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Abstract

Variational inference often struggles with the posterior geometry exhibited by
complex hierarchical Bayesian models. Recent advances in flow-based variational
families and Variationally Inferred Parameters (VIP) each address aspects of this
challenge, but their formal relationship is unexplored. Here, we prove that the
combination of VIP and a full-rank Gaussian can be represented exactly as a
forward autoregressive flow augmented with a translation term and input from the
model’s prior. Guided by this theoretical insight, we introduce the Model-Informed
Flow (MIF) architecture, which adds the necessary translation mechanism, prior
information, and hierarchical ordering. Empirically, MIF delivers tighter posterior
approximations and matches or exceeds state-of-the-art performance across a suite
of hierarchical and non-hierarchical benchmarks.

1 Introduction

Inference remains challenging for many complex Bayesian models. Variational Inference (VI) casts
posterior approximation as minimization of the Kullback-Leibler divergence between a tractable
approximating distribution and the true posterior [9 [25 23]. Recent advances have focused on
increasing the expressiveness of variational families. Flow-based models, which apply a sequence of
invertible transformations to a simple base distribution, have shown particular promise [34} 36, 28]

Variationally Inferred Parameters (VIP) [19]] address a key challenge in VI: The posteriors of hi-
erarchical Bayesian models often exhibit pronounced curvature or “funnel-like” geometry [7} [24]
that standard families like Gaussians cannot capture. VIP builds on insights from non-centered
parameterization (NCP) in Markov chain Monte Carlo (MCMC) [35]], adaptively learning the optimal
degree of non-centering for each latent variable during the VI optimization process.

Our preliminary investigations reveal a striking observation: When VIP is combined with full-rank
Gaussian variational families, it achieves performance comparable to state-of-the-art methods from
recent evaluation [10] (See Tables [[] and [3). Since VIP and flow-based models both excel at
navigating posterior geometry, might they be manifestations of a common principle? In particular,
can a flow-based distribution encapsulate the benefits of VIP?

Our core theoretical result, formalized in Theorem E} shows that every full-rank VIP transformation
can be represented exactly as a forward autoregressive flow (FAF), provided that the flow (i) respects
the topological order of the latent variables, (ii) augments the usual affine mapping with a new
"translation" term, and (iii) receives the model’s prior mean and scale functions as additional inputs.

Guided by these principles, we introduce the Model-Informed Flow (MIF), a forward autoregressive
architecture that includes the necessary translation term and incorporates the distributional form
of the model’s prior. Across a range of benchmark models, MIF compares well to state-of-the-art
VI methods. We also perform targeted ablations to verify the predicted implications and practical
consequences of our theory.
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Figure 1: “Funnel”-type distributions commonly arise in hierarchical model. This figure shows

the funnel distribution (gray contours) approximated with 5000 samples from three families (blue

points): A Full-Rank Gaussian (FR) is very poor (KL-divergence of 1.86 nats). A standard Forward

Autoregressive Flow (FAF) is much better (0.38 nats) but still imperfect. Our proposed model-

informed flow (MIF) achieves a KL-divergence of effectively 0.

2 Preliminaries

2.1 Variational Inference

In Bayesian inference, given a model p(z, z), the goal is to approximate the posterior distribution
p(z|z) given observed data x. Direct computation of this posterior is typically intractable, so
variational inference (VI) introduces a tractable family ¢, (z) and minimises the Kullback-Leibler
(KL) divergence from g, (z) to the true posterior. The marginal likelihood then decomposes as

log p(z) = By, (- [log 52| + KL [gu(2) || p(2])] @1

divergence

ELBO g, (2) | p(2.)]

Since log p(x) is constant with respect to the variational parameters w, maximising the ELBO in (2.1)
is equivalent to minimising the KL divergence between ¢,, and the posterior.

2.2 Hierarchical Bayesian Models

Hierarchical Bayesian models are common in domains such as ecology [[12} 43} 38]] and epidemiology
[16, 137, 129]]. Following Gorinova et al. [19], we consider a hierarchical model in which each latent
variable z; is conditionally Gaussian with a mean and variance that are arbitrary function of parent
variables, while the observed data x; is generated from an arbitrary likelihood p(x;|m(z;)). In
particular, the likelihood for z; may depend on one or more latent variables through its parent set
7(z;). Formally, write

2 N(film(z0) 00 (m(20) ), ~ p(ln(ay), 22)

where 7(-) denotes the set of parent variables. Throughout, 7(-) may include both observed and latent
variables; that is, a variable can be conditioned on any subset of the remaining variables permitted by
the model graph. In practice, the functions f; and g; (which return the mean and standard deviation
of z;, respectively) often arise directly from a probabilistic programming system, encoding how the
mean and variance of each latent variable depend on its parent variables.

The joint density corresponding to Eq[2.2]is
p(z,2) = HJ\/'(zl|fZ (7(2)), i (W(zl))> X Hp(xj|7r(xj)). 2.3)
i=1 j=1

Example. As a concrete instance of Equation (2.2)), consider the model
a N(Oa 1), z2 ~ N(azla eXp(le))a

x1 | 21,22 ~ Poisson(exp(z1 + %22)) , X | 29,21 ~ Binomial(n = x1, p = 0(22)),



where o(u) = L —uy- To cast this as an instance of Equation (2.2), define the parent sets

T+exp(—u)
m(z1) =0, w(22)={x1}, 7(v1)={21,22}, 7(22)= {221},

and the functions

f1(0) =0, ¢:(0) =1, f2(z21) = az1,  g2(21) = exp(B21).

In Equation (2.2), we make no assumptions about the distributional form of the observed variables
;, 50 p(z1|m(z1)) = Poisson (exp(z1 + 322)) and p(za|m(22)) = Binomial(n = 21, p = 0(22))
can be arbitrary.

2.3 Non-Centered Parameterization

Hierarchical models often exhibit difficult curvature and “funnel-like* geometries. These are a
challenge for both sampling and variational inference approaches [[7, 24} 22]]. A common strategy
in MCMC to alleviate these issues is the non-centered parameterization (NCP) [35]]. To illustrate,
consider two latent variables z; and 29 having prior of

21~ N(p,0), 22 ~N(0,exp(z1/2)). 2.4)

In the standard (centered) parameterization, the goal is to approximate p(z|x). However, the nonlinear
dependence of 2, on z; can yield a sharply funnel-shaped joint posterior. As illustrated in Figure|[T]
(left panel), a full-rank Gaussian struggles to capture this funnel structure.

The non-centered approach introduces auxiliary variables € = (€1,€2) ~ N(0,I) and defines a
transformation z = Tcp (€) that recovers (21, 22) via

21 =u+ o€, 2= exp(%)eg. 2.5)
Instead of p(z,z), inference is done on p(e,x) where p(e) = N(0,I) and p(xle) = p(z|z =
Tncp(€)). The intuition is that if « is relatively uninformative, then p(e|z) will be close to a standard
Gaussian, even when p(z|z) might have a funnel-type geometry.

2.4 Variationally Inferred Parameters

While NCP helps alleviate pathologies in hierarchical models, it is not ideal for every latent variable.
Non-centering can prevent funnel-shaped geometries in cases with limited data, but when data is
highly informative, a centered formulation may be better. Variationally Inferred Parameters (VIP)
addresses this trade-off by learning a partial non-centered parameterization for each variable [19].

VIP reparameterizes z € R® by introducing an auxiliary variable Z = (1, ..., Zp), and by defining
a parameter \; € [0, 1] per dimension. Rather than drawing z; directly from its prior, VIP samples
5 N (N (m (20)) 01 (m ()) 2.6)

then recovers z; via VIP transformation, 75/1p, as in Definition|l| Note that ), interpolates between
the centered (\; = 1) and fully non-centered (\; = 0) extremes.

Definition 1 (VIP Transformation). For a fixed ordering of latent variables z = (z1,...,zp), and
auxiliary variables Z = (Z1,...,%2p), let A, € [0,1] be the partial non-centering parameter for
each coordinate 4, and f;(7(z;)) and g;(7(2;)) be continuous functions that return the mean and
standard deviation of z; (respectively) based on the parent nodes 7(z;). Then, the VIP transformation
z = Tyrp(Z2) is defined coordinate-wise by

zi = fi(m(2:)) + gi(m(z;)) "N (51 -\ fi(W(Zi))) 2.7
fori=1,...,D.

Substituting Ty 1p into the joint distribution (Equation (2.3)) yields a partially non-centered represen-
tation
- - Ai
pvip(Z,x) = HN(Zil)‘ifi (7(2i)), gi (7(2:)) ) X HP(%W(%))- (2.8)
i=1 j=1

VIP then learns a variational distribution ¢, (Z) by minimizing KL (g,,(2)||pvie(Z | )), optimizing
both the variational parameters w and the partiality parameters .



2.5 Equivalence of VIP in Model vs Variational Spaces

VIP applies Ty1p, in the model space. However, there is a straightforward analog in the variational
space. Suppose ¢,,(Z) is any distribution over the non-centered latent variables 2. We define a new
distribution g, vip(z) by letting

z="Typ(Z,2) with Z~ g,(2). (2.9)

In other words, g,, v1p is the distribution induced on z by applying the VIP transformation 7y p to
samples from ¢,,. Concretely, its density follows from the change-of-variables formula

Qwvip(2) = qu (Tyip (2,2)) |det V:Tyip (2,2)] . (2.10)
Since the KL divergence is invariant under such invertible transformations [11l], we have that
KL (guw,vip(2)|lp(z[z)) = KL (qu (2) lpvip (Z|2)) - (2.11)

Thus, optimizing min,, x KL (g, vip (#)||p(z|2)) with the posterior fixed is equivalent to reparame-
terizing the posterior as in In this paper, we choose a Gaussian distribution for g,,(Z) following
the original framework [19]]. In practice, we can choose any base family ¢,,(Z) and still reap the
benefits of partial non-centering. For more details please refer to Algorithm [2]in the Appendix [B]

2.6 Forward Autoregressive Flows

Flows offer a powerful way to extend the expressiveness of variational families, thereby reducing the
KL divergence between the variational approximation and the true posterior [36, 28} 2, [1]]. In flows, a
simple base distribution is gradually transformed into a more complex one through a sequence of
invertible mappings. One such transformation is the forward autoregressive flow.

Definition 2. A forward autoregressive flow (FAF) is an invertible transformation z = Trar(€)

)
which maps a base random variable € = (e1,...,€p) ~ p, to the target variable z = (21,...,2p)
via an autoregressive transformation

zi = mi(2z1:-1) + si(21:-1) €, 1=1,...,D, (2.12)

where p. is a base distribution, m; is a shift function and s; is a scaling function. Furthermore, an
affine forward autoregressive flow is one in which m,; and log s; are affine functions.

In practice, the scaling function is often parameterized in terms of log s; and subsequently recovered
using the exponential function, which ensures positivity; however, alternative nonlinear functions
can also be used. Also, multiple layers of the transformation can be composed to build more flexible
variational families.

3 Model-Informed Flows: Bridging VIP and Autoregressive Flows

We return to our central question: Can a flow-based distribution encapsulate the benefits of VIP?
The VIP process, when applied in the variational space, involves two key stages: first, sampling an
auxiliary variable Z from a base variational distribution g,,(Z), and second, transforming Z into the
latent variable z using the VIP transformation, 7Ty/1p.

The original VIP framework [19] primarily considers g, (%) to be a mean-field Gaussian (i.e., with
a diagonal covariance matrix). Our investigation extends this by considering ¢,,(Z) as a full-rank
Gaussian.

We first establish that a full-rank Gaussian is a special case of FAF. A full-rank Gaussian variational
distribution Z ~ A(u, LLT) is generated by an affine transformation T, applied to a standard
normal variable € ~ A(0, I)

Z=Ta(e) =p+ Le, 3.1

where ;1 € R is the mean vector and L € RP*P is a lower-triangular Cholesky factor of the

covariance matrix. This affine transformation, T4, can be replicated by an affine FAF by defining the
shift and scale functions of the FAF (recall Definition[2)) as

mi(Z1i-1) = i + Lit:io1 L;},l,l;i,l (Z1:i-1 — p1si-1),  logsi(Z1i-1) =log Ly,  (3.2)



(see Lemma([7)in Appendix [C)). Thus, a full-rank Gaussian distribution can be viewed as a specific
instance of an affine FAF.

While a standard affine FAF can represent the initial transformation T4 (generating Z from ¢), it
cannot, by itself, fully represent the composite transformation 75;1p o T4 that yields z. To see why,
observe that the composite transformation reduces to

i1
zi = fi(m(2:)) + gi(m(z:)) ' (Mz‘ + ) Lije; + Lie; — Aifi(ﬂ-(zi)))' (3.3)
i=1

If we attempt to cast this composite transformation into the standard affine FAF form from Equa-
tion (2.12) the terms would need to be

m;i(21:i—1) Z fi(m(2:)) + gi(m(zi)) N (Ni + z_: Lijej — /\ifi(ﬂ(zi))>7 3.4

log s;(21:i-1) ~ loggi(w(zi))l_ki + log L;. (3.5)

In principle, sufficiently powerful networks in the FAF could represent these forms. However, they
could not be captured in an affine FAF due to dependence on € and prior functions. In addition,
Equation (3.4) contains the product g;(7(z;)) fi(7(2;)), which induces quadratic dependence on z
that an affine mapping cannot represent. These nonlinearities may be difficult to capture even with an
FAF that uses, e.g., multi-layer perceptrons. To remedy this, we introduce a generalized flow.

Definition 3. A generalized forward autoregressive flow (GFAF) is an invertible transformation

z = Tgrar(€), which maps a base random variable € = (¢1,...,€p) ~ p, to the target variable
z = (z1,...,%p) via an autoregressive transformation
zi = mi(21:-1) + Si(21:i71)(6i - 751‘(61:1‘71,21:1‘71))» i=1,...,D, (3.6)

where p, is a base distribution, m; is a shift function, s; is a scaling function, and ¢; is a translation
function. Furthermore, an affine generalized forward autoregressive flow is one in which m;, log s;,
and ¢; are affine functions.

Our main theoretical result, stated in TheoremE], demonstrates how the composite transformation
T = Ty1p o T4 (a full-rank Gaussian transformation followed by the VIP transformation) can be
exactly represented by such a generalized forward autoregressive flow.

Theorem 4. Let T' = Ty1p o T'a where Ty1p is the VIP transformation (Deﬁnition and T’y is the
affine transformation from full-rank Gaussian. If f; and log g; in the hierarchical Bayesian model
(Equation ) are arbitrary continuous functions, and the parent nodes 7(z;) are a subset of the
preceding variables z1.;_1 (respecting the causal dependency structure of the model), then I' can be
represented as an affine generalized forward autoregressive flow with

mi(z1:i-1) = fi(m(2)), 3.7
log Si(zl:i—l) = log L + (1 — /\1) log gi(w(zi)), (3.8)
1
ti(€r:im1,21:-1) = I ()‘ifi(ﬂ'(zz’» — Hi — Li,l:iflelzifl) (3.9)

Theorem [] therefore demonstrates that GFAF, by leveraging its novel translation term ¢; (which
depends on past noise €1.;—1) and by incorporating the model’s prior functions, can replicate the
full-rank VIP mechanism.

3.1 Model-Informed Flows

Building on the previous ideas, we introduce a simple generalization of FAFs designed to capture the
VIP mechanism even if the conditioning networks are affine.

Definition 5. A Model-Informed Flow (MIF) is an invertible transformation z = Tr(€), which

maps a base random variable € = (€1, ...,€p) ~ p. to the target variable z = (z1,...,2p) via an
autoregressive transformation
Z; zmz(ul)—i—sl(uz)(ez —ti<€1;i,1,ui)), i=1,...,D, (3.10)
u; = (2121, film(2:)), gi(m(2:))] (3.11)



Algorithm 1 Model-Informed Flow (MIF)

Input: € = (e1, - ,ep), prior functions f1,---, fp and g1, - - - , gp (or their logs for scale)

1: fori =1to D do > Process in a pre-defined topological order of latent variables
2: w; = [21:-1, fi(m(2:)),log g;(7(2;))] > Construct input incorporating prior information
3: m; < NN, (u;) > Neural network for the shift function
4 log s; + NN (u;) > Neural network for the log-scale function
5 t; + NNy ([w;, €1.5-1]) > Neural network for the translation term with €;.;_1 inputs
6: z; + m; + exp(log s;) - (eiftl) > Generalized autoregressive transformation
7: end for

8: return z = (z1,...,2p)

where p. is a base distribution, m; is a shift function, s; is a scaling function, and ¢; is a translation
term. Furthermore, an Affine Model-Informed Flow is one in which m;, log s;, and t; are affine
functions.

Algorithm [I] presents the pseudocode for implementing MIF, highlighting in blue the components
that extend a standard forward autoregressive flow; omitting these reduces MIF to such a standard
FAF. The key architectural differences are, first, MIF employs conditioning networks not only for
the shift m, and log-scale log s; but also for the translation term ¢;, with the latter explicitly taking
previous noise variables €;.;_1 as inputs, as motivated by Theorem ] Second, MIF is designed
to incorporate the model’s prior functions f; and log g; as additional inputs to these conditioning
networks, providing them with valuable, explicit structural guidance from the target model. Third,
the generation process in MIF (the loop over ¢) must adhere to a pre-defined topological order of the
latent variables consistent with the hierarchical Bayesian model.

Before moving on to experiments, we discuss two practical issues.

3.2 Incorporating Prior Information through f; and log g;

Our preliminary experiments revealed that omitting explicit prior function inputs (f;, log g;) from
MIF often minimally impacted performance. This occurs when these priors are affine, as the target
generalized forward autoregressive flow (GFAF) representing full-rank VIP (per Theorem [ then
simplifies to an affine GFAF. An MIF, even without these explicit prior inputs, can learn to reproduce
this affine GFAF if its own conditioning functions for m;, log s;, and ¢; possess at least affine capacity.
This is shown in the following corollary.

Corollary 6. Let T' = Ty1p o T where Ty1p is the VIP transformation (see Definition|l) and T4 is
the affine transformation from full-rank Gaussian. If f; and log g; in the hierarchical Bayesian model
(see Equation (2.2))) are affine functions, then T can be represented as an affine generalized forward
autoregressive flow.

This corollary shows that when the prior functions are affine, affine MIFs have enough capacity to
learn them even if they are not provided, meaning there is no impact on the optimal KL-divergence.
Still, in practice providing f; and log g; is helpful in practice to accelerate convergence and reduce
training complexity. We suspect the same pattern holds more generally—if a MIF is trained with
high-capacity networks, it may be able to learn to represent the prior functions if not provided, at
some extra training cost.

3.3 The Necessity of Conditioning on Previously Generated Latent Variables

Inverse Autoregressive Flows (IAFs) [28]] represent an important class of normalizing flows, lauded
for the computational efficiency of their sampling process. Unlike FAFs, conditioning networks of
IAFs depend solely on the base noise variables €;.;_1, allowing parallel computation of all z;:

zi = mi(€r:i—1) + si(€ri—1)e, i=1,...,D. (3.12)

This structure makes it challenging to accurately represent the VIP mechanism. To capture VIP,
an IAF’s conditioning networks would need to replicate target forms that intrinsically depend on
previously generated latent variables z1.;_1 via the model’s prior functions (f;(7(z;)) and g;(mw(2;))).



Table 1: Negative ELBOs (—ELBO) for hierarchical benchmark models using mean-field Gaussian
(MF), mean-field Gaussian with VIP (MF-VIP), full-rank Gaussian (FR), and full-rank Gaussian with
VIP (FR-VIP). Lower values indicate tighter posterior approximations.

Model MF MF-VIP FR FR-VIP
8Schools 34.80 31.89 33.85 31.86

Credit 548.65 53390  535.88  525.02
Funnel 1.86 0.00 1.86 0.00

Radon 1267.99 1215.17 1220.73 1213.52
Movielens  870.93 850.49 856.11  844.51
IRT 823.15 822.58 817.38  816.64

Specifically, they would need to satisfy

i—1

mierian) 2 fi(w(a)) +ai(r (@) (ot 3 Ly = Mfilw(2). G13)
j=1

log si(€1:i—1) < (1 = Xi)loggi(m(z;)) + log Lii, (3.14)

where z; (and thus 7(2;)) on the right-hand side are themselves complex functions of €;1.;_1. Asking
m;(€1.;—1) and s;(e1.,—1) to represent this transformation is challenging as it essentially requires the
network to reproduce the entire process that produced z7.;_; in previous steps.

Particularly, an IAF with affine conditioning networks for m;,log s; (and a term like ¢;, if added)
cannot capture the VIP transformation, since z1.;—1 and €;.;_1 have a complex non-linear relationship.
This limitation underscores the advantage of forward autoregressive structures. We show in our
experiments (e.g., results related to Figure [2) that IAFs require substantially greater model capacity
to approach the effectiveness of MIF in representing VIP.

4 Related Work

Early flow-based generative models—including MADE [18]], Real NVP [15], Glow [27], and Masked
Autoregressive Flow [34]—established that autoregressive masking, coupling transforms, and invert-
ible 1x1 convolutions enable tractable likelihoods with strong high-dimensional density estimation.
Normalizing flows were subsequently adapted for variational inference, first as post-hoc enrichments
of diagonal Gaussians [36] and later as architectures that scale in latent dimensionality, most notably
Inverse Autoregressive Flow (IAF) [28]]. These developments demonstrated that flexible, invertible
parameterizations can substantially tighten the ELBO without sacrificing computational efficiency.

For hierarchical Bayesian models, Variationally Inferred Parameters (VIP) introduced gradient-based
partial non-centering to alleviate the funnel geometry typical of deep hierarchies [19]]. Building
on VIP’s idea of injecting model structure into the variational family, hybrids such as Automatic
Structured Variational Inference (ASVI) [3], Cascading Flows [4], and Embedded-Model Flows
(EMF) [41] couple model-aware parameterizations with flow flexibility. Our Model-Informed Flow
continues this line by proving that full-rank VIP can be represented in a forward autoregressive flow
augmented with translation and prior inputs, yielding a compact yet expressive variational family for
hierarchical models.

S Experiments

5.1 Experimental Setup

To validate our theoretical results, we evaluate on six different hierarchical Bayesian models:
8Schools, German Credit, Funnel, Radon, Movielens, and IRT. These models exhibit vary-
ing degrees of funnel-like posterior geometries, making them ideal testbeds for examining the benefits
of VIP-inspired flow designs. For our final comprehensive benchmark experiments, we also include
more models such as Seeds, Sonar, and Ionosphere.



Table 2: Negative ELBOs (—ELBO) for ablation study comparing affine Model-Informed Flow
(MIF) against variations and baselines across hierarchical models. MIF includes z-conditioning,
translation term, prior info, and correct order. Please refer to Appendix [D]for more details of variants
of MIF. Lower values indicate tighter posterior approximations.

MIF MIF MIF MIF
Model FR-VIP MIF (e-cond) (w/ot;) (w/oPrior) (w/o Order) IAF
8Schools 31.86 31.74 32.04 31.86 31.83 33.83 32.22
Credit 525.02 520.72 523.92 525.87 522.75 534.63 523.85
Funnel 0.00 0.01 0.38 0.38 0.38 1.86 0.37
Radon 1213.52  1213.11 1215.11 121431 1213.45 1259.13  1215.23
Movielens 844.51 842.91 844.01 846.66 843.59 854.10 844.23
IRT 816.64 815.49 815.70 815.74 815.53 815.58 815.66

For all experiments, we utilize the Adam optimizer [26]] and initialize all learnable parameters from
a standard Gaussian distribution with a standard deviation of 0.1. For our Model-Informed Flow
(MIF) evaluations, distinct configurations are used: the experiments in Section [5.3|primarily consider
a single-layer affine MIF to clearly assess its structural components. In subsequent experiments,
including the network expressiveness analysis and comprehensive benchmarks, MIF’s conditioning
networks are implemented as multi-layer perceptrons with ReLU activation functions to explore the
impact of increased representational capacity via hidden units.

We perform 100,000 optimization iterations, using 256 Monte Carlo samples to approximate the
ELBO during training. After training, the final ELBO is evaluated using 100,000 fresh samples for
reliable estimation. For each model configuration, we report the best ELBO achieved after exploring
six learning rates (logarithmically spaced from 107! to 1076). Additional details regarding the
benchmark models, specific variational family configurations, training time comparison, and MLP
architectures are provided in Appendix [D] Our implementation is available at https://github,
com/joohwanko/Model-Informed-Flow

5.2 Preliminary Observations: Full-Rank VIP Outperforms Baselines

Prior work on VIP focused exclusively on mean-field Gaussian approximations [[19]]. To assess
whether the advantages of VIP extend to richer variational families, we apply VIP to a full-rank Gaus-
sian setting and compare four configurations—MF, MF-VIP, FR, and FR-VIP—across six canonical
hierarchical models. As shown in Table [T} FR-VIP achieves the lowest negative ELBO in every
case, outperforming both its non-VIP counterpart and mean-field VIP, and achieving performance
comparable to more complex state-of-the-art methods (cf. Table[3). These results highlight the power
of combining full-rank with VIP and motivate our design of VIP-inspired low architectures.

5.3 Impact of Design Components

In this section, we empirically validate the contribution of MIF’s distinct design elements through
a targeted ablation study, with results presented in Table [2] We compare the affine MIF against
variants that individually alter or remove its key theoretically-motivated components: the e-dependent
translation term (;), by evaluating MIF (w/o t;); the use of explicit prior information, by assessing
MIF (w/o Prior) which omits f;, log g; as inputs; and adherence to the hierarchical variable processing
order, examined via MIF (w/o Order). Additionally, we test an IAF-like variant, MIF (e-cond), which
conditions primarily on base noise €1.;_1 instead of previously generated latents z;.;_1, alongside
relevant baselines like FR-VIP and a standard IAF. The consistent outcome is that deviating from
the full MIF design by removing or altering these components generally degrades performance,
underscoring their collective importance to its effectiveness.

5.4 Impact of Network Expressiveness

Recall from Section [3.3]that while IAFs face fundamental challenges in representing the VIP mecha-
nism due to their conditioning solely on noise (¢), it was posited that sufficient network expressiveness
might partially overcome these limitations. We empirically investigate this by comparing our full
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Figure 2: Best ELBO achieved by full MIF (blue) and the variant without latent-variable conditioning
(orange) as a function of MLP hidden-unit count. Higher capacity allows the no-latent variant to close
the gap, showing that sufficiently expressive networks can implicitly learn dependencies otherwise
provided by explicit latent inputs.

MIF, which conditions on previously generated latents z;.;_1, against MIF (e-cond), an IAF-like
variant where the conditioning networks primarily use €;.;—1 instead of z1.;_1.

Figure [2] illustrates the performance of MIF versus MIF (e-cond) as the expressiveness of their
conditioning networks (e.g., by increasing the number of hidden units) is varied. Across most
benchmarked models, enhancing network capacity allows MIF (e-cond) to substantially improve its
ability to capture complex dependencies. Consequently, the performance gap between this IAF-like
variant and the standard MIF significantly narrows with increased expressiveness, demonstrating that
sufficiently powerful IAF-like architectures can indeed achieve strong results, in many cases closely
approaching or nearly matching the performance of MIF, which itself may maintain a slight lead or
offer benefits in parameter efficiency.

5.5 Comprehensive Evaluation on Hierarchical and Non-hierarchical Benchmarks

To assess its generality and competitive strength, we benchmark MIF with 1024 hidden units per
conditioning network, denoted MIF(h = 210), against several leading variational inference methods.
These baselines, primarily drawn from the recent benchmark by [10] and detailed with their acronyms
in the caption of Table [3| provide a robust comparison. The evaluation spans the six previously
discussed hierarchical models and three additional datasets (Seeds’, Sonar', Tonosphere?) to test
MIF’s broad applicability. Results in the Table [3| show that MIF(h = 21°) achieves the best or
equal-best performance on most of the benchmarks. These strong results, obtained using just a single
layer of our expressive MIF transformation, demonstrate that its theory-driven design effectively
delivers state-of-the-art performance with notable architectural simplicity.

6 Discussion and Limitation

This paper introduces the Model-Informed Flow (MIF), a new architecture for variational inference
designed for complex hierarchical Bayesian models. MIF originates from a connection between
VIP and FAFs. A significant finding is that even a single-layer affine MIF can achieve surprisingly
competitive performance against other methods. A limitation of MIF is its reliance on the FAF
structure. Although FAFs may not inherently demand more floating-point operations (FLOPs) per
sample than Inverse Autoregressive Flows (IAFs), with variational inference, IAFs are better suited
for modern parallel computing environments. The VIP mechanism appears to be essentially sequential
in nature. Thus, our research suggests a consideration for flows and VI: to capture difficult posterior
geometry may require either sequential processing as in MIF or high-capacity conditioning networks.



Table 3: Negative ELBOs (—ELBO) for various VI methods on hierarchical and non-hierarchical
benchmarks. Compared methods include: Gaussian Mean-Field (MF) [8]], Gaussian Mixture Model
VI (GMMV]) [6], Sequential Monte Carlo (SMC) [14], Annealed Flow Transport (AFT) [5], Flow
Annealed IS Bootstrap (FAB) [32], Continual Repeated AFT (CRAFT) [31], and Uncorrected
Hamiltonian Annealing (UHA) [42]]. Lower values indicate tighter posterior approximations; '
denotes results taken from [10].

Model MF GMMVI  SMC AFT FAB CRAFT UHA  MIF(h = 210)
8Schools 34.80 31.70 31.80 31.81 31.79 31.90 33.09 31.78
German Credit  548.65 519.35 53142  527.60 51939 52459  536.30 519.29
Funnel 1.86 0.01 0.29 0.30 0.01 0.02 0.38 0.00
Radon 1267.99 1213.67 1221.63 123642 121592 1229.77 1260.38 1211.83
Movielens 870.93 848.00 849.68  853.84 84532  850.20  861.22 842.09
IRT 823.15 815.05 820.46  819.56  816.44  818.66  821.84 813.17
Seeds' 76.73 73.41 74.69 74.26 73.41 73.79 N/A 72.00
Sonarf 137.67 108.72 111.35 110.67  108.59 115.61 N/A 108.85
Ionosphere! 123.41 111.83 114.75 113.27  111.67 112.38 N/A 111.85
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 2 defines the scope of the paper and Section 3 gives evidence to the
main claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We state possible limitations of MIF compared to inverse autoregressive flows
in terms of speed.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: See Section 3 and the corresponding proofs in the Appendix.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide experimental details in the Experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide the code for the experiments in the Appendix.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Every details of experiments is in Experiments section and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not provide error bars, but the experiment results show average values
across different runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All of the experiment details are in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We did not state broader impacts since there are no significant impacts we
anticipate that need to be described in the paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Materials

A Acronyms and Notations

This section provides a summary of acronyms and mathematical notations frequently used throughout
the paper to aid the reader.

Table 4: List of Acronyms
Acronym Definition

CP Centered Parameterization
ELBO Evidence Lower Bound

FAF Forward Autoregressive Flow
FR Full-Rank (Gaussian)

GFAF Generalized Forward Autoregressive Flow
IAF Inverse Autoregressive Flow

KL Kullback-Leibler (divergence)
MF Mean-Field (Gaussian)

MIF Model-Informed Flow

MLP Multi-Layer Perceptron

NCP Non-Centered Parameterization
VI Variational Inference

VIP Variationally Inferred Parameters

Table 5: List of Notations

Symbol  Definition

x Observed data

z Latent variables, z = (21,...,2p)

D Dimensionality of the latent space

7(z;) Set of parent variables for z; in a hierarchical model

fi(9) Prior mean function for z;, i.e., z; ~ N (f;(m(2;)), )

gi(+) Prior standard deviation function for z;, i.e., z; ~ N (-, g;(7(2;)))
€ Base noise variable, typically e ~ N(0, I)

Tnep()  Non-Centered Parameterization transformation

Z Auxiliary base variable in VIP/NCP, z = T'(%)

Ai Partial non-centering parameter for z; in VIP, \; € [0, 1]

Tyip(-)  VIP transformation

Ta(") Affine transformation, e.g., i + Le for a Gaussian

m; () Shift function for z; in an autoregressive flow

si(+) Scale function for z; in an autoregressive flow

ti (") Translation function for ¢; in GFAF/MIF

U Input to conditioning networks in MIF: [z1.;—1, fi(7(2:)), gi(7(2:))]

B Algorithm

Algorithmdetails the procedure for generating a sample z from the variational distribution g,, vip (%)
and then evaluating its corresponding log-density.
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Algorithm 2 Sampling from and Evaluating g,, vip (%)

Input: Parameters w of the base distribution ¢,,(2); VIP parameters A1, ..., Ap; model prior
functions f;(+), g:(+), and parent dependencies 7 (-); dimensionality D; a topological ordering
for z1,...,2p.

1: Sample Z ~ g, (Z)

2: logJ <0

3: fort=1,...,Ddo

4z fi(m(z) + gi(ﬂ'(zi))l . (Zi = Nifi(m(21)))
5: log J < log J + (1 — \;) log g; (m(2:))

6: end for

7. 10g Gw,VIP (Z) — IOg Qw(g) - IOg J

8: return z,log g, vip(2)

C Proof

Lemma 7. The affine transformation T's from full-rank VI can be represented as an affine forward
autoregressive flow with

mi(zlzifl) = Wi + Li,l:ifl L;%—l,l:i—l (leifl - Nl:i—l),
log si(21:i—1) = log L;;.

Proof. We begin by expressing the affine transformation T (¢) = p + Le in a coordinate-wise form:
i—1

Zz:Nz+Lzzez+ZL1j€jv Z:1,7D (Cl)
j=1

For any forward autoregressive flow to be equivalent to this transformation, we need to derive
appropriate functions m;(-) and s;(+) such that z; = m;(z1.;—1) + si;(21.4—1)€; for each i.

First, observe that for any ¢ > 1, the variables z;.;_; depend only on €., due to the lower-triangular
structure of L. Since Lq.;_1,1:4—1 is a lower-triangular submatrix with positive diagonal entries (as L
is a Cholesky factor), it is invertible. Thus, we can solve for €1.;_1 in terms of z1.;_1:

€1:i—1 = L;%_171;i_1(zl:i—1 — [1:—-1)- (C2)
Now, substituting this expression into our original coordinate-wise equation:
i—1
j=1
= p; + Lije; + L 1.4-1€1:-1 (C.4)
= p; + Lije; + Li,1;i71L;g_171:i_1(leifl — H1i—1) (C.5)
This naturally suggests defining:
mz’(zl:i—l) =i+ Li,l:i—lLl_;il—l,lzi—l(Zlii—l - ,ul:i—l)a (C.6)
5i(21:i—1) = Lij. (C.7)
With these definitions, the forward autoregressive flow transformation becomes:
zi = mi(21:-1) + 8i(21:-1) €, (C.3)
which is identical to our coordinate-wise expansion of the affine transformation 7Tx. Since this
holds for all i = 1, ..., D, we have shown that the full-rank VI affine transformation can be exactly

represented as a forward autoregressive flow with the specified shift and scale functions.

Note that m;(z1.;—1) is an affine function of z1.;_1, and s;(z1.;—1) is a constant function, confirming
that this is indeed an affine forward autoregressive flow. O
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Theorem 4. Let T' = Ty;1p o T'a where Ty1p is the VIP transformation (Deﬁnition and T’y is the
affine transformation from full-rank Gaussian. If f; and log g; in the hierarchical Bayesian model
(Equation ) are arbitrary continuous functions, and the parent nodes 7(z;) are a subset of the
preceding variables z1.;—1 (respecting the causal dependency structure of the model), then T' can be
represented as an affine generalized forward autoregressive flow with

mi(zlzi—l) = fi(W(Zz‘)), 3.7
log 5i(21:i-1) = log Ly; + (1 — A;) log gs (7 (2:)), (3-8)
1
ti(erizt, 21:4-1) = I (/\zfz(ﬂ(zz)) — i — Li,l:i—lelzi—l) (3.9

Proof. The affine transformation T4 is defined as T'4(€) = p + Le, where p is the mean vector and
L is a lower-triangular matrix with positive diagonal elements. In coordinate form, this gives us

i—1
Zi = i + Lye; + Z Lijej, (C.9)
j=1
where Z; denotes the intermediate result after applying T4 but before applying T'.

Now, the VIP transformation T} is defined in Definition [T]as

zi = fi(m(2:)) + gi(m(2:)) 7 (2 = Nifi(m(2))), (C.10)
where Z; is the output of T)4. Substituting, we get
zi = fi(m(z)) + gi(m(2:)) N (8 = Nifi(w(2:))) (C.1D)
1—1
= Jiw(z2)) + gi(m () 7 (s Luei + 3 Ly = Afilw(z)))  (€12)
=1

From our assumption that 7(z;) C z1.;—1, we know that f;(m(z;)) and g;(7w(z;)) are functions of
only the preceding variables z1.;_1.

To express this in the form of a generalized forward autoregressive flow, we need functions m;, s;,

and ¢; such that:
zi = mi(21:-1) + Si(zlzz‘—l)(ﬁi —ti(er:i-1, Zl:i—l)) (C.13)

Let’s rearrange our expression for z; to match this form:

zi = fi(m(z:) + galm(z:)) ' (Mz‘ + Liie; + Z_:Ligfj - )‘ifi(ﬂ'(zi))) (C.14)

j=1

— A+ ) L~ (= X e £ N )) €19

(3

By identifying terms, we can define:

mi(z1:i-1) = fi(m(21)), (C.16)
log si(z1:—1) = log Ly + (1 — X;) log gi (7 (%)), (C.17)
1
ti(€r:im1,21:—-1) = . ()\ifi(ﬂ'(zi)) — Hi — Li,l:i—1€1:i—1> (C.18)

Thus, we have shown that the composite transformation 7" = T o T4 can be represented as a
generalized forward autoregressive flow with the specified functions m;, s;, and ¢;, which completes
the proof. O
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Corollary 6. Let T' = Ty1p o T'a where Ty1p is the VIP transformation (see Definition|l) and T s is
the affine transformation from full-rank Gaussian. If f; and log g; in the hierarchical Bayesian model
(see Equation ) are affine functions, then T can be represented as an affine generalized forward
autoregressive flow.

Proof. This result follows directly from Theorem 4 which established that the composite transforma-
tion T = Ty;1p o T4 can be represented as a generalized forward autoregressive flow with specific
functions m;, s;, and t;. We now show that when f; and log g; are affine functions, all components
of this flow become affine, reducing it to a standard affine forward autoregressive flow.

Since f; and log g; are affine functions, we can express them as
fi(z1:i-1) = a; + b;'rzlzifla (C.19)
log gi(z1:-1) = ¢i + d] z1:41, (C.20)
where a;, ¢; are scalar constants and b;, d; are vectors of appropriate dimensions.

From Theorem ] we have

mi(z14-1) = filz1i-1) = a; +b] z14-1, (C.21)

log si(21:-1) = log Li; + (1 — Ai) log gi(z1:i-1) (C.22)

= 1Og Lii + (1 - Ai)(Ci + diTzM_l), (C23)
1

ti(€1:i-1, 21:-1) = . (—Mz' — Liji—1 €1+ )\ifi(zl:i—l)) (C.24)
1

. (_Mi — Li i1 €io1 + Aiai + bjzl:i,1)> (C.25)

= fn(_ui + Aiai) — LiiiLi,lzifl €1:i—1 + Liiib;rzlziil (C.26)

Clearly, m;(z1.,—1) is an affine function of z1.,_1, and log s;(z1.;—1) is also an affine function of
21.i—1. Furthermore, t;(€1.,—1, 21.;—1) is an affine function of both €;.;_1 and 21.;_1.

Since m;, log s;, and ¢; are all affine functions of their respective inputs, this formulation constitutes
an affine generalized forward autoregressive flow. O

D Experimental Details

All experiments were run on a single server with an Intel Xeon Platinum 8352Y CPU (128 hardware
threads at 2.20 GHz), 512 GiB of RAM. For each experiment (i.e., each training or evaluation run),
we used one NVIDIA A100 (40 GiB) under CUDA 12.8.

D.1 Models

Eight Schools The Eight Schools model [39] estimates treatment effects 6; for Nchoois = 8 schools,
given observed effects y; and known standard errors o;.

w~ N(0,5) log 7 ~ N(0,5) (D.1)
0; ~ N(:u? eXp(log T)) Yi ~ N(‘gia Ui)7 1 =1,..., Nghools- (D.2)
Latent variables: z = (u,log 7,01, ..., 0N . )-

German Credit A logistic regression model [[17] with Ngyures = K predictors x, for Nyps
individuals, predicting binary outcomes y,,. It uses hierarchical priors on coefficient scales 7y.

log 79 ~ N(0,10) (D.3)
log 7, ~ N (log 79, 1), k=1,....K (D.4)
B ~ N(0,exp(log 1)), k=1,...,.K (D.5)
K
T =Y Brnk, n=1,..., Nos (D.6)
k=1
yn ~ Bernoulli(1/(1 4+ exp(—ny))), n=1,..., Nops. (D.7)
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Latent variables: z = (log 7o, {log 7}, , {Br },)-

Funnel Neal’s Funnel distribution [[33] in D = 10 dimensions for x = (x1,...,Zp).
x1 ~ N(0,3) (D.8)
zp ~ N(0,exp(z1/2)), k=2,...,D. (D.9)
All variables x4, ...,z p are latent. (The variance for z; is 32 = 9; the variance for =, k > 2 is
exp(21).)

Radon A hierarchical linear regression [[17] modeling log-radon levels log r; in Npomes homes.
Data includes x; (floor indicator for home j), uy, (uranium reading for county k), and c¢; (county for
home 7). Priors are inferred from the provided code structure.

Mo NJ\/(O,l) (D.10)
a~N(0,1) (D.11)

b~ N(0,1) (D.12)

log oy, ~ N(0,10), k=1,..., Neounties (D.13)
log o, ~ N (0, 10) (D.14)
my ~ N (uo + a - ug,exp(log o)), E=1,..., Neounties (D.15)
1Ogrj NN(ij +b'xjaexp(10g0y))v J=1,..., Nhomes- (D.16)

Latent variables: z = (o, a, b, {log o, }kNji"““, log oy, {mk}gj‘f“‘”).

Movielens The Movielens model [21] is a hierarchical logistic regression for predicting movie
ratings. Each rating n is given by a user w,, € {1, ..., M} for a movie described by a binary attribute
vector x,, € {0, 1} (with D = 18 attributes). The rating is y,, € {0, 1}.

Each user m has an attribute preference vector Z,,, = (Zpm.1,.-.,Zm,p) € RP. The model is:
pi ~N(0,1), ji=1,...,D (D.17)
A ~N(0,1), ji=1,...,D (D.18)
Zp,j ~ N(pj,exp(Aj)), m=1,...,M; j=1,...,D (D.19)
Yn ~ Bernoulli (sigmoid (XI Zun)) , n=1,...,N. (D.20)

Here, 115 is the mean preference for attribute j across users, and A; is the log standard deviation of

preferences for attribute j. Latent variables: z = ({;1;}2 1, {\;} 2y {Zom i 1 i1)-

IRT The Item Response Theory (IRT) two-parameter logistic (2PL) model [30] is used to model
student responses to test items. Let Ng be the number of students, N be the number of questions
(items), and Np be the total number of responses. For each response r, s, is the student ID and ¢, is
the question ID.

as ~ N(0,1), s=1,...,Ng (D.21)
15 ~ N(0,1) (D.22)
logog ~ N(0,1) (D.23)
logo, ~ N(0,1) (D.24)
Bg ~ N (1, exp(log o)), g=1,...,Ng (D.25)
log vy ~ N (0, exp(log o)), g=1,...,Ng (D.26)
logit, = exp(log vy, )aws, + B, r=1,...,Ng (D.27)
yr ~ Bernoulli(sigmoid(logit,.)), r=1,...,Ng. (D.28)

Here, « is the ability of student s, /3, is the easiness of question g, and exp(log ) is its discrimina-
tion. Latent variables: z = ({as} N5, ug,logag,log o, {,Bq}flvfl, {log 'yq}évfl).
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Seeds The Seeds model [13]] is a random effects logistic regression for analyzing seed germination
data. It models the number of germinated seeds r; out of IV; seeds in G = 21 experimental groups,
using group-specific predictors 1 ; and 2 ;.

7 ~ Gamma(0.01,0.01) (D.29)
ag, a1, az, a1z ~ N(0,10) (D.30)
b ~ N (0,1/V/7), i=1,...,G (D.31)
M = Go + a1T1,; + a2T2; + a1271,: T2, + b;, i=1,...,G (D.32)
r; ~ Binomial (V;, sigmoid(n;)) , i=1,...,G. (D.33)

Here, x; ; and x5 ; are indicator variables for experimental conditions (e.g., seed type and root extract).
7 is the precision for the random effects b;. Latent variables: z = (7, ag, a1, az, aia, {b; }$ ;).

Sonar The Sonar model [20] is a Bayesian logistic regression. It uses D = 61 features/coefficients
x to classify N = 208 sonar returns u; into two categories y; € {0, 1} (e.g., mines vs. rocks).

x~N(0,071p) (D.34)
y; ~ Bernoulli (sigmoid (xTui)) , 1=1,...,N. (D.35)

Here, u; € RP is the feature vector for the i-th observation, Ip is the D x D identity matrix, and ofg
is a predefined prior variance for the coefficients x. The latent variables are z = (x).

Ionosphere The Ionosphere model [40] is a Bayesian logistic regression. It uses D = 35 fea-
tures/coefficients x to classify N = 351 radar returns u,; from the ionosphere into two categories

Yi € {O7 1}.
x ~ N (0,021p) (D.36)
y; ~ Bernoulli (sigmoid (xTui)) , 1=1,...,N. (D.37)

Here, u; € RP is the feature vector for the i-th observation, Ip is the D x D identity matrix, and U?E
is a predefined prior variance for the coefficients x. The latent variables are z = (x).

D.2 Implementation Details

The conditioning networks for the shift (1m;), log-scale (log s;), and translation (¢;, for MIF and its
variants) terms in both forward autoregressive flows (FAF) and inverse autoregressive flows (IAF) are
constructed as follows, depending on the experimental context.

For affine flows, such as those used in the ablation studies in Section each conditioning network
(for m;, log s;, or t;) consists of a single linear layer. This layer directly maps the conditioning inputs
to the required output parameters.

For flows requiring greater representational capacity, specifically in experiments evaluating network
expressiveness (Figure[2) and for the comprehensive benchmarks (Table [3)), the conditioning networks
are implemented using a two-component MLP-based architecture. Each parameter (m;, log s;, or
t;) is computed by summing the outputs of two parallel components, both of which operate on the
same input conditioning variables:

1. A linear component: This is a direct linear transformation of the inputs, identical in
architecture to the conditioners used in the affine flows.

2. An MLP component: This is a multi-layer perceptron (MLP) featuring a single hidden
layer with ReL.U activation functions, followed by a linear output layer. The size of the
hidden layer (number of hidden units) is varied in experiments that assess the impact of
network capacity (e.g., from 2° to 219 as illustrated in Figure .

The final value for m;, log s;, or t; is the sum of the outputs derived from these linear and MLP
components.

For experiments involving baseline models from Blessing et al. [10], we utilized the implementations
provided in their publicly available code repository to ensure consistency and fair comparison.
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Table 6: Training time comparisons (seconds) between the default Model-Informed Flow (MIF) and a
variant that conditions on the base noise (“MIF with ¢”).

Model D Hidden Units MIF (s) MIF with € (s)
0 17.06 13.88
64 28.40 23.22
Eight Schools 10 256 28.04 22.18
512 28.21 22.03
1024 30.30 22.61
0 18.23 14.70
64 27.38 23.16
Funnel 10 256 27.04 22.42
512 28.57 22.30
1024 30.77 22.69
0 63.81 16.06
64 148.73 27.81
German Credit 125 256 208.44 54.92
512 275.74 93.26
1024 417.05 173.51
0 84.25 15.78
64 238.04 37.32
Radon 174 256 331.24 94.82
512 453.70 168.28
1024 699.73 338.63
0 72.26 17.59
64 196.64 33.15
IRT 143 256 253.17 67.95
512 457.56 119.95
1024 516.98 222.65
0 458.28 28.97
64 1981.14 384.45
MovieLens 882 256 4847.23 1387.64
512 8634.91 3156.82
1024 15873.45 6749.33

D.3 Training Time Comparisons

We report wall-clock training times (in seconds) across six benchmarks and varying hidden sizes.
Table[6]compares our default Model-Informed Flow (MIF) against a variant that conditions on the base
noise (“MIF with €”), while Table[7] ablates the number of conditioning subnetworks: “3 networks”
uses (m, s,t) and “2 networks (no t)” uses only (m, s). Overall, “MIF with €” is consistently faster
than the default MIF at comparable capacities, and removing the translation network (¢) yields
additional speedups with similar trends across datasets. We use D to denote latent dimensionality.
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Table 7: Ablation on the number of conditioning subnetworks (seconds). “3 networks” uses shift,
scale, and translation (m, s,t). “2 networks (no ¢)” removes the translation network and uses only
(m, s) under the same training setup.

Model D Hidden Units 3 Networks (s) 2 Networks (no t) (s)
0 17.06 16.98
64 28.40 24.13
Eight Schools 10 256 28.04 24.81
512 28.21 25.80
1024 30.30 25.76
0 18.23 18.63
64 27.38 25.89
Funnel 10 256 27.04 25.85
512 28.57 26.27
1024 30.77 26.01
0 63.81 52.68
64 148.73 115.39
German Credit 125 256 208.44 139.90
512 275.74 175.94
1024 417.05 258.98
0 84.25 77.52
64 238.04 220.17
Radon 174 256 331.24 306.44
512 453.70 419.42
1024 699.73 647.75
0 72.26 66.73
64 196.64 181.92
IRT 143 256 253.17 234.43
512 457.56 423.00
1024 516.98 478.45
0 458.28 423.65
64 1981.14 1832.85
MovieLens 882 256 4847.23 4486.69
512 8634.91 7992.34
1024 15873.45 14687.99
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