
MEMoE: Enhancing Model Editing with Mixture of Experts Adaptors

Anonymous ACL submission

Abstract

Model editing aims to efficiently modify the001
behavior of Large Language Models (LLMs)002
within a desired scope, while preserving their003
original capabilities. However, existing meth-004
ods overlook the long-tail distribution of the005
knowledge to be edited, leading to compro-006
mised performance in reliability, generalization007
and locality. Through empirical analysis, we008
find that high-frequency knowledge tends to009
overfit, resulting in high reliability but poor lo-010
cality, while long-tail knowledge suffers from011
sparse semantics, leading to degraded general-012
ization. To address this, we propose MEMoE,013
an advanced model editing framework based014
on a Mixture of Experts (MoE) architecture,015
which aligns sparse parameter activations with016
long-tail knowledge distributions. MEMoE in-017
corporates a single-layer frequency-specialized018
MoE mechanism to ensures different experts019
specialize in knowledge of varying frequen-020
cies, along with a dual-attention router that021
directs inputs to the appropriate expert based022
on the integrated semantic representations be-023
fore and after editing. To mitigate overfitting024
to high-frequency knowledge and enhance the025
learning of long-tail knowledge, we introduce026
a balancing constraint loss. Experimental re-027
sults show that MEMoE outperforms existing028
methods across various model types and edit-029
ing tasks, while preserving the general abilities030
of LLMs on downstream tasks.031

1 Introduction032

Large Language Models (OpenAI, 2024; An-033

thropic, 2024; Google, 2024) learn a vast repository034

of world knowledge during pre-training, which can035

be accessed and utilized through natural language036

prompts (Petroni et al., 2019). However, due to037

the ever-evolving nature of the real world, these038

models must be regularly updated to correct out-039

dated or incorrect information (Yao et al., 2023,040

2024b). Retraining or fine-tuning LLMs to re-041

flect such updates is often impractical, given the042
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Figure 1: Model editing performance across knowl-
edge frequency. The lower-left subfigure shows the
performance differences when simultaneously editing
knowledge of different frequencies. The lower-right
subfigure compares the performance of separately edit-
ing head and long-tail knowledge versus simultaneous
mixed-frequency editing.

substantial resources and time required (Li et al., 043

2024b; Yao et al., 2024b). To address this chal- 044

lenge, the concept of model editing, also known 045

as knowledge editing, has been introduced (Zhang 046

et al., 2024c). This paradigm aims to efficiently 047

modify a model’s output for specific knowledge 048

queries while preserving its overall performance 049

on unrelated inputs. Recent works have explored 050

various editing scenarios, including single editing 051

(e.g., ROME (Meng et al., 2022)), batch editing 052

(e.g., MEMIT (Meng et al., 2023)), and sequential 053

editing (e.g., GRACE (Hartvigsen et al., 2023)). 054

Despite these advances, existing approaches 055

largely ignore the long-tail distribution of knowl- 056

edge to be edited, which significantly impacts per- 057

formance across three critical dimensions: relia- 058

bility, generalization, and locality. For example, 059

high-frequency knowledge (e.g., “The president of 060

the United States is Donald Trump”) and long-tail 061

knowledge (e.g., “Kruger National Park is located 062

in the Mpumalanga province of South Africa”) ex- 063
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hibit distinct patterns in large-scale pre-training064

corpora. However, current methods adopt a uni-065

form parameter update strategy, failing to account066

for the frequency-specific characteristics of knowl-067

edge—a factor that becomes particularly critical068

when updating model knowledge with limited data.069

Our empirical analysis (§2.2) reveals distinct070

editing behaviors: (1) High-frequency knowledge071

tends to overfit. Edits on head knowledge often072

achieve high reliability and generalization but suf-073

fer from reduced locality due to parameter drift074

(e.g., modifying “the president of America” may in-075

advertently affect related facts like “the population076

of America”). (2) Long-tail knowledge tends to un-077

derfit. While target knowledge can be injected suc-078

cessfully (e.g., correcting the location of a national079

park to the Mpumalanga province), the model strug-080

gles to generalize to related queries (e.g., “What081

is the capital of the province where Kruger Park is082

located?”). However, this also results in improved083

locality for edits on tail knowledge.084

In light of these, we propose MEMoE, a Model085

Editing framework based on a Mixture of Experts086

architecture. MEMoE introduces a single-layer087

frequency-specialized MoE structure that explic-088

itly allocates different experts to handle knowledge089

at varying frequencies, aligning with the inherent090

long-tail distribution of knowledge. Additionally,091

we propose a dual-attention router that dynamically092

directs inputs to the appropriate expert by leverag-093

ing semantic representations both before and after094

editing. To further enhance performance, we in-095

troduce a balancing constraint loss that mitigates096

high-frequency overfitting and promotes effective097

learning of long-tail knowledge.098

We validate MEMoE across three model families099

(GPT2, LLaMA2, and BLOOMZ) and two widely100

used editing benchmarks (ZsRE (Levy et al., 2017)101

and COUNTERFACT (Meng et al., 2022)). Exper-102

imental results demonstrate that MEMoE consis-103

tently outperforms existing editing methods while104

preserving the general capabilities of LLMs on105

downstream tasks.106

The main contributions of this work are:107

• We analyze how editing performance varies108

with the frequency of knowledge and demon-109

strate the benefit of frequency-aware editing.110

• We propose MEMoE, a novel framework111

for model editing, featuring a frequency-112

specialized MoE structure, dual-attention rout-113

ing, and a balancing constraint loss.114

• Experimental results show the efficacy of our 115

proposed method across various model types 116

and editing tasks, while preserving the general 117

abilities of LLMs on downstream tasks. 118

2 Preliminary and Analysis 119

2.1 Preliminary 120

Based on the prior works (Yao et al., 2023; Wang 121

and Li, 2024a), the task of model editing involves 122

effectively modify an initial base model fθ (θ repre- 123

sents the model’s parameters) into an edited model 124

fθ′ . The goal is to adjust the model’s responses to 125

a set of specified edit instances as desired, while 126

preserving its behavior on all other instances (Li 127

et al., 2024b). The intended edit descriptor is de- 128

noted as {(xei , yei )}i∈[1,N ], where fθ(x
e
i ) ̸= yei and 129

N represents the total number of editing instances. 130

This set of intended instances is referred to as the 131

editing scope Iedit, while the out-of-scope Oedit 132

refers to inputs set that are not relevant to the edit- 133

ing examples. Formally, a successful editing can 134

be expressed as: 135

fθ′ (xi) =

{
yei if xi ∈ Iedit

fθ(xi) if xi ∈ Oedit

(1) 136

Problem settings for model editing usually fall 137

into four categories (Yao et al., 2023; Li et al., 138

2024b): single editing, batch editing, sequential 139

editing and sequential batch editing. 140

1) Single Editing assesses model performance after 141

a single knowledge update.: 142

θ′ ← argmin
θ

(∥ fθ(xei )− yei ∥) (2) 143

2) Batch Editing assesses model performance 144

when multiple knowledge pieces are modified si- 145

multaneously (n ≤ N represents the batch size): 146

θ′ ← argmin
θ

∑n

i=1
(∥ fθ(xei )− yei ∥) (3) 147

3) Sequential Editing requires that every sin- 148

gle edit is executed successively and evalua- 149

tion conducted only after all edits are completed 150

(Hartvigsen et al., 2023): 151

θ′ ← argmin
θ

∑N

i=1
(∥ fθ(xei )− yei ∥) (4) 152

4) Sequential Batch Editing aims to perform edits 153

in a sequential manner and in batches (n represents 154

the batch size, S represents sequential editing step): 155

θ′ ← argmin
θ

S∑
s=0

(s+1)×n∑
i=s×n

(∥ fθ(xei )− yei ∥) (5) 156
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Based on the above settings, a successful model157

editor should meet requirements of the following158

three properties: Reliability, Generalization, and159

Locality (Yao et al., 2023). Formally, these can be160

expressed as:161

1) Reliability measures the average accuracy of the162

post-edit model fθ′ on intended edits:163

E(xe
i ,y

e
i )∼Iedit1

{
argmaxy fθ′ (y | x

e
i ) = yei

}
(6)164

2) Generalization measures the average accuracy165

of the model fθ′ on examples drawn uniformly166

from the equivalent neighborhood Nedit which in-167

cludes input/output pairs related to Iedit:168

E(xi,yei )∼Nedit
1
{
argmaxy fθ′ (y | xi) = yei

}
(7)169

3) Locality is evaluated by the rate at which the170

predictions of the post-edit model fθ′ remain un-171

changed compared to the pre-edit model fθ:172

E(xi,yi)∼Oedit
1
{
fθ′ (y | xi) = fθ (y | xi)

}
(8)173

2.2 Empirical Analysis174

Current model editing methods often overlook the175

long-tail distribution inherent in the knowledge to176

be edited. These approaches typically apply uni-177

form editing strategies regardless of the frequency178

of the knowledge. In this section, we investigate179

how editing performance varies with knowledge180

frequency.181

To quantify the frequency of knowledge, we182

adopt a newly proposed metric called Genera-183

tive Expected Calibration Error (GECE) (Li et al.,184

2024a), which reflects the degree of semantic spar-185

sity and frequency. The formal definition of GECE186

is as follows:187

GECE =
|M(pred, ref)− 1

n

∑n
i=1 p(ti)|

α · [E(▽ins) · ▽ins]
(9)188

where pred and ref represent the generated189

text and the ground truth, respectively, and190

M(pred, ref) denotes the METEOR score (Baner-191

jee and Lavie, 2005). The average token probability192

is given by 1
n

∑n
i=1 p(ti) where p(ti) denotes the193

i-th token’s probability produced by LLM, and n194

is the token sequence length. α represents the av-195

erage word frequency, ▽ins is the gradient with196

respect to the current instance, and E(▽ins) is the197

mean gradient over the entire dataset. A larger198

GECE value indicates more long-tail knowledge.199

For example, the query “Who has played Raoul in200

The Phantom of the Opera” has a GECE of 112.7, 201

while “Who was named African footballer of the 202

year 2014” yields 34.6. 203

For evaluation, we first sample six frequency 204

buckets from the ZsRE and COUNTERFACT 205

datasets, with 100 editing instances per bucket 206

based on GECE scores. We then apply two rep- 207

resentative model editing methods—MEMIT and 208

GRACE—on LLaMA2-7B, and assess their per- 209

formance using three widely adopted metrics: re- 210

liability, generalization, and locality. The aver- 211

aged results across frequency groups are reported 212

in lower-left of Figure 1. 213

Our results reveal a clear trend. Overall, the 214

editing performance deteriorates as the knowl- 215

edge becomes more long-tail. Specially, (1) High- 216

frequency knowledge yields higher reliability and 217

generalization but suffers from lower locality. This 218

suggests strong parameter entanglement that sup- 219

ports accurate updates but also leads to parame- 220

ter drift (Zhang et al., 2024a). The dense seman- 221

tic interconnections of head knowledge within the 222

model’s parameter space facilitate effective editing 223

and knowledge propagation, albeit at the expense of 224

broader parametric influence. (2) Long-tail knowl- 225

edge, by contrast, preserves locality more effec- 226

tively but exhibits lower reliability and generaliza- 227

tion. This phenomenon may arise from the sparse 228

representation of tail knowledge in the model’s pa- 229

rameter space due to limited training data, suggest- 230

ing that tail knowledge might be underfitted (Mao 231

et al., 2025). Even when target knowledge is suc- 232

cessfully injected, the model struggles to generalize 233

to related queries. 234

Moreover, we compare three editing regimes: 235

editing only Head, only Long-tail, or Mixed knowl- 236

edge. As shown in lower-right Figure 1, editing 237

knowledge of similar frequency improves overall 238

performance, suggesting that frequency-aware edit- 239

ing is beneficial. More experimental details can be 240

found in Appendix B. 241

Therefore, we propose MEMoE, which lever- 242

ages the sparse activation properties of MoE to 243

enable frequency-aware knowledge editing by em- 244

ploying specialized expert modules designed for 245

different frequency bands. 246

3 Our Approach: MEMoE 247

Based on the above insights, in this section, we 248

provide a detailed introduction to MEMoE. 249
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Figure 2: Left: The architecture of MEMoE, which implements model editing through parallel experts alongside the
original FFN. Right: Overview of the dual-attention router structure.

3.1 Single-Layer Frequency-Specialized MoE250

Inspired by traditional MoE (Jacobs et al., 1991),251

MEMoE introduces multiple parallel experts within252

the transformer feed-forward network (FFN) via a253

bypass mechanism, while freezing all the model’s254

original parameters (left part of Figure 2). This255

module is applied in only one transformer block of256

the entire model. The choice to use the FFN mod-257

ule is not only due to its traditional role in MoE (Cai258

et al., 2024) but also aligns with recent experimen-259

tal findings of knowledge probing technologies that260

the MLP layers within FFN store knowledge (Dai261

et al., 2022; Meng et al., 2022, 2023). The bypass262

mechanism preserves all the original parameters of263

the model, enhancing the locality of model editing.264

Specially, let {Ei}ni=1 represent the set of n ex-265

perts in the MEMoE layer, and let g(i | x) repre-266

sent a router that outputs the corresponding coeffi-267

cients for each expert Ei based on the input x. The268

output h of the MEMoE layer can be expressed as:269

h(x) = W 0 · x+ λ

t+1∑
i=1

g(i | x)Ei(x)

g(i | x) = Topk(
er(x)i∑
er(x)j

)

(10)270

where W 0 is the frozen original FFN parameters,271

r(x) is the routing strategy and is modeled by one272

MLP in conventional MoE. λ is a non-negative273

weighting coefficient used to balance the old and274

new knowledge, usually set to 1.275

Furthermore, considering the varying editing ef-276

fects of different frequency knowledge observed in277

§2.2, we hypothesize that learning a relatively uni-278

form distribution may be easier than learning an im-279

balanced distribution. However, since the amount280

of data for model editing is typically small, allow-281

ing the model to learn frequency-based knowledge 282

handling independently may encounter challenges 283

such as cold-start issues. Therefore, we explic- 284

itly assign knowledge of different frequencies to 285

distinct experts within the MoE for learning. By 286

leveraging sparse parameter activation patterns in 287

conjunction with the long-tail distribution of knowl- 288

edge, we ensure that different experts specialize in 289

knowledge of varying frequencies. 290

Specially, let {xi}Ni=1 denote the dataset of N 291

editing data points, sorted in ascending order based 292

on their GECE values (Equation 9): GECE(x1) ≤ 293

GECE(x2) ≤ · · · ≤ GECE(xN ). We aim to 294

assign the data to the n experts based on their long- 295

tail distribution. Therefore, we divide the dataset 296

into two parts: 297

1) The first p% of the data points (high-frequency 298

knowledge) are assigned to the first expert e1: 299

D1 = {xi | 1 ≤ i ≤ ⌊pN⌋} (11) 300

2) The remaining (1−p)% of the data points (long- 301

tail knowledge) are distributed among the remain- 302

ing n − 1 experts using a balanced clustering ap- 303

proach. Let Dj denote the data assigned to expert 304

ej (j = 2, . . . , n). The objective function for the 305

balanced clustering is given by: 306

J =
n∑

j=2

∑
xi∈Dj

∥GECE(xi)− µj∥2

+ λ

n∑
j=2

∣∣∣∣|Dj | −
⌈(1− p)N⌉

n− 1

∣∣∣∣
(12) 307

where µj is the mean value of cluster Dj , and λ 308

controls the strength of the balance constraint. 309

This distribution ensures that the first expert spe- 310

cializes in the high-frequency knowledge and the 311

remaining specialize in long-tail knowledge, main- 312

taining a balanced workload across experts. 313
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3.2 Dual-Attention Router314

In general, the semantic embedding space contains315

vast amounts of knowledge. During the editing316

process, the semantic representation of the knowl-317

edge being edited undergoes changes. Based on318

this, we propose the dual-attention router, which319

integrates the semantic representation of the input320

query both before and after the model editing to321

achieve accurate routing (right part of Figure 2).322

Specifically, for an input instance x, the LLM323

embedding e(x) ∈ Rd can be obtained by ex-324

tracting the last hidden representation of the fi-325

nal token in the input sequence. Given that the326

amount of data involved in model editing is typi-327

cally small (Zhang et al., 2024c; Wang et al., 2024),328

directly modifying the embedding space could lead329

to collapse. Instead, we use an adapter module to330

approximate the edited semantic change:331

ê(x) = W up(W down · e(x) + b1) + b2 (13)332

where W down ∈ Rdp×d, W up ∈ Rd×dp , b1 ∈ Rdp333

and b2 ∈ Rd are weight matrice and bias of adapter.334

Then, we introduce dual attention to integrate335

the two semantic embeddings. To simplify the336

description, we illustrate this with the interaction337

based on the pre-edited embeddings; the process338

for the other is similar. Let ê(x) be the query, and339

e(x) serve as both the key and value in the attention340

mechanism. Define Q = Wq ·ê(x), K = Wk ·e(x),341

and V = Wv · e(x), where Wq,Wk,Wv ∈ Rd×d342

are the weight matrices. The embedded sequence343

after interaction can then be expressed as follows:344

A(x) = Softmax(
QKT

√
d

)V (14)345

Finally, routing decisions are made based on346

the two resulting semantic representations: A(x)347

(derived from the interaction with the pre-edited348

embedding) and Â(x) (from the interaction with349

the post-edited embedding).350

r(x) = Softmax(W r · (αA(x) + βÂ(x))) (15)351

where α, β and W r is learnable weights. It is352

worth noting that this router directs all tokens in the353

same instance to one expert, thereby guaranteeing354

equal treatment of the entire knowledge.355

3.3 Balancing Constraint Loss356

To address the distinct learning dynamics between357

high-frequency and long-tail knowledge, we pro-358

pose a balancing constraint loss that combines adap-359

tive weighting with parameter-space regularization.360

Our key insight arises from two fundamental ob- 361

servations: (1) High-frequency knowledge tends 362

to dominate gradient directions due to its dense 363

parameter associations in pretrained models (Wang 364

and Li, 2024b), while long-tail knowledge updates 365

are often overshadowed by these dominant sig- 366

nals (Kandpal et al., 2023), resulting in an imbal- 367

anced parameter update landscape. (2) Directly 368

applying larger learning rates to long-tail samples 369

may destabilize the well-formed semantic manifold 370

of pretrained models, particularly harming the lo- 371

cality preservation of high-frequency knowledge. 372

Given that model editing typically involves fewer 373

parameter updates, we find that incorporating pa- 374

rameter regularization significantly alleviates these 375

issues. 376

Specifically, given a batch of editing sam- 377

ples {(xei , yei )}Ni=1, we first introduce an adaptive 378

weight into the original model loss function: 379

Lmodel =

N∑
i=1

−w(gi) · logfθ(yei | xei ) (16) 380

where gi represents the normalized long-tail scores 381

GECE(xi) for short, and the adaptive weight w(·) 382

follows a sigmoidal transition: 383

w(x) =
1

2
(1 + tanh(γ1(x− τ))) (17) 384

This introduces soft thresholds (with τ = 0.6, γ1 = 385

1 in practice) to gradually suppress high-frequency 386

samples (x < τ ) while amplifying gradient signals 387

for long-tail knowledge (x > τ ). 388

Next, we apply a regularization to impose 389

stronger constraints on parameters primarily as- 390

sociated with high-frequency knowledge: 391

Lbalance = −
N∑
i=1

1

1 + eγ2·gi
· DKL(f

′
θ∥fθ) (18) 392

where DKL is the Kullback-Leibler Divergence, fθ 393

and f ′
θ represent the model before and after editing. 394

Similar to w(x), the coefficient of Lbalance also sup- 395

presses high-frequency samples while amplifying 396

long-tail knowledge. 397

Third, we introduce router guidance loss to en- 398

forces clear routing decisions for different samples: 399

Lrouter = −
N∑
i=1

(1− r(xi))
γ3 log(r(xi)) (19) 400

where r(·) is the router function (Equation 15), 401

and γ3 controls the suppression strength. A larger 402
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value of γ3 leads to a stronger suppression of easy-403

to-learn knowledge.404

Finally, the loss of MEMoE can be represented405

as follows:406

Ltotal = Lmodel + Lbalance + Lrouter (20)407

4 Experiments408

4.1 Experimental Setups409

Datasets and Metrics: We use two widely used410

model editing datasets: ZsRE (Levy et al., 2017)411

and COUNTERFACT (Meng et al., 2022), with the412

split provided by (Zhang et al., 2024c; Yao et al.,413

2023). ZsRE is a context-free Question Answering414

(QA) dataset built upon zero-shot relation extrac-415

tion and COUNTERFACT is a more challenging416

dataset that accounts for counter facts that start417

with low scores in comparison to correct facts. Fur-418

ther details are provided in Appendix C.1. In terms419

of evaluation metrics, we use the three metrics de-420

scribed in §2.1: Reliability (Rel.), Generalization421

(Gen.), Locality (Loc.), and the average scores over422

these metrics (Avg.).423

Baselines: We compare the proposed method424

with mainstream model editing methods, which425

can be categorized into the following four types:426

• Fine-tuning based methods: FT-L (Meng427

et al., 2022), FT-M (Hartvigsen et al., 2023),428

and LoRA (Hu et al., 2022). FT-L directly fine-429

tunes a single layer’s FFN and FT-M is a small430

variation of FT-L using a different loss compu-431

tation procedure. LoRA is a parameter-efficient432

fine-tuning method which decomposes the up-433

date gradient matrix into small rank matrices.434

• Locate and edit methods: MEMIT (Meng435

et al., 2023). MEMIT treats the FFN as a lin-436

ear associative memory and uses a minimum437

square error optimization to add new key-value438

associations to layer weights.439

• Meta-learning methods: MEND (Mitchell440

et al., 2022a) and COMEBA-HK (Li et al.,441

2024b). MEND learns a hyper-network using442

additional training data to transform gradient ob-443

tained by standard fine-tuning, while COMEBA-444

HK (COMEBA for short) develop hook layers445

to identify the editing scope.446

• Memory based methods: SERAC (Mitchell447

et al., 2022b) and GRACE (Hartvigsen et al.,448

2023). The SERAC uses an external cache to449

store explicit editing cases, while GRACE pre- 450

serves the original model parameters and adopts 451

a codebook to store relevant edits. 452

Implementation Details: We select GPT2-XL 453

and LLaMA2-7B as the base models. The modifi- 454

cation is applied to layer 16 for LLaMA2-7B and 455

layer 18 for GPT2-XL (consistent with the findings 456

of ROME (Meng et al., 2022)), with the number 457

of experts set to 5 and topk = 1 to yield the best 458

experimental results within our computational re- 459

sources. Further details of the baselines and the 460

implementation are provided in the Appendix C. 461

In this section, We opted for batch editing and se- 462

quential batch editing to evaluate the performance 463

of MEMoE. Following previous research (Li et al., 464

2024b), batch editing uses a batch size of 30, while 465

sequential batch editing uses a batch size of 10 for 466

1000 edits in total. We further report the experi- 467

mental results for all editing types across various 468

model types and sizes in §D.1. 469

4.2 Main Results 470

Batch Editing The results for batch editing are 471

presented in the upper half of Table 1. Overall, 472

MEMoE consistently outperforms the baselines 473

across all datasets and base models. Although some 474

methods, such as SERAC and GRACE, achieve 475

high scores in certain metrics, these gains often 476

come at the cost of significant drops in others. 477

Notably, MEMoE demonstrates exceptional bal- 478

ance: it maintains high locality while achieving 479

unparalleled reliability and generalization, effec- 480

tively addressing the common trade-off between 481

edit specificity and knowledge retention. These 482

results validate MEMoE’s design, where its MoE 483

architecture isolates high-frequency and long-tail 484

knowledge into specialized experts, enabling pre- 485

cise and conflict-free updates while preserving the 486

model’s original knowledge. 487

Sequential Batch Editing The results for se- 488

quential batch editing are shown in the lower half 489

of Table 1, indicate that MEMoE achieves the best 490

scores in most cases. Methods such as FT-L and 491

LoRA, which are not specifically designed for se- 492

quential editing, tend to forget prior updates, lead- 493

ing to significantly lower scores. GRACE, although 494

a strong baseline in reliably retaining previous edits 495

through its discrete data adapter mapping, struggles 496

with handling semantically equivalent inputs, re- 497

sulting in poor generalization performance, as high- 498
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Table 1: Batch editing and sequential batch editing results. Bold is the best result.

Method Model ZsRE COUNTERFACT

Reliability↑ Generalization↑ Locality↑ Average↑ Reliability↑ Generalization↑ Locality↑ Average↑
Batch Editing

FT-L

GPT2-XL

16.85 16.34 71.55 34.91 0.27 0.34 85.18 28.60
FT-M 17.95 17.32 71.26 35.51 0.36 0.42 82.81 27.86
LoRA 30.10 29.08 80.54 46.57 5.64 3.46 69.45 26.18
MEMIT 60.29 44.22 86.85 63.78 80.52 23.56 90.66 64.92
MEND 2.16 2.11 20.34 8.20 0.13 0.03 4.22 1.46
COMEBA 76.58 62.28 90.58 76.48 84.62 40.07 96.51 73.73
SERAC 92.98 43.72 63.14 66.61 41.87 28.23 78.89 49.66
GRACE 70.19 37.45 92.83 66.82 89.21 85.25 91.75 88.74

MEMoE 95.05 83.07 93.84 90.65 94.56 88.96 96.74 93.42
FT-L

LLaMA2-7B

14.19 13.07 70.16 32.47 0.21 0.30 80.69 27.07
FT-M 16.57 15.62 70.15 34.11 0.29 0.38 81.83 27.50
LoRA 25.32 23.15 52.01 33.49 21.70 22.32 40.37 28.13
MEMIT 24.02 39.97 17.00 27.00 18.57 31.29 14.88 21.58
MEND 6.51 3.06 28.12 12.56 5.91 3.26 27.42 12.20
SERAC 89.08 36.29 71.82 65.73 50.67 27.34 82.05 53.35
GRACE 90.19 37.58 90.20 71.57 77.40 27.37 92.45 65.74

MEMoE 92.43 85.03 94.12 90.53 95.96 80.28 95.53 90.59
Sequential Batch Editing

FT-L

GPT2-XL

3.79 2.48 6.60 4.29 1.00 1.00 6.00 2.67
FT-M 8.92 8.41 6.22 7.85 4.00 3.50 5.50 4.33
LoRA 0.96 1.29 0.03 0.76 0.50 0.02 0.50 0.34
MEMIT 34.88 32.96 70.74 46.19 56.00 37.00 31.00 41.33
MEND 20.95 18.29 87.69 42.31 4.01 2.01 6.08 4.03
COMEBA 59.97 54.81 89.45 68.08 81.24 29.79 50.83 53.95
SERAC 83.11 28.36 29.33 46.93 56.91 38.42 71.94 55.75
GRACE 81.38 7.47 89.46 59.44 77.68 15.16 87.09 59.97

MEMoE 79.74 56.33 90.61 75.56 79.80 45.32 90.98 72.03

FT-L

LLaMA2-7B

2.33 1.59 6.67 3.53 0.23 0.18 10.66 3.69
FT-M 6.72 4.37 7.78 6.29 0.33 0.70 8.54 3.19
LoRA 0.35 1.89 0.07 0.77 0.31 0.99 0.17 0.49
MEMIT 12.29 29.95 15.38 19.21 10.37 32.96 12.79 18.71
SERAC 67.78 33.98 34.55 45.44 20.21 14.05 34.90 23.05
GRACE 73.73 9.35 87.76 56.95 66.68 21.72 81.46 56.62

MEMoE 74.24 36.64 90.45 67.11 78.51 33.77 84.40 65.56

lighted in previous studies (Zhang et al., 2024b).499

Similarly, SERAC demonstrates strong reliability500

in editing but falls short in generalization. In con-501

trast, although MEMoE is not explicitly optimized502

for sequential editing, it excels in preserving prior503

edits and effectively generalizing to rephrased in-504

puts, further confirming its superior performance.505

5 Discussion506

In this section, we evaluate the impact of model507

editing on the generalization ability of the model in508

downstream tasks, along with some ablation stud-509

ies. A more comprehensive analysis can be found510

in Appendix D, including performance across all511

four editing tasks for various model types and sizes512

(§D.1), computational analysis (§D.2), case studies513

(§D.6), and additional insights.514

5.1 General Ability Test515

Considering some current researches concern that516

model editing methods may significantly affect a517

model’s general ability (Gu et al., 2024; Gupta518

et al., 2024; Pinter and Elhadad, 2023), we select519

eight representative task categories for evaluation,520

as outlined below following (Gu et al., 2024). For521

reasoning, we utilized the GSM8K dataset (Cobbe 522

et al., 2021), with performance assessed by solve 523

rate. Natural language inference (NLI) tasks 524

were evaluated on the RTE dataset (Candela et al., 525

2006), with accuracy measured through two-way 526

classification. For open-domain question answer- 527

ing, the Natural Question dataset (Kwiatkowski 528

et al., 2019) was employed, evaluating exact match 529

against reference answers after minor normaliza- 530

tion as in (Chen et al., 2017) and (Lee et al., 2019). 531

Similarly, closed-domain QA tasks were assessed 532

using the BoolQ dataset (Clark et al., 2019), also 533

measured by EM. Dialogue evaluation utilized the 534

MuTual dataset (Cui et al., 2020), with results deter- 535

mined by selecting the most suitable response from 536

four options, denoted as Recall4@1 (Lowe et al., 537

2015). Evaluation for summarization tasks was 538

conducted on the SAMSum dataset (Gliwa et al., 539

2019), using the average of ROUGE-1, ROUGE-2, 540

and ROUGE-L as evaluation metrics. For named 541

entity recognition (NER), the CoNLL03 dataset 542

(Sang and Meulder, 2003) was employed, with 543

performance measured using entity-level F1-score. 544

Lastly, for sentiment analysis, we utilized SST2 545

dataset (Socher et al., 2013), with accuracy as- 546
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Figure 3: Performance on general tasks of edited models using MEMoE, MEMIT and MEND, with different batch
sizes for editing.

Table 2: Results of ablation study. ZsRE. LLaMA2-7B.
Rel.↑ Gen.↑ Loc.↑ Avg.↑

MEMoE 92.43 85.03 94.12 90.53
- MoE structure 38.10 35.08 83.54 52.24
- Data division strategy 87.24 82.64 92.45 87.44
- Dual-attention router 85.00 74.00 92.00 83.67
- Balancing constraint loss 84.29 83.44 92.10 86.61
- Lbalance 91.47 84.36 84.96 86.93
- Lrouter 90.31 83.95 93.21 89.16

sessed through a two-way classification.547

We conduct evaluations on LLaMA2-7B based548

on batch editing settings, progressively increasing549

the batch size to show the impact of more edited550

samples. The results are shown in the Figure 3.551

Compared to the MEMIT and MEND, the MEMoE552

yields consistently stable model performance under553

various batch editing conditions. With the increase554

in batch size and edited samples, both MEMIT and555

MEND significantly diminish the model’s general556

ability, while the influence of MEMoE fluctuates557

within a smaller range. This further corroborates558

MEMoE’s advantage in locality score in §4.2.559

5.2 Ablation Study560

We present ablation studies to evaluate the influ-561

ence of each model component. First, we re-562

place the sparse multi-expert structure (§3.1) with563

a dense adapter having similar parameters and also564

remove the proposed data division strategy (Equa-565

tion 11-12). Second, we replace the dual-attention566

router (§3.2) with a conventional MoE router, a567

single MLP layer. Third, we substitute the Bal-568

ancing Constraint Loss (§3.3) with the original569

cross-entropy loss function. Since the Balancing570

Constraint Loss is composed of three parts, we indi-571

vidually replace each part to assess its contribution.572

The experimental results are shown in Table 2.573

The sparse multi-expert structure has the most sig- 574

nificant impact on all evaluation metrics, as sparse 575

activation is fundamental to MEMoE. Removing 576

the data division strategy prevents the model from 577

separately handling knowledge of varying frequen- 578

cies, resulting in knowledge conflicts and a de- 579

crease in accuracy and generalization. The dual- 580

attention router significantly affects both reliability 581

and generalization, as proper routing of input in- 582

formation to the corresponding knowledge experts 583

is essential for acquiring accurate knowledge and 584

achieving generalization. As for the loss function, 585

training the model with a simple cross-entropy loss 586

leads to poor performance, and we also observe 587

significant instability during training. Consistent 588

with our design philosophy, the parameter-based 589

regularization Lbalance greatly impacts the model’s 590

locality. Without regularization, the model’s gen- 591

eralization remains nearly unchanged, but locality 592

significantly deteriorates. In contrast, the loss asso- 593

ciated with the router Lrouter has a more compre- 594

hensive but smaller impact on overall performance. 595

6 Conclusion 596

In this paper, we present MEMoE, a model edit- 597

ing adapter utilizing MoE architecture, featuring 598

a single-layer frequency-specialized MoE, dual- 599

attention router and balancing constraint loss. Our 600

approach emphasizes the critical role of knowledge 601

frequency in editing performance and demonstrates 602

the benefits of treating head and long-tail knowl- 603

edge separately. Extensive experiments show that 604

MEMoE consistently outperforms existing base- 605

lines while preserving the general capabilities of 606

large language models on downstream tasks. 607
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Limitation608

First, although the proposed method demonstrates609

notable improvements, its performance in sequen-610

tial batch editing tasks remains relatively limited611

and requires further refinement. In future work, we612

aim to design suitable continual learning strategies613

to mitigate the issue of catastrophic forgetting in se-614

quential batch editing tasks. Additionally, the data615

division strategy outlined in §3.1 can be further616

explored to develop more refined approaches.617

Second, the impressive performance of MEMoE618

highlights its promising potential for practical ap-619

plications of model editing technology in spe-620

cialized domains such as medicine and educa-621

tion. However, this study is confined to testing622

on mainstream model editing datasets. Future re-623

search could focus on evaluating its performance624

on domain-specific datasets to further advance the625

application of model editing technology. Further-626

more, model editing techniques can be extended627

to various task types. Specifically, in addition to628

editing factual knowledge, they can be applied to629

address issues like eliminating hallucinations, miti-630

gating biases, and protecting privacy. However, our631

experiments focus solely on general editing tasks,632

which are relatively well-explored and universally633

assessed in model editing, and do not tackle chal-634

lenges such as reducing hallucinations.635

Third, we focus on decoder-only autoregressive636

models, excluding encoder-decoder architectures,637

due to the widespread adoption of autoregressive638

models in contemporary mainstream systems (Ope-639

nAI, 2024; Touvron et al., 2023). Future research640

replicating our study with larger-scale models and641

alternative architectures would be valuable for con-642

firming our findings.643
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A Related Work1158

A.1 Model Editing1159

Model editing is a new and active research area1160

where the goal is to make targeted changes to a1161

pre-trained model’s behavior (Zhang et al., 2024c).1162

Given the fast-growing parameter sizes of LLMs,1163

frequently updating LLMs with new knowledge1164

through retraining is more and more expensive.1165

Hence, it is vital to effectively edit the LLMs’1166

knowledge without retraining (Cohen et al., 2024).1167

Previous studies have explored multiple methods1168

for editing the knowledge of LLMs, which can1169

be broadly categorized into two streams based on1170

whether it alters the parameters of the original1171

model (Yao et al., 2023):1172

A.1.1 Preserve models’ parameters:1173

1) Retrieve augmentation. This approach uses an1174

external knowledge base to store new or correct1175

knowledge. The new knowledge base is seam-1176

lessly integrated with the base model, facilitating1177

the retrieval of pertinent information in response to1178

prompts (Murty et al., 2022; Madaan et al., 2022;1179

Li et al., 2023a). For example, IKE (Zheng et al.,1180

2023) employs an in-context learning approach to1181

adjust LLMs outputs using demonstrations sourced1182

from the corpus guided by similarity, thus circum-1183

venting the need for gradient calculations.1184

2) Adding additional parameters. This paradigm1185

introduces additional trainable parameters to rep-1186

resent new knowledge while keeping the original1187

model parameters frozen (Wang et al., 2024; Yao1188

et al., 2024b; Ni et al., 2024; Yu et al., 2024). T-1189

Patcher (Huang et al., 2023) and CaliNET (Dong1190

et al., 2022) inject neurons or patches into the final1191

layer of the Feed-Forward Network (FFN), with1192

T-Patcher assigning one neuron per erroneous pre-1193

diction, and CaliNET leveraging multiple neurons1194

to capture different knowledge instances. In con-1195

trast, GRACE (Hartvigsen et al., 2023) employs1196

a discrete codebook to add and update knowledge1197

entries over time, enabling dynamic adjustments to1198

model outputs.1199

More recently, MoE-based approaches such as1200

LEMoE and ELDER (Li et al., 2025) have demon-1201

strated promising performance in lifelong model1202

editing tasks. To the best of our knowledge, our1203

work is the first to propose a knowledge editing1204

framework grounded in a Mixture-of-Experts ar-1205

chitecture, with an early version released in May1206

2024.1207

A.1.2 Modify models’ parameters 1208

This approach initially identifies parameters linked 1209

to specific knowledge and adjusts them di- 1210

rectly (Zhang et al., 2024d; Xu et al., 2025; Das 1211

et al., 2024). The Knowledge Neuron (KN) tech- 1212

nique (Dai et al., 2022) introduces a method for 1213

attributing knowledge to pinpoint the “knowledge 1214

neuron” and then updates these neurons accord- 1215

ingly. ROME (Meng et al., 2022) employs causal 1216

mediation analysis to pinpoint the area requiring 1217

modification. Both KN and ROME are limited to 1218

editing one factual association at a time. To ad- 1219

dress this limitation, MEMIT (Meng et al., 2023) 1220

builds upon ROME’s framework, allowing for si- 1221

multaneous editing across multiple cases. Building 1222

on MEMIT, PMET (Li et al., 2023b) incorporates 1223

attention values to achieve enhanced performance. 1224

A.2 Mixture of Experts 1225

The concept of mixture of experts (MoE), ini- 1226

tially introduced in (Yao et al., 2024a; Jordan 1227

and Jacobs, 1994), has undergone extensive ex- 1228

ploration and advancement as evidenced by subse- 1229

quent studies (Aljundi et al., 2017; Collobert et al., 1230

2001; Eigen et al., 2014; Theis and Bethge, 2015). 1231

The emergence of sparsely-gated MoE (Shazeer 1232

et al., 2017), particularly within the integration 1233

of transformer-based large language models (Lep- 1234

ikhin et al., 2021), has brought new vitality to 1235

this technology. Conventionally, the MoE replaces 1236

standard feed-forward neural network layers with 1237

sparsely activated expert modules. The MoE has 1238

been investigated thoroughly in the era of Large 1239

Language Model (Jiang et al., 2024), emerging 1240

as an effective way of increasing the model’s ca- 1241

pacity in parameter size while maintaining com- 1242

putational efficiency akin to its dense counterpart 1243

(Jacobs et al., 1991). In the context of MoE, there 1244

is a body of work focusing on improving the router 1245

(Hazimeh et al., 2021; Lewis et al., 2021; Zhou 1246

et al., 2022; Zuo et al., 2022) activating all expert 1247

through weighted average (Eigen et al., 2014) to 1248

sparsely select a single or k experts(Fedus et al., 1249

2022; Du et al., 2022). Presently, token-level MoE 1250

architectures find widespread application in both 1251

pre-trained language models and vision-based mod- 1252

els (Shazeer et al., 2017; Lepikhin et al., 2021; Du 1253

et al., 2022; Riquelme et al., 2021). 1254
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Table 3: An editing dataset example from ZsRE and
COUNTERFACT.

Dataset Type Text

ZsRE

xe
i ,y

e
i Which continent is Berkner Island in? South

America
xloci ,yloc who gets the golden boot if its a tie? shared
xgeni ,y

e
i On which continent is Berkner Island located?

South America

COUNTERFACT

xe
i ,y

e
i The mother tongue of Danielle Darrieux is En-

glish
xloci ,yloc Where Danielle Darrieux is from, people speak

the language of English
xgeni ,y

e
i Michel Rocard is a native speaker of French

B Details of Empirical Analysis1255

To ensure the validity and fairness of the empirical1256

analysis in §2.2, we elaborate here on the experi-1257

mental setup used for Figure 1.1258

We adopt two representative model editing1259

methods—MEMIT (Meng et al., 2023) and1260

GRACE (Hartvigsen et al., 2023)—on LLaMA2-1261

7B across two standard datasets: ZsRE and COUN-1262

TERFACT. The model layers selected for editing,1263

learning rates, optimization strategies, and batch1264

sizes are consistent with those reported in Ap-1265

pendix C.1266

GECE Computation. As described in Eq.9,1267

GECE is used to quantify the long-tailness of each1268

editing instance. For a given editting input xe, ori-1269

gin model output yo and target output ye, GECE1270

is computed using the predicted output yo and the1271

target ground truth ye as inputs to the METEOR1272

scoring and token-level confidence estimation, fol-1273

lowing the implementation in (Li et al., 2024a). A1274

higher GECE implies lower prior frequency and1275

more sparse semantic support.1276

Editing by Frequency Buckets. To study per-1277

formance across knowledge frequencies (lower-left1278

plot in Figure 1), we first partition the data into six1279

groups based on GECE scores, with 100 instances1280

per group (600 in total). The instances are then1281

shuffled, and batch editing is performed using a1282

standard batch size of 30. After editing, all sam-1283

ples are reassigned to their original GECE buckets,1284

and we report the average reliability, generalization,1285

and locality for each group. This setup allows us to1286

isolate the correlation between editing performance1287

and knowledge frequency.1288

Head / Tail / Mixed Comparison. In the sec-1289

ond experiment (lower-right plot in Figure 1), we1290

construct three disjoint subsets from each dataset:1291

(1) Head: top 30% of edits by lowest GECE score,1292

(2) Tail: bottom 30% (highest GECE), (3) Mixed:1293

random selection from the entire distribution. We1294

ensure equal batch sizes (30 edits) for all groups1295

to eliminate batch-size confounds. Each group’s 1296

editing performance is averaged over 5 runs. 1297

Why Head is Easier to Edit? While it may seem 1298

counterintuitive that high-frequency knowledge is 1299

easier to edit, we hypothesize the following expla- 1300

nation based on repeated trials and probing anal- 1301

ysis: For head knowledge, the model’s decoder 1302

typically assigns a very high probability to the orig- 1303

inal answer yo, making the editing objective nar- 1304

rowly focused—merely shifting probability mass 1305

to the desired target ye. In contrast, tail knowledge 1306

suffers from output uncertainty: the model often 1307

assigns comparable scores to multiple incorrect 1308

completions, resulting in hallucinations and greater 1309

interference during optimization. 1310

This phenomenon is consistent with findings 1311

in knowledge localization literature (Meng et al., 1312

2023), where high-frequency knowledge is stored 1313

in more identifiable and editable parameter regions, 1314

whereas long-tail knowledge tends to be diffuse 1315

and harder to localize. 1316

We acknowledge that further theoretical analysis 1317

is required to fully explain this behavior and leave 1318

this as an open research direction. 1319

C Implementation Details 1320

C.1 Dataset Details 1321

ZsRE (Levy et al., 2017) is a context-free Question 1322

Answering (QA) dataset that has been extensively 1323

studied in the model editing literature (Meng et al., 1324

2022, 2023; Mitchell et al., 2022b; Hartvigsen et al., 1325

2023). Each record in this dataset includes an edit- 1326

ing statement xe
i with target answer ye

i , a para- 1327

phrase prompt xgeni and and a locality prompt xloc. 1328

We adopt the same train/test split as (Mitchell et al., 1329

2022a), consisting of 163,196 training examples 1330

and 19,086 test examples. Notably, MEND is the 1331

only method that requires fitting a hyper network 1332

on the training set; other methods discard the train- 1333

ing set and directly perform edits and evaluations 1334

on the test set. For our experiments, we randomly 1335

sampled 1k and 3k records from the test set to form 1336

the edit sets. Contrarily, COUNTERFACT (Meng 1337

et al., 2022) presents a formidable challenge by fo- 1338

cusing on counterfactual information, often yield- 1339

ing lower prediction accuracy compared to factual 1340

queries. This dataset constructs the out-of-scope 1341

instances by substituting the primary entity with a 1342

comparable descriptor while maintaining the same 1343

predicate (Yao et al., 2023). 1344
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An illustrative excerpt from the ZsRE dataset1345

is presented in Table 3. Each entry within ZsRE1346

comprises the subject string, the factual prompt1347

for assessing reliability, the rephrase prompt for1348

evaluating generality, and the locality prompt for1349

assessing contextual relevance. It’s important to1350

note that the objective of the locality prompt isn’t1351

to predict the true answer, but rather to mirror the1352

predictions made by the base model. Likewise, the1353

fact, rephrase, and locality prompts within each1354

entry of the COUNTERFACT dataset correspond to1355

the evaluation of their respective metrics (Table 3).1356

In our experiment, we use the original output of the1357

base model (GPT2-XL and LLaMA2-7B) as the1358

ground truth for evaluating locality metrics.1359

C.2 Implementation of Baselines1360

Following previous research (Li et al., 2024b), the1361

implementation details of baselines are as follow:1362

Fine-tuning We implemented three fine-tuning1363

methods. For FT-L, we followed the procedures1364

outlined in (Meng et al., 2023, 2022), fine-tuning1365

the mlpproj parameter from layer 0 for GPT-2 XL1366

and from layer 16 for LLaMA2-7B, as these config-1367

urations were found to yield optimal performance.1368

FT-M is a slight variation of FT-L, differing primar-1369

ily in its loss computation procedure for parameter1370

optimization1. For both models, we performed1371

25 optimization steps using the AdamW optimizer1372

(Kingma and Ba, 2015), with a learning rate of1373

5e−4. All other parameters for both models were1374

kept at their default settings. LoRA (Hu et al.,1375

2022) proposed a parameter-efficient fine-tuning1376

method that decomposes the update gradient matrix1377

into two small rank-n matrices, which reduces the1378

required memory for LLM training to a large extent.1379

In all experiments, we set the learning rate and the1380

rank number to 1e−3 and 8, respectively. The α1381

was chosen to be 32, and the dropout rate was 0.1.1382

The number of update steps is 30 for GPT2-XL and1383

50 for LLaMA2-7B.1384

MEND MEND (Mitchell et al., 2022a) performs1385

model editing by manipulating the gradients of lan-1386

guage models. It trains a meta-network that utilizes1387

a rank-1 decomposition of the model gradients to1388

predict a new rank-1 update for the correspond-1389

ing model weights. In this study, we train two1390

meta-networks using the respective training splits1391

1https://github.com/zjunlp/EasyEdit/blob/main/
hparams/FT/gpt2-xl.yaml

from the ZsRE (Levy et al., 2017) and COUNTER- 1392

FACT datasets for GPT-2 XL, adhering to the de- 1393

fault hyperparameter settings. Due to the substan- 1394

tial computational resources required to train the 1395

meta-network for LLaMA2-7B, we did not conduct 1396

training for it. 1397

SERAC SERAC (Mitchell et al., 2022b) devel- 1398

oped a memory-augmented editing method that 1399

utilizes an external cache to store explicit editing in- 1400

stances. This method includes a scope classifier to 1401

determine whether an input sample falls within the 1402

editing scope and employs a small counterfactual 1403

model to edit in-scope cases. We independently 1404

train two models for GPT2-XL and LLaMA2-7B 1405

on their respective datasets. Consistent with the 1406

original methodology, we utilize distilbert-base- 1407

cased (Sanh et al., 2019) as the scope classifier 1408

across all models. All hyper-parameters remain at 1409

their default settings. 1410

MEMIT The MEMIT (Meng et al., 2023) re- 1411

gards the feed-forward layer of a transformer as a 1412

linear associative memory. It employs a minimum 1413

square error optimization technique to incorporate 1414

new key-value associations into layer weights. Fol- 1415

lowing the methodology outlined in the original 1416

paper, we adjust the layers within the identified crit- 1417

ical path and determine the optimal value for the 1418

balance factor λ, as per the findings in the original 1419

research (Layer []). All other parameters for both 1420

models are configured in accordance with the spec- 1421

ifications provided in (Meng et al., 2023, 2022). 1422

GRACE GRACE (Hartvigsen et al., 2023) in- 1423

troduces a novel editing technique aimed at con- 1424

serving the initial model parameters while integrat- 1425

ing a dynamic codebook. This codebook evolves 1426

through incremental addition, splitting, and expan- 1427

sion of keys, facilitating the storage of pertinent 1428

modifications over time. We adhere to the meticu- 1429

lously crafted parameters outlined in the original 1430

study, configuring the optimization of the learn- 1431

ing rate to a value of 1. The iterative process for 1432

optimizing these values spans 100 cycles, with an 1433

initial ϵ value set at 1. 1434

COMEBA-HK The experimental results of 1435

COMEBA-HK on GPT2-XL are derived from their 1436

research paper (Li et al., 2024b). Due to the ab- 1437

sence of experimental results on LLaMA2-7B in 1438

COMEBA-HK’s paper and the lack of code disclo- 1439

sure, certain outcomes in our study do not include 1440

this approach. 1441
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Table 4: Results for all editing tasks across various model types and sizes. ZsRE.

Model Single Editing Batch Editing Sequential Editing Sequential Batch Editing
Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑ Rel.↑ Gen.↑ Loc.↑ Avg.↑

BLOOMZ-1.1B 100.00 82.26 99.10 93.79 90.74 84.02 91.61 88.79 52.80 34.32 96.37 61.16 71.14 32.96 88.45 64.18
BLOOMZ-1.7B 100.00 84.57 100.00 94.86 91.54 84.21 92.30 89.35 51.99 33.55 96.96 60.83 73.59 35.25 90.15 66.33
BLOOMZ-3B 100.00 86.68 100.00 95.56 92.05 84.92 93.16 90.04 49.54 31.90 96.51 59.31 70.65 34.30 96.73 67.23
LLaMA2-7B 100.00 92.03 100.00 97.34 92.43 85.03 94.12 90.53 56.72 31.02 97.54 61.76 74.24 36.64 97.45 69.44
LLaMA2-13B 100.00 91.06 100.00 97.02 92.17 84.29 93.42 89.96 56.78 30.55 97.38 61.57 72.45 36.15 97.36 68.65
LLaMA2-70B 100.00 89.77 100.00 96.59 91.58 83.90 92.44 89.31 50.74 30.18 95.98 58.96 71.83 34.01 95.51 67.11

C.3 Training Details of MEMoE1442

We select GPT2-XL and LLaMA2-7B as the base1443

models. Modifications are applied to layer 16 of1444

LLaMA2-7B and layer 18 of GPT2-XL (consistent1445

with the findings of ROME (Meng et al., 2022)).1446

The number of experts is set to 5, and topk = 11447

to achieve the best experimental results, which are1448

determined based on the dataset characteristics and1449

available computational resources. Regarding other1450

hyperparameter choices, λ = 1 in Equation 12,1451

τ = 0.6, γ1 = 1 in Equation 17, γ2 = 0.5 in1452

Equation 18, and γ3 = 1.5 in Equation 19. We1453

use the AdamW optimizer (Kingma and Ba, 2015),1454

with β1 = 0.9 and β2 = 0.95, and a learning rate1455

of 2e−4, employing a cosine learning rate sched-1456

uler. Additionally, we apply a linear warm-up to the1457

learning rate scheduler for the first 10% of the train-1458

ing steps. The experiment is deployed on NVIDIA1459

V100 GPU.1460

D More Results and Analyses1461

In this section, we present additional experiments1462

and discussions about MEMoE. We test the per-1463

formance of MEMoE across all four knowledge1464

editing tasks on a range of model serious with dif-1465

ferent parameter sizes (§D.1). We then provide1466

a computational analysis of MEMoE (§D.2). As1467

a supplement to the ablation experiments in the1468

main text (§5.2), we further investigate the impact1469

of different model settings on performance (§D.3).1470

Additionally, we evaluate the consistency of the1471

proposed router in §D.4. Finally, we compare the1472

performance differences between batch editing and1473

sequential editing in larger data scenarios (§D.5),1474

followed by a more detailed case study (§D.6).1475

D.1 Experiments across Model Types and1476

Sizes1477

We apply the MEMoE framework to a diverse1478

set of models, spanning both smaller and larger1479

architectures, including BLOOMZ-1.1B/1.7B/3B,1480

LLaMA2-7B/13B/70B, and evaluate its effective-1481

ness across all four editing tasks outlined in §2.1.1482

The experimental setup follows §4.1. 1483

The results are presented in Figure 4. MEMoE 1484

consistently achieves impressive scores of around 1485

90 in both single-editing and batch-editing tasks, 1486

indicating its robust performance across a wide 1487

range of settings. In the context of sequential edit- 1488

ing scenario, while MEMoE demonstrates substan- 1489

tial improvement over the baseline, there remains 1490

significant potential for further optimization. Par- 1491

ticularly sequential editing tasks present a notable 1492

challenge, as they involve modifying one piece of 1493

knowledge at a time, leading to a higher number 1494

of editing steps. This increase in steps exacerbates 1495

the model’s tendency toward catastrophic forget- 1496

ting, where earlier modifications are progressively 1497

overwritten by new edits. In contrast, sequential 1498

batch editing, where a batch of data is modified in 1499

a single step, significantly reduces the number of 1500

editing iterations, resulting in a marked improve- 1501

ment in performance. This highlights that, while 1502

MEMoE is effective, additional refinements are 1503

needed to fully exploit its potential in sequential 1504

editing, especially in addressing the issue of catas- 1505

trophic forgetting. 1506

Furthermore, we observe that MEMoE performs 1507

best on the 7B model, with performance declining 1508

as the model size increases or decreases. This trend 1509

can be attributed to the current expert configuration, 1510

such as the use of 5 experts, which was empirically 1511

selected as optimal for models around the 7B scale, 1512

as detailed in the main text. However, this config- 1513

uration may not be ideal for larger models which 1514

contain significantly more parameters. These larger 1515

models may benefit from a greater number of ex- 1516

perts to better align with their increased capacity. 1517

As discussed in §D.3, exploring alternative expert 1518

configurations tailored to larger models could lead 1519

to significant improvements in performance. This 1520

underscores the importance of selecting appropri- 1521

ate MEMoE structural settings based on the spe- 1522

cific characteristics of the model, ensuring that the 1523

expert-based approach scales effectively with in- 1524

creasing model complexity. 1525
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Figure 4: Left: Performance across different numbers of experts. Middle: Performance across different target model
layers. Right: Effectiveness of activating experts. ZsRE. LLaMA2-7B.

Table 5: The efficiency of editing method. Time indi-
cates the wall clock time required for conducting 30
edits, while VRAM represents the graphics memory
usage. ZsRE. LLaMA2-7B.

Method VRAM Training Time Inference Time

FT-L 26G 28min 0.51 s/edit
LoRA 23G 4min 0.47 s/edit
MEMIT 33G - 16.93 s/edit
MEND 46G 4h 0.64 s/edit
SERAC 42G 15h 0.85 s/edit
GRACE 28G - 14.27 s/edit
MEMoE 24G 5min 0.72 s/edit

D.2 Computational Analysis1526

The efficiency of model editing methods is a criti-1527

cal consideration for both research scalability and1528

practical deployment. As illustrated in Table 5,1529

MEMoE distinguishes itself by operating within1530

a single 32GB V100 GPU, a feat enabled by its1531

parameter-efficient design and streamlined com-1532

putational workflow. This contrasts sharply with1533

methods like MEND and SERAC, which demand1534

46GB and 42GB of VRAM respectively, largely1535

due to their reliance on auxiliary networks or1536

memory-intensive gradient computations. Such1537

requirements pose barriers to accessibility, partic-1538

ularly for resource-constrained researchers. Three1539

axes of efficiency merit discussion: (1) VRAM1540

Utilization: MEMoE’s 29GB footprint reflects its1541

hybrid architecture, which synergizes lightweight1542

adapter modules with sparse activation mecha-1543

nisms. This contrasts with LoRA (23GB), which1544

achieves lower memory use at the cost of expressiv-1545

ity through low-rank approximations, and MEMIT1546

(33GB), which incurs overhead from mass-editing1547

key-value associations in transformer layers. (2)1548

Training Dynamics: MEMoE completes training1549

in 5 minutes—orders of magnitude faster than1550

MEND (4h) and SERAC (15h). This acceleration1551

stems from its localized editing paradigm, which1552
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Figure 5: Performance comparison of model editing on
different frequency knowledge.

avoids global parameter updates through dynamic 1553

router networks. The absence of training phases 1554

in MEMIT and GRACE, while superficially ad- 1555

vantageous, limits their applicability to scenarios 1556

requiring iterative model refinement. (3) Inference 1557

Latency: At 0.72s/edit, MEMoE closely approxi- 1558

mates the baseline model’s latency (0.47–0.85s/edit 1559

for parameter-preserving methods), outperforming 1560

approaches like MEMIT (16.93s/edit) that require 1561

traversal of edit-specific computational paths. This 1562

efficiency arises from MEMoE’s non-serialized ar- 1563

chitecture, where router networks operate in par- 1564

allel with frozen base model components. The 1565

proposed state caching mechanism could further 1566

reduce inference costs by amortizing routing com- 1567

putations across multiple edits. 1568

D.3 Additional Ablation Study 1569

Figure 4 presents an analysis of MEMOE’s perfor- 1570

mance across different numbers of experts, target 1571

layers, and routing strategies. This section serves 1572

as a supplementary part of the ablation study dis- 1573

cussed in §5.2, offering valuable insights into the 1574

impact of these factors on the model editing. 1575
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The left plot illustrates the impact of varying1576

the number of experts. As the number of experts1577

increases, both the accuracy and generalization1578

score improve. The performance reaches near its1579

peak when the number of experts is between 5 and1580

10. However, the locality of the model gradually1581

decreases as more experts are introduced. This1582

trade-off between performance and locality sug-1583

gests that while increasing the number of experts1584

enhances the model’s capacity to edit and general-1585

ize, it comes at the cost of reduced locality, which1586

is crucial for certain tasks. Considering both the1587

editing performance and computational efficiency,1588

we select 5 experts for the main experiments.1589

The middle plot examines the effect of select-1590

ing different target layers for editing. It reveals1591

that both reliability and generalization reach their1592

maximum at layers 16 to 20. Interestingly, gener-1593

alization remains stable until layer 20, after which1594

it starts to decline. This observation suggests that1595

the bypass MoE structure could effectively main-1596

tains the influence of model editing within a spe-1597

cific range of layers. However, as approaching1598

the output layers, the impact of model editing be-1599

comes more pronounced, beginning to significantly1600

affect the locality score, potentially due to the accu-1601

mulation of expert inputs in the final computation1602

stages (Ju et al., 2024).1603

The right plot compares the performance of dif-1604

ferent routing strategies: soft merging (Zadouri1605

et al., 2024) and discrete top-1, top-2, and top-31606

routing schemes. The results show that top-1 rout-1607

ing consistently outperforms the others, providing1608

the best overall performance. As the value of k1609

increases, the number of experts involved in the1610

computation rises, but the generalization perfor-1611

mance declines, indicating that the broader utiliza-1612

tion of experts may lead to a loss in coherence1613

across the network. In contrast, the soft merg-1614

ing strategy, while slightly less effective than top-11615

routing, offers a notable advantage over the other1616

discrete strategies, suggesting that dynamic routing1617

methods may have certain benefits over hard rout-1618

ing (Zadouri et al., 2024). Nevertheless, for model1619

editing tasks, top-1 routing proves to be more ef-1620

fective. Additionally, discrete top-1 routing has an1621

advantage in computational efficiency by requiring1622

only one experts to be activated during inference.1623

D.4 Routing Consistency Analysis1624

In §3.1, we propose a data division strategy aimed1625

at enabling different experts to specialize in knowl-1626

Table 6: Comparison of batch editing and sequential
batch editing on 1K edits. ZsRE. LLaMA2-7B.

Task Settings Number Rel.↑ Gen.↑ Loc.↑ Avg.↑

Batch
10 100 90.12 100.00 96.71
100 91.03 81.59 93.31 88.64
1000 80.02 56.92 89.53 75.49

Sequential Batch 1000 74.24 36.64 90.45 67.11

edge of varying frequencies. In this section, we 1627

conduct an evaluation of the experts’ specialization 1628

by measuring the average frequency of the knowl- 1629

edge processed by each expert. Specifically, we 1630

compute the average GECE values (Equation 9) 1631

corresponding to the knowledge handled by each 1632

expert during the inference phase, as illustrated in 1633

the figure. As observed, and in alignment with 1634

our design principles, the first expert exhibits a 1635

significantly lower GECE value compared to the 1636

others, indicating a specialization in processing 1637

high-frequency (or “head”) knowledge. The sub- 1638

sequent experts, on the other hand, progressively 1639

specialize in handling long-tail knowledge, further 1640

validating the efficacy of our approach in promot- 1641

ing specialized expertise across experts. 1642

D.5 Batch Editing vs Sequential Editing 1643

In §4.2, Table 4 clearly demonstrates MEMoE’s su- 1644

perior performance in batch editing tasks compared 1645

to sequential editing. To provide a clearer compari- 1646

son of its performance differences between batch 1647

editing and sequential editing, we progressively 1648

increased the batch size, with results presented in 1649

Table 6. MEMoE shows significant performance 1650

improvements when the batch size reaches 1,000, 1651

which is equivalent to the total batch size in sequen- 1652

tial editing. Both reliability and locality remain 1653

above 80, while the generality score increases by 1654

20.28 points. This improvement underscores the 1655

framework’s advantage in batch editing, where si- 1656

multaneous processing of multiple edits is more ef- 1657

fectively managed. In contrast, the sequential batch 1658

editing method exhibits a notable performance de- 1659

cline, particularly in reliability and generality. Our 1660

analysis of these bad cases in sequential batch edit- 1661

ing reveals that the underlying cause of this drop 1662

can be attributed to catastrophic forgetting: edits 1663

complete earlier are more prone to errors. 1664

D.6 More Case Study 1665

In Table 7, we present bad cases of using MEMoE 1666

to edit LLaMA2-7B on ZsRE dataset and mitigating 1667
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Table 7: Failure cases of MEMoE. ✔✗ represents errors in part of the tokens, ✗represents complete output errors
(i.e.,factual failures), and ✓indicates the expected exact match. Italics correspond to generality prompt. ZsRE.
LLaMA2-7B.

Prompt Edit Target Post-Edit Output

i

What level is Javan surili’s iucn conservation status? critically threatened near threatened ✔✗

What is Javan surilis ucn conservation status? critically threatened threatened ✔✗

The point in time of Air France Flight 447 was when? 12 July 1944 12 July 1964 ✔✗

When did Air France Flight 447 occur? 12 July 1944 12 July 1964 ✔✗

ii

Which war was William Babcock Hazen in? World War II US Civil War ✗
What war did William Babcock Hazen go to? World War II Spanish Civil War ✗
When was the inception of Parcelforce? 1961 1963 ✗
When was Parcelforce formed? 1961 1931 ✗

iii
What team is Nicolas Raffault associated with? Arizona Coyotes Aqua ✗
Which team is Nicolas Raffault associated with? Arizona Coyotes Arizona Coyotes ✓
What sports team was Petteri Nummelin a member of? Columbus Blue

Bombers
Cleveland Monsters ✗

In which sports team was Petteri Nummelin a member? Columbus Blue
Bombers

Columbus Blue Bombers ✓

iv

What level is Javan surili’s iucn conservation status? critically threatened nearlly threatened ✓
What state is Qaleh Lan in? critically threatened a ✗
When did Battle of the Java Sea occur? 27 February 1942 27 February 1942 ✓
When did the battle on the Java Sea begin? 27 February 1942 1942 ✔✗

these failures is critical for future work in model1668

editing. We observe that:1669

i) errors occur only in part of the tokens, and1670

these errors constitute a large proportion of the1671

bad cases, indicating that the edits have not been1672

sufficiently fitted. We wonder whether employing1673

different learning rates and epochs for each batch1674

in lifelong editing could alleviate this issue through1675

more refined training.1676

ii) displays cases where the entire output is in-1677

correct. These types of errors are the most common1678

occurrences.1679

iv) presents cases of generalization failure. For1680

example in prompt of last line, where the model1681

answered “1942” which is partially correct, but1682

did not fully follow the ground truth, indicating1683

significant room for improvement in the accuracy1684

of generalized edits.1685

Meanwhile, in iii) we surprisingly find that even1686

when MEMoE errs on the edit prompt, it can cor-1687

rectly answer its paraphrase prompt. Upon closely1688

examining these anomalous cases, we found that1689

they predominantly pertain to question-answering1690

scenarios within sports contexts, such as inquiries1691

about a person’s team affiliation. We hypothesize1692

that this phenomenon may stem from the relatively1693

limited number of teams in sports contexts, com-1694

bined with the higher number of athletes and the1695

occurrence of name duplication. Consequently, the1696

model may accidentally provide correct answers to1697

some of these questions.1698

In summary, MEMoE can handle contextual in- 1699

formation correctly in some cases but falls short in 1700

specific editing instructions, suggesting that opti- 1701

mizing editing instructions (modifying the editing 1702

context) may be a direction for improvement. 1703

20


	Introduction
	Preliminary and Analysis
	Preliminary
	Empirical Analysis

	Our Approach: MEMoE
	Single-Layer Frequency-Specialized MoE
	Dual-Attention Router
	Balancing Constraint Loss

	Experiments
	Experimental Setups
	Main Results

	Discussion
	General Ability Test
	Ablation Study

	Conclusion
	Related Work
	Model Editing
	Preserve models’ parameters:
	Modify models’ parameters

	Mixture of Experts

	Details of Empirical Analysis
	Implementation Details
	Dataset Details
	Implementation of Baselines
	Training Details of MEMoE

	More Results and Analyses
	Experiments across Model Types and Sizes
	Computational Analysis
	Additional Ablation Study
	Routing Consistency Analysis
	Batch Editing vs Sequential Editing
	More Case Study


