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Abstract

A key challenge in black-box adversarial attacks
is the high query complexity in hard-label set-
tings, where only the top-1 predicted label from
the target deep model is accessible. In this paper,
we propose a novel normal-vector-based method
called Two-third Bridge Attack (TtBA). A inno-
vative bridge direction is introduced which is a
weighted combination of the current unit pertur-
bation direction and its unit normal vector, con-
trolled by a weight parameter k. We further use
binary search to identify k = kbridge, which has
identical decision boundary as the current direc-
tion. Notably, we observe that k = 2/3kbridge
yields a near-optimal perturbation direction, en-
suring the stealthiness of the attack. In addi-
tion, we investigate the critical importance of lo-
cal optima during the perturbation direction op-
timization process and propose a simple and ef-
fective approach to detect and escape such lo-
cal optima. Experimental results on MNIST,
FASHION-MNIST, CIFAR10, CIFAR100, and
ImageNet datasets demonstrate the strong perfor-
mance and scalability of our approach. Compared
to state-of-the-art non-targeted and targeted at-
tack methods, TtBA consistently delivers superior
performance across most experimented datasets
and deep learning models. Code is available at
https://github.com/BUPTAIOC/TtBA.

1. Introduction
Background and motivation. Although deep neural net-
works (DNNs) have demonstrated remarkable performance
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across a wide range of real-world applications, they remain
significantly vulnerable to adversarial attacks (Biggio et al.,
2013; Brendel et al., 2018; Park et al., 2024). Research
on these attacks is pivotal in advancing the development of
attack-resistant DNNs in the future (Bai et al., 2023).

Adversarial attack approaches are generally classified into
three categories: white-box attacks (Goodfellow et al., 2015;
Madry et al., 2018), gray-box attacks (soft-label attacks,
score-based attacks) (Chen et al., 2017; Liu et al., 2019a),
and black-box attacks (Brendel et al., 2018; Chen & Gu,
2020). White-box and gray-box attacks rely on complete or
partial knowledge of the target model, such as its architec-
ture, trainable parameters, or output probabilities, which is
often impractical in real-world settings (Long et al., 2022).
As a more practical alternative, black-box attacks are typi-
cally divided into transfer-based attacks and decision-based
attacks. Transfer-based attacks (Feng et al., 2022; Ghosh
et al., 2022; Fan et al., 2024; Wang et al., 2024; Sun et al.,
2024; Park et al., 2024) train a surrogate model using the tar-
get model’s training data. Adversarial examples are crafted
using white-box attack methods on this surrogate model.
However, the success of this approach is not guaranteed, due
to unreliable transferability of adversarial examples (Reza
et al., 2023).

Significance of decision-based attacks. Decision-based
attacks (Brendel et al., 2018; Li et al., 2021; Shi et al., 2022;
Chen et al., 2020; Chen & Gu, 2020; Reza et al., 2023)
do not rely on specific details of the target DNN, such as
training data, network structure, or output probabilities. In-
stead, adversarial examples are crafted using only feedback
from the DNN’s top-1 predicted label, which is the class
with the highest confidence score assigned by the model.
This makes decision-based attacks the most popular strategy
in practice (Dong et al., 2019; Brunner et al., 2019) and
the key focus of this paper. Decision-based attacks aim to
deceive the target DNN (e.g., an image classifier) with min-
imal perturbation strength while adhering to a predefined
query budget (Brendel et al., 2018). To improve efficiency,
these attacks focus on optimizing adversarial examples by
exploring perturbation directions and their corresponding
decision boundaries (see Appendix A for more details).

Normal vector-based attacks. Many decision-based adver-
sarial attacks, such as HSJA (Chen et al., 2020), Tangent

1

https://github.com/BUPTAIOC/TtBA


TtBA: Two-third Bridge Approach for Decision-Based Adversarial Attack

x

N
i

x
i

̃ x
i

̃ 

dbridgedbridge
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Figure 1. A geometric illustration of one iteration in TtBA. In (a), at the i-th iteration, x represents the original image, d̂i is the unit vector
of the current perturbation direction, x̃i is the boundary point along d̂i, N̂ i is the unit normal vector at x̃i, and x̃local denotes the local best
adversarial example. We define a direction dk = k · N̂ i + (1 − k) · d̂i, where k ∈ (0, 1] is a weight parameter. Using binary search,
we can identify k = ki

bridge such that the direction dibridge = ki
bridge · N̂ i + (1 − ki

bridge) · d̂i has identical decision boundary as d̂i, i.e.,
g(dibridge) = g(d̂i). We then use k = 2/3ki

bridge to generate the next direction directly: di+1 = 2/3ki
bridge · N̂ i + (1− 2/3ki

bridge) · d̂i, as
shown in (b). The boundary point x̃i+1 = x+ g(di+1) · d̂i+1 produces the next adversarial example.

Attack (TA) (Ma et al., 2021), GeoDA (Rahmati et al., 2020),
QEBA (Li et al., 2020), and CGBA (Reza et al., 2023), ex-
ploit the normal vector of the decision boundary to improve
attack efficiency and effectiveness. They introduce Gaus-
sian noises to perturb a boundary point (x̃i in Figure 1) and
query the model to identify which perturbations fall within
the adversarial region, enabling accurate estimation of the
normal vector (N̂ i in Figure 1) (see Appendix E for details).
In recent studies (Chen et al., 2020), researchers show that
the locally optimal adversarial example x̃local typically lies
on the 2D hypersurface spanned by d̂i and N̂ i, where the
normal vector N̂ i points directly toward x̃local, as illustrated
in Figure 1. Leveraging this geometric property, new bound-
ary points closer to x̃local can be discovered as a weighted
combination of N̂ i and the current boundary point x̃i (Chen
et al., 2020; Reza et al., 2023).

The curvatures of decision boundaries have strong impact
on perturbation optimization (Ma et al., 2021; Reza et al.,
2023). In particular, targeted attacks often create narrower
adversarial regions with higher decision boundary curva-
tures than non-targeted attacks, making perturbation opti-
mization more challenging than non-targeted attacks (Reza
et al., 2023) (see Appendix A for more details). G-TA (Ma
et al., 2021) and CGBA-H (Reza et al., 2023) have been
recently developed for targeted attacks on narrow adversar-

ial regions with high decision boundary curvatures. While
improving query efficiency, they overlooked local optima
caused by the varying geometries of decision boundaries
and target models, compromising their performance across
diverse DNNs (see experiment results in Section 5). Our
research reveals that narrow adversarial regions, whether
in targeted or non-targeted attacks, can trap perturbation
optimization in local optima. To address this, we propose
a simple yet effective method to detect narrow adversarial
regions. An effective mechanism is further developed to es-
cape the associated local optima and enhance performance.

Proposed method. We propose a novel Two-third Bridge
Attack (TtBA) method. In this method, a new bridge met-
ric, kbridge, is introduced to guide perturbation optimization
based on the decision boundary curvature.

For efficiency and simplicity, TtBA generates new perturba-
tion directions at the i-th iteration (i ≥ 1) by combining the
current unit perturbation direction d̂i with its unit normal
vector N̂ i through kN̂ i + (1 − k)d̂i, where k ∈ (0, 1] is
a weight parameter. A geometric illustration of TtBA is
shown in Figure 1-(a). In TtBA, the decision-based attack
becomes simply the problem of optimizing the weight pa-
rameter k. We aim to find suitable k to properly control the
influence of the normal vector N̂ i on the updated direction
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dk. If k is too large, dk moves away from the best ad-
versarial example (x̃local in Figure 1), making optimization
ineffective. To identify the upper bound of k, we introduce a
threshold k = kibridge such that the decision boundary along
dk equals that of the current direction d̂i. k is then opti-
mized within the range (0, kibridge]. Geometrically, the range
of perturbation directions generated by TtBA resembles an
arch bridge over the local best adversarial example x̃local,
spanning from x̃i to x̃i

bridge, as shown in Figure 1.

Our introduction of the new metric kibridge reveals the follow-
ing interesting properties. First, the decision boundary’s cur-
vature can be directly estimated through kibridge, as illustrated
in Figure 2 and analyzed theoretically in Appendix B.3. For
narrow adversarial regions with high decision boundary
curvatures as shown in Figure 2-(c), kibridge is small. In con-
trast, for wide adversarial regions in Figures 2-(a) and 2-(b),
kibridge is large. Second, we discover that the perturbation
direction generated by k = 2/3kibridge is very close to the
optimal weight in the i-th iteration, as shown in Figure 1-
(b) and detailed in Section 4. This finding eliminates the
need for searching the optimal weight extensively, thereby
significantly improving query efficiency. Third, a narrow
adversarial region can potentially trap the optimization pro-
cess in local optima. Therefore, when kibridge is very small
(e.g., less than 0.1), we increase k (e.g., from 2/3kibridge to
0.9kibridge), allowing di+1 to deviate significantly from x̃local
and hence escape local optima.

In summary, our main contributions are as follows: (1) We
introduce a novel metric kbridge to detect varied curvatures
of decision boundaries, providing valuable insights into the
geometrical characteristics of adversarial attacks. (2) We un-
cover a previously unidentified linear relationship between
kbridge and the near-optimal perturbation direction. This in-
sight paves the way for developing an efficient approach
(TtBA) for decision-based attacks. (3) We identify and ad-
dress the critical challenge of local optima in perturbation
optimization, particularly in narrow adversarial regions with
high decision boundary curvatures, proposing an efficient
detection and escape mechanism that significantly improves
attack performance. (4) Extensive experiments on 9 widely
used deep models, spanning MNIST, FASHION-MNIST,
CIFAR10, CIFAR100, and ImageNet, show that TtBA con-
sistently outperforms four state-of-the-art decision-based
attacks in both targeted and non-targeted settings.

2. Related Work
Decision-based attacks represent one of the most challeng-
ing settings for generating adversarial examples. Existing
decision-based attacks can be divided into random search
attacks (Brendel et al., 2018; Brunner et al., 2019; Cheng
et al., 2019; 2020; Chen & Gu, 2020; Li et al., 2021; Maho
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Figure 2. Example decision boundaries with different curvatures.

et al., 2021; Wang et al., 2022), and normal-vector based
attacks (Chen et al., 2020; Liu et al., 2019a; Li et al., 2020;
Rahmati et al., 2020; Ma et al., 2021; Reza et al., 2023).

Random search attacks. Random search attacks create
candidate perturbations by sampling randomly, followed
by optimization through binary search along the decision
boundary during each iteration. For example, Boundary At-
tack(Brendel et al., 2018), Biased Boundary Attack (Brun-
ner et al., 2019) and AHA (Li et al., 2021) perform random
walks along the decision boundary to refine perturbation
directions. SurFree (Maho et al., 2021) explores multiple
directions without using normal vectors. Triangle Attack
(Wang et al., 2022) utilizes a triangle-shaped perturbation
structure and low-frequency spaces for efficient optimiza-
tion. OPT (Cheng et al., 2019) and Sign-OPT (Cheng et al.,
2020) reformulate hard-label attacks as continuous optimiza-
tion problems solved through zeroth-order methods. RayS
in (Chen & Gu, 2020) employs a progressive direction sub-
division strategy, iteratively refining blocks of perturbation
directions to enhance search efficiency.

Normal vector-based attacks. Normal vector-based at-
tacks utilize normal vectors at the boundary points to guide
perturbation optimization. For instance, HSJA (Chen et al.,
2020) estimates normal vectors at boundary points for effi-
cient adversarial example generation. TA (Ma et al., 2021)
extends this idea by leveraging virtual hemisphere tangents
to minimize perturbations. Efficient gradient estimation
is achieved in qFool (Liu et al., 2019b) and GeoDA (Rah-
mati et al., 2020) by exploiting the observation that decision
boundaries typically have low curvatures near adversarial
examples. QEBA (Li et al., 2020) reduces query complex-
ity through subspace optimization across spatial, frequency,
and intrinsic dimensions. CGBA (Reza et al., 2023) intro-
duces a novel semicircular search strategy on a 2D plane
to efficiently handle geometric complexities. BounceAt-
tack (Wan et al., 2024) improves upon HSJA by leveraging
orthogonal gradient components and introducing smooth
search mechanisms.

Although existing methods employ various geometric ap-
proaches for perturbation optimization, they fall short in
thoroughly analyzing how boundary curvatures vary across
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different models and datasets. This paper addresses these
limitations by introducing novel techniques to identify nar-
row adversarial regions with high-curvature decision bound-
aries and effectively escape associated local optima, signifi-
cantly enhancing attack effectiveness and efficiency.

3. Problem Definition
Let x = (p1,1,1, . . . , pC,W,H), where pc,w,h ∈ [0, 1], repre-
sent a source image with shape C × W × H , where C,
W , and H correspond to the image’s channels, width, and
height, respectively. Let y(x) denote the true label of x, and
f : x → {1, . . . ,K} represent a K-class image classifica-
tion model. Given a source image x, which is correctly clas-
sified by the model (i.e., f(x) = y(x)). A decision-based
black-box attacker can only query the top-1 classification la-
bel f(x) and have no access to the internal structures and pa-
rameters of the classifier f . The goal is to find an adversarial
example x̃ = (p̃1,1,1, . . . , p̃C,W,H), p̃c,w,h ∈ [0, 1], such that
f(x̃) ̸= y(x) for non-targeted attacks, or f(x̃) = f(xtarget)
for targeted attacks where xtarget is a given target image
and f(xtarget) ̸= y(x), while minimizing the perturbation
strength ∥x̃− x∥v. The v stands for the norm used to mea-
sure the perturbation strength, such as ℓ2 or ℓ∞ (Zhou et al.,
2025). We adopt the ℓ2 norm, following many existing stud-
ies (Chen et al., 2020; Reza et al., 2023). The problem for
optimizing the adversarial example x̃ can be formulated as:

argmin
x̃
∥x̃− x∥2 s.t. I(x̃) = 1, (1)

where I(·) is an indicator function that determines whether
the adversarial example x̃ is in the adversarial regions. For
a non-targeted attack:

I(x̃) =

{
1, if f(x̃) ̸= y(x),

−1, otherwise.
(2)

For a targeted attack with a targeted image xtarget:

I(x̃) =

{
1, if f(x̃) = f(xtarget),

−1, otherwise.
(3)

To ease understanding, prior works (Brendel et al., 2018;
Cheng et al., 2019; Reza et al., 2023) approximate the op-
timization space of Equation (1) through a 2D-plane, as
shown in Figure 1. They also exploit the perturbation direc-
tion (denoted by d) and its corresponding decision boundary
(denoted by g(d)) to generate adversarial examples.

Let d = (v1,1,1, . . . , vC,W,H), vc,w,h ∈ [−1, 1], represents
a perturbation direction. An adversarial example x̃ can
be defined as x̃ = clip(x + (x̃ − x)) = clip(x + d) =

clip(x + ∥d∥2 · d̂), where clip(·) constrains each pixel to
the range [0, 1], and d̂ = d

∥d∥2
is the unit vector obtained

by normalizing d using the ℓ2 norm. For any direction d,
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g(k · N̂ + (1− k) · d̂) at multiple iterations of TtBA.

its decision boundary is defined as g(d) = min{r > 0 :

I(x+ r · d̂) = 1}, with the corresponding boundary point
x̃ = x+g(d)·d̂. Correspondingly, the optimization problem
in Equation (1) can be re-defined (Reza et al., 2023) as:

argmin
d

g(d) s.t. I(x+ g(d) · d̂) = 1. (4)

The decision boundary g(d) for direction d can be estimated
using binary search (Reza et al., 2023), as outlined in Algo-
rithm 2 in Appendix D.
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Algorithm 1 Two-third Bridge Attack

1: Input: Original image x, indicator I(·), budget Q;
2: Output: Adversarial example x̃;
3: Initialization: Iteration number i ← 1, di ← Algo-

rithm 4(x, I,Q), x̃i ← x+ g(di) · d̂i, kbridge search tol-
erance δ ← 0.001, local optimum threshold ǩ ← 0.1,
k̂ ← 0.2, bridge coefficient b̂← 0.9, b̌← 2/3;

4: repeat
5: N i ← Algorithm 3(x, I, x̃i, 30

√
i)

6: kleft, kright ← 0, 1
7: repeat
8: kmid ← kleft+kright

2

9: dmid ← kmid · N̂ i + (1− kmid) · d̂i
10: x̃mid ← x+ g(di) · d̂mid
11: if I(x̃mid) = 1 then
12: kleft ← kmid
13: else
14: kright ← kmid
15: end if
16: until kright − kleft ≤ δ
17: kibridge ← kleft

18: if kibridge ≥ k̂ then
19: ki+1 ← b̌ · kibridge

20: else if kibridge ≤ ǩ then
21: ki+1 ← b̂ · kibridge
22: else
23: ki+1 ←

(
b̌·k̂−b̂·ǩ
k̂−ǩ

)
· (kibridge − ǩ) + b̂ · ǩ

24: end if
25: di+1 ← ki+1 · N̂ i + (1− ki+1) · d̂i
26: x̃i+1 ← x+ g(di+1) · d̂i+1

27: i← i+ 1
28: until Number of queries = Q
29: Return x̃i

4. Proposed Approach
TtBA determines the perturbation direction dk at the i-th
iteration as a weighted combination of the unit current di-
rection d̂i and its unit normal vector N̂ i:

dk = k · N̂ i + (1− k) · d̂i, k ∈ (0, 1], (5)

where the weight parameter k interpolates between the direc-
tions N̂ i and d̂i. By identifying a critical bridge threshold
k = kibridge (defined below), we can effectively exploit the
decision boundary curvature to optimize the perturbation
direction efficiently.

Numerous recent studies (Brendel et al., 2018; Cheng et al.,
2019; Chen & Gu, 2020; Li et al., 2021; Chen et al., 2020;
Reza et al., 2023) have shown that the decision boundary
is smooth and locally concave. To further understand the
geometric properties of the decision boundary g(dk), we

iteratively increment k with a step size of 0.01, and esti-
mate g(dk) using Algorithm 2 in Appendix D. The resulting
g(dk)−k curve when attacking an VGG model using TtBA
is plotted in Figure 3. In this figure, k = klocal corresponds
to the local minimum of g(dk), while k = kibridge gives the
upper bound of the weight parameter k. klocal is hence de-
fined as the weight that determines the local minimum of the
decision boundary on the 2D plane spanned by d̂i and N̂ i

at the current iteration of TtBA. Note that when k > kibridge,
g(dk) is greater than the decision boundary of the current
direction, i.e., g(dk) > g(d̂i), resulting in large perturbation
as demonstrated in Figure 1. So we first perform a binary
search to determine the threshold kibridge and the direction
dibridge such that g(dibridge) = g(d̂i), and then optimize the
weight parameter k within the range (0, kibridge] to find klocal.

To understand the statistical relationship between klocal and
kibridge, we analyze the g(dk)−k curves across 100 images
based on both a ViT (Dosovitskiy, 2020) and a VGG (Si-
monyan & Zisserman, 2015) model, with the distribution
of klocal shown in Figure 4. This figure reveals a strong
linear relationship between klocal and the threshold kibridge
(see theoretical analysis in Appendix B.5). It enables us
to directly identify a near-optimal klocal using kibridge. For
example, as shown in Figure 3, in the 10-th iteration of
TtBA, when kibridge = 0.22, the local optimum occurs at
klocal = 0.13, yielding a ratio of klocal

ki
bridge

= 0.591 ≈ 2/3. By

analyzing the distribution of klocal across 100 images from
different datasets, as shown in Figure 4, we find that klocal

ki
bridge

is concentrated in the range [0.5, 0.7]. Based on this ob-
servation, TtBA uses ki+1 = b̌ · kibridge to determine klocal
for each iteration, thereby eliminating the need to further
search for klocal. In this paper, we use ki+1 = 2/3kibridge to
efficiently generate the next perturbation (see Appendix G
for more details). Driven by this idea, we propose TtBA
with its pseudocode shown in Algorithm 1.

In line 3 of Algorithm 1, we first follow the perturbation
generation method in HSJA (Chen et al., 2020) and CGBA
(Reza et al., 2023) to generate the initial perturbation direc-
tion (see Algorithm 4 in Appendix F). In line 5, in each iter-
ation of Algorithm 1, we follow the method in HSJA (Chen
et al., 2020) and CGBA (Reza et al., 2023) to generate a
normal vector N i at the current boundary point x̃i (see Al-
gorithm 3 in Appendix E). Lines 6–17 perform a binary
search to find kibridge in [0, 1] at an accuracy level of δ. Bi-
nary search for kbridge incurs minimal queries for high attack
efficiency, as detailed in Appendix C. Empirically, we found
that TtBA runs for 57 iterations on average under a 10,000-
query budget. Each iteration uses approximately 10 queries
for the binary search to achieve kibridge with an accuracy level
of δ = 0.001. The total cost of 570 queries (57×10) consti-
tutes only 5.7% of the query budget, significantly improving
attack performance.
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In lines 18–19, kibridge ≥ k̂ = 0.2 indicates that the decision
boundary has low curvature and the algorithm is not trapped
in any local optimum. In this case, the weight parameter
ki+1 = b̌·kibridge = 2/3kibridge. In lines 20–21, kibridge ≤ ǩ =
0.1, indicating that the decision boundary has high curvature
and the algorithm is trapped in a local optimum. To escape
this local optimum, we increase the weight according to
ki+1 = b̂ · kibridge = 0.9kibridge, forcing di+1 to deviate from
the perturbation direction of x̃local. The effectiveness of this
method for escaping local optima is analyzed in Appendix G.
As illustrated in Figures 2 and 3, narrow adversarial regions
with high decision boundary curvatures tend to have shallow
depths (see Appendix B.4 for more details), limiting the
optimization of the perturbation magnitude. Increasing ki+1

may cause di+1 to deviate from the local best x̃local, without
significantly increasing the ℓ2-norm compared to x̃local.

In lines 23, if kibridge falls within the range [ǩ = 0.1, k̂ =
0.2], the decision boundary is considered to have moderate
curvature, potentially causing the optimization process to
stuck in a local optimum. To address this, ki+1 is chosen
as a weighted interpolation between b̂ · kibridge and b̌ · kibridge,
properly balancing stability and exploration. Specifically,
by assigning greater weight to the normal vector, TtBA
promotes broader exploration of the perturbation direction,
reducing the risk of premature convergence to local optima.
In line 25, the new direction di+1 is computed as a weighted
combination of the unit current direction d̂i and the unit
normal vector N̂ i using the updated weight ki+1. In line 26,
a binary search is performed along di+1 (see Algorithm 2
in Appendix D) to identify the boundary point x̃i+1 as the
adversarial example of the current iteration.

5. Experiments
In this section, we evaluate TtBA’s effectiveness through a
set of experiments, comparing its performance against state-
of-the-art decision-base black-box attacks for both targeted
and non-targeted scenarios.

5.1. Experiment Settings

Experiment hardware configuration. Experiments are
conducted using an Intel Xeon Gold 6330 CPU and NVIDIA
GeForce RTX 4090 GPU, running PyTorch 2.3.0, Torchvi-
sion 0.18.0, and Python 3.11.5.

Competing approaches. We compare the performance
of TtBA with four state-of-the-art decision-based attacks,
including HSJA (Chen et al., 2020), TA (Ma et al., 2021),
CGBA, and its variant CGBA-H (Reza et al., 2023), for
both non-targeted and targeted scenarios. These methods
are commonly used as baselines for decision-based attacks
(Ma et al., 2021; Reza et al., 2023). Among them, CGBA
and its variant CGBA-H have demonstrated the best attack

performance in non-targeted and targeted settings separately,
with the smallest ℓ2 perturbation. Therefore, we select these
methods for comparison.

Hyperparameter settings. We adopt the recommended
hyperparameter settings in (Reza et al., 2023) for searching
decision boundaries and normal vectors. Specifically, for
all four comparative algorithms and TtBA, the decision
boundary search tolerance τ = 0.0001. The dimension
reduction factor is set to s = 4 for the ImageNet dataset, and
s = 1 for all other datasets. In TtBA, search tolerance δ =
0.001 for determining kibridge. According to the parameter
sensitive analysis in Appendix G, the thresholds ǩ = 0.1 and
k̂ = 0.2, and the bridge coefficients b̂ = 0.9 and b̌ = 2/3.

Benchmark datasets and models. To assess the effective-
ness and scalability of TtBA, we chose five datasets and 9
typical models listed below:

1. MNIST-CNN: The MNIST dataset (LeCun et al.,
1998), and a benchmark 7-layer MNIST-CNN (Cheng
et al., 2020; Chen & Gu, 2020) that achieved 99.4%
accuracy after training;

2. FASHION-MNIST-CNN: The FASHION MNIST
dataset (Xiao et al., 2017), and a benchmark 7-layer
FASHION-MNIST-CNN (Cheng et al., 2020; Chen &
Gu, 2020) that achieved 91.0% accuracy after training.

3. CIFAR10-CNN: The CIFAR10 dataset (Krizhevsky
et al., 2009), and a benchmark 7-layer CIFAR10-CNN
(Cheng et al., 2020; Chen & Gu, 2020) that achieved
82.5% accuracy after training;

4. CIFAR100-ViT: The CIFAR100 dataset (Krizhevsky
et al., 2009), and a well-known ViT model (Dosovit-
skiy, 2020) that achieved 89.9% accuracy after train-
ing;

5. The ImageNet dataset (Deng et al., 2009), and
five prominent machine learning models: ImageNet-
VGG19 (Simonyan & Zisserman, 2015), ImageNet-
ResNet50 (He et al., 2016), ImageNet-ViT (Dosovit-
skiy, 2020), ImageNet-EfficientNet (Tan & Le, 2019),
and ImageNet-Inception (Szegedy et al., 2016).

5.2. Main Results

Performance metrics. Following state-of-the-art black-box
attacks (Brendel et al., 2018; Li et al., 2021; Reza et al.,
2023), we adopt the ℓ2 norm to measure the perturbation
strength. For each model, we randomly select 1000 images
from the test dataset. Table 1 presents the average and
median ℓ2 norms achieved by all competing approaches
under query budgets of 2,000, 5,000, and 10,000, for both
non-targeted and targeted attacks.
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Attacks Non-targeted attacks Targeted attacks
Datasets 2,000 QUE 5,000 QUE 10,000 QUE 2,000 QUE 5,000 QUE 10,000 QUE
MNIST HSJA 2.921(1.785) 1.609(1.443) 1.366(1.307) 2.956(2.712) 2.275(2.079) 1.980(1.869)
CNN TA 2.983(1.799) 1.588(1.417) 1.345(1.281) 2.819(2.634) 2.169(2.001) 1.901(1.831)

CGBA 2.689(1.825) 1.978(1.538) 1.436(1.410) 3.247(2.904) 2.465(2.223) 2.095(2.021)
CGBA-H 2.741(1.864) 1.631(1.445) 1.373(1.317) 2.977(2.846) 2.343(2.102) 2.059(1.862)

TtBA 2.667(1.754) 1.505(1.362) 1.288(1.213) 2.841(2.659) 2.156(2.017) 1.884(1.786)
FASHION HSJA 1.127(0.954) 0.778(0.748) 0.683(0.665) 1.741(1.689) 1.256(1.294) 1.097(1.130)
-MNIST TA 1.171(0.998) 0.779(0.730) 0.665(0.646) 1.729(1.691) 1.239(1.222) 1.017(1.100)

CNN CGBA 1.059(0.908) 0.853(0.704) 0.781(0.640) 1.729(1.704) 1.263(1.291) 1.110(1.156)
CGBA-H 1.021(0.984) 0.783(0.756) 0.690(0.665) 1.681(1.636) 1.261(1.259) 1.101(1.115)

TtBA 0.896(0.873) 0.674(0.672) 0.603(0.601) 1.642(1.605) 1.196(1.208) 1.050(1.084)
CIFAR10 HSJA 0.541(0.450) 0.300(0.251) 0.226(0.196) 1.634(1.081) 0.622(0.468) 0.410(0.332)

CNN TA 0.552(0.449) 0.289(0.245) 0.208(0.190) 1.514(0.823) 0.554(0.401) 0.348(0.301)
CGBA 0.350(0.279) 0.233(0.189) 0.181(0.152) 1.121(0.794) 0.440(0.393) 0.317(0.298)

CGBA-H 0.383(0.309) 0.235(0.190) 0.188(0.153) 0.872(0.602) 0.452(0.353) 0.338(0.284)
TtBA 0.371(0.294) 0.227(0.188) 0.180(0.151) 0.817(0.595) 0.415(0.343) 0.308(0.263)

CIFAR HSJA 6.322(4.691) 2.627(2.015) 1.750(1.257) 42.66(40.43) 19.78(17.18) 10.88(8.074)
-100 TA 5.825(4.376) 2.327(1.925) 1.350(1.187) 40.38(38.42) 18.04(16.53) 9.761(7.217)
ViT CGBA 2.086(1.430) 1.097(0.847) 0.744(0.613) 45.15(44.12) 11.96(7.399) 4.480(2.397)

CGBA-H 2.165(1.500) 1.130(0.862) 0.792(0.678) 20.66(18.41) 8.228(4.571) 4.327(2.172)
TtBA 2.114(1.521) 1.079(0.845) 0.734(0.603) 20.15(15.18) 8.154(4.330) 4.464(2.160)

ImageNet HSJA 27.33(16.95) 13.39(7.018) 7.840(4.023) 72.01(61.64) 55.80(48.15) 46.25(41.91)
ResNet50 TA 23.38(14.99) 12.04(6.302) 7.251(3.539) 68.95(59.52) 52.91(46.12) 44.34(39.93)

CGBA 18.58(12.79) 10.10(5.099) 5.838(2.499) 76.38(70.77) 69.25(64.89) 58.33(52.44)
CGBA-H 17.79(9.628) 10.63(4.530) 6.203(2.542) 59.25(55.30) 45.99(42.75) 34.35(30.35)

TtBA 12.33(7.462) 6.32(2.804) 3.448(1.700) 57.21(53.19) 42.38(37.83) 27.83(24.54)
ImageNet HSJA 8.117(5.409) 4.397(2.513) 3.256(1.997) 71.28(67.48) 50.92(36.57) 32.77(19.81)
VGG19 TA 6.592(4.433) 3.737(2.028) 2.651(1.539) 63.59(61.12) 40.18(32.17) 26.91(17.22)

CGBA 3.810(2.184) 1.912(1.119) 1.174(0.750) 80.00(77.99) 62.89(60.84) 40.72(33.11)
CGBA-H 3.783(2.162) 1.841(1.179) 1.253(0.740) 54.09(46.12) 29.05(21.44) 14.32(10.59)

TtBA 3.650(2.150) 1.834(1.105) 1.166(0.737) 46.89(40.99) 25.85(20.14) 12.26(8.420)
ImageNet HSJA 12.24(9.242) 6.513(4.233) 4.071(2.761) 33.73(29.98) 15.91(15.01) 7.899(7.848)

ViT TA 8.926(6.115) 4.792(3.101) 2.872(2.002) 28.13(24.34) 13.38(10.12) 5.647(4.649)
CGBA 4.515(3.086) 2.338(1.571) 1.588(1.058) 35.72(30.62) 13.96(10.19) 5.829(4.757)

CGBA-H 4.554(3.078) 2.311(1.651) 1.582(1.131) 23.23(20.75) 9.614(7.794) 4.862(3.944)
TtBA 4.508(3.052) 2.294(1.558) 1.512(1.044) 22.20(19.64) 9.205(7.616) 4.841(3.817)

ImageNet HSJA 16.25(11.18) 9.288(4.980) 5.816(3.021) 77.46(74.88) 66.38(63.01) 51.29(47.72)
Efficient TA 13.11(8.728) 6.986(4.034) 4.112(2.429) 73.00(68.15) 62.77(58.26) 49.28(44.36)

CGBA 9.956(5.719) 5.696(2.522) 3.161(1.456) 79.44(75.73) 68.52(61.24) 52.82(44.16)
CGBA-H 9.542(6.373) 4.836(2.958) 2.688(1.979) 61.98(56.37) 42.34(38.71) 28.83(25.39)

TtBA 6.451(4.400) 3.359(2.136) 2.008(1.224) 54.85(50.73) 36.15(30.59) 21.68(15.81)
ImageNet HSJA 14.50(9.801) 7.823(4.565) 4.935(2.820) 75.51(72.86) 64.54(61.28) 50.37(46.89)
Inception TA 13.23(8.012) 6.907(3.854) 3.839(2.233) 71.26(67.54) 60.83(57.36) 48.21(43.52)

CGBA 11.54(4.402) 5.950(1.935) 3.185(1.072) 80.47(77.25) 67.99(65.07) 53.69(48.67)
CGBA-H 10.88(4.882) 5.095(1.960) 2.474(1.092) 56.46(51.08) 42.22(36.61) 27.96(22.60)

TtBA 8.599(4.297) 3.771(1.765) 1.961(0.953) 55.16(53.13) 38.24(34.55) 24.19(18.18)

Table 1. Average (median) ℓ2 norm of perturbation for targeted and non-targeted black-box attacks under different query budgets (QUE).
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Figure 5. Median ℓ2 perturbation against adversarially-trained
WideResNet models.

Results. For non-targeted attacks in Table 1, our proposed
TtBA achieves the best performance on 7 out of 9 models,
ranging from 2000 to 10,000 queries. On the ImageNet
dataset, TtBA reduces the ℓ2 perturbation by over 20% com-
pared to other methods for the ResNet50 and Efficient mod-
els. On the CIFAR10-CNN and CIFAR100-ViT models,
CGBA outperforms TtBA in terms of both average and me-
dian ℓ2 norm at 2,000 queries. However, TtBA surpasses
CGBA at 5,000 and 10,000 queries for both models. In
targeted attacks, TtBA surpasses other methods in nearly
all tested scenarios, covering 9 models and various query
budgets. The only exception occurs with the CIFAR100-
ViT model at 10,000 queries, where CGBA-H achieves a
marginally lower average ℓ2 norm (4.327 versus 4.464).
This result shows that TtBA outperforms other methods,
especially for targeted attack settings.

The perturbed images generated by TtBA for different query
budgets (QUE) are shown in Figure 6. In this figure, per-
turbation directions are normalized to the [0, 1] range to
illustrate how they diminish as the query budget increases,
starting from random noise in non-targeted attacks and a
target image in targeted one.

5.3. Results on Adversarially Trained Models

Defense methods based on adversarial training play a cru-
cial role in enhancing model robustness by significantly
lowering the success rates of hard-label attacks (Chen &
Gu, 2020; Chakraborty et al., 2021). We assess TtBA’s ef-

fectiveness on state-of-the-art adversarially trained models
developed in (Wang et al., 2023). These models serve as a
highly relevant benchmark due to their focus on adversar-
ial robustness, making them ideal for assessing the perfor-
mance of TtBA. In our experiments, we test specifically the
WideResNet models (Wang et al., 2023), which were trained
using techniques in (Zagoruyko, 2016) to achieve strong
robustness. We compare TtBA against other leading attack
methods, including HSJA, TA, CGBA, and CGBA-H, on the
CIFAR-100 and Tiny-ImageNet datasets. For each dataset,
we randomly select 500 images to conduct targeted and non-
targeted attack experiments, adhering to a query budget limit
of 10,000 queries. Specifically, we adopt the WideResNet
WRN-70-16 model from (Wang et al., 2023) for CIFAR-100
and the WRN-28-10 model for Tiny-ImageNet. Past studies
show that these models have strong defensive performance
on the respective datasets (Wang et al., 2023).

To assess the general applicability of TtBA, we follow iden-
tical hyper-parameter settings introduced in Section 5.1.
The median ℓ2 curve with respect to different numbers of
queries is presented in Figure 5. The results in Figure 5-(a)
and (b) demonstrate that, on the CIFAR100 dataset, TtBA
outperforms all competing methods for both targeted and
non-targeted attacks. For the tiny-ImageNet dataset, Fig-
ure 5-(c) shows that TtBA achieves the best performance
in non-targeted attacks. However, for targeted attacks, as
depicted in Figure 5-(d), CGBA-H performs the best within
the query budget range of 1,000 to 4,000. Beyond 4,000
queries, TtBA surpasses CGBA-H.

6. Conclusion and Future Work
In this paper, we proposed Two-third Bridge Attack (TtBA),
a novel and efficient decision-based black-box adversar-
ial attack method. Our method introduces the concept of
bridge direction, which effectively combines the current
perturbation direction with its normal vector, guided by the
weight parameter kbridge. We identified and successfully
addressed the challenge of local optima in regions with high
decision boundary curvatures, significantly enhancing the
attack’s effectiveness. Further, through theoretical analysis
and extensive experimentation, we demonstrated that using
2/3kbridge consistently yields near-optimal results in mini-
mizing the ℓ2 distance of adversarial examples. Extensive
evaluation across multiple datasets (MNIST, FASHION-
MNIST, CIFAR10, CIFAR100, and ImageNet) and 9 deep
learning models demonstrated that TtBA can consistently
outperform state-of-the-art methods in both targeted and
non-targeted attack scenarios. Our work not only advances
the field of adversarial machine learning but also provides
valuable insights into the geometric properties of decision
boundaries through the novel kbridge metric.

Future research directions for TtBA are promising in sev-
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(d) Class 'Ibizan' misclassified as target class 'Model-T'

Figure 6. Adversarial examples and corresponding perturbation directions generated by TtBA for different query budgets.

eral avenues. First, adapting TtBA to score-based attack
scenarios could leverage probability outputs to significantly
reduce query complexity. Second, incorporating TtBA into
multi-objective optimization frameworks could enhance
real-world deployability by jointly optimizing perturbation
imperceptibility, cross-model transferability, and query effi-
ciency. The geometric insights developed from the decision
boundary analysis in this paper could extend beyond tra-
ditional attack scenarios, potentially benefiting adversarial
machine learning tasks in areas such as speech recognition,
text classification, and object detection.

Impact Statement
This paper presents work that aims to advance the field of AI
security, specifically in understanding and improving black-
box adversarial attacks against image classification models.
While our research could potentially be used to enhance
the robustness of AI systems through better understanding
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proposed method can potentially be extended beyond image
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plications, which is crucial as these technologies become
increasingly integrated into society.
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A. Appendix Introduction
In real-world applications, lower perturbation strength makes adversarial examples less noticeable to human observers.
Therefore, decision-based attacks aim to deceive the target DNN (i.e., image classifier) with the minimal perturbation
strength, subject to a pre-determined query budget (Brendel et al., 2018). To enhance attack efficiency, decision-based
attacks have focused on exploring perturbation directions and the corresponding decision boundary to optimize adversarial
examples (Brendel et al., 2018; Chen & Gu, 2020; Reza et al., 2023). A perturbation direction is a pixel-wise vector guiding
adversarial modifications. Its decision boundary defines the minimal perturbation magnitude required to mislead the model
along the perturbation direction. Thus the direction with low decision boundary is highly desirable. As illustrated in Figure
1, x is the original image, and the boundary of the orange region represents the decision boundary of a DNN in image
classification. Points x̃i and x̃i

bridge in Figure 1 serve as boundary points along the perturbation directions d̂i and dibridge,
respectively.

The curvatures of decision boundaries have strong impact on perturbation optimization (Ma et al., 2021; Reza et al., 2023).
In particular, targeted attacks often create narrower adversarial regions with higher decision boundary curvatures than
non-targeted attacks, making perturbation optimization more challenging than non-targeted attacks (Reza et al., 2023). As
shown in Figure 2-(c), the adversarial region contracts in targeted attacks, making it difficult to find effective adversarial
examples, seriously hurting attack effectiveness and query-efficiency (Reza et al., 2023). Thus, efficiently optimizing
perturbations within narrow adversarial regions is a crucial practical challenge (Reza et al., 2023). Overcoming this obstacle
is key to advancing the effectiveness of decision-based attacks.

B. Geometric Analysis of Decision Boundary
B.1. Define the HyperSurface of Decision Boundary

The decision boundary of the target DNN model f can be characterized as a hyperSurface S associated with an input x.
Specifically, S is the set of all points x̃ that lie exactly on the boundary between the class of x and other classes. For any
direction d ∈ RC×W×H , there exists a unique boundary point x̃ along d, determined by the minimal perturbation required
to cross the decision boundary. Formally, S can be defined as:

S =

{
x̃ = x+ g(d) · d

∥d∥2

∣∣∣∣∀d ̸= 0, I(x̃) = 1

}
, (6)

where I(·) is the indicator function that determines whether x̃ lies in the adversarial region, g(d) is the decision boundary
along direction d, d

∥d∥2
is the unit direction vector. HSJA (Chen et al., 2020) proves that there exists only one boundary

point on S along any direction d. Furthermore, since the hyperSurface S is smooth with respect to d, the decision boundary
g(d) is also smooth with respect to d.

B.2. Local Taylor Expansion of Decision Boundary

Since studying the properties of S in the high-dimensional input space C ×W × H is challenging, existing research
such as (Chen et al., 2020; Ma et al., 2021; Reza et al., 2023) focused on studying the curve at the intersection between
the decision boundary and the 2D plane defined by the current perturbation vector d̂i and the normal vector N̂ i. This
2D reduction is effective because N̂ i indicates the direction of locally optimal perturbation, making the search for new
directions more efficient. For simplicity, we treat the decision boundary G(k) = g(k · N̂ i + (1− k) · d̂i) as a function of k
and analyze the properties of G(k) on this 2D plane. We express G(k) as a Taylor expansion around the initial point k = 0:

G(k) = g(d̂i) + ak +
1

2
bk2 +

1

6
ck3 +O(k4), (7)

• a = ∂G
∂k

∣∣
k=0

< 0 is the first-order derivative, representing the initial slope of the boundary along N̂ i,

• b = ∂2G
∂k2

∣∣
k=0

> 0 is the second-order derivative, dominating local curvature,

• c = ∂3G
∂k3

∣∣
k=0

is the third-order derivative, describing the curvature variation rate,

12



TtBA: Two-third Bridge Approach for Decision-Based Adversarial Attack

• O(k4) denotes higher-order terms.

To find kibridge, we set

G(k) = g(d̂i) + ak +
1

2
bk2 +

1

6
ck3 +O(k4) = g(d̂i).

By omitting the third-order term 1
6ck

3 and higher-order terms, the equation simplifies to

G(k) = g(d̂i) + ak +
1

2
bk2 = g(d̂i).

Moving g(d̂i) to the right-hand side yields

ak +
1

2
bk2 = 0.

This equation has two solutions:

k = 0 and a+
1

2
bk = 0,

which gives

k = −2a

b
.

Since kibridge > 0, we obtain

kibridge = −
2a

b
. (8)

B.3. Relationship between Curvature and kbridge

At k = 0, the curvature κ of the decision boundary in the 2D plane is derived from the Taylor expansion coefficients as:

κ =
|f ′′(k)|

(1 + (f ′(k))2)3/2
=

b

(1 + a2)3/2
. (9)

This revision simplifies the wording slightly, maintains the mathematical meaning, and improves the flow of the sentence.
When higher-order terms are negligible (i.e., |a| ≪ 1 and |ck3| ≪ |bk2|), the curvature can be approximated as:

κ ≈ b ≈ − 2a

kibridge
, with κ ∝ 1

kibridge
. (10)

This approximation is valid for small attack steps within the neighborhood of k. It implies that as the curvature of the
decision boundary G(k) increases, kibridge decreases. Thus, kibridge serves as an indicator of the decision boundary’s curvature.

B.4. Minimum Points and Values of Decision Boundary

CRITICAL POINTS AND MINIMUM DECISION BOUNDARY

The first-order derivative of G(k) is:

G′(k) = a+ bk +
1

2
ck2 +O(k3). (11)

Setting G′(k) = 0 to find critical points, we solve:

a+ bk +
1

2
ck2 ≈ 0 (neglecting O(k3)). (12)

Quadratic Approximation Case (c = 0): When higher-order terms are negligible (c ≈ 0), the critical point simplifies to:

kmin = −a

b
. (13)

The second derivative G′′(k) = b+ ck+O(k2) must satisfy G′′(kmin) > 0 for a local minimum. Under c ≈ 0, this reduces
to b > 0, consistent with positive curvature.
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IMPACT OF DECISION BOUNDARY CURVATURE

From the curvature formula κ = b
(1+a2)3/2

(Eq. (9)), two regimes emerge:

1. Small Slope (|a| ≪ 1): Here, κ ≈ b, and Eq. (13) becomes:

kmin ≈ −
a

κ
. (14)

For fixed a, increasing κ (i.e., sharper curvature) drives kmin → 0. The minimum value is:

G(kmin) ≈ g(d̂i)− a2

2κ
. (15)

Larger κ reduces the subtraction term, resulting in a larger G(kmin).

2. Non-Negligible Slope (|a| ∼ 1): The full curvature formula κ = b
(1+a2)3/2

implies b = κ(1 + a2)3/2. Substituting into
kmin:

kmin = − a

κ(1 + a2)3/2
. (16)

Even with moderate a, increasing κ still forces kmin → 0, and G(kmin) grows as G(kmin) ≈ g(d̂i)− a2

2κ(1+a2)3/2
.

GEOMETRIC INTERPRETATION

• High Curvature (κ ↑): The decision boundary is sharply curved near input x. To reach the boundary, adversarial
perturbations require smaller steps (kmin ↓) but larger magnitudes (G(kmin) ↑), as the boundary “retreats” rapidly from
the original class.

• Low Curvature (κ ↓): The boundary is flat, allowing larger steps (kmin ↑) with smaller perturbations (G(kmin) ↓).

HIGH-ORDER CORRECTIONS

Including the cubic term (c ̸= 0), Eq. (12) becomes quadratic:

1

2
ck2 + bk + a = 0. (17)

The solution is:

kmin =
−b±

√
b2 − 2ac

c
. (18)

For small c, a Taylor expansion in c/b2 gives:

kmin ≈ −
a

b
+

a2c

2b3
+O(c2). (19)

The cubic term introduces an offset proportional to c, but the dominant term −a/b still ensures kmin ∝ 1/κ when κ≫ 1.

B.5. Linear Relationship Between kmin and kbridge

Building on the analysis of the decision boundary’s curvature κ and the minimum point kmin, we now investigate the
relationship between kmin and the parameter kibridge. We demonstrate that under the quadratic approximation, kmin and kibridge
exhibit an approximately linear relationship, governed by the curvature κ.

DEFINITIONS RECAP

1. Minimum Point kmin: From Eq. (13), under quadratic approximation (c = 0):

kmin ≈ −
a

b
,

where a = ∂G/∂k|k=0 and b = ∂2G/∂k2|k=0 ≈ κ when |a| ≪ 1.

2. Bridge weight parameter kbridge from Eq. (8):

kibridge ≈ −
2a

b
.

14



TtBA: Two-third Bridge Approach for Decision-Based Adversarial Attack

LINEAR RELATIONSHIP DERIVATION

From Eq. (13) and Eq. (8) , we obtain:

kmin ≈
1

2
· kibridge.

This reveals a linear proportionality between kmin and kibridge:

kmin ∝ kibridge. (20)

C. Complexity of Binary Search for kbridge

In lines 6-17 of Algorithm 1, we perform a binary search to identify the bridge parameter kibridge that aligns the intermediate
direction dmid (Line 9) with the current direction di’s decision boundary. While this process requires query budget, its
computational cost is minimal compared to its strategic benefits. Under the standard 10,000-query setting (Chen & Gu,
2020), TtBA completes 57 iterations on average, with query allocation distributed across four components:

1. Initial perturbation (Algorithm 4): about 10 queries for baseline direction generation.

2. Normal vector estimation (Line 5): ⌈30
√
i⌉ queries per iteration for boundary geometry analysis, where i represent the

i-th optimization iteration in Algorithm1.

3. Bridge parameter binary search (Lines 6-17): approximately 10 queries/iteration at precision δ = 0.001 (≈ 2−10)

4. Decision boundary binary search (Line 26): approximately 14 queries/iteration for τ = 0.0001 (≈ 2−14) tolerance.

The resulting queries for each iteration is:
qi = 24 + ⌈30

√
i⌉. (21)

Consequently, the total number queries across n iterations of binary search is bounded by:

Qn = 10 +

n∑
i=1

qi ≤ 10 +

∫ n

1

(24 + 30
√
x) dx = 10 +

[
24x+ 20x3/2

]n
1
= 24n+ 20n3/2 − 34. (22)

Solving 24n+ 20n3/2 − 34 = 104 yields n ≈ 57 iterations. The total cost of 570 queries (57× 10) for kbridge binary search
constitutes only 5.7% of the query budget.

D. Binary Search of Decision Boundary
In Algorithm 2, the binary search process begins by initializing the low boundary point x̃low ← x in the non-adversarial
region and the high boundary point x̃high ← x+ d in the adversarial region. In lines 4-11, the algorithm iteratively checks
whether the midpoint x̃mid ← (x̃low + x̃high)/2 lies in the adversarial region and updates x̃low or x̃high accordingly until the
search tolerance is met. Finally, in line 12, it returns the decision boundary value ∥x̃high − x∥2.

E. Normal Vector Generation
We follow the CGBA (Reza et al., 2023) normal vector estimation method (Algorithm 3) for decision boundary characteriza-
tion. Given a boundary point x̃ in line 1, we initialize a normal vector N ← 0C×W×H in line 3. For each query q ∈ [1, QN ]:
1) Generate low-dimensional Gaussian noise dtemp ∼ N (0, I) in reduced space RC×W

s ×H
s (Line 5); 2) Upsample to image

space via 2D inverse discrete cosine transform dGaussian ← IDCT2(dtemp) (Line 6), where IDCT2(·) refers to the 2D Inverse
Discrete Cosine Transform, which reconstructs spatial-domain data from its frequency-domain representation; 3) Test
adversarial direction by perturbing x̃ with rN · d̂Gaussian (Line 7); 4) Accumulate direction using N ← N ± d̂Gaussian based on
the indicator I(x̃+ rN d̂Gaussian) (Lines 8-10). The final normalized normal vector N̂ is returned after QN queries (Line 12).
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Algorithm 2 Decision Boundary Binary Search

1: Input: Original image x, direction d, indicator I(·);
2: Output: Decision boundary g(d) for direction d;
3: Initialization: Set low boundary point x̃low ← x, high boundary point x̃high ← x+ d, search tolerance τ ← 0.0001;
4: repeat
5: x̃mid ← x̃low+x̃high

2
6: if I(x̃mid) = 1 then
7: x̃high ← x̃mid
8: else
9: x̃low ← x̃mid

10: end if
11: until ∥x̃high − x̃low∥2 ≤ τ
12: Return ∥x̃high − x∥2 as g(d).

Algorithm 3 Get Normal Vector

1: Input: Original image x, indicator function I(·), a boundary point x̃, query budget for normal vector QN , dimension
reduce factor s, and normal vector radius rN = 0.0003;

2: Output: A normal vector N at current boundary point x̃;
3: Initialization: N ← (0, ..., 0)C×W×H,
4: for query q = 1 to QN do
5: dtemp ← (z1,1,1, ..., zC, Ws , Hs

), zc,w,h ∼ N (0, 1)

6: dGaussian ← IDCT2(dtemp)

7: if I(x̃+ rN · d̂Gaussian) = 1 then
8: N ← N + d̂Gaussian
9: else

10: N ← N − d̂Gaussian
11: end if
12: end for
13: Return N

F. Initial Perturbation Generation
We adopt the CGBA framework (Reza et al., 2023) to compute the initial perturbation direction (Algorithm 4). For targeted
attacks (Lines 3-4), the direction is derived as dinit = xtarget − x. In non-targeted scenarios (Lines 6-19), Gaussian noise
dGaussian ∼ N (0, I) is iteratively sampled (Line 7), scaled by 0.02q (Line 8, where q is the query index and ·̂ denotes
normalization), with early termination if I(x + dinit) = 1 (Lines 9-11). If Q/10 queries fail (Line 13), perturbations
1C×W×H − x (Line 14) or 0C×W×H − x (Line 16) are attempted. The direction is then calibrated via dinit ← g(dinit) · d̂init
(Line 20), where g(·) implements boundary projection through binary search (Reza et al., 2023).

G. Parameter Sensitivity Analysis
Our TtBA algorithm summarized in Algorithm 1 introduces several parameters, including the local optima thresholds
ǩ = 0.1 and k̂ = 0.2, as well as the bridge coefficients b̂ = 0.9 and b̌ = 2/3. The corresponding parameter settings are
determined based on preliminary experiments conducted on the ImageNet-VGG19 model. In this appendix, we show that
the performance of TtBA is not sensitive to these parameter settings.

To evaluate the impact of different parameter settings, we conduct a sensitivity analysis. Specifically, we vary the bridge
coefficients b̂ and b̌ (Table 2) and the local optima thresholds ǩ and k̂ (Table 3) across a range of values. For each setting,
performance is assessed using the area under the median ℓ2-query curve (AUC). AUC is calculated using the formula:
AUC =

∑n
i=1 ℓ2(Qi) where ℓ2(Qi) represents the median ℓ2-norm obtained after Qi queries, and n = 10, 000 is the total

query budget. In adversarial attacks, a lower AUC demonstrates a smaller perturbation and better attack effect.

We conduct experiments on the MNIST-CNN, CIFAR10-CNN, CIFAR100-ViT, and ImageNet-VGG models for both
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Algorithm 4 Get Initial Perturbation Direction

1: Input: Original image x, indicator I(·), query budget Q, target image xtarget for targeted attack;
2: Output: An initial perturbation direction dinit;
3: if Targeted attack then
4: dinit ← xtarget − x
5: else if Non-targeted attack then
6: for query q = 1 to Q

10 do
7: dGaussian ← (z1,1,1, ..., zC,W,H), zc,w,h ∼ N (0, 1)

8: dinit ← 0.02 · q · d̂Gaussian
9: if I(x+ dinit) = 1 then

10: break
11: end if
12: end for
13: if q ≥ Q

10 then
14: dinit ← (1, ..., 1)C×W×H − x
15: if I(x+ dinit) = −1 then
16: dinit ← (0, ..., 0)C×W×H − x
17: end if
18: end if
19: end if
20: dinit ← g(dinit) · d̂init
21: Return dinit

Dataset Parameter b̂ b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 2/3

Model Parameter b̌ b̌ = 0.55 b̌ = 0.60 b̌ = 0.65 b̌ = 2/3 b̌ = 0.70 b̌ = 0.75 b̌ = 2/3
MNIST Non-targeted 17121 17481 17151 17016 17440 17447 17091

CNN Targeted 24750 24032 23863 24106 24960 24389 24166
CIFAR10 Non-targeted 2908.0 2808.7 2786.1 2771.8 2833.1 2887.9 2791.0

CNN Targeted 9954.0 9271.4 8827.8 9027.1 8804.8 9157.8 9046.2
CIFAR100 Non-targeted 11359 10860 9926.5 9607.3 10102 11970 9621.3

ViT Targeted 90993 94329 85023 83471 100429 90909 87365
ImageNet Non-targeted 16913 16037 17005 16072 15366 16250 16182
VGG19 Targeted 201410 198460 196677 193161 193700 198519 198932

Table 2. AUC of TtBA under different parameters (b̂, b̌).

non-targeted and targeted attacks. These models have been introduced in Subsection 5.1. The results are presented in Table
2 and Table 3, with the best values highlighted in bold.

Our experiment results clearly indicate that the parameter settings (b̂ = 0.9, b̌ = 2/3) and (k̂ = 0.2, ǩ = 0.1) can achieve
the best performance in five out of eight experiments. Even when they are not the top-performing configurations, their
results remain very close to the best values.

Furthermore, the parameter setting b̂ = 2/3 and b̌ = 2/3, as shown in Table 3, corresponds to TtBA without the local
optima escape mechanism. Under this setting, TtBA updates the weight parameter as ki+1 = 2/3kibridge in lines 18-24 of
Algorithm 1, completely ignoring the curvature of the decision boundary. Our experiments show that this configuration
achieved consistently lower performance compared to setting b̂ = 0.9 and b̌ = 2/3 in Algorithm 1. This result highlights the
importance of using our proposed mechanism to escape local optima.

We also conduct additional sensitivity analysis on robust models. As demonstrated in Table 4, TtBA can effectively attack
robust models after adjusting its hyperparameters. Specifically, we modify the setting of k = b̌ · kbridge by varying the
default value of b̌ = 2/3 across {0.55, 0.575, 0.60, 0.625, 0.65, 2/3, 0.70}, and evaluate the AUC of two WRN models
on the CIFAR-100 and TinyImageNet datasets. The results demonstrate that, for robust models, the setting b̌ = 0.625
achieves the best performance in 3 out of 4 experiments, clearly surpassing the b̌ = 2/3 setting. This difference likely
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Dataset Parameter k̂ k̂ = 0.15 k̂ = 0.20 k̂ = 0.15 k̂ = 0.20 k̂ = 0.25 k̂ = 0.20 k̂ = 0.25

Model Parameter ǩ ǩ = 0.05 ǩ = 0.05 ǩ = 0.10 ǩ = 0.10 ǩ = 0.10 ǩ = 0.15 ǩ = 0.15
MNIST Non-targeted 16972 17005 16954 17016 16946 17051 17008
CNN Targeted 23745 24262 23972 24106 24389 24272 24601

CIFAR10 Non-targeted 2777.0 2786.5 2781.2 2771.8 2787.2 2779.7 2774.0
CNN Targeted 9340.9 9307.6 9126.3 9027.1 9221.4 9471.9 9350.8

CIFAR100 Non-targeted 9711.4 9703.6 9698.2 9607.3 9614.4 9625.9 9688.1
ViT Targeted 87940 88777 96075 83471 100613 106421 90233.9

ImageNet Non-targeted 16199 16175 16120 16072 16167 16089 16168
VGG19 Targeted 198385 192804 216609 193161 191641 216601 192685

Table 3. AUC of TtBA under different parameters (k̂, ǩ).

Dataset Parameter b̂ b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 0.9 b̂ = 0.9

Model Parameter b̌ b̌ = 0.55 b̌ = 0.575 b̌ = 0.60 b̌ = 0.625 b̌ = 0.65 b̌ = 2/3 b̌ = 0.70
CIFAR100 Non-targeted 8763.6 8790.2 8657.4 8605.4 8681.8 8784.6 8816.2

WRN Targeted 22786 22288 21977 20799 22806 22973 23172
TinyImageNet Non-targeted 31864 31230 30898 29437 29978 30026 30569

WRN Targeted 121442 120874 115260 115681 116891 116976 117997

Table 4. AUC of TtBA under different parameters (b̂, b̌) against robust trained models.

arises because robust models can effectively conceal gradient information, causing normal vector estimation to become
less reliable. Consequently, assigning a smaller weight to the normal vector can enhance the effectiveness of perturbation
optimization.

H. Appendix Experiment on Attack Success Rate
The reduction in query complexity under the same perturbation budget is shown in Table 5. We evaluate the performance
of TtBA on the ImageNet dataset across four models: VGG-19, ResNet-50, Inception-V3, and ViT-B32. Following the
setup of CGBA, we set the query budget to 10,000 and the maximum ℓ2 perturbation strength to ϵ = 2.5. We then randomly
choose 500 images from ImageNet and compare the Attack Success Rate (ASR) and the average (median) number of queries
required for a successful attack. The results are presented below.

Model VGG ResNet Inception ViT
Attack -19 -50 -V3 -B32
HSJA Query 2051.1(1071.8) 1833.8(1209.5) 2851.1(2080.1) 1873.9(947.5)

ASR 61.0% 38.8% 57.2% 59.6%
CGBA Query 2500.9(1528.5) 3450.7(2679.0) 3169.3(2363.0) 2447.8(1797.0)

ASR 88.2% 52.0% 74.4% 79.6%
TtBA Query 2350.8(1481.0) 3546.6(2754.0) 3098.8(2175.0) 2384.4(1781.5)

ASR 93.2% 61.8% 80.0% 80.4%

Table 5. Comparison of decision-based untargeted attacks on the ImageNet dataset with 10,000 query budgets and maximum ℓ2 perturba-
tion strengths ϵ = 2.5.

The results show that TtBA achieves the highest attack success rate (ASR) across all four models. Regarding the number
of queries, HSJA has the lowest average (median) number of queries, but this is due to its much lower ASR compared to
CGBA and TtBA. As is well-known, some images contain robust features that require more queries for a successful attack.
TtBA, with has significantly higher ASR, is able to successfully attack these robust images, thus requiring more queries on
average. Meanwhile, with a similar ASR, TtBA outperforms CGBA in terms of average (median) queries. On ResNet-50,
TtBA also achieves significantly higher ASR (61.8%) compared to CGBA (52.0%).
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