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Abstract

We show that large language models (LLMs)
exhibit an internal chain-of-thought: they se-
quentially decompose and execute composite
tasks layer-by-layer. Two claims ground our
study: (i) distinct subtasks are learned at dif-
ferent network depths, and (ii) these subtasks
are executed sequentially across layers. On a
benchmark of 15 two-step composite tasks, we
employ layer-from context-masking and pro-
pose a novel cross-task patching method, con-
firming (i). To examine claim (ii), we apply
LogitLens to decode hidden states, revealing
a consistent layerwise execution pattern. We
further replicate our analysis on the real-world
TRACE benchmark, observing the same step-
wise dynamics. Together, our results enhance
LLMs transparency by showing their capacity
to internally plan and execute subtasks (or in-
structions), opening avenues for fine-grained,
instruction-level activation steering.

1 Introduction

Large Language Models (LLMs) excel at solving
complex tasks such as instruction following, and
multi-step problem solving (Zhang et al., 2024;
Zeng et al.; Wang et al., 2024). Much recent
progress relies on explicit “chain of thought™ (Wei
et al., 2022; Zhang et al.), which guides models
to decompose multi-step problems into interme-
diate reasoning stages. This raises a foundational
question: Do LLMs also perform such multi-step
reasoning internally, without revealing steps in
their output? In this work, we answer yes: LLMs
exhibit an internal chain-of-thought (ICoT), mean-
ing they internally break down composite tasks
and process their components sequentially across
network layers. Going beyond interpretability stud-
ies on latent factual multi-hop reasoning (Yang
et al., 2024b; Biran et al., 2024; Yu et al., 2025; An-
thropic., 2025), we investigate task-level reasoning
rather than just chains of facts.
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Figure 1: Evidence of an internal chain-of-thought.
Selectively masking (bottom left) from specific layers
can preserve the first subtask (antonym) while ablating
the second (uppercase). Decoding hidden states (bottom
right) on a clean run shows the intermediate answer
(“slow”) peaks at middle layers.

To illustrate this concept, consider a composite
task that requires two steps: antonym then upper-
case. For example, given the input “fast”, solv-
ing this involves an intermediate step—finding the
antonym ‘“slow”—followed by capitalizing it to
“Slow” (with S capitalized). If an internal chain-of-
thought exists, we would expect the hidden state at
some intermediate layer to represent “slow”, and
later layers to transform it into “Slow”. In gen-
eral, the presence of an ICoT implies that distinct
phases of computation occur inside the model, each
corresponding to a subtask in the overall problem.
Figure 1 illustrates our core findings: selectively
masking context from specific layers can preserve
the first subtask (antonym) while ablating the sec-
ond (uppercase). Meanwhile, decoding results of
hidden state on clean run show that intermediate
answer (“slow”) often peaks at middle layers.



For tractability, we study tasks that decompose
into two sequential subtasks (denoted ¢ := s; © s9).
The task ¢ maps an input z to an output y' =
s2(s1(z)). We frame our analysis through Task
Vector framework (Hendel et al., 2023; Todd et al.;
Li et al.; Saglam et al., 2025), which divides in-
context learning (ICL) into two phases: (1) a learn-
ing phase, where the model abstracts task rules into
a hidden representation, task vector, and (2) a rule
application phase, where the query is processed
using this vector. For a model 7', given demon-
strations .S and a query x, the process is modeled
as:

T(Sz]) = 0=A(S), y=f(x;0) , ()

~
learning phase application phase

where A abstracts the task vector § € R?, and f
denotes the application of task-specific rules. Ex-
tending to composite tasks yields two claims:

* Claim 1. Subtasks are learned at different net-
work depths, inducing distinct subtask vectors
0°1 and 0°2 which generalize to their respec-
tive subtasks.

¢ Claim 2. Subtasks are executed sequentially
across layers. At depth [, the model applies
f4(z;6%") to compute the first subtask. At a
later depth Iy, it applies f'2(x; #%2), yielding
the final result.
Crucially, we distinguish between two processes:
“learning” (Claim 1) and “execution” (Claim 2),
corresponding to the learning phase and application
phase in Task Vector framework, respectively.

We first introduce a benchmark of 15 two-step
composite tasks spanning four categories (Section
2.2). We present two lines of evidence for Claim 1:
(1) layer-from-context masking (Sia et al., 2024),
which blocks attention to demonstrations after layer
[ to reveal where each subtask is learned, and (2)
cross-task patching, a novel method which inserts
residual activations from a composite prompt into
zero-shot sub-task queries to detect reusable “sub-
task vectors”. Across four models and 15 two-step
tasks, masking reveals a sharp “X-shape” (Figure
2), indicating a sequential learning dynamics: the
model first abstracts the rule for s; at an earlier
layer, and later learns sy at a deeper layer. Mean-
while, patching activations in Llama-3.1-8B (see
Table 2) yield transferable subtask vectors to a sig-
nificant degree (66% on average).

Next, to verify Claim 2, We decode every layer
with LogitLens (Nostalgebraist., 2020), projecting

hidden states into token space and tracking the
mean reciprocal rank of the first-step target (y*°!
or y*2) versus the final answer (y*1°%2). Decod-
ing results show the same “handoff” (see Figure 3
and 4): intermediate answer peaks in mid-layers,
then is overtaken a few layers later by the final
answer. Finally, we replicate layer-from-context
masking on TRACE (Zhang et al., 2024), a com-
plex instruction-following benchmark, demonstrat-
ing that the same sequential learning dynamics
emerge in real-world settings (see Figure 5). The
primary contributions of this study are as follows:

* We construct a curated benchmark of 15 com-
posite tasks spanning four categories.

* We employ context-masking and propose
cross-task patching, demonstrating that sub-
tasks are learned at different depths, inducing
distinct subtask vectors.

* We use LogitLens to decode hidden states,
revealing a consistent layerwise execution pat-
tern.

* We replicate our method on the TRACE
benchmark, confirming the same finding also
emerge in practical settings.

Our findings enhance LLM transparency by re-
vealing their capacity to internally plan and exe-
cute subtasks (or instructions). This aligns with,
and extends, prior interpretability studies on multi-
hop reasoning (Yang et al., 2024b; Biran et al.,
2024; Yu et al., 2025; Anthropic., 2025) and look-
ahead planning (Men et al., 2024). While those
often focus on factual recall or predictive steps, our
work investigates task-level reasoning rather than
just chains of facts. Furthermore, the discovery
of ICoT opens exciting avenues for fine-grained,
instruction-level behavior control. For instance, by
identifying the layers responsible for processing
specific (potentially harmful) instructions within a
user’s prompt, we could directionally intervene to
steer their execution for safer LLM behavior.

2 Experimental Setup

2.1 Prompt Design

We focus on composite tasks that naturally decom-
pose into two sequential subtasks—for example,
retrieving domain knowledge and then translating
it, or extracting information followed by format
transformation. Formally, we represent a com-
posite task as ¢ := s; o s9, where s1 and sy are
sequentially applied subtasks. Given a query =,



Category Task Description

Example (Input — Output)

$1: antonym

Knowledge—Algorithmic
S9: uppercase

fast — Slow

s1: select adjective

Extractive—Knowledge
S9: synonym

artistic, captain, bring — creative

s1: select last item

Extractive—Algorithmic
s9: first letter

spicy, cowardly, hoop — h

Knowledge—Translation

$1: retrieve country
s9: translate to French

Cenepa River — Pérou

Table 1: Representative examples from the composite task benchmark across four categories. Each task involves a
sequential application of two subtasks, though no intermediate outputs are shown in-context. See Appendix A for a

complete task list and definitions.

the final output is y* = sy(s1(z)). For analysis
purposes, we also compute intermediate outputs
corresponding to the isolated application of each
subtask: y°! = s1(z) and y*2 = so(x). As an
illustrative example, consider s; = “antonym” and
sg = “‘uppercase”. For input x = “fast”, the
correct intermediate and final outputs would be
y*1 = “slow”, y*2 = “Fast”, and y* = “Slow”.

For each composite task ¢ € 7T in our task
suite 7, we construct a dataset P; consisting of
in-context prompts p} € P;. Each prompt includes
N input-output demonstration pairs of the form
(x,y"), showing the full composite transformation,
followed by a query input x;, for which the model
is expected to predict the corresponding target yfq.
Notably, no intermediate outputs or reasoning steps
are included in the prompt. The in-context learning
(ICL) prompt format is:

ph = [(@a, yi %), o (@in, YA Tig) - (2)

2.2 Dataset

We construct a benchmark of 15 composite tasks
spanning four categories:

* Knowledge—Algorithmic: Tasks that com-
bine factual knowledge retrieval (e.g., country
capitals, antonyms) with deterministic trans-
formations (e.g., uppercase conversion).

* Extractive—Knowledge: Tasks that require
identifying items from a list (e.g., selecting
the last item) followed by a knowledge-based
operation (e.g., finding a related concept).

¢ Extractive-Algorithmic: Tasks that involve
list-based selection followed by symbolic
transformations (e.g., case conversion, charac-
ter extraction).

* Knowledge-Translation: Tasks that com-
bine knowledge retrieval with language trans-
lation (e.g., translating the capital city of a
given country into French or Spanish).

Each query in the dataset requires the sequential
execution of two subtasks in a fixed order as de-
fined by the task specification. However, we do
not assume that LL.Ms necessarily follow this or-
der during internal processing. To probe the latent
execution path, we measure intermediate outputs
corresponding to the isolated application of each
subtask: y°' = si(z) and y*2 = so(x). Table
1 presents illustrative examples for each category.
Full details and descriptions for all 15 composite
tasks can be found in Appendix A.

3 Background

We consider an autoregressive transformer lan-
guage model 7' that takes an input prompt p and
outputs a next-token distribution 7'(p) over a vo-
cabulary V. Internally, T consists of L transformer
layers connected via a residual stream (Elhage
et al., 2021). We focus our analysis on the resid-
ual stream at the final token position. Embedding
matrix Wg € RIVI*4 first maps the last token to
a hidden representation as initial residual stream
h? € R%. At each layer [, the model adds the out-
puts of the self-attention and feedforward network
(FFN) modules to the residual stream from the pre-
vious layer. Formally, the residual stream at layer [
is given by:

h' =h'"'+ A+ F, 3)

where A! € R? and F! € RY denote the atten-
tion and FFN outputs at the final token position,
respectively, at layer [.
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Figure 2: Layer-from context-masking results for six composite tasks across four models. The “X-shape” pattern

reveals sequential learning dynamics.

4 Claim 1: Distinct Subtask
Representations

We present two lines of evidence for Claim 1:
(1) using layer-from context-masking, we show
that different layers are responsible for learning
each subtask; (2) with a novel cross-task patch-
ing method, we demonstrate that subtask-specific
vectors emerge at the final token position, serving
as abstract representations that generalize across
tasks.

4.1 Layer-from Context-Masking

In-Context Learning requires model to infer a task
from examples and apply it to a new input, as for-
malized in Equation 1. If LLMs follow a internal
chain-of-thought, then each subtask in a compos-
ite task should be learned at a distinct point in
the network. That is, subtask learning should un-
fold sequentially across layers—rather than all at
once—making intermediate learning states observ-
able. To investigate this, we employ layer-from
context-masking (Sia et al., 2024). This technique
disables access to the in-context examples (task
demonstrations) from a specific layer onward by
masking all attention to context tokens. If mask-
ing is applied from the input layer (! = 0), the
model cannot attend to any demonstrations, and
ICL should fail. However, if masking begins only

after the model has learned the task, then its perfor-
mance should remain intact. Crucially, by gradu-
ally shifting the start-masking layer from early to
late, we can infer the sequential dynamics of the
model’s learning process.

Let A = % denote the raw attention scores
in a decoder-only transformer, where Q and K
are the query and key matrices, respectively, and
D is the dimensionality of the hidden states. For
token positions ¢ and j, the element A;; represents
how much token 7 attends to token j. We apply a
context masking to disable attention to in-context
examples, as A;; + m(j, u). The mask m(j, u) is
defined as:

0 ifx; ¢ u,

if.%‘j cu,

“

mjw=1"

where u is the set of all in-context example tokens.
The mask is applied from layer [ onward, such that
for all I’ > [, attention to context is zeroed out after
Softmax. For each test prompt, we progressively
increase the masking layer [ from 1 to L and record
the model’s prediction accuracy on both interme-
diate and final outputs. For composite tasks, we
aim to identify a two-phase masking pattern. At
early layers, masking may lead the model to predict
intermediate outputs—e.g., y°! or y*2—indicating
that the model has learned the first subtask but not



Composite Task Llama-3.1-8B
antonym-uppercase
$1 (antonym) 0.92 +0.02
sg (uppercase) 0.24 +0.03
country_capital-lowercase
51 (country_capital) 0.88 £ 0.03
s9 (lowercase) 0.49 + 0.05
choose_last-country_capital
s1 (choose_last) 0.44 +0.03
59 (country_capital) 0.98 +£0.02

adjective_v_verb-antonym

s1 (adj_v_verb) 0.38 £0.11

S2 (antonym) 0.94 +0.03
choose_last-first_letter

s1 (choose_last) 0.29 £+ 0.03

so (first_letter) 1.01 £0.01
antonym-english_spanish

51 (antonym) 0.91 £0.02

so (english_spanish) 0.45 +0.03
Average 0.66

Table 2: Subtask vector strength for six representative
composite tasks in Llama-3.1-8B. Each composite task’s
average residual activation is patched into each subtask,
with results shown for s; and s, respectively.

yet the second. As masking is delayed to deeper
layers, the model’s predictions should transition
sharply from intermediate answers to the final an-
swer 3, revealing a layered acquisition of subtasks.
By contrast, if the model transitions directly from
generating no meaningful output to the correct fi-
nal answer as masking depth increases, without
producing intermediate completions, this would
suggest a monolithic in-context learning process.
This distinction is central to testing whether subtask
learning unfolds sequentially across layers.

Experiment. We conduct our layer-from context-
masking analysis on four LLMs: Llama-3.1-8B
(Grattafiori et al., 2024), Mistral-7B (Jiang et al.,
2024), Qwen2.5-7B (Yang et al., 2024a), and
Llama-3.2-3B (Meta., 2024), evaluating their be-
havior across all 15 composite tasks. For each task,
we generate 500 test prompts, sampled uniformly
at random from the corresponding dataset. Each
prompt includes N in-context examples (following
prior work (Hendel et al., 2023), we set N = 5).

To ensure robustness, all experiments are repeated
across five random seeds, and we report averaged
results. In the resulting sequential learning dynam-
ics plots (see Figure 2 and Appendix B), we ob-
serve a striking “X-shape” pattern across composite
tasks. Specifically, as context masking is delayed to
deeper layers, the model’s output transitions from
generating one of the intermediate answers (e.g.,
the result of s1) to producing the correct final an-
swer. The intersection point—where performance
on the intermediate answer begins to drop while
performance on the final answer rises—suggests a
boundary between subtask learning phases. This
structure provides compelling evidence for sequen-
tial learning dynamics: the model first abstracts the
rule for s; at an earlier layer, and later learns s9 at
a deeper layer.

4.2 Cross-Task Patching

While context-masking reveals when subtask infor-
mation is acquired, it does not directly test whether
LLMs represent individual subtasks as reusable, ab-
stract vectors. To address this, we introduce cross-
task patching, a novel method that investigates
whether sequential learning dynamics produce dis-
tinct subtask vectors. Prior work suggests that the
residual stream at the final token position encodes
a latent task representation derived from in-context
examples (Hendel et al., 2023; Li et al.; Todd et al.).
These representations can be replaced into the hid-
den states while running model on other prompts
to influence model behavior. Here, we extend this
idea to composite tasks. Specifically, we examine
whether the activations obtained from a composite
prompt can be used to improve performance on
each subtask individually. We compute the average
residual stream activation across composite task
prompts, then patch it into zero-shot prompts from
the subtask datasets. If performance on the subtask
improves, we infer that the composite prompt’s ac-
tivation encodes the corresponding subtask vector.

Formally, we begin by running the model on a
set of composite prompts p! € P, each contain-
ing N examples of task ¢, and extract activation
vector at the final token position from each layer /.
Averaging over all prompts yields a layerwise task
representation:

— 1
hi = = > h'(p}). )

’Pt’ pteP,

(3

We then patch this vector into a set of zero-shot
subtask prompts p; € Ps; (i.e., prompts with no



in-context examples), replacing the residual stream
at layer [ with hf, and evaluate the model’s perfor-
mance:

Acc(Ps,,1

[ (p; | ' :=h) =y,

(6)
To quantify how well this patched vector recovers
the subtask behavior, we define a normalized sub-
task vector strength. As the patching is used on
each layer, we choose the best result to calculate
the subtask vector strength:

R |Ps

Strength — max; Acc(?ssj,l) - Acc(ﬁsj)
Acc(Py;) — Acc(Ps,)
(7

where Acc(7Ps, ) is the subtask’s performance under
standard ICL (with N examples), and Acc(Pq ;) is
the zero-shot baseline. A strength of 1 implies full
recovery of subtask performance, indicating a fully
formed subtask vector; a strength of 0 implies no
transfer. We test the subtask vector strength on
both two subtaks s; and so.

Experiment. To ensure independence between
datasets, we first split each subtask dataset into dis-
joint train and test subsets (see Appendix A for de-
tails about subtask dataset). Composite datasets are
constructed using only the train set, while zero-shot
patching is evaluated on held-out subtask exam-
ples. We compute ﬁf using 100 composite prompts
and test patching strength on 500 zero-shot sub-
task prompts. We repeat this process across 15
composite tasks, 4 models, and 5 random seeds.
Table 2 and Appendix C report the patching
strength across tasks. We find that most composite
tasks yield transferable subtask vectors to a signifi-
cant degree (0.66 on average). Interestingly, some
composite tasks exhibit asymmetric transfer—for
instance, the composite vector may strongly sup-
port s; but only weakly support s3. This asym-
metry may reflect either the task type of sz (e.g.,
extractive tasks), or that so is applied in a more
entangled fashion atop the result of s;, making its
representation more context-dependent.

5 Claim 2: Layer-wise Rule Application

Claim 2 hypothesizes that LLMs apply rules for
composite tasks in a staged process: at an earlier
layer /1, the model applies a function f'1 (z;6%1) to
perform the first subtask; later, at layer [l > [y, it
applies a second function f2(x;6%?), integrating
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Figure 3: Heatmaps of attention and MLP block decod-
ing results for the country_capital-lowercase task
in Llama-3.1-8B.
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Figure 4: Decoding results of the residual stream for the
country_capital-lowercase task in Llama-3.1-8B.

this intermediate representation with the second
subtask’s logic to produce the final answer. Cru-
cially, we should be able to trace this transforma-
tion through the model’s residual stream, which
accumulates the outputs of each attention and MLP
block.

We decode the next-token probabilities for each
intermediate layer using LogitLens (Nostalge-
braist., 2020). This method aims to project hid-
den states into the vocabulary space. Formally,
let h! denote the residual stream at the final token
position, at layer [. To decode their outputs into
probability distributions p over vocabulary tokens,
we use the unembedding matrix Wy e R4V,
along with a normalization that rescales compo-
nent activations relative to the final-layer logits:

h! — h!
o >, (®)

where h' are the mean component outputs for nor-

p = Softmax (WU
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Figure 5: Layer-wise context-masking analysis on
TRACE benchmark. Each curve shows model per-
formance (scored 0—10) on a distinct constraint type,
evaluated by DeepSeek-V3.

malization, and o* is a scaling factor derived from
the final layer’s residual norm. Besides, we also
decode each attention and MLP block’s output A’
and F!. We then measure the Mean Reciprocal
Rank (MRR) for three specific targets: y, y°! and

Yy

Experiment. We conduct this analysis on 500
prompts for each of the 15 composite tasks de-
scribed earlier. For each prompt, we extract and
decode the attention outputs, MLP outputs, and
residual stream at each layer, compute mean re-
ciprocal ranks (MRRs) for the three target outputs
described above, and plot the resulting trajectories.

Figure 3 shows the heatmaps of atten-
tion and MLP block decoding results for the
country_capital-lowercase task in Llama-3.1-
8B. Figure 4 displays the decoding results of the
residual stream (see Appendix D for full results).
We observe a clear layerwise task execution pat-
tern: the model produces intermediate answers in
middle layers, which are progressively surpassed
by the final answer in later layers. The crossover
point—where MRR for y*! declines while MRR
for ¢®1°%2 increases—mirrors the two-stage task
execution hypothesized in Claim 2.

6 A Practical Case: TRACE Dataset

To evaluate the applicability of our analysis in
real-world scenarios, we extend our experiments to
TRACE (Zhang et al., 2024), a complex instruction
following benchmark. TRACE is built on a manu-
ally curated taxonomy of complex instructions, in-
corporating 26 constraint dimensions grouped into
five high-level categories. Each prompt in TRACE

consists of two components: a Task Description,
which defines the core objective (e.g., “Introduce
Beijing”), and a set of Constraints, which specify
additional requirements that the model must satisfy.
For example, a representative prompt might be:

Task Description: Can you introduce Bei-
jing to me?

Constraints: 1. The generated answer for-
mat needs to be JSON;

2. The generated answer must be objec-
tive facts and cannot contain any subjective
opinions or guesses;

3. All characters need to be encoded in
UTF-8 to ensure support for multilingual
responses.

We provide the entire prompt to the model and
use a LLM evaluator to assign a score (from 0
to 10) for each constraint based on how well it
is satisfied. In this section, we apply layer-from
context-masking, but with a twist: we selectively
mask only the Constraints portion of the prompt
from each layer onward, while retaining access to
the Task Description throughout. Our goal is to
determine whether different types of constraints
are learned at different depths, thereby exhibiting a
multi-step learning trajectory.

Experiment. We select a subset of TRACE (69
prompts) that include all the following constraint
types: Inclusion, Qutput Format, and Tone and
Style. We use Qwen2.5-7B-Instruct (Yang et al.,
2024a) as the test model to complete the instruc-
tions, applying context-masking to the constraint
tokens from each layer onward. To evaluate the
quality of constraint satisfaction at each masking
depth, we use DeepSeek-V3 (Liu et al., 2024a)
as an evaluator model, producing per-constraint
scores from O to 10.

Figure 5 shows the resulting line chart. We ob-
serve notable differences in the learning dynamics
across constraint types:

* Output Format: The learning curve is char-
acterized by a sharp increase in score between
layers 17-20, suggesting that formatting con-
straints (e.g., JSON structure, character encod-
ing) are learned relatively late in the network.

* Inclusion and Tone and Style: These con-
straints show more gradual and smooth im-
provements across layers, indicating a slower



or more distributed learning process.

These results demonstrate that different con-
straint types are learned at different depths in the
model, further supporting our hypothesis of sequen-
tially learning dynamics in composite instruction-
following tasks.

7 Related Work

Multi-Hop Reasoning in LLMs. Recent studies
have examined how large language models (LLMs)
perform latent factual multi-hop reasoning (Press
et al., 2023; Yang et al., 2024c; Li et al., 2024;
Ju et al,, 2024). (Yang et al., 2024b) finds that
LLMs often reliably recall intermediate entities
but inconsistently use them to complete complex
prompts. (Biran et al., 2024) shows that LLMs re-
solve intermediate entities early when answering
multi-hop queries, and proposes a back-patching
method to improve the performance. (Yu et al.,
2025) introduces logit flow to analyze latent multi-
hop reasoning in LLLMs and proposes back atten-
tion to improve accuracy. (Anthropic., 2025) iden-
tifies intermediate entities and reasoning path by
Cross-Layer Transcoder. While those often focus
on factual recall, our work investigates task-level
reasoning rather than just chains of facts.

Task Representations in ICL. The ability of
LLMs to perform In-Context Learning (ICL)
(Brown et al., 2020) has spurred rich research into
its internal mechanism. A prominent line of inquiry
focuses on explicit task representations (Hendel
et al., 2023; Liu et al., 2024b; Todd et al.; Li et al.;
Saglam et al., 2025; Yang et al., 2025). Initial
work by (Hendel et al., 2023) derived task vec-
tors from layer activations. Other approaches in-
clude In-Context Vectors (ICVs) (Liu et al., 2024b)
derived from principal components of activation
differences, and Function Vectors (FVs) (Todd
et al.) which emphasize the role of specific at-
tention heads. While these foundational studies
demonstrate how a singular task can be abstracted
into a vector, our work extends this by investigating
how composite tasks are handled.

Mechanistic Interpretability. Mechanistic inter-
pretability (Elhage et al., 2021) aims to reverse
engineer the internal mechanisms of LLMs. One
type of studies focus on constructing the circuit in
the model (Olsson et al., 2022; Wang et al.; Gould
et al.; Marks et al., 2024). Another line of work
focuses on understanding intermediate representa-

tions through tools such as the LogitLens (Nostal-
gebraist., 2020). This technique has been extended
to trace hidden states in LLMs (Dar et al., 2023;
Halawi et al.; Merullo et al., 2024; Wiegreffe et al.,
2024). Another major methodology is causal medi-
ation analysis (Todd et al.; Vig et al., 2020; Meng
et al., 2022; Geva et al., 2023; Hendel et al., 2023;
Wau et al., 2023; Dumas et al., 2024), which mea-
sures the effect of intervening on a hidden state
to determine its causal contribution to the model’s
output. Recent work also investigates the superposi-
tion hypothesis (Elhage et al., 2022; Scherlis et al.,
2022). To disentangle such representations, sparse
autoencoders (SAEs) have been employed to ex-
tract interpretable features from high-dimensional
activations (Gao et al., 2024; Marks et al., 2024,
Anthropic., 2024; Ferrando et al., 2024).

8 Conclusion

We show that large language models (LLMs) ex-
hibit an internal chain-of-thought. Two claims
ground our study: (i) distinct subtasks are learned
at different network depths, and (ii) these subtasks
are executed sequentially across layers. On a bench-
mark of 15 two-step composite tasks, we employ
layer-from context-masking and propose a novel
cross-task patching method, confirming (i). To ex-
amine claim (ii), we apply LogitLens to decode
hidden states, revealing a consistent layerwise ex-
ecution pattern. We further replicate our analysis
on the real-world TRACE benchmark, observing
the same stepwise dynamics. Together, our re-
sults enhance LLMs transparency by showing their
capacity to internally plan and execute subtasks
(or instructions), opening avenues for fine-grained,
instruction-level activation steering.

Limitations

While our findings offer mechanistic insights into
how LLMs internally decompose and execute com-
posite tasks, several limitations must be acknowl-
edged:

Model and Scale Scope. Our experiments are
conducted on four mid-sized open-source models
(3B—8B parameters). While these models are rep-
resentative of common deployment settings, it re-
mains an open question whether the observed phe-
nomena generalize to larger frontier models (e.g.,
GPT-4, Claude). Differences in architecture, train-
ing corpus, and alignment objectives may yield



distinct patterns of subtask representation or execu-
tion.

Task Construction Bias. The distinct “X-shape”
pattern observed in our context-masking experi-
ments (Figure 2) is facilitated by the deliberate de-
sign of our benchmark tasks, which feature clearly
distinguishable subtask types (e.g., knowledge re-
trieval followed by algorithmic transformation).
This separation likely leads to more temporally
distant “learning points” for each subtask across
layers. However, when faced with a greater num-
ber or more nuanced types of subtasks, particularly
those with high conceptual similarity, the context-
masking technique might be less effective at clearly
disentangling their individual learning stages. In-
deed, as observed in our TRACE analysis (Section
6), the learning dynamics for closely related con-
straints can be more intertwined.
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A Datasets

We evaluate our two central claims on 15 compos-
ite tasks spanning four categories. Each composite
task is composed of two sequential subtasks, de-
noted as s; o sg, and is designed to probe whether
LLMs internally represent and apply these subtasks
in a layered fashion. A summary of all composite
tasks can be found in Table 3. We also describe
the subtasks used in the cross-task patching experi-
ment.

Antonym-Uppercase This composite dataset
is constructed by capitalizing answers from an
antonym dataset. The underlying antonym pairs
are drawn from (Nguyen et al., 2017), which in-
cludes both antonyms and synonyms (e.g., “good
— bad”). We follow the preprocessing proce-
dure described in (Todd et al.), then capitalize the
antonym response, producing pairs like “good —
Bad”. Intermediate answers are defined as the
antonym in lowercase (e.g., “bad”) and the cap-
italized form of the query (e.g., “Good”).

Synonym-Uppercase Constructed in the same
way as Antonym—Uppercase, using synonym pairs
from (Nguyen et al., 2017). We capitalize the syn-
onym to form the composite answer, and treat the
lowercase synonym and capitalized query as inter-
mediate outputs.

Country_Capital-Lowercase This dataset is
built from a country—capital mapping dataset (Todd
et al.). We lowercase the capital names to form
the composite answers. For example, “France —
paris”.

Landmark_Country-Lowercase Pairs land-
mark names with their respective countries, based
on data from (Hernandez et al.). The country name
is lowercased to form the composite answer.

Product_Company-Lowercase This dataset
contains commercial products paired with the
companies that produce them, also curated
from (Hernandez et al.). The company name is
lowercased to produce the final output.

Choose_Last—Country_Capital We use the
country—capital dataset (Todd et al.) to create lists
of three countries sampled at random. The final
answer is the capital of the last country in the list.
Intermediate outputs include the last country name
and the capital of the first country.
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Choose_Last-Landmark_Country Follows the
same format as Choose_Last—Country_Capital, us-
ing landmark—country pairs from Hernandez et al..
The model must extract the last landmark and map
it to its corresponding country.

Adjective_v_Verb—Antonym This dataset tests
syntactic category identification and semantic rea-
soning. From the antonym dataset (Nguyen et al.,
2017), we select words that are unambiguously
adjectives or verbs. Each list contains two verbs
and one adjective. The model must identify the
adjective and return its antonym.

Adjective_v_Verb-Synonym Constructed iden-
tically to Adjective_v_Verb—Antonym, but with
synonym retrieval instead.

Choose_Last-First_Letter Constructed from a
simple list-based selection dataset (Todd et al.).
The model is prompted with a list of three items
and must return the first letter of the last item.

Choose_Last-Uppercase Similar to
Choose_Last—First_Letter, but instead of re-
turning the first letter, the model is required to
return the last item in uppercase form.

Antonym-English_French We translate an-
swers from the antonym dataset to French using the
Google Translate API. The composite task consists
of performing the antonym transformation and then
translating the result. Intermediate answers include
the English antonym and the French translation of
the query.

Antonym-English_Spanish Same as
Antonym—English_French, but translated to
Spanish.

Landmark_Country-English_French Based
on (Hernandez et al.), we first retrieve the country
associated with a landmark, then translate the
country name to French.

Landmark_Country-English_Spanish
Constructed in the same way as Land-
mark_Country—English_French, using Spanish as
the target language.

Below, we describe the individual subtasks (s
and s9) used in the cross-task patching experiments.
Each subtask is a functional unit that appears as
part of one or more composite tasks.



Category

Composite Tasks

Knowledge—Algorithmic

Antonym-Uppercase

Synonym-Uppercase

Country_Capital-Lowercase

Landmark_Country—Lowercase

Product_Company-Lowercase

Extractive-Knowledge

Choose_Last—Country_Capital

Choose_Last-Landmark_Country

Adjective_v_Verb—Antonym

Adjective_v_Verb—Synonym

Extractive-Algorithmic

Choose_Last—First_Letter

Choose_Last—Uppercase

Knowledge-Translation

Antonym—English_French

Antonym-English_Spanish

Landmark_Country—English_French

Landmark_Country—English_Spanish

Table 3: Summary of the 15 composite tasks used in our experiments. Each task consists of a pair of subtasks
(s1 o s2), spanning four categories: Knowledge—Algorithmic, Extractive-Knowledge, Extractive—Algorithmic, and

Knowledge—Translation.

Antonym The antonym dataset is based on data
from (Nguyen et al., 2017), which contains word
pairs that are either antonyms or synonyms (e.g.,
“good — bad”, “spirited — fiery”). We
follow the same preprocessing protocol as in (Todd
et al.).

Synonym This dataset is also derived from
(Nguyen et al., 2017), containing word pairs with
synonym relationships. Preprocessing follows the
same steps as the antonym dataset.

Country_Capital This dataset consists of coun-
try—capital pairs (e.g., “France — Paris”), taken
from (Todd et al.).

Landmark_Country Includes land-
mark—country pairs such as “Eiffel Tower
— France”, based on the dataset from (Hernan-
dez et al.).

Product_Company Contains entries mapping
commercial products to the companies that pro-
duce or sell them (e.g., “iPhone — Apple”). Also
sourced from (Hernandez et al.).

Choose_Last Constructed by sampling three
items and asking the model to return the last item.
Data sourced from (Todd et al.).
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Adjective_v_Verb This dataset is designed to
test part-of-speech reasoning. Each example con-
tains a list of two verbs and one adjective, and the
model must identify the adjective. Source: (Todd
et al.).

Uppercase A simple string transformation task
where the model is required to convert the input to
uppercase. Examples and format are adapted from
(Todd et al.).

Lowercase Analogous to the Uppercase task, but
the model is required to convert the input to low-
ercase. Based on the same dataset used in (Todd
et al.).

First_Letter The task involves selecting the first
letter of a given word. We construct this by reusing
inputs from the Uppercase dataset and extracting
only the first character.

Translation (English-French / English-Spanish)
We use bilingual word pairs from (Conneau et al.,
2017) for English-French and English—Spanish
translations. Each example consists of an English
word and its corresponding translation. We follow
the preprocessing pipeline used in (Todd et al.).



B Results of Layer-from
Context-Masking

We present the complete results of the Layer-from
Context-Masking experiments across four models.
Each figure visualizes the layer-wise performance
on all 15 composite tasks, showing how masking
context information from progressively later layers
affects the model’s ability to complete subtasks and
composite outputs.

* Figure 6 shows results for Llama-3.1-8B.
* Figure 7 shows results for Mistral-7B.

* Figure 8 shows results for Qwen2.5-7B.
* Figure 9 shows results for Llama-3.2-3B.

C Results of Cross-Task Patching

We report the full results of the Cross-Task Patch-
ing experiment across all four models. Table 4
summarizes the subtask vector strength for each
model, indicating how well activations from com-
posite tasks can transfer to individual subtasks.

D Results of Logit Decoding

We present the complete results of the Logit De-
coding analysis for all four models. Each model
has two figures: (1) Mean Reciprocal Rank (MRR)
scores of component outputs (attention and MLP
layers), and (2) Mean Reciprocal Rank (MRR)
scores of residual stream.

* Figures 10 and 11 show results for Llama-3.1-
8B.

* Figures 12 and 13 show results for Mistral-7B.

* Figures 14 and 15 show results for Qwen2.5-
7B.

* Figures 16 and 17 show results for Llama-3.2-
3B.
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Figure 6: Layer-from context-masking results for all composite tasks in Llama-3.1-8B.
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Figure 7: Layer-from context-masking results for all composite tasks in Mistral-7B.
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Figure 8: Layer-from context-masking results for all composite tasks in Qwen2.5-7B.
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Figure 9: Layer-from context-masking results for all composite tasks in Llama-3.2-3B.
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Composite Task Llama-3.1-8B  Mistral-7B  Qwen2.5-7B  Llama-3.2-3B
antonym-uppercase

s1 (antonym) 0.92 +£0.02 0.26 £0.07 0.83 £0.02 0.87 £ 0.05

s2 (uppercase) 0.24 £+ 0.03 0.35+£0.02 0.03+£0.02 0.34 £ 0.04
synonym-uppercase

s1 (synonym) 0.90 £ 0.05 0.06 £0.03 0.39+£0.02 0.82 £+ 0.04

s2 (uppercase) 0.19 £ 0.05 0.40 £0.03 0.09 £0.03 0.11 £0.02
country_capital-lowercase

s1 (country_capital) 0.88 £ 0.03 0.20 £0.03 0.49 £0.05 1.02 + 0.02

s2 (lowercase) 0.49 £+ 0.05 0.45+0.08 0.34 £0.03 0.31 £ 0.03
landmark_country-lowercase

s1 (landmark_country) 0.96 £+ 0.02 0.92+0.02 0.67+0.02 0.96 £+ 0.01

s2 (lowercase) 0.07 £ 0.03 0.11 £0.04 0.17£0.04 0.01 £ 0.00
product_company-lowercase

s1 (product_company) 1.01 £ 0.01 0.86 £0.03 0.65+0.02 0.99 £+ 0.03

s2 (lowercase) 0.05 £ 0.01 0.46 £0.04 0.36 £0.05 0.06 £+ 0.03
choose_last-country_capital

s1 (choose_last) 0.44 £+ 0.03 0.32+£0.03 0.37 £0.05 0.26 £+ 0.04

s2 (country_capital) 0.98 £ 0.02 0.99 £0.01 0.97 £0.01 0.99 £ 0.01
choose_last-landmark_country

s1 (choose_last) 0.03 £0.02 0.00 £0.00 0.05+£0.04 0.03 £ 0.01

s2 (landmark_country) 0.94 £+ 0.01 0.96 £0.01 091 +0.01 0.96 £+ 0.01
adjective_v_verb-antonym

s1 (adjective_v_verb) 0.38 £0.11 0.21 £0.05 0.54 £0.08 0.16 £ 0.04

S2 (antonym) 0.94 £+ 0.03 0.96 £0.04 0.95+0.01 0.91 £ 0.05
adjective_v_verb-synonym

s1 (adjective_v_verb) 0.29 £ 0.04 0.39£0.05 0.26 £0.07 0.17 £ 0.04

S2 (synonym) 0.99 £ 0.05 0.76 £0.05 0.83 £ 0.07 0.79 £0.02
choose_last-first_letter

s1 (choose_last) 0.27 +£0.03 0.08 £0.02 0.25+0.04 0.41 £0.02

so (first_letter) 1.01 + 0.01 0.54 £0.03 0.95+£0.05 0.97 £ 0.03
choose_last-uppercase

s1 (choose_last) 0.44 £+ 0.03 0.12+0.02 0.26 £0.04 0.56 £+ 0.03

S2 (uppercase) 0.99 £ 0.00 0.99 £0.00 1.00 £ 0.00 0.98 £ 0.01
antonym-english_french

s1 (antonym) 0.92 +£0.02 0.53+£0.05 0.88+0.02 0.76 £ 0.07

s2 (english_french) 0.39 £ 0.04 0.58 £0.05 0.45+0.01 0.60 £ 0.06
antonym-english_spanish

s1 (antonym) 091 £0.02 0.35+0.05 0.86+0.02 0.70 £+ 0.08

s2 (english_spanish) 0.45 £ 0.03 0.69 £0.02 0.57£0.03 0.70 £ 0.01
landmark_country-english_french

s1 (landmark_country) 0.93 £0.01 0.96 £0.01 0.92+0.01 0.87 £0.01

s2 (english_french) 0.02 £ 0.00 0.02+0.01 0.02+0.01 0.00 £ 0.00
landmark_country-english_spanish

s1 (landmark_country) 0.93 +£0.01 0.95+0.01 0.92+0.01 0.90 £ 0.01

s2 (english_spanish) 0.01 £ 0.00 0.01 £0.01 0.01 £0.01 0.00 £ 0.00

Table 4: Subtask vector strength for all composite tasks across four models.
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Figure 10: Heatmaps of attention and MLP block decoding results for all tasks in Llama-3.1-8B.
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Figure 11: Decoding results of residual stream for all tasks in Llama-3.1-8B.
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Figure 12: Heatmaps of attention and MLP block decoding results for all tasks in Mistral-7B.
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Figure 13: Decoding results of residual stream for all tasks in Mistral-7B.
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Figure 14: Heatmaps of attention and MLP block decoding results for all tasks in Qwen2.5-7B.
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Figure 15: Decoding results of residual stream for all tasks in Qwen2.5-7B.
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Figure 16: Heatmaps of attention and MLP block decoding results for all tasks in Llama-3.2-3B.
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Figure 17: Decoding results of residual stream for all tasks in Llama-3.2-3B.
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