
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAMBULAR: A SEQUENTIAL MODEL FOR TABULAR
DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The analysis of tabular data has traditionally been dominated by gradient-boosted
decision trees (GBDTs), known for their proficiency with mixed categorical and
numerical features. However, recent deep learning innovations are challenging
this dominance. We introduce Mambular, an adaptation of the Mamba architec-
ture optimized for tabular data. We extensively benchmark Mambular against
state-of-the-art models, including neural networks and tree-based methods, and
demonstrate its competitive performance across diverse datasets. Additionally,
we explore various adaptations of Mambular to understand its effectiveness for
tabular data. We investigate different pooling strategies, feature interaction mech-
anisms, and bi-directional processing. Our analysis shows that interpreting fea-
tures as a sequence and passing them through Mamba layers results in surpris-
ingly performant models. The results highlight Mambular’s potential as a ver-
satile and powerful architecture for tabular data analysis, expanding the scope
of deep learning applications in this domain. The source code is available at
https://anonymous.4open.science/r/mamba-tabular-485F/.

1 INTRODUCTION

Gradient-boosted decision trees (GBDTs) have long been the dominant approach for analyzing tab-
ular data, due to their ability to handle the typical mix of categorical and numerical features found
in such datasets (Grinsztajn et al., 2022). In contrast, deep learning models have historically faced
challenges with tabular data, often struggling to outperform GBDTs. The complexity and diversity
of tabular data, including issues like missing values, varied feature types, and the need for exten-
sive preprocessing, have made it difficult for deep learning to match the performance of GBDTs
(Borisov et al., 2022). However, recent advancements in deep learning are gradually challenging
this paradigm by introducing innovative architectures that leverage advanced mechanisms to capture
complex feature dependencies, promising significant improvements (Popov et al., 2019; Hollmann
et al., 2022; Gorishniy et al., 2021).

One of the most effective advancements in tabular deep learning is the application of attention mech-
anisms in models like TabTransformer (Huang et al., 2020), FT-Transformer (Gorishniy et al., 2021)
and many more (Wang and Sun, 2022; Thielmann et al., 2024b; Arik and Pfister, 2021). These mod-
els leverage the attention mechanism to capture dependencies between features, offering a signifi-
cant improvement over traditional approaches. FT-Transformers, in particular, have demonstrated
robust performance across various tabular datasets, often surpassing the accuracy of GBDTs (McEl-
fresh et al., 2024). Additionally, more traditional models like Multi-Layer Perceptrons (MLPs) and
ResNets have demonstrated improvements when well-designed and when the data undergoes thor-
ough preprocessing (Gorishniy et al., 2021; 2022). These models have benefited especially from
innovations in advanced preprocessing methods that make them more competitive.

More recently, the Mamba architecture (Gu and Dao, 2023) has shown promising results in textual
problems. Tasks previously dominated by Transformer architectures, such as DNA modeling and
language modeling, have seen improvements with the application of Mamba models (Gu and Dao,
2023; Schiff et al., 2024; Zhao et al., 2024). Several adaptations have demonstrated its versatility,
such as Vision Mamba for image classification (Xu et al., 2024), video analysis (Yang et al., 2024;
Yue and Li, 2024) and point cloud analysis (Zhang et al., 2024; Liu et al., 2024). Furthermore, the

1

https://anonymous.4open.science/r/mamba-tabular-485F/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

architecture has been adapted for time series problems, with notable successes reported by Patro
and Agneeswaran (2024), Wang et al. (2024) and Ahamed and Cheng (2024b). Mamba has also
been integrated into graph learning (Behrouz and Hashemi, 2024) and imitation learning (Correia
and Alexandre, 2024). Further advancements have improved the language model, for example, by
incorporating attention (Lieber et al., 2024), Mixture of Experts (Pióro et al., 2024) or bi-directional
sequence processing (Liang et al., 2024).

These advancements underscore Mamba’s broad applicability, making it a powerful and flexible
architecture for diverse tasks and data types. Similarly to the transformer architecture, the question
arises whether the Mamba architecture can also be leveraged for tabular problems, and this study is
focused on addressing this question.

The contributions of the paper can be summarized as follows:

I. We introduce Mambular, a tabular adaptation of Mamba, demonstrating the potential of
sequential models in addressing tabular problems.

II. We conduct extensive benchmarking of Mambular against several competitive neural and
tree-based methods, illustrating that a standard Mambular model performs on par with or
better than tree-based models across a wide range of datasets.

III. We examine the impact of bi-directional processing and feature interaction layers on Mam-
bular’s performance, and compare several pooling methods.

IV. Finally, we carry out an in-depth analysis of Mambular’s sequential nature, investigating
the implications of feature orderings in a sequential tabular model.

2 METHODOLOGY

For a tabular problem, let D = {(x(i), y(i))}ni=1 be the training dataset of size n and let y denote the
target variable that can be arbitrarily distributed. Each input x = (x1, x2, . . . , xJ) contains J fea-
tures (variables). Categorical and numerical features are distinguished such that x ≡ (xcat,xnum),
with the complete feature vector denoted as x. Further, let x(i)

j(cat) denote the j-th categorical feature

of the i-th observation, and hence x(i)
j(num) denote the j-th numerical feature of the i-th observation.

Following standard tabular transformer architectures, the categorical features are first encoded and
embedded. In contrast to classical language models, each categorical feature has its own, distinct
vocabulary to avoid problems with binary or integer encoded variables. Including <UNK> tokens
additionally allows to easily deal with unknown or missing categorical values during training or
inference.

Numerical features are mapped to the embedding space via a simple linear layer. However, since
a single linear layer does not add information beyond a linear transformation, Periodic Linear En-
codings, as introduced by Gorishniy et al. (2022) are used for all numerical features. Thus, each
numerical feature is encoded before being passed through the linear layer for rescaling. Simple
decision trees are used for detecting the bin boundaries, bt, and depending on the task, either clas-
sification or regression is employed for the target-dependent encoding function hj(xj(num), y). Let
bt denote the decision boundaries from the decision trees. The encoding function is given in Eq. 1.

PLE

ztj(num) =


0 if x < bt−1,

1 if x ≥ bt,
x−bt−1

bt−2−bt−1
else.

(1)

The feature encoding and embedding generation is demonstrated in Figure 1. The created embed-
dings, following classical statistical literature (Hastie et al., 2009; Kneib et al., 2023) are denoted as
Z and not X to clarify the difference between the embeddings and the raw features.

Subsequently, the embeddings are passed jointly through a stack of Mamba layers. These include
one-dimensional convolutional layers to account for invariance of feature ordering in the pseudo-
sequence as well as a state-space (SSM) model (Gu et al., 2021; Hamilton, 1994) . The feature matrix

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

xnum

xcat

Encoder

Encoded xnum

E
m

be
dd

er

Encoder

E
m

be
dd

er

...
...

...
...

...

N

×J

Pseudo seq-length

znum
∈ RN×J×d

zcat

Figure 1: Generation of the input matrix that are fed through the Mamba blocks. The categorical
features are tokenized and embedded similar to classical embeddings for language models. The
numerical features are encoded and embedded via a simple linear layer. The final input matrix of
the Mamba blocks are the concatenated embeddings z ∈ RN×J×d with embedding dimension d.

before being passed through the SSM model has a shape of (BATCH SIZE) × J × (EMBEDDING
DIMENSION), later referenced as N × J × d. Importantly, the sequence length in a tabular context
refers to the number of variables, and hence the second dimension, J , corresponds to the number of
features rather than to the length of, e.g., a document.

The convolution operation along the sequence length J and with Kernel K is expressed as:

Z(n,d)
conv (j) =

K−1∑
m=0

Z(n,d)[j +m] · k(d)(m),

∀n ∈ {1, . . . , N},∀d ∈ {1, . . . , d},∀j ∈ {1, . . . , J −K + 1},

where Z
(n,d)
conv (j) is the j-th element of the convolved sequence for batch n and feature channel d.

Z(n,d)[j+m] is the [j+m]-th element of the input sequence Z for batch n and feature channel d, and
K describes the kernel size. Summing over the elements of the kernel, indexed by m, accounts for
the variable position in the pseudo-sequence. Thus, setting the kernel size equivalent to the number
of variables would make the sequence invariant positional permutations. The resulting output tensor
retains the same shape as the input, since padding is set to the kernel size -1.

After the convolution, given the matrices:

A ∈ R1×1×d×δ, B ∈ RN×J×1×δ, ∆ ∈ RN×J×d×1, z̄ ∈ RN×J×d×1,

where δ denotes a inner dimension, similar to the feed forward dimension in Transformer architec-
tures and z̄ has the same entries as z, but one additional axis, the formula for updating the hidden
state hj ∈ RN×d×δ is:

hj = exp (∆⊙3 A):,j,:,: ⊙1,2,3 hj−1 + ((∆⊙1,2 B)⊙1,2,3 z̄):,j,:,: . (2)

The symbol ⊙d denotes an outer product where the multiplication is done for the d-th axis and
parallelized wherever a singleton axis length meets an axis of length one1. The exponential function
is applied element-wise. The state transition matrix A governs the transformation of the hidden state
from the previous time step to the current one, capturing how the hidden states evolve independently
of the input features. The input-feature matrix B maps the input features to the hidden state space,
determining how each feature influences the hidden state at each step. The gating matrix ∆ acts as

1This corresponds to using the ordinary multiplication operator ”*” in PyTorch and relying on the default
broadcasting

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a gating mechanism, modulating the contributions of the state transition and input-feature matrices,
and allowing the model to control the extent to which the previous state and the current input affect
the current hidden state.

zj B hj

Ahj−1

C x̃j

α

Figure 2: SSM updating step with recursive update of h: The hidden state is iteratively updated by
going through the sequence (features) similar to a recurrent neural network. The final representation
is generated as described in Equations 3-4.

In contrast to FT-Transformer (Gorishniy et al., 2021) and TabTransformer (Huang et al., 2020)
Mambular truly iterates through all variables as if they are a sequence; hence, feature interactions are
detected sequentially. The effect of feature position in a sequence, and the impact of the convolution
kernel size is analyzed with respect to performance in section 4. Furthermore, it should be noted
that in contrast to TabPFN (Hollmann et al., 2022), Mambular does not transpose dimensions and
iterates over observations. Hence, training on large datasets is possible and it can scale well to any
training data size, just as Mamba (Gu and Dao, 2023) does.

After stacking and further processing, the final representation, x̃ ∈ RN×J×d is retrieved. In truly
sequential data, these are the contextualized embeddings of the input tokens, for tabular problems x̃
represents a contextualized, or feature interaction accounting variable representation, in the embed-
ding space. The hidden states are stacked along the sequence dimension to form:

H = [h0,h1, . . . ,hT−1] ∈ RN×J×d×δ.

The final output representation x̃ is then computed by performing matrix multiplication of the
stacked hidden states with matrix C ∈ RN×J×1×δ where the multiplication and summation is
done over the last axis, and adding the vector α ∈ R1×1×d scaled by the input z:

x̃ = (H ·4 C) + (α⊙3 z) . (3)

More explicitly, this can be written as:

x̃i,j,k =
∑
δ

Hi,j,k,δCi,j,1,δ + α1,1,kzi,j,k.

where C and α are learnable parameters. For final processing, x̃ is element-wise multiplied with z′,
and the result is passed through a final linear layer:

x̃final = (x̃⊙1,2,3 z
′)Wfinal + bfinal. (4)

Pooling is an important step before passing x̃final to the final task specific model head. Average
pooling is the method that mambular is taking advantage of for this phase. Other pooling methods
has been evaluated in the section 4.

The model is trained end-to-end by minimizing the task-specific loss, e.g., mean squared error for
regression or categorical cross entropy for classification tasks. An overview of a forward pass in the
model is given in Figure 2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Input Sequence x

Encoding

Embedding Layer

1D Convolution
Linear Layer

z z′

A
B
∆

α
C

SSM
Update
Eq. 2

x̃ = (H ·CT ) + α⊙ z

Linear Layer

Tabular head

N
×

M
am

ba
B

lo
ck

Figure 3: The forward pass of a single sequence in the model. After embedding the inputs, the
embeddings are passed to several Mamba blocks. The tabular head is a single task specific output
layer. Before being passed to the Linear Layer, the contextualized embeddings are pooled via av-
erage pooling. For bidirectional processing a second block with a flipped sequence is used and the
learnable matrices are not shared between the directions.

3 EXPERIMENTS

Mambular is evaluated against a range of top-performing models (McElfresh et al., 2024) across
multiple datasets (Supplementary Table 8). These models include FT-Transformer (Gorishniy et al.,
2021), TabTransformer (Huang et al., 2020), XGBoost (Grinsztajn et al., 2022; McElfresh et al.,
2024), LightGBM (Ke et al., 2017), a Random Forest, a baseline Multi-Layer Perceptron, and a
ResNet. TabPFN (Hollmann et al., 2022) is excluded due to its unsuitability for larger datasets.

A 5-fold cross-validation is conducted for all datasets, with average results and standard deviations
reported. PLE encodings (Eq. 1) with a maximum number of bins equal to the model dimension
are used for all neural models (128 for most models, including MLP and ResNet). All categorical
features are integer-encoded. For regression tasks, targets are normalized. Mean Squared Error
(MSE) and Area Under the Curve (AUC) metrics are reported for regression and classification tasks
respectively. TabTransformer, FT-Transformer, and Mambular employ identical architectures for
embeddings and task-specific heads, which includes a single output layer without activation function
or dropout. The [CLS] token embedding is utilized for final prediction in the FT-Transformer as it
has been shown to enhance performance (Thielmann et al., 2024b; Gorishniy et al., 2021).

All neural models share several parameters: a starting learning rate of 1e-04, weight decay of 1e-06,
an early stopping patience of 15 epochs with respect to the validation loss, a maximum of 200 epochs
for training, and learning rate decay with a factor of 0.1 with a patience of 10 epochs with respect
to the validation loss. A universal batch size of 128 is used, and the best model with respect to the
validation loss is returned for testing. TabTransformer, FT-Transformer, and Mambular use the same
embedding functions. For the benchmarks, a basic Mambular architecture is employed, using aver-
age pooling, no feature interaction layer, and no bi-directional processing. The columns/sequence
are always sorted with numerical features first, followed by categorical features. Within these two

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

groups, the features are sorted as they were originally provided in the dataset from the UCI Machine
Learning Repository. A small kernel size of 4 in the convolutional layer is used based on the default
Mamba architecture. The impact of variable positioning (with respect to the kernel size) on sequen-
tial processing is analyzed in section 4. Details on the used datasets and preprocessing can be found
in Appendix A. Details on the model architectures and hyperparameters can be found in Appendix
E.

Comparison to XGBoost When benchmarked against XGBoost using default hyperparameter
settings, Mambular demonstrates comparable, if not slightly superior performance. It significantly
outperforms XGBoost on 4 out of 12 datasets at the 10% significance level, while XGBoost sur-
passes Mambular on 2 datasets at the same significance level. The p-values from simple t-tests over
the folds are reported for each dataset with testing methodology based on Gorishniy et al. (2021).

After adjusting for multiple testing via Benjamini-Hochberg (Ferreira and Zwinderman, 2006; Ben-
jamini and Hochberg, 1995) the Abalone results - only significant at the 10% level with standard
testing - are not significant anymore. All other results remain unchanged2.

Table 1: Comparison between Mambular and XGBoost. The left tables shows regression results with
average MSE values over 5 folds. The right side shows (binary) classification results with average
AUC values. Significantly better values at the 5% significance level are in green and marked bold.
Significantly better values at the 10% significance level are underscored. Dataset details can be
found in appendix A. ↑ depicts higher is better and vice-versa.

Models DI ↓ AB ↓ CA ↓ WI ↓ PA ↓ HS ↓ CP ↓ BA ↑ AD ↑ CH ↑ FI ↑ MA ↑
Mambular 0.018 0.452 0.167 0.628 0.035 0.132 0.025 0.927 0.928 0.861 0.796 0.917
XGB 0.019 0.506 0.171 0.528 0.036 0.119 0.024 0.928 0.929 0.845 0.774 0.922
p-value 0.0079 0.0870 0.4865 1.3e-07 0.6287 0.3991 0.1999 0.7883 0.7930 0.0192 0.0120 0.010

Overall Performance Table 2 provides a comprehensive ranking of all evaluated methods and
their performance in both regression and classification tasks. The results align with existing lit-
erature, highlighting the strong performance of the FT-Transformer architecture (Gorishniy et al.,
2021), LightGBM, CatBoost and XGBoost (McElfresh et al., 2024).CatBoost emerges as the over-
all best-performing model across all tasks. Among the evaluated models, Mambular stands out
as the top-performing neural model on average across all datasets. Additional benchmark results,
including additional datasets can be found in Appendix F.

Table 2: Combined Ranking of Models for Regression and Classification Tasks. The best model is
marked in bold and second best in italic. CatBoost is the overall best performing model, followed
by Mambular. Mambular is the best model among all deep learning architectures.

Models Regression Rank Classification Rank Overall Rank

Trees

XGBoost 4.57 ± 2.57 4.6 ± 3.29 4.58 ± 2.75
RF 4.57 ± 2.37 6.6 ± 2.07 5.42 ± 2.39
LightGBM 4.29 ± 1.60 3.2 ± 2.95 3.83 ± 2.21
CatBoost 3.71 ± 2.29 2.2 ± 1.10 3.08 ± 1.98

Neural

FT-Transformer 3.14 ± 1.86 4.6 ± 1.52 3.75 ± 1.82
MLP 9.00 ± 0.82 7.8 ± 2.95 8.50 ± 1.98
TabTransformer 9.20 ± 0.84 8.0 ± 1.41 8.67 ± 1.22
ResNet 7.14 ± 2.04 7.0 ± 2.55 7.08 ± 2.15
NODE 5.29 ± 2.63 7.2 ± 1.64 6.08 ± 2.39
Mambular 3.71 ± 2.63 3.0 ± 1.22 3.42 ± 2.11

Detailed results for all datasets and tasks can be found in Table 3 and 4, with additional results on fur-
ther models provided in Appendix F. Notably, all neural models underperform on the Wine dataset,
while XGBoost lags behind all neural models on the Abalone and FICO datasets. Our findings

2Due to the small sample sizes, Benjamini-Hochberg is preferred to the conservative Bonferroni adjustments
(Nakagawa, 2004).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

also indicate that both FT-Transformer and Mambular excel on datasets with very few categorical
features (e.g., FICO, California Housing, Abalone, CPU), despite their designs being optimized for
discrete data inputs.

Table 3: Benchmarking results for the regression tasks. Average mean squared error values over 5
folds and the corresponding standard deviations are reported. Smaller values are better. The best
performing model is marked in bold.

Models DI ↓ AB ↓ CA ↓ WI ↓ PA ↓ HS ↓ CP ↓
XGBoost 0.019 ± 0.000 0.506 ± 0.044 0.171 ± 0.007 0.528 ± 0.008 0.036 ± 0.004 0.119 ± 0.024 0.024 ± 0.004
RF 0.019 ± 0.001 0.461 ± 0.052 0.183 ± 0.008 0.485 ± 0.007 0.028 ± 0.006 0.121 ± 0.018 0.025 ± 0.002
LightGBM 0.019 ± 0.001 0.459 ± 0.047 0.171 ± 0.007 0.542 ± 0.013 0.039 ± 0.007 0.112 ± 0.018 0.023 ± 0.003
CatBoost 0.019 ± 0.000 0.457 ± 0.007 0.169 ± 0.006 0.583 ± 0.006 0.045 ± 0.006 0.106 ± 0.015 0.022 ± 0.001
FT-Transformer 0.018 ± 0.001 0.458 ± 0.055 0.169 ± 0.006 0.615 ± 0.012 0.024 ± 0.005 0.111 ± 0.014 0.024 ± 0.001
MLP 0.066 ± 0.003 0.462 ± 0.051 0.198 ± 0.011 0.654 ± 0.013 0.764 ± 0.023 0.147 ± 0.017 0.031 ± 0.001
TabTransformer 0.065 ± 0.002 0.472 ± 0.057 0.247 ± 0.013 - 0.135 ± 0.001 0.160 ± 0.028 -
ResNet 0.039 ± 0.018 0.455 ± 0.045 0.178 ± 0.006 0.639 ± 0.013 0.606 ± 0.031 0.141 ± 0.017 0.030 ± 0.002
NODE 0.019 ± 0.000 0.431 ± 0.052 0.207 ± 0.001 0.613 ± 0.006 0.045 ± 0.007 0.124 ± 0.015 0.026 ± 0.001
Mambular 0.018 ± 0.000 0.452 ± 0.043 0.167 ± 0.011 0.628 ± 0.010 0.035 ± 0.005 0.132 ± 0.020 0.025 ± 0.002

Table 4: Benchmarking results for the classification tasks. Average AUC values over 5 folds and the
corresponding standard deviations are reported. Larger values are better.

Models BA ↑ AD ↑ CH ↑ FI ↑ MA ↑
XGBoost 0.928 ± 0.004 0.929 ± 0.002 0.845 ± 0.008 0.774 ± 0.009 0.922 ± 0.002
RF 0.923 ± 0.006 0.896 ± 0.002 0.851 ± 0.008 0.789 ± 0.012 0.917 ± 0.004
LightGBM 0.932 ± 0.004 0.929 ± 0.001 0.861 ± 0.008 0.788 ± 0.010 0.927 ± 0.001
CatBoost 0.932 ± 0.008 0.927 ± 0.002 0.867 ± 0.006 0.796 ± 0.010 0.926 ± 0.005
FT-Transformer 0.926 ± 0.003 0.926 ± 0.002 0.863 ± 0.007 0.792 ± 0.011 0.916 ± 0.003
MLP 0.895 ± 0.004 0.914 ± 0.002 0.840 ± 0.005 0.793 ± 0.011 0.886 ± 0.003
TabTransformer 0.921 ± 0.004 0.912 ± 0.002 0.835 ± 0.007 - 0.910 ± 0.002
ResNet 0.896 ± 0.006 0.917 ± 0.002 0.841 ± 0.006 0.793 ± 0.013 0.889 ± 0.003
NODE 0.914 ± 0.008 0.904 ± 0.002 0.851 ± 0.006 0.790 ± 0.010 0.904 ± 0.005
Mambular 0.927 ± 0.006 0.928 ± 0.002 0.861 ± 0.008 0.796 ± 0.013 0.917 ± 0.003

Distributional Regression To further validate Mambular’s suitability for tabular problems, we
conducted a small task on distributional regression (Kneib et al., 2023). Mambular for Location
Scale and Shape (MambularLSS) outperforms XGBoostLSS (März, 2019) in terms of Continuous
Ranked Probability Score (CRPS) (Gneiting and Raftery, 2007) when minimizing the negative log-
likelihood while maintaining a small MSE. A detailed analysis can be found in Appendix C.

4 ABLATION

Model Architecture This section explores the impact of various elements of Mambular’s archi-
tecture, including (i) different pooling techniques, (ii) interaction layers, and (iii) bidirectional pro-
cessing (Table 5). Transformer networks for natural language processing often use [CLS] token
embeddings for pooling (Gorishniy et al., 2021), a technique that has also proven beneficial in tab-
ular problems (Thielmann et al., 2024b). Therefore, this technique is evaluated here. For pooling
techniques, we compared Sum-pooling, Max-pooling, Last token pooling – where only the last to-
ken in the sequence is passed to the task-specific model head –, and [CLS] pooling3 against standard
Average-pooling.

Given the significance of feature interactions in tabular problems, we also assessed the effectiveness
of a learnable interaction layer between the features. This layer learns an interaction matrix W ∈
RJ×J , such that interactions = zW, where z is the input feature matrix, before being passed through
the SSM. This evaluation was only implemented for the standard Average pooling technique.

Interestingly, none of the configurations outperformed the basic architecture of average pooling, no
interaction, and one-directional processing. Among the pooling strategies, last token pooling and

3Note that [CLS] token is appended to the end of each sequence in this implementation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Mean AUC and Mean MSE for various datasets and model configurations. We test different
pooling methods, bi-directional processing and a learnable interaction layer. Significantly worse
results compared to the default (average pooling, no interaction and no bi-directional processing) are
marked red and bold at the 5% significance level and underscored and red at the 10% significance
level. All results are achieved with 5-fold cross validation with identical seeds to the main results.

Pooling bi-directional Interaction BA ↑ AD ↑ AB ↓ CA ↓
Last × × 0.916 ± 0.004 0.927 ± 0.002 0.449 ± 0.043 0.181 ± 0.012
Sum × × 0.925 ± 0.005 0.928 ± 0.002 0.449 ± 0.048 0.171 ± 0.009
Max × × 0.928 ± 0.004 0.927 ± 0.002 0.455 ± 0.050 0.172 ± 0.008
[CLS] × × 0.914 ± 0.005 0.928 ± 0.002 0.478 ± 0.044 0.194 ± 0.018

Avg ✓ × 0.927 ± 0.004 0.928 ± 0.002 0.450 ± 0.045 0.170 ± 0.010
Avg × ✓ 0.928 ± 0.004 0.928 ± 0.002 0.453 ± 0.046 0.170 ± 0.007

Avg × × 0.927 ± 0.006 0.928 ± 0.002 0.452 ± 0.043 0.167 ± 0.011

[CLS] token pooling performed significantly worse on two out of the four tested datasets. For this
ablation study, a 5-fold cross-validation was performed, with the same hyperparameters used across
all models. In bi-directional processing, each direction has its own set of learnable parameters,
meaning that bi-directional models have additional trainable parameters. All model configurations
can be found in Appendix E.

Sequence ordering Unlike models that leverage attention layers, Mambular is a sequential model.
However, tabular data is not inherently sequential – i.e., the order of features in tabular datasets
should not matter. Therefore, we examined the significance of variables’ position within the se-
quence and how their order impacts model performance. In textual data, shuffling the order of
words/tokens significantly affects the outcome, and even swapping single words can lead to entirely
different contextualized embeddings. Since these contextualized representations are pooled and fed
directly to Mambular’s task-specific head, this could also impact performance.

Evaluation experiments were conducted on four real-world datasets and simulated data (see Ap-
pendix B). As illustrated in Table 6, we initially confirmed the impact of the kernel size on tabular
problems using Mamba’s default kernel size of 4. The findings indicate that the order of sequences
does not significantly influence model performance at the 5% level for the selected datasets, even
with a relatively small kernel size. However, this is contingent on the data. Strong interaction ef-
fects between features that are positioned further apart than the kernel size in the pseudo-sequence
can negatively impact model performance, as demonstrated by the results on the California housing
dataset.

Table 6: Mean AUC and Mean MSE for different feature orderings in the sequence. Flipping.
the sequence does not significantly affect the performance at the 5% or 10% significance level.
Significantly different values at the 5% level from the default configuration (Num|Cat) are in bold
and marked red.

Model BA ↑ AD ↑ AB ↓ CA ↓
Num|Cat 0.927 ± 0.006 0.928 ± 0.002 0.452 ± 0.043 0.167 ± 0.011
Cat|Num 0.925 ± 0.004 0.927 ± 0.002 0.454 ± 0.044 0.158 ± 0.007
random shuffle 0.923 ± 0.002 0.927 ± 0.002 0.457 ± 0.045 0.172 ± 0.070
random shuffle 0.921 ± 0.005 0.927 ± 0.002 0.459 ± 0.049 0.177 ± 0.010
random shuffle 0.924 ± 0.005 0.927 ± 0.002 0.453 ± 0.045 0.190 ± 0.010

The positions of the variables Longitude and Latitude appear to directly affect model performance
(Table 7). Performance begins to decline significantly when Longitude and Latitude are outside
the kernel window. This issue can be entirely resolved by increasing the kernel size to match the
sequence length J . For a comprehensive analysis, refer to Appendix B.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 7: Analysis of results for CA Housing. Significantly worse results than the default ordering -
numerical features: categorical features - and a kernel size of 4, are marked in red. Increasing the
kernel size induces positional invariance for features within the sequence.

Model Kernel=4 ↓ Kernel=J Ordering

Num|Cat 0.167 ± 0.011 - [LO, LA, MA, TR, TB, Po, Hh, MI, OP]
Cat|Num 0.158 ± 0.007 - [OP, MI, Hh, Po, TB, TR, MA, LA, LO]

0.177 ± 0.007 0.160 ± 0.007 [LO, MA, LA, TR, TB, Po, Hh, MI, OP]
0.175 ± 0.008 0.173 ± 0.009 [LO, MA, TR, LA, TB, Po, Hh, MI, OP]
0.194 ± 0.010 0.169 ± 0.008 [LO, MA, TR, TB, LA, Po, Hh, MI, OP]
0.196 ± 0.011 0.161 ± 0.012 [LO, MA, TR, TB, Po, LA, Hh, MI, OP]
0.194 ± 0.011 0.173 ± 0.009 [LO, MA, TR, TB, Po, Hh, LA, MI, OP]
0.195 ± 0.010 0.169 ± 0.009 [LO, MA, TR, TB, Po, Hh, MI, LA, OP]
0.194 ± 0.012 0.172 ± 0.011 [LO, MA, TR, TB, Po, Hh, MI, OP, LA]

5 LIMITATIONS

The model we have presented has been tested across various datasets and compared against a range
of models. However, we have not conducted hyperparameter tuning, as findings from Grinsztajn
et al. (2022) and Gorishniy et al. (2021) suggest that most models perform adequately without
tuning. These studies indicate that while hyperparameter tuning can enhance performance across
all models simultaneously, it does not significantly alter the relative ranking of the models. This
suggests that a model that performs best or worst with default configurations will likely retain its
ranking even after extensive tuning. Furthermore, McElfresh et al. (2024) reported similar findings,
strengthening the notion that hyperparameter tuning benefits most models equally without changing
their comparative performance.

The absence of tuning does leave potential for enhancement across all models. However, the default
configurations for the comparison models have been extensively tested in numerous studies. It is
anticipated that if any model could gain more from hyperparameter tuning, it would be Mambu-
lar, due to the lack of extensive literature guiding its default settings. For the comparison models,
we made our selections based on literature to ensure default parameters that are meaningful and
high-performing. We managed to replicate average results from studies such as Gorishniy et al.
(2021) and Grinsztajn et al. (2022). Moreover, key hyperparameters like learning rate, patience, and
number of epochs are shared among all models for a more uniform approach. All hyperparameter
configurations can be found in Appendix E.

6 CONCLUSION

We introduce Mambular, a novel architecture for tabular deep learning. Our work demonstrates the
applicability of a genuinely sequential model to tabular problems, providing a unique viewpoint on
the interpretation and management of tabular data by treating it as a sequential problem. Our find-
ings indicate that a sequential model is effective for both regression and classification tasks across
a variety of datasets. The performance of Mambular, along with its extension to MambularLSS,
demonstrates its broad applicability to a wide range of tabular tasks.

While Mamba is still relatively new compared to architectures like the Transformer, its rapid adop-
tion indicates substantial potential for further enhancement. Developments such as those proposed
by Lieber et al. (2024) and Wang et al. (2024) could be particularly beneficial for tabular appli-
cations. Additionally, investigating the optimal feature ordering or integrating column-specific in-
formation through textual embeddings could further boost performance. Viewing tabular data as a
sequence offers significant benefits for feature incremental learning. New features can be directly
appended to the sequence, eliminating the need to retrain the entire model.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Ahamed, M. A. and Cheng, Q. (2024a). Mambatab: A simple yet effective approach for handling
tabular data. arXiv preprint arXiv:2401.08867.

Ahamed, M. A. and Cheng, Q. (2024b). Timemachine: A time series is worth 4 mambas for long-
term forecasting. arXiv preprint arXiv:2403.09898.

Arik, S. Ö. and Pfister, T. (2021). Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pages 6679–6687.

Behrouz, A. and Hashemi, F. (2024). Graph mamba: Towards learning on graphs with state space
models. arXiv preprint arXiv:2402.08678.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal statistical society: series B (Methodological),
57(1):289–300.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., and Kasneci, G. (2022). Deep neural
networks and tabular data: A survey. IEEE transactions on neural networks and learning systems.

Correia, A. and Alexandre, L. A. (2024). Hierarchical decision mamba. arXiv preprint
arXiv:2405.07943.

Ferreira, J. and Zwinderman, A. (2006). On the benjamini–hochberg method.

Fischer, S. F., Feurer, L. H. M., and Bischl, B. (2023). OpenML-CTR23 – a curated tabular regres-
sion benchmarking suite. In AutoML Conference 2023 (Workshop).

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378.

Gorishniy, Y., Rubachev, I., and Babenko, A. (2022). On embeddings for numerical features in
tabular deep learning. Advances in Neural Information Processing Systems, 35:24991–25004.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko, A. (2021). Revisiting deep learning models
for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based models still outper-
form deep learning on typical tabular data? Advances in neural information processing systems,
35:507–520.

Gu, A. and Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752.

Gu, A., Goel, K., and Ré, C. (2021). Efficiently modeling long sequences with structured state
spaces. arXiv preprint arXiv:2111.00396.

Hamilton, J. D. (1994). State-space models. Handbook of econometrics, 4:3039–3080.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical
learning: data mining, inference, and prediction, volume 2. Springer.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F. (2022). Tabpfn: A transformer that solves
small tabular classification problems in a second. arXiv preprint arXiv:2207.01848.

Huang, X., Khetan, A., Cvitkovic, M., and Karnin, Z. (2020). Tabtransformer: Tabular data model-
ing using contextual embeddings. arXiv preprint arXiv:2012.06678.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm:
A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, 30.

Kneib, T., Silbersdorff, A., and Säfken, B. (2023). Rage against the mean–a review of distributional
regression approaches. Econometrics and Statistics, 26:99–123.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Liang, A., Jiang, X., Sun, Y., and Lu, C. (2024). Bi-mamba4ts: Bidirectional mamba for time series
forecasting. arXiv preprint arXiv:2404.15772.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J., Dalmedigos, I., Safahi, E., Meirom, S., Belinkov,
Y., Shalev-Shwartz, S., et al. (2024). Jamba: A hybrid transformer-mamba language model. arXiv
preprint arXiv:2403.19887.

Liu, J., Yu, R., Wang, Y., Zheng, Y., Deng, T., Ye, W., and Wang, H. (2024). Point mamba: A novel
point cloud backbone based on state space model with octree-based ordering strategy. arXiv
preprint arXiv:2403.06467.

März, A. (2019). Xgboostlss–an extension of xgboost to probabilistic forecasting. arXiv preprint
arXiv:1907.03178.

März, A. and Kneib, T. (2022). Distributional gradient boosting machines. arXiv e-prints, pages
arXiv–2204.

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V., Ramakrishnan, G., Goldblum, M., and
White, C. (2024). When do neural nets outperform boosted trees on tabular data? Advances in
Neural Information Processing Systems, 36.

Nakagawa, S. (2004). A farewell to bonferroni: the problems of low statistical power and publication
bias. Behavioral ecology, 15(6):1044–1045.

Patro, B. N. and Agneeswaran, V. S. (2024). Simba: Simplified mamba-based architecture for vision
and multivariate time series. arXiv preprint arXiv:2403.15360.

Pióro, M., Ciebiera, K., Król, K., Ludziejewski, J., and Jaszczur, S. (2024). Moe-mamba: Efficient
selective state space models with mixture of experts. arXiv preprint arXiv:2401.04081.

Popov, S., Morozov, S., and Babenko, A. (2019). Neural oblivious decision ensembles for deep
learning on tabular data. arXiv preprint arXiv:1909.06312.

Schiff, Y., Kao, C.-H., Gokaslan, A., Dao, T., Gu, A., and Kuleshov, V. (2024). Caduceus: Bi-
directional equivariant long-range dna sequence modeling. arXiv preprint arXiv:2403.03234.

Stasinopoulos, D. M. and Rigby, R. A. (2008). Generalized additive models for location scale and
shape (gamlss) in r. Journal of Statistical Software, 23:1–46.

Thielmann, A. F., Kruse, R.-M., Kneib, T., and Säfken, B. (2024a). Neural additive models for
location scale and shape: A framework for interpretable neural regression beyond the mean. In
International Conference on Artificial Intelligence and Statistics, pages 1783–1791. PMLR.

Thielmann, A. F., Reuter, A., Kneib, T., Rügamer, D., and Säfken, B. (2024b). Interpretable additive
tabular transformer networks. Transactions on Machine Learning Research.

Wang, Z., Kong, F., Feng, S., Wang, M., Zhao, H., Wang, D., and Zhang, Y. (2024). Is mamba
effective for time series forecasting? arXiv preprint arXiv:2403.11144.

Wang, Z. and Sun, J. (2022). Transtab: Learning transferable tabular transformers across tables.
Advances in Neural Information Processing Systems, 35:2902–2915.

Xu, R., Yang, S., Wang, Y., Du, B., and Chen, H. (2024). A survey on vision mamba: Models,
applications and challenges. arXiv preprint arXiv:2404.18861.

Yang, Y., Xing, Z., and Zhu, L. (2024). Vivim: a video vision mamba for medical video object
segmentation. arXiv preprint arXiv:2401.14168.

Yue, Y. and Li, Z. (2024). Medmamba: Vision mamba for medical image classification. arXiv
preprint arXiv:2403.03849.

Zhang, T., Li, X., Yuan, H., Ji, S., and Yan, S. (2024). Point could mamba: Point cloud learning via
state space model. arXiv preprint arXiv:2403.00762.

Zhao, H., Zhang, M., Zhao, W., Ding, P., Huang, S., and Wang, D. (2024). Cobra: Extending mamba
to multi-modal large language model for efficient inference. arXiv preprint arXiv:2403.14520.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A DATASETS

All used datasets are taken from the UCI Machine Learning repository and publicly available. We
drop out all missing values. For the regression tasks we standard normalize the targets. Other-
wise, preprocessing is performed as described above. Note, that before PLE encoding we scale the
numerical features to be within (-1, +1).

Table 8: The used datasets for benchmarking. All datasets are taken from the UCI Machine Learning
repository. #num and #cat represent the number of numerical and categorical features respectively.
The number of features thus determines for Mambular the ”sequence length”. The train, test and
validation numbers represent the average number of samples in the respective split for the 5-fold
cross validation. Ratio marks the percentage of the dominant class for the binary classification
tasks.

Name Abbr. #cat #num train test val ratio
Regression Datasets

Diamonds DI 4 7 34522 10788 8630 -
Abalone AB 1 8 2673 835 668 -
California Housing CA 1 9 13210 4128 3302 -
Wine Quality WI 0 12 4158 1299 1039 -
Parkinsons PA 2 20 3760 1175 940 -
House Sales HS 8 19 13832 4322 3458 -
CPU small CPU 0 13 5243 1638 1310 -

Classification Datasets
Bank BA 13 8 28935 9042 7233 88.3%
Adult AD 9 6 31259 9768 7814 76.1%
Churn CH 3 9 6400 2000 1600 79.6%
FICO FI 0 32 6694 2091 1673 53.3%
Marketing MA 15 8 27644 8638 6910 88.4%

B SEQUENCE ORDERING

We test two different shuffling settings: i) shuffling the embeddings after they have passed through
the embedding layer, ii) shuffling the sequence of variables before being passed through the embed-
ding layers.

All sequences are ordered by default with numerical features first, followed by categorical features,
as arranged in the datasets from the UCI Machine Learning Repository. For the ablation study, a
dataset with 5,000 samples and 10 features—five numerical and five categorical—was simulated.
The numerical features were generated with large correlations, including two pairs with correlations
of 0.8 and 0.6, respectively. The categorical features were created with four distinct categories.
Interaction terms were included as follows: An interaction between two numerical features, an in-
teraction between a categorical and a numerical feature, and an interaction between two categorical
features. The numerical features were scaled using standard normalization before generating the tar-
get variable. The target variable was constructed to include linear effects from each feature and the
specified interaction terms, with added Gaussian noise for variability. We first fit a XGBoost model
for a sanity check. Subsequently, we fit Mambular with default ordering (numerical before categor-
ical features), flipped ordering and switched categorical and numerical ordering. Subsequently, we
randomly shuffled the order and fit 10 models. We find that ordering does not have an effect on this
simulated data, even with these large interaction and correlation effects4.

4See the appendix for the chosen model parameters. Since the dataset is comparably smaller, we used a
smaller Mambular model. Hyperparameters such as the learning rate, batch size etc. are kept identical to the
default Mambular model.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 9: Performance for different orderings of features. Numerical features are given as integer
numbers, categorical features as capital letters. Feature interaction between numerical features is
given in blue. Feature interaction between categorical features is denoted in green and feature inter-
action between a numerical and a categorical feature is given in lavender. We find that reordering
the features either before or after the embedding layers does not affect performance of the model.
No ordering performs significantly better or worse than the default model, while all models perform
significantly better than the XGBoost model.

Before Embedding Layer After Embedding Layer Ordering
Default 0.918 ± 0.045 [1 2 3 4 5 A B C D E]

0.916 ± 0.043 0.913 ± 0.043 [E D C B A 5 4 3 2 1]
0.919 ± 0.044 0.914 ± 0.042 [A B C D E 1 2 3 4 5]
0.917 ± 0.043 0.915 ± 0.045 [A B 2 3 1 D E 4 C 5]
0.920± 0.046 0.917 ± 0.045 [D C 2 A B E 1 5 3 4]
0.914 ± 0.043 0.914 ± 0.044 [B 1 4 C D A 2 E 3 5]
0.916 ± 0.045 0.914 ± 0.041 [1 5 E B C 4 3 D 2 A]
0.918 ± 0.046 0.914 ± 0.045 [2 5 E B 4 A 1 3 D C]
0.916 ± 0.044 0.915 ± 0.043 [1 C A 2 D 4 E 3 5 B]
0.917 ± 0.040 0.914 ± 0.043 [A 1 4 5 2 C E B D 3]
0.917 ± 0.044 0.922 ± 0.040 [4 A 1 2 3 B 5 C D E]
0.920 ± 0.040 0.913 ± 0.040 [1 A D C B 3 E 2 5 4]
0.920 ± 0.041 0.916 ± 0.044 [C 5 B 2 4 A E D 3 1]

XGBoost 1.096 ± 0.038

B.1 CALIFORNIA HOUSING

The p-values for the sequence ordering and positioning of Latitude and Longitude is given below.

Table 10: Detailed nalysis of results for CA Housing, including p-statistics.

Model CA ↓ p-value Ordering

Num|Cat 0.167 ± 0.011 - [LO, LA, MA, TR, TB, Po, Hh, MI, OP]
Cat|Num 0.158 ± 0.007 0.168 [OP, MI, Hh, Po, TB, TR, MA, LA, LO]

0.177 ± 0.007 0.136 [LO, MA, LA, TR, TB, Po, Hh, MI, OP]
0.175 ± 0.008 0.240 [LO, MA, TR, LA, TB, Po, Hh, MI, OP]
0.194 ± 0.010 0.003 [LO, MA, TR, TB, LA, Po, Hh, MI, OP]
0.196 ± 0.011 0.003 [LO, MA, TR, TB, Po, LA, Hh, MI, OP]
0.194 ± 0.011 0.004 [LO, MA, TR, TB, Po, Hh, LA, MI, OP]
0.195 ± 0.010 0.004 [LO, MA, TR, TB, Po, Hh, MI, LA, OP]
0.194 ± 0.012 0.005 [LO, MA, TR, TB, Po, Hh, MI, OP, LA]

Given these results, and to verify, that the kernel size of 4 is the cause of this effect, we further
analyzed the dataset. Below are more results for Mambular with random shuffling. Again we can
see the the position of Latitude and Longitude significantly impact model performance, whenever
these two variables are further apart than the fixed kernel size of 4.

To analyze the feature interaction effect between these two variables, we conducted a simple regres-
sion with pairwise feature interactions and analyzed the effect strengths. Interestingley, we find that
the interaction between Longitude and Latitude is not as prominent as that between other variables.

Additionally, we have fit a XGboost model and analyzed the pairwise feature importance metrics
and generally find the same results as for the linear regression.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 11: Analysis of results for CA Housing

Model CA ↓ p-value Ordering

Num|Cat 0.167 ± 0.011 - [LO, LA, MA, TR, TB, Po, Hh, MI, OP]
Cat|Num 0.158 ± 0.007 0.168 [OP, MI, Hh, Po, TB, TR, MA, LA, LO]

0.174 ± 0.009 0.304 [Po, Hh, MI, OP, LO, LA, MA, TR, TB]
0.195 ± 0.012 0.005 [LO, MA, TR, TB, Po, Hh, MI, OP, LA]
0.197 ± 0.010 0.002 [MA, LO, TR, TB, Po, Hh, MI, LA, OP]
0.188 ± 0.010 0.014 [MA, TR, LO, TB, Po, Hh, LA, MI, OP]
0.178 ± 0.010 0.137 [MA, LO, LA, TR, TB, Po, Hh, MI, OP]
0.177 ± 0.008 0.142 [MA, TR, TB, Po, LA, LO, Hh, MI, OP]
0.178 ± 0.009 0.123 [LA, LO, MA, TR, TB, Po, Hh, MI, OP]
0.172 ± 0.070 0.420 [Hh, TB, Po, MI, MA, OP, LA, LO, TR]
0.177 ± 0.010 0.171 [LO, Po, OP, LA, MI, MA, TR, Hh, TB]
0.190 ± 0.010 0.009 [Hh, TB, LO, MI, Po, OP, TR, MA, LA]

Figure 4: Linear Regression with pairwise interaction effects on the california housing dataset.

Figure 5: Pairwise feature importance statistics from a XGBoost model on the california housing
dataset.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C DISTRIBUTIONAL REGRESSION

Distributional regression describes regression beyond the mean, i.e., the modeling of all distribu-
tional parameters. Thus, Location Scale and Shape (LSS) models can quantify the effects of covari-
ates on not just the mean but also on any parameter of a potentially complex distribution assumed for
the responses. A major advantage of these models is their ability to identify changes in all aspects
of the response distribution, such as variance, skewness, and tail probabilities, enabling the model
to properly disentangling aleatoric uncertainty from epistemic uncertainty.

This is achieved by minimizing the negative log-likelihood via optimizing the parameters θ

L(θ) = −
n∑

i=1

log f(yi | xi, θ)

For the two examples in the main part, a normal distribution is modelled and hence, the models
minimize:

log
(
L(µ, σ2|y)

)
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ)2,

where n is the underlying number of observations and parameters y ∈ R, location µ ∈ R and scale
σ ∈ R+.

While this has been a common standard in classical statistical approaches (Stasinopoulos and Rigby,
2008), it has not yet been widely adopted by the ML community. Recent interpretable approaches
(Thielmann et al., 2024a), however, have demonstrated the applicability of distributional regression
in tabular deep learning. Furthermore, approaches like XGBoostLSS (März, 2019; März and Kneib,
2022) demonstrate that tree-based models are capable of effectively solving such tasks. Below, we
show that Mambular for Location Scale and Shape (MambularLSS) outperforms XGBoostLSS in
terms of Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery, 2007) when mini-
mizing the negative log-likelihood while maintaining a small MSE.

CRPS Analyzing distributional regression models also requires careful consideration of the eval-
uation metrics. Traditionally, mean focused models are evaluated using mean-centric metrics, e.g.
MSE, AUC or Accuracy. However, a model that takes all distributional parameters into account
should be evaluated on the predictive performance for all of the distributional parameters. Follow-
ing Gneiting and Raftery (2007), the evaluation metric should be proper, i.e. enforce the analyst to
report their true beliefs in terms of a predictive distribution. In terms of classical mean-centric met-
rics, e.g. MSE is proper for the mean, however, not proper for evaluating the complete distributional
prediction. We therefore rely on the Continuous Ranked Probability Score (Gneiting and Raftery,
2007) for model evaluation, given by:

CRPS(F, x) = −
∫ ∞

−∞
(F (y)− 1y≥x)

2 dy.

See Gneiting and Raftery (2007) for more details.

Table 12: Results for distributional regression for a normal distribution for the Abalone and Califor-
nia Housing datasets. Significantly better models at the 5% level are marked in green. p-vales are
0.20 and 0.00002 respectively for Abalone and and CA housing for the CRPS metric.

AB CA
CRPS ↓ MSE ↓ CRPS ↓ MSE ↓

MambularLSS 0.345 ± 0.016 0.458 0.201 ± 0.004 0.181
XGBoostLSS 0.359 ± 0.016 0.479 0.227 ± 0.005 0.215

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D MAMBATAB

In addition to the popular tabular models described above, we tested the architecture proposed by
Ahamed and Cheng (2024a). MambaTab is the first architecture to leverage Mamba blocks for
tabular problems. However, the authors propose using a combined linear layer to project all inputs
into a single feature representation, transforming the features into a pseudo-sequence of fixed length
1. This approach simplifies the recursive update from Eq. 2 into a matrix multiplication and makes
the model resemble a ResNet due to the residual connections in the final processing. Utilizing
a sequential model with a sequence length of 1 does not fully exploit the strengths of sequential
processing, as it reduces the model’s capacity to capture dependencies across multiple features.

We tested the architecture proposed by Ahamed and Cheng (2024a) and could achieve similar results
for shared datasets, but overall found MambaTab to perform similar to a ResNet, aligning with
expectations (see Table 2 and ??). Additionally, we experimented with transposing the axes to create
an input matrix of shape (1) × (BATCH SIZE) × (EMBEDDING DIMENSION), as outlined in their
implementation. While this approach draws on ideas from TabPFN (Hollmann et al., 2022), it did not
lead to performance improvements in our experiments. When using PLE encodings and increasing
the number of layers and dimensions compared to the default implementation from Ahamed and
Cheng (2024a) we are able to increase performance.

MambaTab (Ahamed and Cheng, 2024a) significantly differs from Mambular, since it is not a se-
quential model. To achieve the presented results from MambaTab, we have followed the provided
implementation from the authors retrieved from https://github.com/Atik-Ahamed/
MambaTab. It is worth noting, however, that MambaTab benchmarks the model on a lot of smaller
datasets. 50% of the benchmarked datasets have not more than 1000 observations. Additionally, the
provided implementation suggests, that MambaTab does indeed not iterate over a pseudo sequence
length of 1, but rather over the number of observations, similar to a TabPFN (Hollmann et al., 2022).
We have also tested this version, denoted as MambaTabT but did not find that it performs better than
the described version. On the Adult dataset, our achieved result of 0.901 AUC on average is very
similar to the default results reported in Ahamed and Cheng (2024a) with 0.906. The difference
could be firstly due to us performing 5-fold cross validation and secondly different seeds in model
initialization.

Table 13: Benchmarking results for the regression tasks for the original MambaTab implementation
provided by https://github.com/Atik-Ahamed/MambaTab

Models DI ↓ AB ↓ CA ↓ WI ↓ PA ↓ HS ↓ CP ↓
MambaTab 0.035 ± 0.006 0.456 ± 0.053 0.272 ± 0.016 0.685 ± 0.015 0.531 ± 0.032 0.163 ± 0.009 0.030 ± 0.002
MambaTabT 0.038 ± 0.002 0.468 ± 0.048 0.279 ± 0.010 0.694 ± 0.015 0.576 ± 0.022 0.179 ± 0.027 0.033 ± 0.002

Table 14: Benchmarking results for the classification tasks. Average AUC values over 5 folds and
the corresponding standard deviations are reported. Larger values are better.

Models BA ↑ AD ↑ CH ↑ FI ↑ MA ↑
MambaTab 0.886 ± 0.006 0.901 ± 0.001 0.828 ± 0.005 0.785 ± 0.012 0.880 ± 0.003
MambaTabT 0.888 ± 0.005 0.899 ± 0.002 0.815 ± 0.009 0.783 ± 0.012 0.878 ± 0.005

16

https://github.com/Atik-Ahamed/MambaTab
https://github.com/Atik-Ahamed/MambaTab
https://github.com/Atik-Ahamed/MambaTab


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E DEFAULT MODEL HYPERPARAMETERS

In the following, we describe the default model parameters used for all the neural models. We based
our choices on the literature to ensure meaningful and high-performing parameters by default. Ad-
ditionally, we were able to reproduce results (on average) from popular studies, such as Gorishniy
et al. (2021) and Grinsztajn et al. (2022). While most larger benchmark studies perform extensive
hyperparameter tuning for each dataset, analyzing these results (Grinsztajn et al., 2022; Gorishniy
et al., 2021) shows that most models already perform well without tuning, as also found by McEl-
fresh et al. (2024). Furthermore, the results suggest that performing hyperparameter tuning for all
models does not change the ranking between the models, since most models benefit from tuning to
a similar degree. Thus, we have collected informed hyperparameter defaults which we list in the
following. The hyperparameters such as learning rate, patience and number of epochs are shared
among all models for a more consistent approach.

Table 15: Shared hyperparameters among all models

Hyperparameter Value
Learning rate 1e-04
Learning rate patience 10
Weight decay 1e-06
Learning rate factor 0.1
Max Epochs 200

MLP As a simple baseline, we fit a simple MLP without any special architecture. However, PLE
encodings are used, as they have been shown to significantly improve performance.

Table 16: Default Hyperparameters for the MLP Model

Hyperparameter Value
Layer sizes (256, 128, 32)
Activation function SELU
Dropout rate 0.5
PLE encoding dimension 128

ResNet A ResNet architecture for tabular data has been shown to be a sensible baseline (Gorishniy
et al., 2021). Furthermore, McElfresh et al. (2024) has validated the strong performance of ResNets
compared to e.g. TabNet (Arik and Pfister, 2021) or NODE (Popov et al., 2019).

Table 17: Default Hyperparameters for the ResNet Model

Hyperparameter Value
Layer sizes (256, 128, 32)
Activation function SELU
Dropout rate 0.5
Skip connections True
Batch normalization True
Number of blocks 3
PLE encoding dimension 128

FT-Transformer For the FT-Transformer architecture we orientated on the default parameters
conducted by Gorishniy et al. (2021). We only slightly adapted them from 3 layers and an embedding
dimension of 192 to 4 layers and an embedding dimension of 128 to be more consistent with the
other models. However, we tested out the exact same architecture from Gorishniy et al. (2021) and
did not find any differences in performance, even a minimal (non-significant) decrease. Additionally,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

we found that using ReGLU instead of ReLU activation function in the transformer blocks does
improve performance consistently.

Table 18: Default Hyperparameters for the FT Transformer Model

Hyperparameter Value
Model Dim 128
Number of layers 4
Number of attention heads 8
Attention dropout rate 0.2
Feed-forward dropout rate 0.1
Normalization method LayerNorm
Embedding activation function Identity
Pooling method cls
Normalization first in transformer block False
Use bias in linear layers True
Transformer activation function ReGLU
Layer normalization epsilon 1e-05
Feed-forward layer dimensionality 256
PLE encoding dimension 128

TabTransformer We practically used the same hyperparameter for TabTransformer as we used
for Ft-Transformer. For consistency we do not use a multi-layer MLP for where the contextualized
embeddings are being passed to. While this deviates from the original architecture, leaving this out
ensures a more consistent comparison to FT-Transformer and Mambular since both models use a
single layer after pooling. However, we used a larger feed forward dimensionality in the transformer
to counteract this. Overall, our results are in line with the literature and we can validate that Tab-
Transformer outperforms a simple MLP on average. For datasets where no categorical features are
available, the TabTransformer converges to a simple MLP. Thus we left these results blank in the
benchmarks.

Table 19: Default Hyperparameters for the TabTransformer Model

Hyperparameter Value
Model Dim 128
Number of layers 4
Number of attention heads 8
Attention dropout rate 0.2
Feed-forward dropout rate 0.1
Normalization method LayerNorm
Embedding activation function Identity
Pooling method cls
Normalization first in transformer block False
Use bias in linear layers True
Transformer activation function ReGLU
Layer normalization epsilon 1e-05
Feed-forward layer dimensionality 512
PLE encoding dimension 128

MambaTab We test out three different MambaTab architectures. Firstly, we implement the same
architecture as for Mambular but instead of an embedding layer for each feature and creating a
sequence of length J we feed all features jointly through a single embedding layer and create a
sequence of length 1. The Axis argument thus specifies over which axis the SSM model iterates. As
described by Ahamed and Cheng (2024a) the model iterates over this pseudo-sequence length of 1.

Additionally, we test out the default architecture from Ahamed and Cheng (2024a) and hence have
a super small model with only a single layer and embedding dimensionality of 32.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 20: Default Hyperparameters for the MambaTab∗ Model

Hyperparameter Value
Model Dim 64
Number of layers 4
Expansion factor 2
Kernel size 4
Use bias in convolutional layers True
Dropout rate 0.0
Dimensionality of the state 128
Normalization method RMSNorm
Activation function SiLU
PLE encoding dimension 64
Axis 1

Table 21: Default Hyperparameters for the MambaTab Model

Hyperparameter Value
Model Dim 32
Number of layers 1
Expansion factor 2
Kernel size 4
Use bias in convolutional layers True
Dropout rate 0.0
Dimensionality of the state 32
Normalization method RMSNorm
Activation function SiLU
Axis 1

Lastly, we follow the Github implementation from Ahamed and Cheng (2024a) where the sequence
is flipped and the SSM iterates over the number of observations instead of the pseudo-sequence
length of 1.

Table 22: Default Hyperparameters for the MambaTabT Model

Hyperparameter Value
Model Dim 32
Number of layers 1
Expansion factor 2
Kernel size 4
Use bias in convolutional layers True
Dropout rate 0.0
Dimensionality of the state 32
Normalization method RMSNorm
Activation function SiLU
Axis 0

Mambular For Mambular we create a sensible default, following hyperparameters from the liter-
ature. We keep all hyperparameters from the Mambablocks as introduced by Gu and Dao (2023).
Hence we use SiLU activation and RMSNorm. WE use an expansion factor of 2 and use an embed-
ding dimensionality of 64. The PLE encoding dimension is adapted to always match the embedding
dimensionalitiy since first expanding the dimensionality in preprocessing to subsequently reduce it
in the embedding layer seems counter intuitive.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 23: Default Hyperparameters for the Mambular Model

Hyperparameter Value
Model Dim 64
Number of layers 4
Expansion factor 2
Kernel size 4
Use bias in convolutional layers True
Dropout rate 0.0
Dimensionality of the state 128
Normalization method RMSNorm
Activation function SiLU
PLE encoding dimension 64

Model sizes Below you find the number of trainable parameters for all models for all datasets.
Note, that MambaTab∗ and Mambular have very similar numbers of parameters since the sequence
length does not have a large impact on the number of model parameters. Overall there is no cor-
relation between model size and performance since e.g. the FT-Transformer architecture which is
comparably larger to e.g. the MLP and ResNet architectures performs very well whereas the largest
architecture, the TabTransformer performs worse than the smaller ResNet. Additionally, since the
models have distinctively different architectures, the overall number of trainable parameters is not
conclusive for training time or memory usage.

Table 24: Number of trainable parameters for all models and datasets. Note that the number of
trainable parameters is dependent on the dataset, since e.g. a larger number of variables leads to
more trainable parameters in the embedding layer.

Dataset AB AD BA CA CH CP DI FI HS MA PA WI

FT-Transformer 765k 709k 795k 784k 722k 852k 763k 834k 837k 794k 944k 822k
MLP 242k 103k 124k 280k 156k 418k 233k 351k 310k 105k 594k 356k
ResNet 261k 123k 144k 299k 176k 437k 253k 371k 330k 125k 614k 375k
TabTransformer 1060k 1073k 1149k 1061k 1060k - 1063k - 1100k 1157k 1068k -
MambaTab∗ 331k 318k 316k 335k 321k 352k 328k 358k 339k 312k 373k 348k
MambaTab 13k 14k 14k 13k 13k 14k 13k 14k 14k 14k 14k 14k
Mambular 331k 324k 361k 335k 321k 352k 329k 365k 358k 361k 374k 348k

F RESULTS

All model performances, including the MambaTab variants are given below.

Table 25: Benchmarking results for the regression tasks. Average mean squared error values over
5 folds and the corresponding standard deviations are reported. Smaller values are better. The best
performing model is marked in bold.

Models DI ↓ AB ↓ CA ↓ WI ↓ PA ↓ HS ↓ CP ↓
XGBoost 0.019 ± 0.000 0.506 ± 0.044 0.171 ± 0.007 0.528 ± 0.008 0.036 ± 0.004 0.119 ± 0.024 0.024 ± 0.004
RF 0.019 ± 0.001 0.461 ± 0.052 0.183 ± 0.008 0.485 ± 0.007 0.028 ± 0.006 0.121 ± 0.018 0.025 ± 0.002
LightGBM 0.019 ± 0.001 0.459 ± 0.047 0.171 ± 0.007 0.542 ± 0.013 0.039 ± 0.007 0.112 ± 0.018 0.023 ± 0.003
CatBoost 0.019 ± 0.000 0.457 ± 0.007 0.169 ± 0.006 0.583 ± 0.006 0.045 ± 0.006 0.106 ± 0.015 0.022 ± 0.001
FT-Transformer 0.018 ± 0.001 0.458 ± 0.055 0.169 ± 0.006 0.615 ± 0.012 0.024 ± 0.005 0.111 ± 0.014 0.024 ± 0.001
MLP 0.066 ± 0.003 0.462 ± 0.051 0.198 ± 0.011 0.654 ± 0.013 0.764 ± 0.023 0.147 ± 0.017 0.031 ± 0.001
TabTransformer 0.065 ± 0.002 0.472 ± 0.057 0.247 ± 0.013 - 0.135 ± 0.001 0.160 ± 0.028 -
ResNet 0.039 ± 0.018 0.455 ± 0.045 0.178 ± 0.006 0.639 ± 0.013 0.606 ± 0.031 0.141 ± 0.017 0.030 ± 0.002
NODE 0.019 ± 0.000 0.431 ± 0.052 0.207 ± 0.001 0.613 ± 0.006 0.045 ± 0.007 0.124 ± 0.015 0.026 ± 0.001
LinReg 0.115 ± 0.002 0.483 ± 0.055 0.365 ± 0.021 0.711 ± 0.006 0.830 ± 0.047 0.302 ± 0.033 0.289 ± 0.004
MambaTab 0.035 ± 0.006 0.456 ± 0.053 0.272 ± 0.016 0.685 ± 0.015 0.531 ± 0.032 0.163 ± 0.009 0.030 ± 0.002
MambaTabT 0.038 ± 0.002 0.468 ± 0.048 0.279 ± 0.010 0.694 ± 0.015 0.576 ± 0.022 0.179 ± 0.027 0.033 ± 0.002
MambaTab∗ 0.040 ± 0.008 0.455 ± 0.043 0.180 ± 0.008 0.601 ± 0.010 0.571 ± 0.021 0.122 ± 0.017 0.030 ± 0.002
Mambular 0.018 ± 0.000 0.452 ± 0.043 0.167 ± 0.011 0.628 ± 0.010 0.035 ± 0.005 0.132 ± 0.020 0.025 ± 0.002

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 26: Benchmarking results for the classification tasks. Average AUC values over 5 folds and
the corresponding standard deviations are reported. Larger values are better.

Models BA ↑ AD ↑ CH ↑ FI ↑ MA ↑
XGBoost 0.928 ± 0.004 0.929 ± 0.002 0.845 ± 0.008 0.774 ± 0.009 0.922 ± 0.002
RF 0.923 ± 0.006 0.896 ± 0.002 0.851 ± 0.008 0.789 ± 0.012 0.917 ± 0.004
LightGBM 0.932 ± 0.004 0.929 ± 0.001 0.861 ± 0.008 0.788 ± 0.010 0.927 ± 0.001
CatBoost 0.932 ± 0.008 0.927 ± 0.002 0.867 ± 0.006 0.796 ± 0.010 0.926 ± 0.005
FT-Transformer 0.926 ± 0.003 0.926 ± 0.002 0.863 ± 0.007 0.792 ± 0.011 0.916 ± 0.003
MLP 0.895 ± 0.004 0.914 ± 0.002 0.840 ± 0.005 0.793 ± 0.011 0.886 ± 0.003
TabTransformer 0.921 ± 0.004 0.912 ± 0.002 0.835 ± 0.007 - 0.910 ± 0.002
ResNet 0.896 ± 0.006 0.917 ± 0.002 0.841 ± 0.006 0.793 ± 0.013 0.889 ± 0.003
NODE 0.914 ± 0.008 0.904 ± 0.002 0.851 ± 0.006 0.790 ± 0.010 0.904 ± 0.005
Log-Reg 0.810 ± 0.008 0.838 ± 0.001 0.754 ± 0.006 0.768 ± 0.013 0.800 ± 0.005
MambaTab∗ 0.900 ± 0.004 0.916 ± 0.003 0.846 ± 0.007 0.792 ± 0.011 0.890 ± 0.003
MambaTab 0.886 ± 0.006 0.901 ± 0.001 0.828 ± 0.005 0.785 ± 0.012 0.880 ± 0.003
MambaTabT 0.888 ± 0.005 0.899 ± 0.002 0.815 ± 0.009 0.783 ± 0.012 0.878 ± 0.005
Mambular 0.927 ± 0.006 0.928 ± 0.002 0.861 ± 0.008 0.796 ± 0.013 0.917 ± 0.003

Table 27: Combined Ranking of Models for Regression and Classification Tasks

Models Regression Rank Classification Rank Overall Rank

XGBoost 5.14 ± 4.02 5.4 ± 4.51 5.25 ± 4.03
RF 5.00 ± 2.94 7.4 ± 3.36 6.00 ± 3.22
LightGBM 4.57 ± 2.07 3.4 ± 3.36 4.08 ± 2.61
CatBoost 4.00 ± 2.45 2.2 ± 1.10 3.25 ± 2.14
FT-Transformer 3.57 ± 2.51 4.6 ± 1.52 4.00 ± 2.13
MLP 10.86 ± 1.57 8.6 ± 3.36 9.92 ± 2.61
TabTransformer 10.80 ± 1.64 8.5 ± 1.91 9.78 ± 2.05
ResNet 8.14 ± 2.91 7.6 ± 3.05 7.92 ± 2.84
NODE 5.71 ± 2.93 7.6 ± 1.82 6.50 ± 2.61
Regression 13.57 ± 0.53 13.8 ± 0.45 13.67 ± 0.49
MambaTab 9.29 ± 2.56 11.6 ± 1.14 10.25 ± 2.34
MambaTabT 11.57 ± 1.40 12.2 ± 0.84 11.83 ± 1.19
MambaTab∗ 7.11 ± 2.79 7.4 ± 1.67 7.25 ± 2.30
Mambular 4.00 ± 3.06 3.0 ± 1.22 3.58 ± 2.43

Further results on a regression benchmark with a single train-test-validation split are reported below.
The datasets are taken from Fischer et al. (2023) with datasets already present in the main results
excluded.

Table 28: Comparison of models on an additional regression benchmark. Mambular and CatBoost
perform best among compared models

Model BH ↓ CW ↓ FF ↓ GS ↓ HI ↓ K8 ↓ AV ↓ KC ↓ MH ↓ NP ↓ PP ↓ SA ↓ SG ↓ VT ↓ Rank ↓

Mambular 0.021 0.701 0.272 0.057 0.595 0.168 0.018 0.137 0.085 0.003 0.402 0.015 0.318 0.003 1.79
FTTransformer 0.028 0.701 0.301 0.205 0.609 0.451 0.089 0.149 0.101 0.009 0.542 0.033 0.360 0.045 4.36
CatBoost 0.032 0.702 0.245 0.041 0.597 0.150 0.004 0.110 0.078 0.005 0.390 0.018 0.297 0.013 1.79
LightGBM 0.048 0.707 0.263 0.059 0.599 0.239 0.024 0.140 0.091 0.009 0.452 0.031 0.302 0.013 3.26
XGBoost 0.039 0.752 0.281 0.078 0.635 0.259 0.004 0.161 0.098 0.006 0.403 0.024 0.329 0.013 3.71

21


	Introduction
	Methodology
	Experiments
	Ablation
	Limitations
	Conclusion
	Datasets
	Sequence ordering
	California Housing

	Distributional Regression
	MambaTab
	Default Model Hyperparameters
	Results

