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Abstract

Large Language Models (LLMs) have shown
great potential in time series forecasting by captur-
ing complex temporal patterns. Recent research
reveals that LLM-based forecasters are highly sen-
sitive to small input perturbations. However, exist-
ing attack methods often require modifying the en-
tire time series, which is impractical in real-world
scenarios. To address this, we propose a Tempo-
rally Sparse Attack (TSA) for LLM-based time
series forecasting. By modeling the attack pro-
cess as a Cardinality-Constrained Optimization
Problem (CCOP), we develop a Subspace Pursuit
(SP)-based method that restricts perturbations to
a limited number of time steps, enabling efficient
attacks. Experiments on advanced LLM-based
time series models, including LLMTime (GPT-
3.5, GPT-4, LLaMa, and Mistral), TimeGPT, and
TimeLLM, show that modifying just 10% of the
input can significantly degrade forecasting per-
formance across diverse datasets. This finding
reveals a critical vulnerability in current LLM-
based forecasters to low-dimensional adversarial
attacks. Furthermore, our study underscores the
practical application of CCOP and SP techniques
in trustworthy Al, demonstrating their effective-
ness in generating sparse, high-impact attacks and
providing valuable insights into improving the
robustness of Al systems.

1. Introduction

Time series forecasting is a critical tool across various do-
mains, including finance, traffic, energy management, and
climate science. Accurate predictions of temporal patterns
enable stakeholders to make informed decisions, optimize
resources, and mitigate risks, thus playing a pivotal role in
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modern decision-making (Lim & Zohren, 2021; Liu et al.,
2022b). By analyzing historical data to uncover trends, time
series forecasting helps anticipate future events and take
proactive actions.

Recently, Large Language Models (LLMs), originally de-
signed for Natural Language Processing (NLP), have shown
significant promise in capturing complex temporal depen-
dencies across diverse scenarios (Garza & Mergenthaler-
Canseco, 2023; Jin et al., 2024; Gruver et al., 2024). LLMs
offer advanced capabilities, such as zero-shot forecasting,
that allow them to generalize across various tasks without ex-
tensive retraining (Rasul et al., 2023; Ye et al., 2024; Liang
et al., 2024). This positions LLMs as strong candidates for
foundational models in time series forecasting. Pre-trained
on vast and diverse datasets, these models leverage attention
mechanisms to capture intricate temporal patterns and per-
form well on complex forecasting tasks (Devlin et al., 2019;
Brown, 2020; Touvron et al., 2023; Liu et al., 2024a).

Despite these strengths, LLMs are known to be susceptible
to adversarial attacks, raising concerns about their reliability
in critical applications (Zou et al., 2023; Liu et al., 2024c).
Adversarial attacks introduce subtle perturbations to input
data, which can significantly degrade model performance.
While LLM-based forecasters have demonstrated impressive
accuracy in various tasks (Jiang et al., 2024), it remains
uncertain whether decision-making processes can depend
on these predictions in adversarial scenarios. Investigating
the robustness of LLM-based models is therefore essential
for ensuring their trustworthiness in real-world applications.

While adversarial attacks on machine learning models have
been widely studied in image and NLP domains (Wei et al.,
2018; Xu et al., 2020; Morris et al., 2020), attacking LLMs
in time series forecasting presents unique challenges. First,
ground truth values (i.e., future time steps) cannot be used
in attacks to prevent information leakage. Second, access-
ing the internal parameters and structure of LLMs is often
infeasible to attackers, requiring attacks to operate under
strict black-box conditions. Recent studies have proposed
targeted gradient-free optimization-based attacks to address
these challenges (Liu et al., 2024b), but these methods re-
main impractical as they rely on perturbing the entire input
time series. Consequently, this raises a critical question: Is
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Figure 1. Temporally sparse black-box attack against LLMs in time series forecasting.

it possible to disrupt LLLM-based forecasters by modify-
ing only a small portion of the input time series?

As shown in Figure 1, we address this question by develop-
ing a Temporally Sparse Attack (TSA) strategy tailored for
highly constrained scenarios, where only a small subset of
the input time series can be modified. We model the attack
process as a Cardinality-Constrained Optimization Prob-
lem (CCOP) (Bhattacharya, 2009; Ruiz-Torrubiano et al.,
2010), which applies sparse perturbations to selected time
steps. To solve this CCOP, we propose a Subspace Pursuit
(SP)-based method that leverages black-box query access to
the target forecasting model. The TSA approach generates
effective perturbations without requiring access to future
data or internal model parameters, making it both practical
and adaptable to real-world constraints.

Our evaluation covers three key types of LLM-based time
series forecasting models, including six sub-models tested
on four diverse real-world datasets. The results show that
temporally sparse perturbations—affecting only 10% of the
input data—can cause significant prediction errors, reveal-
ing a critical vulnerability in LLM-based forecasters. Even
filter-based defense mechanisms struggle to mitigate these
attacks due to their sparse and targeted nature. These find-
ings underscore the need for more robust forecasting models
that can resist adversarial manipulations and maintain relia-
bility in real-world applications.

In conclusion, this study reveals the vulnerabilities of LLMs
in time series forecasting under highly constrained condi-
tions. The findings underscore the urgent need to address
these vulnerabilities to develop LLMs that are not only accu-
rate but also robust, thereby improving their practical appli-
cability in high-stakes environments. Moreover, this work
introduces CCOP and SP techniques into adversarial study,

offering a novel and effective framework for modeling attack
processes and generating temporally sparse perturbations.
These contributions pave the way for future advancements
in the robustness and reliability of LLM-based forecasting.

2. Related Work
2.1. Attack on LLMs

Adversarial attacks on LLMs have garnered significant at-
tention, revealing how minor input manipulations can lead
to substantial output alterations. These attacks are gener-
ally categorized into methods such as jailbreak prompting,
where crafted prompts bypass safety guardrails to elicit un-
intended or harmful responses (Wei et al., 2024); prompt
injection, embedding adversarial instructions within benign
prompts to manipulate outputs (Greshake et al., 2023; Xue
et al., 2024; Shen et al., 2024); gradient-based attacks,
which exploit internal model parameters to create mini-
mally invasive input perturbations (Zou et al., 2023; Jia
et al., 2024); and embedding perturbations, which subtly
alter input embeddings to disrupt the model’s internal repre-
sentations (Schwinn et al., 2024).

While much of this research has focused on text-based tasks,
the robustness of LLMs in non-textual domains like time
series forecasting remains underexplored. Unlike static text,
time series data is dynamic and continuously evolving, re-
quiring perturbations that maintain the natural flow and
coherence of the sequence. This dynamic nature introduces
unique challenges for adversarial attacks, as traditional tech-
niques designed for static inputs may not directly apply to
temporal and sequential data. For instance, in static appli-
cations, true labels are readily available and play a crucial
role in adversarial attack generation; however, in forecasting
applications, obtaining future true labels is infeasible.
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2.2. Attack on Time Series Forecasting

Adversarial attacks in time series forecasting have emerged
as a critical research focus, exposing the vulnerabilities of
forecasting models. Unlike static domains such as image
recognition, time series forecasting presents unique chal-
lenges for adversarial research. One key constraint is the
inability to use future ground truth values when generating
perturbations, as this could lead to information leakage (Liu
et al., 2022a). To address this, surrogate modeling tech-
niques have been introduced (Liu et al., 2021), enabling
attackers to bypass the need for ground truth labels.

Most prior studies have concentrated on white-box scenar-
ios, where adversaries have full access to model parameters.
These investigations have demonstrated that even small in-
put disruptions can cause significant drops in forecasting
accuracy (Liu et al., 2023). However, evaluating the robust-
ness of LLM-based forecasting models presents additional
complexities. These models typically operate in black-box
settings, limiting access to their internal workings. Gradient-
free black-box attacks have been proposed as a solution (Liu
et al., 2024b), but they often require modifying the entire
time series, which is impractical for real-world applications.

3. LLM-Based Time Series Forecasting

LLMs have shown great promise in time series forecasting
by leveraging their next-token prediction capability. A typi-
cal LLM-based time series forecasting framework, denoted
as f(-), comprises two key components: an embedding or
tokenization module and a pre-trained LLM. The embed-
ding module encodes time series into a sequence of tokens
suitable for processing by the LLM, while the LLM cap-
tures temporal dependencies and autoregressively predicts
subsequent tokens based on its learned representations.

Let X; € R? represent a d-dimensional time series at time
t. Define X; = {X;_741,..., X} as the sequence of T
recent historical observations and Yy = {Y¢41,..., Yeirr}
as the true future values for the next L time steps. The
forecasting model f(-) predicts the future values from the
historical observations, which is formulated as:

Vo= f(X), (1

where ), denotes the predicted future values. Typically,
the prediction horizon L is constrained to be less than or
equal to the historical horizon 7', i.e., L < T'. This ensures
that the model leverages sufficient historical context while
maintaining computational efficiency.

By effectively combining the embedding module’s ability
to encode raw time series data and the LLM’s capacity
to model complex temporal patterns, these models have
become powerful tools for addressing a wide range of fore-
casting challenges across various domains.

4. Threat Model

The goal of attacking an LL.M-based time series forecast-
ing model f(-) is to manipulate it into producing abnormal
outputs that differ substantially from their typical predic-
tions and the actual ground truth, using minimal and nearly
undetectable perturbations.

The adversarial attack can be modeled as a maximum opti-
mization problem:

mgxﬁ(f(.)(t—Fp),yt)

st [lpill, <e i€t —T+1,1],

@

where p = {pt—741,...,p+} denotes the perturba-
tions added into the clean historical time series X; =
{Xi—rt1,---, Xe}and Yy = { Yy, ..., Yi 1} represents
the true future values of the subsequent L time steps. Here,
the loss function £ measures the discrepancy between the
model’s predictions and the ground truth, while € serves
as a constraint on the perturbation magnitude under the £,-
norm, ensuring that the adversarial attack remains subtle
and imperceptible. Typically, the global average X serves
as the reference point to determine whether the added per-
turbations are imperceptible. Consequently, € is defined as
a proportion of the global average, e.g., € = 5% x X.

The true future values ); are generally unavailable dur-
ing the practical forecasting process. For example, in a
5-minute-ahead Google stock value prediction, the ground
truth of the stock value at 10:00 am corresponds to its value
at 10:05 am, which remains inaccessible to both the fore-
caster and the attacker. As a result, to avoid future informa-
tion leakage, the ground truth ) is substituted with the
predicted values Vi produced by the forecasting model.
Specifically, in Eq. (2), ), is replaced with V. In prac-
tical applications, it is generally infeasible to access the
complete set of detailed parameters of an LLM, compelling
the attacker to approach the target model as a black-box
system. In other words, no internal information of f(-) in
Eq. (2) is available.

The computed perturbations p = {pt_741, ..., p:} are typ-
ically applied across the entire time series, making the poi-
soning process highly challenging for attackers. In this
study, we impose strict limitations on the attacker’s capa-
bilities, allowing them to pollute only 7 time steps within
the input time series. Furthermore, since the future true
values ); are unavailable, they are approximated using the
predicted values Y, = f (X). Under this constraint, the
attack process is reformulated as a CCOP (Bhattacharya,
2009):

max £ (f (X (1+w)), 3)
st [lwlly =1, )

will, <€, d€ft—T+1,t,
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where w = {wy_741,...,w;} represents multiplicative
adversarial perturbations. The cardinality constraint, also
called 7-sparse £y-norm constraint, restricts the number of
non-zero elements in adversarial perturbations to a fixed
small number, ensuring that the adversarial perturbations
are sparse on the temporal dimension. Besides, the /;-norm
constraint limits the magnitude of each non-zero perturba-
tion, ensuring the modifications remain imperceptible.

It should be noted that the global average is unsuitable as
a reference for the average magnitude of the manipulated
series under the temporally sparse setting. Instead, each
manipulated time step requires a unique reference point to
ensure the magnitude of the perturbation at each time step is
bounded. The limitation of the poisoned value at time step ¢
can be expressed as:

1Xi + pilly = [1Xi (T +wi)ll, < [IXi (L)l )

where ||p;|[1 = ||w; - X;ll1 < |le - X;]]1. Consequently, the
additive perturbation X; + p in Eq. (2) is replaced with the
multiplicative perturbation X} (1 + w) in Eq. (3).

Additionally, in many real-world scenarios, attackers lack
access to the complete training dataset, making it imprac-
tical for them to exploit training data directly. Based on
previous discussion, the attacker’s capabilities and limita-
tions in this context can be summarized as follows:

* No access to the training data;

* No access to the internal structure or parameters of the
LLM-based forecasting model;

* No access to the ground truth values;

* No ability to manipulate the entire time series data;

* Limited to temporally sparse manipulations;

» Possesses the ability to query the target model.

5. Perturbation Computation with Subspace
Pursuit

5.1. Single-Step Perturbation with Zero Optimization

Before solving the optimization problem in Eq. (3) to gen-
erate T-sparse perturbations, we first consider generating a
perturbation at the specific time step ¢. This can be formu-
lated as:

IrlluaxLi(f(Xt—i—{O,...,wi~Xi,...,0}),37t> )

st Jlwsl; <e

Here, the perturbation w; is applied only at time step . The
magnitude of the perturbation is bounded by the constraint
€, while maximizing the impact on the loss function L.

In the black-box setting, Eq. (5) cannot be solved using
gradient-based methods such as Stochastic Gradient De-
scent (SGD). Instead, a zero optimization technique can be

employed to estimate the gradients, as follows:

o —F(th'hA) _-F(th’h_A)
9= 2. A ’

(6)

where ¢ represents the estimated gradients, A de-
notes a random Gaussian noise, and F(X;, w;,a) =
f(X%+A{0,...,(w;+a) X, ...,0}) denotes querying
the target forecasting model with a noise term a.

Similar to the Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2015), the perturbation can be computed using
the estimated gradients g as follows:

w; = € sign(g), (N

where sign(-) denotes the signum function. This approach
ensures that the perturbation magnitude is bounded by €
while aligning with the direction of the estimated gradients.

Combining Eq. (6) and Eq. (7) offers an effective approach
for computing single-step perturbations in a black-box set-
ting, where direct access to the model’s internal parameters
is restricted. However, Eq. (3) (a CCOP) is still not solved
as it cannot strictly limit the number of non-zero elements in
the perturbations. To overcome this limitation, we propose
an SP-based algorithm (detailed in Algorithm 1) where the
zero optimization-based method is embedded as a submod-
ule.

5.2. 7-Sparse Perturbation Computation

To solve the optimization problem in Eq. (3), it is essential
to ensure both the sparsity of the perturbation vector w and
the bounded magnitude of its elements. In this study, we
propose an adapted SP method, as outlined in Algorithm 1,
based on the approach by Dai & Milenkovic (2009). In
our adaption, the ¢;-norm constraint is incorporated as a
subroutine to maintain the imperceptibility of the perturba-
tions. Here, the support set S = supp(w) = {i : w; # 0}
denotes the indices of nonzero elements in the perturbation
vector w, with | S| representing its cardinality. To efficiently
update the support set, we define the merge operator:

_ ws, je Sa
M(ws’wj)_{{ws,wjh es. ©

This operator ensures that when a new candidate perturba-
tion w; is selected, it is either retained in the existing support
set S if it is already present or added as a new element if it
is not.

Algorithm 1 describes the iterative process for estimating
the sparse multiplicative adversarial perturbations w. At
each iteration, the algorithm identifies the indices corre-
sponding to the 7 largest loss values resulting from applying
candidate perturbations. The individual perturbations w; are
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Algorithm 1 Computing w with adapted SP

1: Input: Time series X € R?*7T the loss function £, the
LLM-based forecaster f(-), and sparsity level 7 of the
multiplicative adversarial perturbations w.

2: Initialize the perturbation vector w := 0 as zeros, the
support set S := () as an empty set, and the loss value
r := 0 as zero.

3: while not converged do

4:  Find ¢ as the index set of the 7 largest losses of

f (X (1 +M(ws,w;))) in which w; is computed
separately following Eq. (6) and Eq. (7), where j €
n,....,T|&j¢s.

5:  Update the support set S := S U {¢}.

6:  Update the sparse vector wg := € - sign (gs).

7. Update the support set S as the index set of the 7

largest losses of f (X (1 +w;)) foralli € S.

8:  Setw; =0foralli ¢ S.

9:  Update r := L (f (X (1 4+ wg)) ,5’1&)-
10: end while

11: Return the 7-sparse multiplicative adversarial perturba-
tions w.

computed using the zero optimization technique in Eq.(6)
and Eq.(7). Then, the support set S is updated by including
the identified indices. The support set S is subsequently re-
fined by selecting the 7 elements with the largest individual
prediction loss. Any perturbation components outside the
updated support set are reset to zero. This process repeats
until the loss  converges and the final 7-sparse multiplica-
tive adversarial perturbation w is returned.

This method effectively enforces the CCOP by ensuring
that only 7 time steps are modified while maintaining a
bounded perturbation magnitude. The adapted SP approach
enables efficient selection of perturbation locations, ensur-
ing maximal adversarial impact while keeping modifications
imperceptible. Moreover, the computation complexity of the
proposed method is O (T X 7), whereas a standard greedy
algorithm has a significantly higher complexity of O (T7).

6. Experiment
6.1. Datasets

To assess the effectiveness of the temporally sparse attack
and evaluate the robustness of LLM-based forecasting mod-
els, we utilized four real-world time series datasets:

e ETTh1 (Zhou et al., 2021): Hourly temperature and
power consumption data from electricity transformers
recorded over two years, capturing both seasonal trends
and long-term variations.

¢ IstanbulTraffic (Gruver et al., 2024): Hourly traffic
volume data from Istanbul, reflecting dynamic tempo-

ral dependencies influenced by traffic flow fluctuations
and congestion cycles.

* Weather (Zhou et al., 2021): Hourly meteorological
data, including temperature, humidity, and wind speed,
which poses forecasting challenges due to high vari-
ability and nonlinear patterns.

* Exchange Rates (Lai et al., 2018): Daily foreign ex-
change rate data for eight countries from 1990 to 2016,
providing insights into long-term economic trends and
temporal dependencies.

For all datasets, the data was split into 60% for training, 20%
for validation, and 20% for testing. The adversarial attacker
had no access to the training or validation data, ensuring
a realistic black-box setting. All forecasting models were
trained using a 96-step historical input window to predict the
next 48 steps, maintaining consistency across experiments.

6.2. Target Models

Three representative LLM-based forecasting models, along
with one transformer-based forecasting model, are included
in the experiment to assess the effectiveness of TSA:

* TimeGPT (Garza & Mergenthaler-Canseco, 2023): A
pre-trained LLM specialized for time series forecast-
ing, incorporating advanced attention mechanisms and
temporal encoding to capture complex patterns.

¢ LLMTime (Gruver et al., 2024): A general-purpose
LLM adapted for time series forecasting by framing it
as a next-token prediction task. We evaluate multiple
versions, including those based on GPT-3.5, GPT-4,
LLaMA, and Mistral.

e TimeLLLM (Jin et al., 2024): A model that reprograms
time series data into textual inputs for LLMs, leverag-
ing the Prompt-as-Prefix (PaP) technique to enhance
forecasting accuracy.

¢ TimesNet (Wu et al., 2023): A non-LLM transformer-
based forecasting model introduced to explore the po-
tential impact of our attack on non-LLM models.

These models represent three key strategies for time series
forecasting: (1) domain-specific pre-training tailored for
time series data (TimeGPT), (2) adapting general-purpose
LLMs to forecasting tasks (LLMTime), and (3) input repro-
gramming to enhance compatibility with LLMs (TimeLLM).
Additionally, the inclusion of a non-LLM model (TimesNet)
provides a broader framework for evaluating adversarial
robustness across both LLM-based and non-LLM models.

6.3. Setup

We conducted experiments to assess the effectiveness of
TSA on LLM-based forecasting models across various
datasets. The procedure included: (i) applying TSA while
preserving the overall time series structure to mislead fore-
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Table 1. Results for univariate time series forecasting, using a fixed input length of 96 and an output length of 48 across all models and
datasets. Lower MSE and MAE values indicate better predictive performance. The sparsity level 7 is set as 9. The TSA magnitude
constraint € is set to 0.1, while the deviation of GWN is set to 2% of the mean value of each dataset. Bold text indicates the worst

performance for each dataset-model combination.

Models LLMTime LLMTime LLMTime LLMTime TimeLLM TimeGPT TimesNet
w/ GPT-3.5 w/ GPT-4 w/ LLaMa 2 w/ Mistral w/ GPT-2 (2024) (2023)

Metrcis | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ETThl 0.073 0213 | 0.071 0202 | 0.086 0.244 | 0.097 0.274 | 0.089 0.202 | 0.059 0.192 | 0.073 0.202
w/ GWN 0.077 0219 | 0.076 0213 | 0.087 0.237 | 0.094 0.291 | 0.102 0.231 | 0.059 0.193 | 0.074 0.202
w/ TSA 0.082 0.235 | 0.079 0.230 | 0.092 0.249 | 0.097 0.295 | 0.091 0.237 | 0.061 0.203 | 0.080 0.206
IstanbulTraffic | 0.837 0.844 | 0.805 0.779 | 0.891 1.005 | 0.826 0.973 | 0.995 1.013 | 1.890 1.201 | 1.095 1.022
w/ GWN 0.882 0.908 | 0.883 0.864 | 0.917 1.063 | 1.054 1.031 | 1.123 1.221 | 1.848 1.204 | 1.103 1.035
w/ TSA 0.901 1.037 | 1.179 1.008 | 0.969 1.085 | 1.493 1.204 | 1.147 1.332 | 1.920 1.208 | 1.136 1.093
Weather 0.005 0.051 | 0.004 0.048 | 0.008 0.072 | 0.006 0.057 | 0.004 0.034 | 0.004 0.043 | 0.003 0.042
w/ GWN 0.005 0.053 | 0.005 0.051 | 0.008 0.074 | 0.007 0.066 | 0.004 0.033 | 0.004 0.043 | 0.003 0.042
w/ TSA 0.005  0.060 | 0.006 0.058 | 0.010 0.076 | 0.006 0.065 | 0.004 0.048 | 0.007 0.072 | 0.004 0.043
Exchange 0.038 0.146 | 0.040 0.152 | 0.043 0.167 | 0.151 0.274 | 0.056 0.188 | 0.256 0.368 | 0.056 0.184
w/ GWN 0.042 0.179 | 0.046 0.182 | 0.050 0.185 | 0.160 0.298 | 0.059 0.194 | 0.329 0.413 | 0.065 0.195
w/ TSA 0.049 0.196 | 0.065 0.190 | 0.059 0.210 | 0.190 0.299 | 0.061 0.189 | 0.474 0.537 | 0.062 0.190

casts, (ii) introducing Gaussian White Noise (GWN), which
adds random noise with a normal distribution to input data,
as a baseline for comparison, and (iii) evaluating forecast-
ing accuracy using Mean Absolute Error (MAE) and Mean
Squared Error (MSE) to quantify performance degradation
caused by the attack. Our experiments were carried out on
Ubuntu 18.04 LTS with PyTorch 1.7.1, Python 3.7.4, and a
Tesla V100 GPU.

6.4. Overall Comparison

As shown in Table 1, TSA significantly increases both MSE
and MAE across most models and datasets, demonstrating
its strong impact on degrading LLM-based forecasting per-
formance, even with minimal perturbations. Compared to
GWN, TSA causes more severe disruptions in predictions.
The IstanbulTraffic dataset shows the greatest deterioration,
with TSA increasing errors by 80.75% for LLMTime w/
Mistral and 46.45% for LLMTime w/ GPT-4, highlighting
the models’ vulnerability.

Figure 2 compares input bias and prediction errors for LLM-
Time w/ GPT-3.5 and TimeGPT under TSA and GWN. Sub-
figures 2(a) and 2(c) show forecasting results for ETTh1
and Weather datasets, where TSA-induced deviations from
the ground truth (black line) are greater than those under
GWN. In subfigures 2(b) and 2(d), TSA (orange) produces
significantly higher error regions than GWN (purple), fur-
ther illustrating TSA’s stronger adversarial impact.

These results empirically validate the effectiveness of TSA.
Notably, TSA manipulates only 9 out of 96 time steps but
still outperforms GWN, which affects all time steps. This
demonstrates the power of temporally sparse perturbations

in degrading forecasting accuracy while maintaining imper-
ceptibility. The results further confirm that incorporating
CCOP and SP techniques effectively enhances the attack’s
precision. The selection of hyperparameters, including the
sparsity level 7 and magnitude constraint e, is examined in
Section 6.7.

6.5. Interpretation

Figure 3 illustrates the impact of TSA on LLMTime with
GPT-3.5 using the ETTh1 dataset. Subfigures 3(a) and 3(b)
compare input and output distributions under clean input
(orange), GWN (blue), and TSA (pink). While the input
distributions show minor differences across all cases, the
output distribution under TSA deviates significantly, indicat-
ing that TSA exerts a stronger adversarial effect than GWN
by disrupting model forecasts more severely.

Subfigures 3(c) and 3(d) show the correlation matrices of
prediction errors for clean and attacked scenarios. The
matrix under attack 3(d) exhibits higher error correlations,
suggesting that TSA induces structured perturbations that
propagate across the forecast horizon. This highlights that
TSA causes systematic distortions rather than random noise,
leading to more pronounced forecasting errors.

6.6. Attack Defended LLLM-based Forecasting Models

This section evaluates the effectiveness of TSA against ad-
versarial defenses in LLM-based forecasting. A targeted
gradient-free attack (Liu et al., 2024b) that perturbs the full
input series serves as a baseline, with additive perturbations
scaled to 2% of the dataset mean. Three filter-based de-
fenses, including Gaussian, Mean, and Quantile filters (Xie
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Figure 2. Comparison of prediction errors and input bias for LLM-Time with GPT-3.5 and TimeGPT under TSA and GWN. This figure
illustrates the greater impact of TSA, demonstrating significant deviations from the ground truth compared to GWN.
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Figure 3. (a) and (b) compare the input and output distributions for LLMTime with GPT-3.5 on ETTh1 under clean input (orange), GWN
(blue), and the proposed TSA (pink). While the input distributions remain relatively similar across all cases, the output distribution under
TSA deviates more significantly compared to those under clean input and GWN. (c) and (d) show the correlation matrices of prediction

errors with and without the proposed attack.

et al., 2019), are applied without requiring re-training or
fine-tuning of the forecasting models.

Figure 4 shows that these defenses fail to recover errors un-
der TSA (minimal light orange bars), but effectively mitigate
full-series attacks (larger light green bars). This suggests
that TSA’s sparse, concentrated modifications are harder
to correct than full-series attacks, which distribute pertur-
bations more uniformly, allowing them to be smoothed by
filtering techniques. By modifying only a limited number
of steps, TSA bypasses the statistical assumptions on which
many filtering defenses rely. Consequently, the sparse per-

turbations introduce structured errors that persist through the
forecast horizon, leading to significant degradation in model
performance despite the application of standard defenses.

6.7. Hyperparameter

There are two key hyperparameters in Algorithm 1: the
perturbation magnitude constraint € and the sparsity level 7.
In this section, we analyze their impact on the effectiveness
and computational cost of TSA, as illustrated in Figure 5.

Subfigure 5(a) demonstrates that as e increases, the predic-
tion errors of LLMTime with LL.aMa 2 on IstanbulTraffic
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Figure 4. Full series and temporally sparse adversarial attacks on different LLM-based forecasting models (LLMTime with GPT-4 and
LLaMa 2, and TimeGPT) protected by filter-based adversarial defense strategies. Light green and light orange indicate the recovered error.

LLMTime LLaMa 2 —— TimeGPT

LLMTime GPT-3.5

Computation Time (s)

Ois  odw ol ods
Magnitude constraint £

(a) IstanbulTraffic

@ %
Spasity level T

(b) Weather

T G
Spasity level T

(c) Exchange

Figure 5. Hyperparameter analysis. (a) illustrates how the prediction errors of LLMTime with LLaMa 2 on IstanbulTraffic increase
exponentially as the perturbation magnitude constraint grows. (b) demonstrates that computational cost scales linearly with the sparsity
level. (c) shows that the prediction errors of TimeGPT and LLMTime with Mistral increase as the sparsity level of perturbations rises.

grow exponentially. The magnitude constraint balances
the imperceptibility and the attack effectiveness. Subfig-
ure 5(b) shows that the computational cost of TSA scales
linearly with the sparsity level 7, meaning that increasing
the number of perturbed time steps results in a proportional
rise in computation time. Subfigure 5(c) illustrates that the
prediction errors of TimeGPT and LLMTime with Mistral
increase as T rises, though the impact varies across models,
with TimeGPT showing a more pronounced error increase
at higher sparsity levels. These results suggest a trade-off
between attack efficiency and computational complexity.

7. Mitigation

Finally, we discuss strategies to mitigate TSA and enhance
the resilience of LLM-based forecasting. While adversar-
ial training (Zhang, 2018; Madry, 2017) is a common de-
fense in deep learning, it is impractical here due to the high
computational costs of fine-tuning LLMs. Additionally,
as shown in Figure 4, filter-based defenses fail to counter
TSA effectively, as TSA’s sparsity can bypass the statistical
assumptions underlying these defenses.

We briefly introduce a simple but novel autocorrelation-
based detection method that leverages the zero-shot capa-
bility of LLM-based forecasting models. Specifically, the
forecaster is used to backcast historical time series from its
own predictions, which are then compared with the original
inputs to identify manipulated time steps. Once detected,

Gaussian filtering is applied to correct the poisoned inputs.
This approach exploits the autocorrelation properties of time
series to detect sparse adversarial modifications without re-
quiring external training. We plan to further explore and
expand on defense mechanisms in future work.

8. Conclusion

This work presents a Temporally Sparse Attack (TSA), de-
signed for LLM-based time series forecasting models in
constrained adversarial scenarios, where only a small sub-
set of input time steps can be modified. We model the
attack as a Cardinality-Constrained Optimization Problem
(CCOP) and develop a Subspace Pursuit (SP)-based method
to efficiently generate sparse perturbations. Our approach
operates in a black-box setting, requiring no access to future
data or internal model parameters.

Experiments on three advanced LLM-based time series fore-
casting models across diverse real-world datasets show that
perturbing only a small portion of input time steps signif-
icantly degrades forecasting performance. Both large pre-
trained models and fine-tuned models exhibit high sensitiv-
ity to adversarial manipulation. Our findings demonstrate
that conventional filter-based approaches fail to mitigate
TSA, emphasizing the importance of enhancing robustness
in time series foundation models. This research provides a
framework for improving the resilience of Al systems and
supports future advancements in Trustworthy Al
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Impact Statement

This research explores the robustness and vulnerability of
foundation models in time series forecasting, which has
critical applications in domains such as transportation, fi-
nance, and healthcare. As these models become increasingly
integral to real-world decision-making, understanding and
mitigating their susceptibility to adversarial attacks is es-
sential for the development of trustworthy and reliable Al
systems.

Our work aims to enhance the resilience of time series mod-
els against adversarial threats by contributing insights into
attack strategies and potential defenses. Strengthening these
models can significantly improve the safety and stability of
Al-driven systems in high-stakes environments, promoting
greater public trust in Al technologies.

We will make sure that our work will be used ethically and
responsibly to lay the foundation for developing robust time
series forecasting methods, ultimately contributing to the
advancement of secure and reliable Al systems.

References

Bhattacharya, D. Inferring optimal peer assignment from
experimental data. Journal of the American Statistical
Association, 104(486):486-500, 2009.

Brown, T. B. Language models are few-shot learners. Ad-
vances in Neural Information Processing Systems, 2020.

Dai, W. and Milenkovic, O. Subspace pursuit for compres-
sive sensing signal reconstruction. /EEE transactions on
Information Theory, 55(5):2230-2249, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), 2019.

Garza, A. and Mergenthaler-Canseco, M. Timegpt-1. arXiv
preprint arXiv:2310.03589, 2023.

Goodfellow, L. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. International Con-
ference on Learning Representations, 2015.

Greshake, K., Abdelnabi, S., Mishra, S., Endres, C., Holz,
T., and Fritz, M. Not what you’ve signed up for: Com-
promising real-world llm-integrated applications with in-
direct prompt injection. In Proceedings of the 16th ACM
Workshop on Artificial Intelligence and Security, 2023.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large
language models are zero-shot time series forecasters.

Advances in Neural Information Processing Systems, 36,
2024.

Jia, X., Pang, T., Du, C., Huang, Y., Gu, J., Liu, Y., Cao, X.,
and Lin, M. Improved techniques for optimization-based
jailbreaking on large language models. arXiv preprint
arXiv:2405.21018, 2024.

Jiang, Y., Pan, Z., Zhang, X., Garg, S., Schneider, A.,
Nevmyvaka, Y., and Song, D. Empowering time series
analysis with large language models: A survey. arXiv
preprint arXiv:2402.03182, 2024.

Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J. Y., Shi, X.,
Chen, P.-Y,, Liang, Y., Li, Y.-F, Pan, S., et al. Time-
Ilm: Time series forecasting by reprogramming large
language models. International Conference on Learning
Representations, 2024.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. Modeling
long-and short-term temporal patterns with deep neural
networks. In The 41st international ACM SIGIR confer-
ence on research & development in information retrieval,

pp. 95-104, 2018.

Liang, Y., Wen, H., Nie, Y., Jiang, Y., Jin, M., Song, D.,
Pan, S., and Wen, Q. Foundation models for time series
analysis: A tutorial and survey. In Proceedings of the
30th ACM SIGKDD conference on knowledge discovery
and data mining, pp. 6555-6565, 2024.

Lim, B. and Zohren, S. Time-series forecasting with deep
learning: a survey. Philosophical Transactions of the
Royal Society A, 379(2194):20200209, 2021.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024a.

Liu, F., Miranda-Moreno, L., and Sun, L. Spatially fo-
cused attack against spatiotemporal graph neural net-
works. arXiv preprint arXiv:2109.04608, 2021.

Liu, F, Liu, H., and Jiang, W. Practical adversarial attacks
on spatiotemporal traffic forecasting models. Advances
in Neural Information Processing Systems, 35:19035—
19047, 2022a.

Liu, F., Wang, J., Tian, J., Zhuang, D., Miranda-Moreno,
L., and Sun, L. A universal framework of spatiotem-
poral bias block for long-term traffic forecasting. IEEE
Transactions on Intelligent Transportation Systems, 23
(10):19064-19075, 2022b.

Liu, F, Jiang, S., Miranda-Moreno, L., Choi, S., and Sun, L.
Adpversarial vulnerabilities in large language models for
time series forecasting. arXiv preprint arXiv:2412.08099,
2024b.



Submission and Formatting Instructions for ICML 2025

Liu, L., Park, Y., Hoang, T. N., Hasson, H., and Huan, J.
Robust multivariate time-series forecasting: Adversarial
attacks and defense mechanisms. International Confer-
ence on Learning Representations, 2023.

Liu, S., Chen, J., Ruan, S., Su, H., and Yin, Z. Exploring the
robustness of decision-level through adversarial attacks
on llm-based embodied models. In Proceedings of the
32nd ACM International Conference on Multimedia, pp.
8120-8128, 2024c.

Madry, A. Towards deep learning models resistant to adver-
sarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Morris, J. X., Lifland, E., Yoo, J. Y., Grigsby, J., Jin, D., and
Qi, Y. Textattack: A framework for adversarial attacks,
data augmentation, and adversarial training in nlp. arXiv
preprint arXiv:2005.05909, 2020.

Rasul, K., Ashok, A., Williams, A. R., Khorasani, A.,
Adamopoulos, G., Bhagwatkar, R., Bilos, M., Ghonia,
H., Hassen, N., Schneider, A., et al. Lag-llama: Towards
foundation models for time series forecasting. In RO-
FoMo: Robustness of Few-shot and Zero-shot Learning
in Large Foundation Models, 2023.

Ruiz-Torrubiano, R., Garcia-Moratilla, S., and Suarez, A.
Optimization problems with cardinality constraints. In
Computational Intelligence in Optimization: Applications
and Implementations, pp. 105-130. Springer, 2010.

Schwinn, L., Dobre, D., Xhonneux, S., Gidel, G., and Gun-
nemann, S. Soft prompt threats: Attacking safety align-
ment and unlearning in open-source llms through the
embedding space. Advances in Neural Information Pro-
cessing System, 2024.

Shen, X., Chen, Z., Backes, M., Shen, Y., and Zhang, Y.
” do anything now”: Characterizing and evaluating in-
the-wild jailbreak prompts on large language models. In
Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, pp. 1671-1685,
2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wei, A., Haghtalab, N., and Steinhardt, J. Jailbroken: How
does llm safety training fail? Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Wei, X., Liang, S., Chen, N., and Cao, X. Transferable
adversarial attacks for image and video object detection.
arXiv preprint arXiv:1811.12641, 2018.

10

Wu, H., Hu, T, Liu, Y., Zhou, H., Wang, J., and Long,
M. Timesnet: Temporal 2d-variation modeling for gen-
eral time series analysis. International Conference on
Learning Representations, 2023.

Xie, C., Wu, Y., Maaten, L. v. d., Yuille, A. L., and He, K.
Feature denoising for improving adversarial robustness.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019.

Xu, H,, Ma, Y., Liu, H.-C., Deb, D., Liu, H., Tang, J.-
L., and Jain, A. K. Adversarial attacks and defenses in
images, graphs and text: A review. International journal
of automation and computing, 17:151-178, 2020.

Xue, J., Zheng, M., Hua, T., Shen, Y., Liu, Y., B616ni, L.,
and Lou, Q. Trojllm: A black-box trojan prompt attack on
large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Ye, J., Zhang, W., Yi, K., Yu, Y., Li, Z., Li, J., and Tsung,
F. A survey of time series foundation models: Generaliz-
ing time series representation with large language mode.
arXiv preprint arXiv:2405.02358, 2024.

Zhang, H. mixup: Beyond empirical risk minimization.
International Conference on Learning Representations,
2018.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceedings of

the AAAI conference on artificial intelligence, volume 35,
pp. 11106-11115, 2021.

Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z.,
and Fredrikson, M. Universal and transferable adversar-
ial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.



