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Abstract

The fast assessment of the binding strength between adsorbates and catalyst surfaces1

is crucial for catalyst design, where global minimum adsorption energy (GMAE) is2

one of the most representative descriptors. However, catalyst surfaces typically have3

multiple adsorption sites and numerous possible adsorption configurations, which4

makes it prohibitively expensive to calculate the GMAE using Density Functional5

Theory (DFT). Additionally, most machine learning methods can only predict6

local minimum adsorption energies and rely on information about adsorption7

configurations. To overcome these challenges, we designed a graph transformer8

(AdsGT) that can predict the GMAE based on surface graphs and adsorbate feature9

vectors without any binding structure information. To evaluate the performance10

of AdsGT, three new datasets on GMAE were constructed from OC20-Dense,11

Catalysis Hub, and FG-dataset. For a wide range of combinations of catalyst12

surfaces and adsorbates, AdsGT achieves test mean absolute errors of 0.10 and13

0.14 eV on the two GMAE datasets respectively, demonstrating its good reliability14

and generalizability.15

1 Introduction16

The adsorption energy of an adsorbate on the catalyst surface is crucial for determining the reactivity17

and selectivity of catalytic reactions. The highest catalytic activity of a material will be achieved18

at the optimal adsorption energy for a specific reaction, according to the Sabatier principle [1, 2]19

(Fig. 1). Therefore, developing cheap and efficient adsorption energy evaluation methods are of great20

significance for catalyst discovery. Currently, high-throughput screening of catalysts relies heavily21

on computationally expensive simulations like Density Functional Theory (DFT) [3, 4]. However,22

multiple adsorption sites and variable adsorbate geometries lead to numerous possible adsorption23

configurations and local minima on the binding energy surface [5, 6]. The local adsorption energy24

strongly depends on the initial structure of the simulation and cannot provide a fair evaluation of25

different catalysts. Several methods, including global optimization algorithms [7–9] and "brute-force"26

searches [10, 11], have been employed to find the most stable adsorption structures and corresponding27

global minimum adsorption energies (GMAE). Unfortunately, the exponential rise in computational28

costs renders these methods inadequate for the screening of diverse catalyst candidates.29

Machine learning (ML) holds the potential to approximate DFT-level accuracy at significantly lower30

time costs [12, 13]. A lot of ML models, such as random forests, multilayer perceptions, and graph31

neural networks, have been explored to predict adsorption energy of adsorbate-surface systems32

[14–17]. However, several drawbacks are present in most models, which (1) can only predict local33
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Figure 1: Overview Left: The Sabatier principle describes that a catalyst should bind a substrate
neither too weakly nor too strongly. Middle: Global and local minima adsorbate configurations on
the catalytic surface. Right: The global minimum adsorption energy prediction task is addressed in
this work without requiring adsorption configuration information.

minimum adsorption energies, (2) require binding information between the adsorbates and catalyst34

surfaces, and (3) exhibit a poor generalizability limited to specific adsorbates. Recently, Ulissi et35

al. proposed the AdsorbML workflow [18], which combines heuristic search and ML potentials to36

accelerate the GMAE calculation. The ML potentials trained on the huge Open Catalyst (OC)2037

dataset achieve promising prediction accuracy and substantial speedups over DFT computations [18].38

Moreover, Margraf et al. [5] proposed a global optimization protocol that employs on-the-fly ML39

potentials trained on iteratively DFT calculations to search the most stable adsorption structures. This40

method is versatile for various combinations of surfaces and adsorbates, and significantly reduces the41

reliance on prior expertise and the number of required DFT calculations [5].42

Herein, a new strategy for directly predicting GMAE without binding structure information is43

proposed. A novel graph transformer model, called AdsGT, was designed for the GMAE prediction44

based on the surface graphs and adsorbate feature vectors. Three datasets on GMAE were constructed45

and applied for model evaluation. AdsGT demonstrates excellent performance in predicting GMAE,46

with mean absolute errors (MAE) below 0.14 eV for two of the datasets and 0.51 eV on a more47

challenging dataset with fewer data points. A pretraining strategy was also proposed to improve48

AdsGT performance to a MAE of 0.43 eV. All results highlight the learning ability of AdsGT49

for catalytic surface chemistry and its association with adsorbates. This work makes a valuable50

contribution to accelerating GMAE calculations and catalyst screening.51

2 Methods52

2.1 Datasets53

The datasets for the global minimum adsorption energies in this study come from OC20-Dense54

[18], Catalysis Hub [19], and ’functional groups’ (FG)-dataset [6] datasets. Each of the source55

datasets enumerated all adsorption sites on surfaces and performed DFT calculations on various56

possible adsorption configurations. The data cleaning was conducted to take the lowest adsorption57

energy of all conformations for each combination of catalyst surface and adsorbate as the global58

minimum adsorption energy. Subsequently, three new datasets, named OCD-GMAE, Alloy-GMAE59

and FG-GMAE, were constructed, and each data point represents a unique combination of catalyst60

surface and adsorbate (Table 1). Random splitting is adopted on three datasets during the model61

training. More challenging splits will be investigated in future work.62
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Table 1: Overview of three new datasets on GMAE. () values represent the numbers of element types.

Dataset Combination Num. Surface Num. Adsorbate Num. Range of GMAE (eV)
OCD-GMAE 973 967 (54) 74 (4) -8.0 ∼ 6.4
Alloy-GMAE 11,260 1,916 (37) 12 (5) -4.3 ∼ 9.1
FG-GMAE 3,308 14 (14) 202 (5) -4.0 ∼ 0.8

In addition, a similar data cleaning procedure was employed on the OC20 dataset [20] to create a63

new dataset named OC20-LMAE, which comprises surface/adsorbate pairings along with their local64

minimum adsorption energies (LMAE). The OC20-LMAE dataset contains 345,254 data points and65

serves as an effective resource for model pretraining.66

2.2 Surface graph67

Each input catalyst surface is modeled as a graph G consisting of n nodes (atoms) V = {v1, . . . , vn}68

and m edges (interactions) E = {ϵ1, . . . , ϵm} ⊆ V2. H = [h1,h2, · · · ,hn]
T ∈ Rn×k is the node69

feature matrix, where hi ∈ Rk is the k-dimensional feature vector of atom i. E ∈ Rm×k′
is the edge70

feature matrix, where etij ∈ Rk′
is the k′-dimensional feature vector of t-th edge between node i71

and j. X = [x1,x2, · · · ,xn]
T ∈ Rn×3 is the position matrix, where xi ∈ R3 is the 3D Cartesian72

coordinate of atom i. For periodic boundary conditions (PBC), let the matrix C = [a, b, c]
T ∈ R3×373

depicts how the unit cell is replicated in three directions a, b and c.74

Periodic invariance Ignoring periodic invariance will lead to different surface graphs and energy75

predictions for the same surface [21]. Different from crystals, the presence of the vacuum layer76

breaks the periodicity along the direction perpendicular to the surface. This means that the catalyst77

surfaces actually exhibit periodicity only in the a and b directions. Thus, the infinite surface structure78

can be represented as79

Ĥ =
{
ĥi | ĥi = hi, i ∈ Z, 1 ≤ i ≤ n

}
,

X̂ = {x̂i | x̂i = xi + k1a+ k2b, i, k1, k2 ∈ Z, 1 ≤ i ≤ n} .
(1)

To encode such periodic patterns, the infinite representation of the surface is used for graph80

construction, and all nodes and their repeated duplicates are considered to build edges. Given81

a cutoff radius rc ∈ R, if there is any integer pair (k′1, k
′
2), such that the Euclidean distance82

dji = ∥xj + k′1a + k′2b − xi∥2 ≤ rc, then an edge is constructed from j to i with the initial83

edge feature dji. It should be pointed out that self-loop edges (i = j) are also considered if there84

exists any integer pair (k′1, k
′
2) other than (0, 0) such that d = ∥k′1a+ k′2b∥2 ≤ rc.85
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Figure 2: Illustration of the
varying importance of different
atoms on a catalyst surface.

Positional feature Unlike molecular graphs, the importance of86

each atom in the catalyst surface is different for adsorption energy87

prediction (Fig. 2). For example, atoms closer to the adsorbate are88

more important, while atoms at the bottom are less important. More-89

over, GNNs cannot determine whether the atoms are located at the90

interface in contact with the adsorbate based on the surface graph.91

They cannot distinguish between interfacial atoms and subsurface92

atoms. To help models understand the varying importance of dif-93

ferent atoms, each atom i of the surface graph will get a positional94

feature δi computed by95

δi =
h− hmin

hmax − hmin
(2)

where h is the height of the atom i and calculated by the projection96

length of the atom coordinate xi on the c vector. hmax and hmin97

represent the maximum and minimum heights of surface atoms,98

respectively.99
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2.3 Adsorbate feature100

The representation of adsorbate is crucial for models to predict the lowest adsorption energy for101

a given combination of surface and adsorbate. Many adsorbate species, especially in the field of102

electrocatalysis, consist of fewer than five atoms. Some adsorbates, such as *H, *O and *NH have103

only one or two atoms. Therefore, molecular descriptors are used to represent adsorbates rather than104

the widely used molecular graphs. P = [p1,p2, · · · ,ps]
T ∈ Rs×k′′

is the adsorbate feature matrix,105

where pc ∈ Rk′′
is the k′′-dimensional feature vector of the adsorbate for the surface/adsorbate106

combination c (1 ≤ c ≤ s).107

2.4 Model108
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Figure 3: Model architecture of AdsGT (left) and its attention layer (right). + and | denote sum
and concatenation operations, respectively. σ denotes the activation function, and BNorm represents
batch normalization.

The proposed AdsGT model (Fig. 3) consists of three parts: a graph encoder EG, a vector encoder109

EV , and a readout block Ro. Each surface/adsorbate combination C, consisting of a surface graph110

Gc = (H,E) and an adsorbate feature vector pc, is defined as the model input and the global minimum111

adsorption energy of the combination is set as the prediction target. A surface graph and an adsorbate112

feature vector are passed to the graph encoder EG and the vector encoder EV for embedding learning,113

respectively. Then, both embeddings are concatenated and passed to the readout block Ro for the114

prediction of global minimum adsorption energy. The details of these parts are as follows.115

Graph encoder In the initialization of EG, atomic number zi and positional feature δi of node i are116

passed to embedding layers to compute the initial node embedding h0
i . The distance dtij of t-th edge117

between node i and j is expanded via a set of exponential normal radial basis functions (RBF) and118

transformed by linear layers to obtain the edge embedding etij . The message passing phase of EG119

follows the regular attention mechanism [21, 22]. In the l-th (0 ≤ l ≤ L) attention layer, edge-wise120

attention weights αt
ij and message mt

ij of t-th edge between node i and j are calculated based on hl
i,121

hl
j and etij according to122

qij = W l
Q

(
hl
i

∣∣∣hl
i

∣∣∣hl
i

)
, kt

ij = W l
K

(
hl
i

∣∣∣hl
j

∣∣∣ etij) , vt
ij = W l

V

(
hl
i

∣∣∣hl
j

∣∣∣ etij) (3)
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αt
ij =

qij ◦ k
t
ij√

dkh
ij

, mt
ij = sigmoid

(
LNorm

(
αt

ij

))
◦ vt

ij (4)

where W l
Q, W l

K and W l
V are three learnable weight matrices, ◦ represent the Hadamard product, and123

| denotes concatenation. LNorm denotes the layer normalization operation. Then, the message mi of124

node i from all neighbors Ni is computed by125

mi =
∑
j∈Ni

∑
h

LNorm
(
W l

mmt
ij + blm

)
(5)

and the embedding of node i is updated based on the message mi according to126

hl+1
i = W l

uh
l
i + blu + σ (BNorm (mi)) (6)

where W l
m and W l

u are two learnable weight matrices, while blm and blu are two learnable bias vectors.127

σ denotes the activation function, and BNorm represents batch normalization.128

Vector encoder A simple multilayer perceptron (MLP) is used to encode the feature vectors of129

adsorbates, and the adsorbate embedding of the combination C is calculated based on130

p′
c = MLP(pc) (7)

Readout block For the surface/adsorbate combination C, graph-level embedding gc of surface Gc131

is computed and concatenated with adsorbate embedding p′
c to predict the GMAE based on132

gc =
∑
i∈Gc

hL
i , y = MLP (gc | p′

c) (8)

3 Results and Discussion133

Table 2: Test MAE and success rates of AdsGT on the three GMAE datasets. The success rate is the
percentage of predicted GMAEs within 0.1 eV of the DFT-computed ground truth GMAEs. Energy
MAE is also computed between predicted and ground-truth GMAEs. All results are from 5 replicate
experiments with different random seeds.

Alloy-GMAE FG-GMAE OCD-GMAE OCD-GMAE
(11,260) (3,308) (973) (Pretrained, 973)

Energy MAE (eV) ↓ 0.1388 ± 0.0072 0.1053 ± 0.0065 0.5149 ± 0.0545 0.4296 ± 0.0326
Success rate (%) ↑ 67.25 ± 1.11 69.74 ± 2.17 13.47 ± 4.85 25.36 ± 2.12

The prediction performance of AdsGT was evaluated on the three GMAE datasets, and the results134

are depicted in Table 2. These three datasets have different characteristics: (1) Alloy-GMAE has135

a variety of surfaces (1916) but a small number of adsorbates (12), (2) FG-GMAE has a small136

number of surface types (14) but a large variety of adsorbates (202), and (3) OCD-GMAE contains a137

variety of surfaces (967) and adsorbates (74) but a smaller amount of data. As shown in the Table 2,138

AdsGT achieves excellent performance with MAE less than 0.14 eV and a success rate exceeding139

67 % on the Alloy-GMAE and FG-GMAE datasets, without any binding structural information.140

However, AdsGT exhibits worse performance with an MAE higher than 0.5 eV on the OCD-GMAE,141

which comprises a broader range of surface/adsorbate combinations but fewer data points. Given142

the small-size constraint, AdsGT is pretrained on the larger dataset OC20-LMAE and finetuned on143

the OCD-GMAE. It results in a lower energy MAE (0.43 eV) and a higher success rate (25.4 %)144

compared to the directly training AdsGT. More work on transfer learning and data augmentation will145

be explored in the future.146

Moreover, several models with the same AdsGT architecture but different graph encoders [23–26]147

are explored on the OCD-GMAE dataset (Table 3). The results indicate that our designed AdsGT148

graph encoder surpasses all baseline graph encoders, demonstrating its good learning capability in149

catalytic surface chemistry. Unfortunately, larger graph encoder from GemNet-OC model fails to150

achieve better performance on this small dataset with diverse surfaces and adsorbates.151
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Table 3: Test MAE of AdsGT and baseline models on the OCD-GMAE dataset. ∗ denotes replacing
the graph encoder in the AdsGT architecture with the corresponding baseline graph encoder.

Graph encoder Energy MAE (eV) ↓
*SchNet 0.8743 ± 0.0952
*CGCNN 0.6832 ± 0.0734
*DimeNet++ 0.8839 ± 0.0825
*GemNet-OC 1.1437 ± 0.0672
AdsGT 0.5149 ± 0.0545

4 Conclusion152

Our work presents AdsGT, a novel graph transformer model for predicting global minimum adsorption153

energies of adsorbate-surface systems. AdsGT takes the combinations of surface graphs and adsorbate154

feature vectors as input without requiring any adsorption configuration information. On three datasets155

covering a wide range of surfaces and adsorbates, AdsGT demonstrates strong performance in156

predicting GMAE, with mean absolute errors within 0.14 eV for two of the datasets, and 0.43 eV on157

the more challenging dataset with fewer datapoints. The results highlight the ability of graph neural158

networks like AdsGT to learn meaningful representations of surface chemistry and approximate159

DFT adsorption energies. By rapidly predicting GMAE, AdsGT has the potential to accelerate160

high-throughput computational screening of novel catalysts. While AdsGT struggles on one dataset161

with greater diversity but fewer examples, transfer learning has been proved to be an effective measure162

to improve its generalizability. Overall, this work makes valuable contributions towards enabling163

graph ML models to guide the discovery of novel catalysts for renewable energy and industrial164

processes. The code and datasets will be publicly available to facilitate future research.165
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