 47.68 35.75 48.75 36.22 22.90 13.64
V2X-ViT[10] 0.12 56.15 75.58 43.99 35.73 50.17 46.95 19.19 9.22
CoBEVT([7] 0.13 60.37 76.85 44.81 41.59 52.58 43.08 22.44 9.95
Where2com[1] 0.13 60.77 77.87 46.71 42.03 54.71 45.74 23.75 11.85
Table 6: Asynchronous cooperative 3D object detection benchmark.
Method Comm AP@IoU=0.5 AP@IoU=0.7
Overall 0-30m 30-50m 50-100m | Overall 0-30m 30-50m 50-100m
No Fusion 0 23.04 59.69 20.65 1.82 14.00 37.73 10.43 0.30
Late Fusion 0.003 45.19 64.26 36.73 18.29 15.66 26.22 13.70 1.44
Early Fusion 0.82 47.48 70.72 29.59 23.69 18.15 38.28 8.68 3.82
When2Com[12] 0.12 46.61 66.59 30.68 17.85 16.92 30.35 10.86 0.53
DiscoNet[11] 0.13 52.50 72.84 40.32 19.22 21.88 39.79 16.43 0.77
V2VNet[9] 0.13 50.05 71.80 40.34 21.96 21.22 34.54 20.11 4.53
V2X-ViT[10] 0.12 49.47 75.85 35.37 18.03 24.51 44.67 14.82 3.36
CoBEVT([7] 0.13 50.62 76.31 36.73 22.69 22.30 40.56 17.21 5.37
Where2com[1] 0.13 56.45 74.84 40.45 23.94 20.28 41.83 17.42 4.26

Evaluation. The evaluation area extends by [-100, 100]m in both
the x and y directions relative to the ego UAV. Our evaluation metric
for UAV detection performance is the Average Precision (AP) at
Intersection over Union (IoU) thresholds of 0.5 and 0.7. To assess
transmission efficiency, we utilize the average bandwidth, which
quantifies the transmitted data size as specified by the algorithm.
Consistent with [2, 39], we assess all models under two conditions:
1) Synchronous setting: All UAV feature fusion modules do not con-
sider transmission delay and UAV heterogeneity. 2) Asynchronous
setting: All UAV data transmission delays are randomly selected
between [0, 150]ms and are interfered by the sampling frequencies
of heterogeneous UAV sensors.

5.2 Cooperative 3D Object Tracking

Challenge. Object tracking is a process in which the algorithm
tracks the movement of an object. The goal is to track the motion
of one or more objects, over multiple frames. This motion estimate
changes over time, typically represented by their location, veloc-
ity, and acceleration at specific times. In contrast, object detection
locates objects within individual frames without establishing asso-
ciations over time. In cooperative 3D object tracking, multimodal
information must be shared among multiple agents while adher-
ing to communication bandwidth constraints to jointly track 3D

targets. This task, which differs from traditional single-agent 3D
target tracking, presents challenges such as multi-view information
fusion between agents, multimodal data fusion, spatio-temporal
asynchrony, and limited communication capabilities.

SOAT methods. In this subsection, we used 9 SOAT cooperative
perception algorithms (as shown in Subsection 5.1) to verify the
performance of the 3D object tracking task in the U2UData dataset,
including No Fusion, When2Com[12], DiscoNet[11], V2VNet[9],
V2X-ViT[10], CoBEVT[7], and Where2com[1].

Evaluation. We utilize the same evaluation metrics as outlined
in [40] for object tracking. These metrics include: AMOTA, aver-
age multiobject tracking accuracy; AMOTP, average multiobject
tracking precision; sSAMOTA, scaled average multiobject tracking
accuracy, which ensures a more linear representation across the en-
tire [0, 1] range of significantly challenging tracking tasks; MOTA,
multi object tracking accuracy; MT, mostly tracked trajectories; ML,
mostly lost trajectories.

Baselines tracker. We've chosen the AB3Dmot tracker from
[40] as our baseline. This tracker initially retrieves 3D object de-
tections from a LiDAR point cloud. It subsequently integrates the
3D Kalman filter with the birth and death memory technique to
guarantee efficient and resilient tracking performance. It attains
state-of-the-art performance while maintaining the fastest speed.
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Table 7: Cooperative Tracking benchmark.

Method AMOTA(1) AMOTP() sAMOTA(T) MOTA(1) MT(1) ML(/)

No Fusion 12.87 36.22 46.27 3734 2492  51.03
Late Fusion 24.56 44.16 60.91 5155  38.00 25.38
Early Fusion 21.73 40.99 57.57 51.90 3496  26.93
When2Com[12] 24.30 43.68 60.69 5262 3675  26.21
DiscoNet[11] 24.58 44.71 62.79 5570  39.81  23.89
V2VNet[9] 26.19 47.43 65.81 56.58  41.63  23.83
V2X-ViT[10] 26.85 46.50 64.50 55.92 3832 22.44
CoBEVT[7] 27.09 48.47 66.82 55.20 4093  25.33
Where2com([1] 28.53 46.57 66.17 5542 41.92 2335

6 Experiments

6.1 Implementation Details

We designate No Fusion as our baseline. To ensure a fair compari-
son, all models utilize PointPillar as the backbone for LiDAR feature
extraction and use 32x feature compression (decompress) to save
bandwidth. Among them, for COBEVT, we only use the FuseBEVT
module for feature aggregation without the SimBEVT module. As
shown in Section 4, U2U Data has 315K lidar frames. We randomly
divided it into training set/validation set/test set according to the
ratio of 0.7/0.15/0.15 and finally obtained 220.5K/47.25K/47.25K
frames respectively. During the training phase, we randomly desig-
nate one UAV as the ego UAV and train each model until achieving
optimal task performance. During testing, we evaluate all compared
models using a fixed ego UAV. For the tracking task, we utilize the
previous three frames along with the current frame as inputs.

6.2 Cooperative 3D Object Detection

As shown in Table 5 and Table 6, we comprehensively compare syn-
chronous and asynchronous cooperative 3D object detection mod-
els on our U2UData dataset. Compared to the No Fusion method,
all cooperative perception methods significantly improve detec-
tion performance by at least 22.69%/7.40% (AP@IoU=0.5/0.7). Es-
pecially in long-range detection, their performance improves by
11.45% and 8.47x (AP@IoU=0.5/0.7). This is because cooperative
perception can greatly alleviate the problems of occlusion, sen-
sor performance degradation, and limited perception range of the
single UAV. Compared with the Late Fusion method, the Interme-
diate Fusion method can improve the detection performance up
to 15.04%/33.31%(AP@IoU=0.5/0.7). And compared with the Early
Fusion method, the Intermediate Fusion method can improve the
detection performance up to 11.59%/19.57% (AP@IoU=0.5/0.7), and
reduce the communication cost by 84.15%. This is because the Inter-
mediate Fusion method performs multi-scale feature extraction and
integration in the feature encoding module before communication
and the spatio-temporal cooperation module after communication.
It can improve the performance of the perception task and reduce
the communication cost in a fine-grained way.

In the Sync setting, among all the Intermediate Fusion methods,
Where2com has the best performance with respect to AP@0.5 and
AP@0.7, 0.4% higher than the second best model CoBEVT, 11.59%

higher than Early Fusion, and 15.04% higher than Late Fusion. In
the Async setting, Where2com has the best performance against
AP@0.5, and V2V-ViT has the best performance against AP@0.7.
Except for the No Fusion method, the performance degradation of
all methods is very obvious when a communication delay is intro-
duced. The results show that asynchrony in cooperative perception
tasks is a key issue that needs to be addressed urgently.

6.3 Cooperative 3D Object Tracking

As shown in Table 7, we comprehensively compare the perfor-
mance of the cooperative perception models in 3D object tracking
tasks on our U2UData dataset. Compared to the No Fusion method,
AB3Dmot combined with cooperative detection significantly im-
proves the tracking performance by at least 8.86% AMOTA and
11.3% sAMOTA. Compared with the Late Fusion method, the In-
termediate Fusion method can improve the detection performance
by up to 3.97% AMOTA. Compared with the Early Fusion method,
the Intermediate Fusion method can improve the detection perfor-
mance up to 6.8% AMOTA. Similar to the cooperative detection
path, CoBEVT and Where2Com achieve the best performance in
most of the evaluation metrics.

7 Conclusion

In real-world scenarios, UAVs are extremely sensitive to the effects
of smoke, temperature, humidity, and airflow due to their small
size. Taking fire rescue missions as an example, the presence of
red flames and smoke significantly impairs the performance of
visual sensors. Brightness and smoke sensors can enhance visual
sensors in detecting targets through filtering. Airflow influences
the direction in which the fire spreads, while temperature and
airflow sensors assist UAVs in planning paths and guiding survivors
to safety. However, because these sensors are closely related to
terrain and meteorology and have strong interactions between
modalities, existing UAV simulators are difficult to collect, and the
model trained by existing simulators is difficult to deploy in the real
world. We build U2USim, the first real-world mapping swarm-UAVs
simulation environment. We present U2UData, the first large-scale
cooperative perception dataset for swarm-UAVs autonomous flight.
We hope U2USim and U2UData can assist UAVs algorithms in being
deployed in the real world.
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