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Abstract

We explore the impact of different demonstration components on the in-context1

learning (ICL) performance of large language models (LLMs), focusing on ground-2

truth labels, input distribution, and complementary explanations. Using explainable3

NLP (XNLP) methods and saliency maps, we analyze how altering or perturbing4

these elements affects model behavior. Our findings show that flipping ground-truth5

labels significantly influences saliency, especially in larger models, while changes6

to input distribution have a lesser effect. The role of complementary explanations7

varies by task, offering limited benefits in sentiment analysis but more in symbolic8

reasoning. These insights are essential for optimizing LLM demonstrations.9

1 Introduction10

Large language models (LLMs) show significant ability of in-context learning (ICL) for many NLP11

tasks [1]. ICL only requires a few input-label pairs for demonstrations and does not require fine-tuning12

on the model parameters. However, how each part of the demonstrations used in ICL drives the13

prediction remains an open research question. Previous works have mixed findings. For examples,14

although one might assume that ground-truth labels would have a similar impact on ICL as they do15

on supervised learning, [2] finds that the ground truth input-label correspondence has little impact on16

the performance of end tasks. However, [3] suggests that the example ordering has a strong impact.17

More recently, [4] find that only LLMs with larger scales can learn the flipped input-label mapping.18

In this work, we use XNLP methods to understand which part of the demonstration contributes to the19

predictions more. We are interested in the impact of contrastive input-label demonstration pairs built20

in different ways, i.e., flipping the labels, changing the input, and adding complementary explanations21

as shown in Fig. 1. We then contrast the saliency maps of these contrastive demonstrations via22

qualitative and quantitative analysis. Prior works [2, 4, 1] show LLMs in relatively small scale, such23

as all GPT-3 models [1] (based on categorization in [4]), cannot override prior knowledge from24

pretraining with demonstrations presented in-context, which means LLMs do not flip their predictions25

when the ground-truth labels are flipped in the demonstrations [2]. However, [4] show larger models26

like InstructGPT (specifically the text-davinci-002 checkpoint) and PaLM-540B [5] have the27

emergent ability to override prior knowledge in the same setting. We partly reproduce the results28

from previous work [2, 4] on a sentiment classification task and find that the ground-truth labels in29

the demonstration are less salient after label flipping.30

Meanwhile, as the other important part of the demonstrations, the effect of input distribution is31

understudied. [2] change the whole input to random words and [4] do no investigate input distribution32

at all. Therefore, we investigate the impact of input distribution at a fine-grained level, where we33

edit the input text’s different components in correspondence to task-specific purposes. In the case34

of sentiment analysis, we change the sentiment-indicative terms in the input text of demonstrations35

to sentiment-neutral ones. We find that such input perturbation (neutralization) does not have as36
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Figure 1: An overview of three ways to build contrastive demonstrations - flipping labels, perturbing
(neutralizing) input, and adding complementary explanations. The contrastive parts are colored in
red.

large impact as changing ground-truth label do. We suspect the models rely on pretrained knowledge37

to make fairly good predictions because the averaged importance scores for neutralized terms are38

smaller than the ones of original sentiment-indicative terms. Additionally, we find that complementary39

explanations do not necessarily benefit sentiment analysis task as they do for symbolic reasoning tasks40

as shown in [1], even though the saliency maps suggest the explanations tokens are as salient as the41

original input tokens. This suggests that we need to carefully generate complementary explanations42

and evaluate whether the target task would benefit from them when trying to boost ICL performance43

with such technique.44

We hope the findings of this study can help researchers better understand the mechanism of LLMs45

and provide insights for practitioners when curating the demonstrations. Especially with the recent46

popularity of ChatGPT, we hope this study can help people from various domains have a better user47

experience with LLMs. The code for this study will be public once the paper is accepted .48

2 Approach49

Previous studies have explored Instruction Consistency Learning (ICL) using traditional methods50

[2, 4], but our study is the first to apply XNLP techniques to ICL. We create contrastive demonstrations51

by flipping labels, neutralizing input adjectives, and adding complementary explanations (see Fig.52

1). Our approach differs from [2] in that we employ task-specific input perturbations, focusing on53

sentiment analysis where adjectives significantly impact predictions. By comparing saliency maps54

of these contrastive and original demonstrations, we aim to uncover how various demonstration55

components influence ICL predictions.56

3 Experimental Set-up57

Dataset. We choose SST-2 [6], a sentiment analysis task, as our baseline task to explain ICL58

paradigm. Due to budget limitations and to follow [2, 4], we randomly sampled 2k examples that59

are not shorter than 20 tokens from the SST-2 training set as the test set. Additionally, we randomly60

sample 1k examples for generating saliency maps.61

Demonstration Selection. We selected four example demonstrations to test language models’62

in-context learning abilities, including two positive and two negative examples for class balance, as63

depicted in Fig. 4. These demonstrations involve original texts, label flipping, input neutralization,64

and adding explanations for each case. Label Flipping: We reversed the binary labels for each exam-65

ple for testing. Input Neutralization: We tasked GPT-4 to neutralize strong sentiment words in each66

review, replacing them with neutral alternatives. The changes were minimal and manually verified67

for accuracy. Complementary Explanation: For each demonstration, we generated explanations68

by prompting GPT-4 to clarify why reviews were labeled positively or negatively, then refined these69

explanations for brevity and clarity as shown in Fig 4d.70

Baseline LMs and Metric. We evaluate accuracy of the following models on the sampled SST-271

dataset, including Fine-tuned BERT, ChatGPT-3.5-turbo, Instruct-GPT, GPT-2. Metric: We use72
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Figure 2: Model Performance under the four conditions, with four demonstrations given

the accuracy to evaluate sentiment classification. We also use T-test to verify our hypothesis on the73

saliency map patterns for the three contrastive demos.74

Saliency Map Methods. TWe utilize Integrated Gradients (IG) [7] for models like GPT-2, using the75

Ecco library. For black-box models such as text-davinci-002 from the Instruct-GPT family, we76

apply LIME for explanations. We employ LimeTextExplainer, specifying 20 features and 5 neighbors,77

chosen to minimize API interactions due to budget constraints, resulting in sparser saliency maps78

discussed in Section 4.2. The hyperparameters and prompts for GPT-2 and GPT-3 are consistent with79

those used for accuracy evaluation. Due to time and resource limitations, we only produced saliency80

maps for GPT-2 and GPT-3, with potential future expansions to models like ChatGPT.81

4 Findings82

4.1 Prediction Performance of the Three Contrastive Demonstrations83

We evaluated the performance of GPT-3.5-Turbo, InstructGPT, and GPT-2 on test examples with84

demonstrations like original, label flipping, input neutralization, and complementary explanations,85

as shown in Fig. 2 and Fig. 3. ChatGPT-Turbo-3.5 showed the most significant performance drop86

with label flipping, decreasing from 96% to 73% accuracy with 4 demonstrations and further to87

17% with 8 demonstrations. InstructGPT experienced smaller drops. Despite similar model sizes,88

GPT-3.5-Turbo displayed stronger in-context learning compared to InstructGPT.89

GPT-2 showed significantly lower performance with 4 demonstrations and tended towards negative90

predictions with 8 demonstrations, indicating insensitivity to demonstration type contrasts. This91

supports previous findings that large LMs like ChatGPT and InstructGPT are more affected by label92

flipping in demonstrations.93

Input neutralization and complementary explanations had minor impacts on model performance,94

likely due to the trivial nature of the sentiment analysis task and the models’ reliance on pre-trained95

knowledge. This leads us to further explore contrasting saliency map patterns between smaller and96

larger LLMs, all based on transformer architecture."97

4.2 Comparison of the Saliency Maps98

Due to the GPT-2’s poor performance and compute cost when given 8 demonstrations, we use the99

setting of 4 demos for saliency map in Fig. 4 and Fig. 5.100

Label Flipping. The labels in the demonstration are less important after model flipping for smaller101

LMs (GPT2) but more important for large LMs (text-davinci-002 from Instruct-GPT). For102

example as in Fig. 4a and Fig. 4b, the importance of the output label in the demonstration decreases103

from the original prompt to the label-flipped one. This suggests that the model might pay less attention104

to the flipped label due to its inconsistency with the input, which results in insensitivity to label105

flipping in the demonstrations. We expect smaller LMs (GPT2) and large LMs (text-davinci-002106

from Instruct-GPT) to have different behaviors because [4] show only large LMs have the ability to107

override prior knowledge from pertaining to the one from demonstrations, which is also supported by108

our results from Fig. 2 and Fig. 3.109
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Figure 3: Model Performance under the four conditions, with eight demonstrations given.

For GPT2, on average, 3.35/4 of the labels in the demonstration have decreased saliency scores when110

the demo labels are flipped. Moreover, the average saliency scores of the 4 demo labels decrease111

for all 20 test examples. The p-value from a T-test for comparing average saliency scores (N = 20)112

between original and label-flipped demonstrations is < 0.001. For InstructGPT, the average saliency113

scores increase for 16/20 test examples with a p-value of 0.23 from a similar T-test as above (Fig.114

5b). As InstructGPT achieves around 60% accuracy in Fig. 3, we expect Instruct-GPT (with 8115

demonstrations) and ChatGPT to have a more significant result as it shows the ability to fully override116

prior pretrained knowledge.117

Input Perturbation (Neutralization). The sentiment-indicative terms in the original prompt are118

more important than sentiment-neutral terms in the neutralized prompt. The hypothesis is derived119

from the definition and our intuition of the sentiment analysis task. Sentiment-indicative terms are120

important to make sentiment predictions. To validate this hypothesis, we contrast the original and121

neutralized prompts and manually pick different tokens with sentiment orientations. The selected122

tokens are highlighted in Fig. 4a and Fig. 4c with red boxes respectively. We then compute the123

average saliency scores for each of the 20 test examples.124

We find that, for GPT2, the average saliency scores for sentiment-indicative terms in the original125

prompt are higher than their contrastive parts in the neutralized prompt for all 20 test examples with a126

p-value of < 0.001 from a T-test. However, for Instruct-GPT, we find that the sentiment-indicative127

terms in the original prompt are equal or higher in 9/20 test examples with a p-value of 0.17 from a128

similar T-test as above. We note that, as mentioned in Section 3, the saliency maps for Instruct-GPT129

generated by LIME are sparse and have a lot of zeros as shown in Fig. 5. This may lead to a mixed130

result with a less significant T-test result.131

4.2.1 Complementary Explanation132

Previous research [2] demonstrates that complementary explanations aid symbolic reasoning tasks like133

Letter Concatenation, Coin Flips, and Grade School Math. However, our findings in Fig. 2 reveal that134

these explanations do not enhance sentiment analysis, a relatively simpler task for language models.135

Saliency maps for GPT2 indicate that, in 80% of cases, explanation tokens have higher saliency scores136

than review tokens, with review scores averaging 90% of explanation scores, underscoring their137

comparable importance. The effectiveness of complementary explanations appears task-dependent,138

benefiting tasks that require logical reasoning. Further research is needed to confirm this across more139

datasets, which we suggest for future studies.140

5 Conclusion141

In this study, we applied XNLP techniques to explore ICL by analyzing contrastive input-label pairs142

with added explanations and examining their saliency maps through qualitative and quantitative143

methods. We partially replicated prior findings on a sentiment classification task, noting that ground-144

truth labels become less salient after label flipping. Neutralizing sentiment-indicative terms in inputs145

impacts model performance less than label changes, suggesting reliance on pretrained knowledge,146

as shown by lower importance scores for neutralized versus original terms. These insights aim to147

enhance understanding of LLM mechanisms and guide practitioners in demonstration curation.148
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A Appendix179

A.1 Related Work180

Large language models (LLMs) show significant ability of in-context learning (ICL) for many NLP181

tasks. [2] show that presenting random ground truth labels in the demonstrations does not substantially182

affect performance. They also change other parts of the demonstrations (e.g., label space, distribution183

of the input text and overall sequence format) and find these factors are the key drivers for the end184

task performance. [4] concentrates on labels by comparing LMs across different size scales with two185

variants that have flipped labels or semantically-unrelated labels. They find that only large LMs can186

flip the predictions to follow flipped demonstrations. [8] try to understand in-context learning by187

training transformer-based in-context learners on small-scale synthetic datasets.188

A.1.1 Gradient-based Methods189

For models with parameter access, we can estimate the importance of an input token using derivative190

of output w.r.t that token. The most basic method assigns importance by the gradient. However, it191

suffers from some known issues such as sensitivity to slight perturbations, saturated outputs, and192

discontinuous gradient. SmoothGrad [9] reduces the noise in the importance scores by adding193

Gaussian noise to the original input. Integrated Gradients (IG) [7] computes a line integral of the194

vanilla saliency from a baseline point to the input in the feature space.195

A.1.2 Perturbation-based Methods196

An alternative approach to generating saliency maps using input perturbations can be applied to197

black-box models. Instead, the process involves systematically altering the input data (i.e., words,198

phrases, and sentences) and observing the changes in the model’s output. We plan to start with the199

standard method that falls into this category, LIME [10]. The process involves creating perturbed200

versions of an input instance, passing them through the model, training a local linear model on the201

perturbed inputs and their corresponding predictions, and extracting feature importances from the202

local model.203
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(a) Original prompt

(b) Prompt with label flipping in the demonstrations

(c) Prompt with input perturbation (neutralization) in the demonstrations

(d) Prompt with complementary explanations in the demonstrations

Figure 4: Full prompts (demonstration + test example) used for original demonstration and three
contrastive variants. Tokens are color-coded by saliency scores for GPT2 generated by IG. The
red box in original and neutralized prompts indicates manually selected sentiment-indicative and
sentiment-neutral terms that we used for saliency map comparison.
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(a) Original prompts (demonstration + test example) used for original demonstration (Instruct-GPT)

(b) Prompt with label flipping in the demonstration (Instruct-GPT)

(c) Prompt with input perturbation (neutralization) (Instruct-GPT)

(d) Prompt with complementary explanations in the demonstrations (Instruct-GPT)

Figure 5: Full prompts (demonstration + test example) used for original demonstration and three
contrastive variants. Tokens are color-coded by saliency scores for generated by LIME. The red box
in original and neutralized prompts indicates manually selected sentiment-indicative and sentiment-
neutral terms for saliency map comparison. 8
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