
Towards Optimal Network Depths: Control-Inspired
Acceleration of Training and Inference in Neural ODEs

Keyan Miao Konstantinos Gatsis
Department of Engineering

University of Oxford
{keyan.miao, konstantinos.gatsis}@eng.ox.ac.uk

Abstract

Neural Ordinary Differential Equations (ODEs) offer potential for learning continu-
ous dynamics, but their slow training and inference limit broader use. This paper
proposes spatial and temporal optimization inspired by control theory. It seeks an
optimal network depth to accelerate both training and inference while maintaining
performance. Two approaches are presented: one treats training as a single-stage
minimum-time optimal control problem, adjusting terminal time, and the other
combines pre-training with Lyapunov method, followed by safe terminal time
updates in a secondary stage. Experiments confirm the effectiveness of addressing
Neural ODEs’ speed limitations.

1 Introduction

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

Vanilla
Minimum-time

(a) Loss via time (b) State trajectories

Figure 1: Performance of Neural ODEs on Concen-
tric Annuli problem: (a) Prediction loss vs. time on
20 correctly classified examples by Vanilla Neural
ODEs and Minimum-time Neural ODEs; (b) State
trajectories of 20 examples by Vanilla Neural ODEs

Deep Neural Networks (DNNs) have trans-
formed AI by excelling in complex tasks [1, 2].
However, increasing network depth can lead to
issues like gradients problems [3], higher com-
putation, and overfitting. Residual Networks
(ResNets) [4] introduced skip connections to ad-
dress these concerns, allowing for deeper models.
Neural Ordinary Differential Equations (Neural
ODEs) [5] build on this success by treating neu-
ral networks as dynamical systems governed by
differential equations for adaptability [6, 7, 8].
Neural ODEs find applications in image classi-
fication, generative modeling, and time-series
analysis [9, 10, 11]. In control systems, they
can be used for trajectory planning and system
identification [12, 13, 14]. While Neural ODEs
hold promise, challenges persist in enhancing
their stability, expressiveness, and robustness through ongoing research [15, 16, 17, 18, 19]. Never-
theless, their computational demands are a limiting factor, stemming from the slow ODE solver and
uncertainties about network depth: excessive computational costs arise, and overly deep networks can
lead to overfitting. For example, in the 2-D Concentric Annuli problem, Vanilla Neural ODEs achieve
the desired performance by 0.6 time units, making subsequent computations redundant. Errors and
trajectory deviations within 0.2 units indicate that it may take intricate routes as shown in Figure 1,
incurring unnecessary computational expenses.
Many efforts aim to reduce Neural ODEs’ computational burden. Some simplify Neural ODE
dynamics, for example, regularization terms encourage easier integration [20, 21, 22]. Temporally,

DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

studies optimize numerical solvers, like adding an extra neural network to capture the high-order
components of the numerical solver [23], speeding up computations. STEER [24] introduces
regularization via terminal time sampling. Overall, these methods mainly speed up inference, with
limited gains in training. Research also explores DNNs depth bounds using turnpike properties from
optimal control theory [25], relying on post-training analysis rather than prior estimation or taking into
account the depth during training. We address the deep learning network depth challenge of Neural
ODEs by adjusting the integral time span, focusing on proactive design rather than post-learning
optimization, aiming for faster, more efficient training and inference. Neural ODEs’ differentiable
nature with respect to terminal time and convenient depth adjustment feature allow us to optimize
network depth, which is an adaptivity not present in standard discrete networks. Spatially, we guide
Neural ODEs towards more direct trajectories. Temporally, we aim to find the optimal depth to
balance efficiency and performance. Experiments confirm an order of magnitude speed improvement
over Vanilla Neural ODEs. In summary, our contributions include:

• We expand Neural ODEs by redefining the network depth challenge as an interval adjustment
for ODE integration, with a focus on terminal time determination. We introduce methods
from temporal and spatial perspectives for acceleration;

• Temporally, we convert the depth challenge into a minimum-time optimal control problem,
aiming to find the shortest terminal time to optimize spatial and temporal performance;

• Spatially, we employ Lyapunov method during pre-training to learn dynamics with guaranteed
convergence speeds then iteratively determine the minimum terminal time for optimizing
temporal performance.

2 Methods

Incorporating insights from control theory, we address the structural challenges of Neural ODEs
by optimizing network depth. We introduce two approaches: Minimum-time Neural ODEs, which
transforms the challenge into a minimum-time optimal control problem and treats the terminal time
as a learnable parameter during training; Convergence-rate-based Neural ODEs which is grounded in
control theory, evaluating the entire trajectory of system dynamics based on convergence guarantees.
We reformulate the Neural ODEs system ¤𝑧 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝜃) and objective function ℓ B Φ

(
𝑧
(
𝑡 𝑓
))
+∫ 𝑡 𝑓

𝑡0
𝐿 (𝑧 (𝑡) , 𝜃, 𝑡) 𝑑𝑡 as an optimal control problem, with considerations for the running cost. The latent

state dynamics are described by a neural network 𝑓 with parameters 𝜃, taking 𝑧(𝑡) as input. Efficient
gradient computation methods, such as automatic differentiation or adjoint sensitivity analysis inspired
by maximum principle in control theory [26], are employed for parameter updates during training.

2.1 Approach 1: Minimum-time Neural ODEs

We propose the Minimum-time Neural ODEs framework with a learnable terminal time parameter 𝑡 𝑓 ,
that updates after each back-propagation and influences the subsequent forward pass. The gradient of
ℓ with respect to 𝑡 𝑓 is computed by taking the derivative of an upper limit in a variable integral:

𝑑ℓ

𝑑𝑡 𝑓
=

𝜕Φ

𝜕𝑧
(
𝑡 𝑓
) 𝑑𝑧(𝑡 𝑓)

𝑑𝑡 𝑓
+ 𝑑

𝑑𝑡 𝑓

∫ 𝑡 𝑓

𝑡0

𝐿 (𝑧 (𝑡) , 𝜃, 𝑡) = 𝜕Φ

𝜕𝑧
(
𝑡 𝑓
) 𝑓 (𝑧 (𝑡 𝑓)) + 𝐿 (

𝑡 𝑓
)

(1)

In our experiments, we jointly update the network parameters and terminal time. However, for finer
adjustments, it is advisable to consider employing different optimizers and learning rates for updates
and coordinate descent methods could be used for optimization as Algorithm 1 shown in Appendix.
In order to find the minimum-time optimal control strategy, the loss function is designed as

ℓ B Φ
(
𝑧
(
𝑡 𝑓
))
+𝜆

∫ 𝑡 𝑓

𝑡0

1𝑑𝑡 (2)

which can be seen as 𝐿 = 𝜆. In this case, ∇𝑡 𝑓 ℓ = 𝜕Φ

𝜕𝑧(𝑡 𝑓) 𝑓
(
𝑧
(
𝑡 𝑓
))
+𝜆, where 𝜆 denotes the power of

regularization on the training process and can be seen as the trade-off between final performance and
integral time span. In addition, to ensure the safety of updates and prevent overly abrupt changes,
we propose to apply clipping to the updates as introduced in Appendix. Besides, it is possible that

2

dynamics learned in this manner become very fast. If there is a limitation on the speed of dynamics,
the magnitude of ¤𝑧, for the sake of stability, it can be enforced through clipping within the network.
Training neural network parameters and terminal time together can introduce initial training instability,
influenced by multiplier choices. To address this, we begin with a large initial terminal time and
optimize it backwards. This approach shifts the terminal state backwards with each 𝑡 𝑓 update,
gradually encouraging faster and more direct spatial dynamics.

2.2 Approach 2: Convergence-rate-based Neural ODEs

Our previous approach emphasizes the terminal state and incorporats a time penalty but lacks
guaranteed convergence, ensuring the attainment of the correct solution at a specific rate, such
as exponential speed. In essence, guaranteed convergence implies that we can theoretically omit
layers beyond a certain time. Our alternative method first pre-trains a dynamics model on a small
time interval, emphasizing whole trajectory for guaranteed convergence from a spatial perspective.
Subsequently, we determine the minimum terminal time to meet the terminal state requirements.
When considering convergence properties of dynamic systems, the application of Lyapunov methods
becomes indispensable which involve the construction of an energy function (Lyapunov function) to
monitor the system’s evolution, thereby assessing whether the system tends towards a stable state [27].

Lyapunov method Inspired by LyaNet[28], for a given training data pair and supervised loss
Φ, the potential function 𝑉 can be designed as 𝑉�̂� (·) B Φ (𝑧 (·)). For example, when standard
cross-entropy loss is considered, then we consider using the truncated cross entropy loss defined as
Φ(·) B max{0,Φ𝑐𝑒}. Then a point-wise Lyapunov loss can be designed as

V B max
{
0,

𝜕𝑉�̂�

𝜕𝑧
𝑓 (𝑡, 𝑧, 𝜃) + 𝜅𝑉�̂� (𝑧)

}
(3)

Equation (3) signifies the local violation of invariance condition. WhenV = 0 holds for all data in
the time interval, the inference dynamics exhibit exponential convergence towards a prediction that
minimizes the loss. The Lyapunov loss is ℓ B E

[∫ 𝑡 𝑓

𝑡0
V𝑑𝑡

]
. If there exists a parameter 𝜃∗ of the

dynamic system that satisfies ℓ(𝜃∗) = 0, the dynamic satisfies the exponential convergence speed with
respect to the loss Φ. The Lyapunov method also allows us to manually adjust the convergence rate
when necessary, accommodating cases where overly rapid dynamics are undesirable.

Learning procedure Notably, using Lyapunov loss ensures convergence rate but doesn’t guarantee
precise terminal state value, depending on 𝑡 𝑓 . Small 𝑡 𝑓 may not give the dynamics enough time to
reach the desired state, while excessively large 𝑡 𝑓 results in unnecessary computations. To address
this, we introduce a pre-training approach: we start with a small 𝑡 𝑓 indicating a shallow network for
swift dynamic training, then gradually increase the network depth until the loss reaches a threshold
(Algorithm 2 in Appendix). This approach is somewhat greedy, striving to find the shallowest network.
Comparison between Approach 1 and 2 Approach 1 is simple but risky in a single-stage process
because the choice of 𝜆 may lead to performance issues as large 𝜆 may result in a shorter terminal time
but an undesired final state. In contrast, Approach 2 offers convergence assurances and allows initial
pre-training over a shorter time span, potentially expediting training. Both approaches have merits,
combining them in a single stage hasn’t shown significant advantages in preliminary experiments.

3 Experiments

In this section, we demonstrate the benefits of the proposed methods on a variety of machine learning
tasks and compare the results with Vanilla Neural ODEs, LyaNet, STEER and TayNODE [20].

Concentric Annuli In Figure 2, we show results for the Concentric Annuli problem using our
Lyapunov-based pre-training approach, including the loss curve and state trajectory. Pre-training
uses a terminal time of 0.05 with a later update step of 0.01. The final trained 𝑡 𝑓 is 0.09, with a
15s-training. In contrast, Vanilla Neural ODEs require 123𝑠 to train, highlighting the significant
improvement due to the shallow network depth during pre-training. Notably, when training over the
interval [0,1] as LyaNet, we find that for 𝜅 = 20, faster dynamics are not learned compared to 𝜅 = 10.

3

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

2 0 2 4 6
4

2

0

2

4

6

(a) 𝜅 = 1, 𝑡 𝑓 = 1

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

20 15 10 5 0 5 10 15 20

20

10

0

10

20

(b) 𝜅 = 10, 𝑡 𝑓 = 1

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

15 10 5 0 5 10 15 20

15

10

5

0

5

10

15

(c) 𝜅 = 20, 𝑡 𝑓 = 1

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

2 1 0 1 2 3 4 5

5

4

3

2

1

0

1

2

(d) 𝜅 = 20, pre-training

Figure 2: Performance on Concentric Annuli Problem using different methods: (a)-(c) shows the
results obtained by Lyapunov method trained with 𝜅 = 1,10,20 respectively on [0,1]; (d) demonstrated
the results obtained by Lyapunov method with pre-training on [0,0.05], 𝜅 = 20

However, shorter time spans enable faster dynamics. This is because sustaining rapid improvement
after loss convergence over longer intervals, especially with larger 𝜅 values leading to more frequent
Lyapunov function violations, becomes challenging. In contrast, shorter intervals, especially before
loss minimization, allow for more effective training, highlighting the pre-training approach’s benefits.

Table 1: Image Classification using Neural ODEs
Method Terminal Time Test Accuracy Training time Inference Time NFE

MNIST Vanilla NODEs 1 99.57% 4h47min23s 0.546s 402.6
Minimum-time NODEs 0.0343 99.53% 20min23s 0.03s 16.1

Fashion MNIST Vanilla NODEs 1 93.07% 4h41min19s 0.494s 402.6
Minimum-time NODEs 0.0564 92.68% 22min24s 0.044s 24.2

CIFAR-10
Vanilla NODEs 1 82.60% >10h 0.531s 404.9

Minimum-time NODEs
𝜆 = 1 0.1103 76.38% 42min37s 0.098s 47.3
𝜆 = 0.5 0.1975 78.41% 50min57s 0.124s 81
𝜆 = 0.1 0.3606 81.74% 2h22min15s 0.278s 146.1

Vanilla NODEs STEER Tay-NODEs Minimum-time NODEs (ours)
0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Sc
or

e

Training Time
Inference Time

Figure 3: Comparison of different methods’ time
consumption for classification on MNIST dataset

Image classification We evaluated the perfor-
mance of our approach on several benchmark
datasets for image classification tasks, including
MNIST [29], Fashion-MNIST [30] and CIFAR-
10 [31]. The results are shown in Table 1 where
NFE measures the number of evaluations by the
ODE solver. And the comparison of our method
and other popular approaches such as TayN-
ODEs [20] on time consumption are shown in
Figure 3. It is evident that our approach achieves
an order of magnitude speed enhancements in
both training and inference compared to Vanilla
Neural ODEs across these three datasets, with

only minimal sacrifice in test accuracy. Particularly noteworthy is the experiments on the CIFAR-10,
where a trade-off between accuracy and training/inference time by tuning the parameter 𝜆 is shown.

4 Discussions and Future work

In this work, we propose leveraging a control perspective, including techniques such as minimum-
time control and Lyapunov methods, to learn more straightforward dynamics, determine a more
suitable network depth, and consequently accelerate the training and inference of Neural ODEs
while mitigating unnecessary computations. Future research directions hold intriguing possibilities,
including integrating our approach with acceleration targeting ODE solvers to further enhance
computational efficiency especially for the case that adaptive ODE solvers are used. Furthermore, we
intend to delve into the exploration of time-variant Neural ODEs whose training aligns more closely
with optimal control problem, thus enabling a more profound and elucidating investigation of the
interconnectedness between turnpike theory and the depth of Neural ODEs.

4

References
[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,

2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[3] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[5] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[6] Ee Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 1(5):1–11, 2017.

[7] Weinan Ee, Jiequn Han, and Qianxiao Li. A mean-field optimal control formulation of deep
learning. Research in the Mathematical Sciences, 6, 12 2018.

[8] Qianxiao Li, Long Chen, Cheng Tai, et al. Maximum principle based algorithms for deep
learning. arXiv preprint arXiv:1710.09513, 2017.

[9] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

[10] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. Advances in neural information processing systems, 32,
2019.

[11] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

[12] Yuxuan Liang, Kun Ouyang, Hanshu Yan, Yiwei Wang, Zekun Tong, and Roger Zimmermann.
Modeling trajectories with neural ordinary differential equations. In ĲCAI, pages 1498–1504,
2021.

[13] Keyan Miao and Konstantinos Gatsis. Learning robust state observers using neural odes. In
Learning for Dynamics and Control Conference, pages 208–219. PMLR, 2023.

[14] Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Neural networks
with physics-informed architectures and constraints for dynamical systems modeling. In Learning
for Dynamics and Control Conference, pages 263–277. PMLR, 2022.

[15] Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ode with lyapunov-stable
equilibrium points for defending against adversarial attacks. Advances in Neural Information
Processing Systems, 34:14925–14937, 2021.

[16] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in
neural information processing systems, 32, 2019.

[17] Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dis-
secting neural odes. Advances in Neural Information Processing Systems, 33:3952–3963,
2020.

[18] Hanshu Yan, Jiawei Du, Vincent YF Tan, and Jiashi Feng. On robustness of neural ordinary
differential equations. arXiv preprint arXiv:1910.05513, 2019.

[19] Yifei Huang, Yaodong Yu, Hongyang Zhang, Yi Ma, and Yuan Yao. Adversarial robustness
of stabilized neural ode might be from obfuscated gradients. In Mathematical and Scientific
Machine Learning, pages 497–515. PMLR, 2022.

5

[20] Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning
differential equations that are easy to solve. Advances in Neural Information Processing Systems,
33:4370–4380, 2020.

[21] Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pages 3154–3164. PMLR, 2020.

[22] Avik Pal, Yingbo Ma, Viral Shah, and Christopher V Rackauckas. Opening the blackbox: Accel-
erating neural differential equations by regularizing internal solver heuristics. In International
Conference on Machine Learning, pages 8325–8335. PMLR, 2021.

[23] Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Hyper-
solvers: Toward fast continuous-depth models. Jul 19, 2020.

[24] Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer: Simple
temporal regularization for neural ode. Advances in Neural Information Processing Systems,
33:14831–14843, 2020.

[25] Timm Faulwasser, Arne-Jens Hempel, and Stefan Streif. On the turnpike to design of deep
neural nets: Explicit depth bounds. arXiv preprint arXiv:2101.03000, 2021.

[26] LS Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

[27] Aaron D Ames, Kevin Galloway, Koushil Sreenath, and Jessy W Grizzle. Rapidly exponentially
stabilizing control lyapunov functions and hybrid zero dynamics. IEEE Transactions on
Automatic Control, 59(4):876–891, 2014.

[28] Ivan Dario Jimenez Rodriguez, Aaron Ames, and Yisong Yue. Lyanet: A lyapunov framework
for training neural odes. In International Conference on Machine Learning, pages 18687–18703.
PMLR, 2022.

[29] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[30] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[32] Ricky T. Q. Chen. torchdiffeq, 2018.

Appendix

4.1 Neural ODEs

Definition 1 (Neural ODEs). With ℎ𝑥 : R𝑛𝑥 → R𝑛𝑧 , ℎ𝑦 : R𝑛𝑧 → R𝑛𝑦 representing the input network
and output network respectively, a Neural ODE is a system of the form{ ¤𝑧 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝜃)

𝑧 (𝑡0) = ℎ𝑥 (𝑥) 𝑡 ∈ S
�̂� (𝑡) = ℎ𝑦 (𝑧 (𝑡))

(4)

where S :=
[
𝑡0, 𝑡 𝑓

]
(𝑡0, 𝑡 𝑓 ∈ R+) is the depth domain and 𝑓 is a neural network called ODENet which

is chosen as a part of the machine learning model with parameter 𝜃.

For Vanilla Neural ODEs, the loss function is designed as

ℓ B Φ
(
𝑧
(
𝑡 𝑓
))

(5)

6

With such a loss function, the training can be cast into an optimization problem of the form where 𝑥
represents training data:

min
𝜃∈𝑈

ℓ

𝑠.𝑡. ¤𝑧 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝜃) , 𝑡 ∈ S
𝑧 (𝑡0) = ℎ𝑥 (𝑥) , �̂� = ℎ𝑦

(
𝑧
(
𝑡 𝑓
)) (6)

which is a Mayer optimal control problem, and 𝜃 is the control variable here. The problem can
be solved recursively by gradient descent (GD) and then optimal control theory comes in handy to
provide formulas for computing these gradients.
In our paper, the loss function can be designed as

ℓ B Φ
(
𝑧
(
𝑡 𝑓
))
+
∫ 𝑡 𝑓

𝑡0

𝐿 (𝑧 (𝑡) , 𝜃, 𝑡) 𝑑𝑡 (7)

Then problem (6) is a Bolza optimal control problem.
Proposition 1. Consider the problem (4), (6) and (7), the gradient of loss ℓ with respect to parameter
𝜃 is

∇𝜃ℓ = 𝜇 (𝑡0) (8)
where 𝑧 (𝑡), 𝑝 (𝑡) and 𝜇 (𝑡) satisfy the boundary value problem:

¤𝑧 (𝑡) = 𝑓 , 𝑧 (𝑡0) = 𝑧0

¤𝑝 (𝑡) = −𝑝 (𝑡) 𝜕 𝑓
𝜕𝑧
− 𝜕𝐿

𝜕𝑧
, 𝑝

(
𝑡 𝑓
)
=

𝜕Φ

𝜕𝑧
(
𝑡 𝑓
)

¤𝜇 (𝑡) = −𝑝 (𝑡) 𝜕 𝑓
𝜕𝜃
− 𝜕𝐿

𝜕𝜃
, 𝜇

(
𝑡 𝑓
)
= 𝟘𝑛𝜃

(9)

4.2 Lyapunov Conditions for Convergence

For the ODE described in (4), a continuously differentiable function 𝑉 that is also positive except for
the equilibrium and is radially unbounded, then it is an exponentially stabilizing Lyapunov function if
there exits a constant 𝜅 > 0 such that:

min
𝜃

[
𝜕𝑉

𝜕𝑧

����
𝑧

𝑓 (𝑡, 𝑧, 𝜃) + 𝜅𝑉 (𝑧)
]
≤ 0 (10)

holds for all 𝑧 and 𝑡 ∈
[
𝑡0, 𝑡 𝑓

]
. The existence of this Lyapunov function implies that there is a 𝜃

irrespective of 𝑧 that can achieve
𝜕𝑉

𝜕𝑧

����
𝑧

𝑓 (𝑡, 𝑧, 𝜃) + 𝜅𝑉 (𝑧) ≤ 0 (11)

and the ODE using 𝜃 is exponentially stable with respect to 𝑉 and constant 𝜅:
𝑉 (𝑧 (𝑡)) ≤ 𝑉 (𝑧 (𝑡0)) 𝑒−𝜅𝑡 (12)

The importance of exponential stability in a system lies in its ability to guarantee that the system can
rapidly converge to the desired state which is defined by 𝑉 within a finite time.
Theorem 1 ([28]). Consider the Lyapunov loss 𝑙 above. If there exists a parameter 𝜃∗ of the dynamic
system that satisfies ℓ(𝜃∗) = 0, then:

• The potential function 𝑉�̂� is an exponentially stabilizing Lyapunov function with 𝜃∗;

• For 𝑡 ∈
[
𝑡0, 𝑡 𝑓

]
, the dynamic satisfies the convergence speed with respect to the loss Φ:

Φ (𝑧(𝑡)) ≤ Φ (𝑧(𝑡0)) 𝑒−𝜅𝑡 (13)

5 Algorithms

The algorithms mentioned in the paper are shown as follows.

7

Algorithm 1 Minimum-Time Neural ODEs
Input: Initial time 𝑡0 > 0, number of iterations 𝑛 > 0
Result: 𝑡∗

𝑓
, 𝜃∗

1: Initialize 𝑡 𝑓 , 𝜃
2: for 𝑖 < 𝑛 do
3: z←𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟 (𝑓 (𝑡, 𝑧, 𝜃), 𝑧(𝑡0), 𝑡0, 𝑡 𝑓)
4: 𝜃←𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝜃ℓ, 𝜃) ⊲ Update neural network parameters
5: 𝑡 𝑓 ←𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝑡 𝑓 ℓ, 𝑡 𝑓) ⊲ Update terminal time
6: end for

Algorithm 2 Pre-training algorithm
Input: Initial time 𝑡0 > 0, number of iterations 𝑛 > 0, threshold 𝜀 > 0, update step size for terminal
time 𝛾 > 0
Result: 𝑡∗

𝑓
, 𝜃∗

1: Initialize 𝑡 𝑓 , 𝜃
2: for 𝑖 < 𝑛 do
3: z←𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟 (𝑓 (𝑡, 𝑧, 𝜃), 𝑧(𝑡0), 𝑡0, 𝑡 𝑓)
4: 𝜃←𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝜃ℓ, 𝜃) ⊲ Update neural network parameters
5: end for
6: while Φ(𝑡 𝑓) > 𝜀 do
7: 𝑡 𝑓 ← 𝑡 𝑓 +𝛾 ⊲ Update terminal time
8: z←𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟 (𝑓 (𝑡, 𝑧, 𝜃), 𝑧(𝑡0), 𝑡0, 𝑡 𝑓)
9: 𝜃←𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝜃ℓ, 𝜃)

10: end while

6 Experiments Details

6.1 Concentric Annuli

The Concentric Annuli is shown as Figure 4. The experiments are run on Apple M1 Pro chip. The

Figure 4: Concentric Annuli

basic sturcture is chosen as Augmented Neural ODEs to address the problem of intersection of integral
trajectory. We fit a three–layer network of hidden dimensions 32. ODE-solver is chosen as RK4 with
step size 0.01. Optimizer is Adam with learning rate as 0.01, scheduler as ExponentialLR.
Especially, for Lyapunov method, which is pre-trained on [0,0.05], the pre-trained results are shown
in Figure 5. Then, the threshold of loss is set as 0.01, the results after finishing the iteration to find
the safe terminal time are shown in Figure 6.

8

(a) Boundary Decision (b) State Trajectories

Figure 5: Performance of pre-trained model ([0,0.05]) on 20 correctly classified examples

(a) Boundary Decision (b) State Trajectories

Figure 6: Performance of final model ([0,0.09]) on 20 correctly classified examples

6.2 Image Classification

The experiments are run on NVIDIA Tesla V100 GPU. The network sturcture is based on the code
from [32]. The ODE-solver is chosen as RK4 with step size 0.01, and integral time span for Vanilla
Neural ODEs is set as [0,1]. Optimizer is SGD with learning rate starting as 0.1 with decay rate
[0.1, 0.01, 0.001] at epoch [60, 100, 140]. Training epoch is chosen as 160, batch size is 128. Data
augmentation technique are used on all the dataset, MNIST, Fashion-MNIST and CIFAR.

9

	Introduction
	Methods
	Approach 1: Minimum-time Neural ODEs
	Approach 2: Convergence-rate-based Neural ODEs

	Experiments
	Discussions and Future work
	Neural ODEs
	Lyapunov Conditions for Convergence

	Algorithms
	Experiments Details
	Concentric Annuli
	Image Classification

