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Abstract

In this work, we propose to leverage out-of-distribution samples, i.e., unla-
beled samples coming from outside target classes, for improving few-shot learn-
ing. Specifically, we exploit the easily available out-of-distribution samples
(e.g., from base classes) to drive the classifier to avoid irrelevant features by
maximizing the distance from prototypes to out-of-distribution samples while
minimizing that to in-distribution samples (i.e., support, query data). Our ap-
proach is simple to implement, agnostic to feature extractors, lightweight with-
out any additional cost for pre-training, and applicable to both inductive and
transductive settings. Extensive experiments on various standard benchmarks
demonstrate that the proposed method consistently improves the performance
of pretrained networks with different architectures. Our code is available at
https://github.com/VinAIResearch/poodle.

1 Introduction

Learning with limited supervision is a key challenge to translate the research efforts of deep neural
networks to real-world applications where large-scale annotated datasets are prohibitively costly to
acquire. This issue has motivated the recent topic of few-shot learning (FSL), which aims to build a
system that can quickly learn new tasks from a small number of labeled data.

A popular group of methods in FSL focus on strengthening the backbone network by various
techniques, from increasing model capacity [6, 11], self-supervised learning (SSL) [18, 51, 65], to
knowledge distillation (KD) [53]. With these techniques, few-shot methods are expected to learn
better representations that are more robust and generalized. However, even if the network can discover
visual features and semantic cues, few-shot learners have to deal with a key challenge - the ambiguity:
as we have only a small amount of support evidence, there are multiple plausible hypotheses at
the inference stage. Existing works, therefore, rely on the developed inductive bias of the network
(during the pretraining stage), such as shape bias [47, 14], to reduce the hypothesis space.

In this work, we view the classification problem as conditional reasoning, i.e., “if X has P then X is

Q”. Human beings are good at learning such inferences, thus quickly grasping new concepts with
minimal supervision. More importantly, humans learn new concepts in context - where we have
already had prior knowledge about other entities. According to mental models in cognitive science,
when assessing the validity of an inference, one would retrieve counter-examples, i.e., which do not
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Figure 1: Illustration of advantages of counter-example data. The query image has features from both
support classes (i.e., a child and a suit), which makes classification ambiguous. The prediction result
would depend on the inductive bias or prior knowledge of the network. By using an out-of-distribution
sample, it becomes clear that the query result should favor Class 2.

lead to the conclusion despite satisfying the premise [9, 13, 29, 30, 55]. Thus, if there exists at least
one of such counter-examples, the inference is known to be erroneous.

Hence, we attempt to equip few-shot learning with the above ability so that it can eliminate incorrect
hypotheses when learning novel tasks in a data-driven manner. Specifically, we leverage out-of-
distribution data, i.e., samples belonging to classes separated from novel tasks 2, as counter-examples
for preventing the learned prototypes from overfitting to their noisy features. To that end, when
learning novel tasks, we adopt the large margin principle in metric learning [59] to encourage the
learned prototypes to be close to support data while being distant from out-of-distribution samples.

Our approach is complementary to existing works in FSL and could be combined to advance the state
of the art. Moreover, our method is agnostic to the backbone network; thus, it does not have the need
of a training phase to adopt as in SSL and KD, while incurring just a little overhead at inference (for
fine-tuning prototypes with approximately 200 gradient updating steps).

In summary, our contributions are as follows:

• We propose a novel yet simple approach to learn the inductive bias of deep neural networks for
FSL by leveraging out-of-distribution data. We empirically show that out-of-distribution data only
require weak labels (i.e., in the form of whether a sample is in- or out-of-distribution) even in
challenging problems such as cross-domain FSL.

• We introduce a new loss function to implement the above idea, which is applicable for both inductive
and transductive inference. Our extensive experiments on different standard benchmarks show that
the proposed approach consistently improves the performance of various network architectures.

• We validate the effectiveness of our method in various FSL settings, including cross-domain FSL.

2 Related work

Over the past few years, considerable amount of research efforts [15, 16, 28, 34, 44, 56, 50, 64] have
been invested in FSL. They can roughly be classified into two main categories: optimization-based and
metric-based approaches. Optimization-based methods [15, 16, 28, 34, 44] seek a meta-learner that
can quickly adjust the parameters of another learner to a new task, given only a few support images.
In particular, [35, 15] propose learning to initialize a classifier whose parameters can be obtained with
a small number of gradient updates on the novel classes. Metric-based approaches [56, 50, 64] learn a
task-agnostic embedding space for measuring the similarity between images. For example, Matching
Networks [56] utilizes a weighted nearest neighbor classifier, while Prototypical Networks [50] uses
the mean features of support images as the prototype for each class. Recently, DeepEMD [64] adopts
the Earth Mover’s distance to compute the distance between image patches as their distance.

2We use OOD samples and distractor samples interchangeably
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To further boost the performance, recent works have incorporated additional techniques such as
self-supervised learning and knowledge distillation during training, and transductive inference during
testing, which we will review in the following:

Self-supervised learning. The goal of self-supervised learning is to learn representations from
unlabeled data. For FSL, this could be achieved by combining the supervised main task with a
self-supervised pretext task which includes predicting image rotations [19], predicting relative patch
locations [12], or solving jigsaw puzzles [40]. A few works incorporating self-supervised learning for
FSL have been developed recently, e.g., Gidaris et al. [18] suggest pre-training the embedding network
by using a combination of supervised and self-supervised loss, i.e., predicting image rotations.

Knowledge distillation. Knowledge distillation is a machine learning technique that seeks to
compress the knowledge contained in a larger model (teacher) into a smaller one (student). It was
introduced by Bucilua et al. [4] and later adopted to deep learning by Hinton et al. [23]. Recently, Tian
et al. [53] show that incorporating self-distillation into FSL can boost the performance by 1 � 2%.

Transductive inference. Transductive inference aims to leverage the query set (which can be seen as
unlabeled data during inference) in addition to the labeled support set. Transductive approaches [39,
24, 43, 66, 2, 10] significantly outperform their inductive counterparts, which do not exploit the
query set. For example, TPN [39] constructs a graph whose nodes are support and query images and
propagates labels from the support to query images, while CAN [24] utilizes confidently classified
query images as part of the support set. Recently, TIM [2] assumes a uniform distribution of novel
classes, which is often the case for the current FSL benchmarks, and exploits that assumption for
boosting the performance. Furthermore, [15, 52] can be considered as transductive methods since the
information from query data is used for batch normalization.

In this paper, we improve the performance of the classifier on novel classes by introducing a novel
loss function, which penalizes out-of-distribution samples. Our method is complementary to the
above approaches and can be combined to establish a new state-of-the-art for FSL. As the time of
camera-ready, we are aware of a concurrent work [8] that also leverages the distractor samples to
refine the classifier in FSL. Contrast to that work, our loss function is inherently applicable to both
inductive and transductive inference. Furthermore, we also discover the effectiveness of uniform
random features, which obviates the need for accessible OOD samples for in-domain FSL.

3 Preliminary

We first define some notations used in the following sections. Let (x, y) consist of a sample image x
and its corresponding class label y. Let Db = {(xi, yi)}Nb

i=1 denote the labeled base samples used
for feature pre-training. Next, we denote Ds = {(xi, yi)}Ns

i=1 and Dq = {(xi, yi)}
Nq

i=1 as the labeled
support samples and query samples respectively. Note that the labels for the query samples are only
used for evaluation purposes. The support samples and query samples belong to the novel classes Cn,
which are separated from the base classes Cb, i.e., Cb \ Cn = ?. In few-shot learning, we aim to
learn a classifier that exploits support data to predict labels for query samples. We use a pre-trained
feature extractor, usually kept fixed, to produce input to the classifier.

In this work, we consider fine-tuning the classifier on the support set only (inductive learning) and
on both the support and query set (transductive learning). We also consider both in-domain and
cross-domain FSL. In the former, the novel classes Cn and the base classes Cb are from the same
domain (e.g., images from Image-Net), while for the latter, Cn and Cb are from different domains
and the domains of Cb and Cn are referred to as the source and target domains, respectively.

Pretrained feature extractor. Let f✓ be the feature extractor trained on the base data with the
standard cross-entropy loss, which we also refer as the “simple baseline”. We also seek to strengthen
the baseline with orthogonal techniques such as self-supervised learning (SSL) [18, 51] and knowledge
distillation (KD) [53]. With SSL, we employ the “rot baseline”, which is trained with the standard
cross-entropy loss and an auxiliary loss to predict the rotation angles of the perturbed images. We
further apply the born-again strategy [17] for the rot baseline in two generations to construct the “rot
+ KD baseline”. More details of our baselines can be found in Section A.

Novel tasks inference. In the few-shot scenario, we freeze the feature extractor f✓ and train a
classifier for each task. Let W = [w0, · · · ,wk]> 2 RK⇥D be the weight matrix of the classifier,
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where D is the dimension of the encoded vector (output by the feature extractor) and K is the number
of classes (i.e., number of ways) for each task. The predictive distribution over classes p(k|xi,W) is
given by:

p(k|xi,W) =
exp(�� · d(zi,wk))P
j exp(�� · d(zi,wj))

, where zi =
f✓(xi)

kf✓(xi)k2
(1)

where � is the learnable scaling factor [42] and d(·, ·) denotes the distance function. We use the
squared Euclidean distance in our experiments unless otherwise mentioned. In our implementation,
we initialize each weight vector wk to the mean of the sample features in the support set wk =

1
|Sk|

P
x2Sk

f✓(x) with Sk being the support set of the kth class similar to Prototypical Network [38].

Inductive bias. Inductive learning is a process of learning a general principle by observing specific
examples. Given limited support data, it is possible to have multiple explanations on the query data,
with each corresponding to a different prediction. Inductive bias allows the learner to systematically
favor one explanation over another, rather than favoring a model that overfits to the limited support
data. Figure 1 shows an ambiguous classification example that can be explained by multiple hypothe-
ses. Two decision rules possibly learnt from the support data are: 1) People in suit belong to class 1;
and 2) Boys belong to class 2.

Both rules are simple (satisfying Occam’s razor), and can be used to classify the query sample.
However, it is unclear which rule the learner would favor; it is only possible to know after training.
Hence, solely learning with support data can be obscure. One way to narrow down the hypothesis
space is using counter-examples to assess the inductive validity [29, 9]. In Figure 1, the out-of-
distribution (OOD) sample hints that the suit should be considered irrelevant, and hence the rule 1
should be rejected.

4 Proposed approach

We introduce our novel technique for few-shot learning namely Penalizing Out-Of-Distribution
sampLEs (POODLE). Specifically, we attempt to regularize few-shot learning and improve the general-
ization of the learned prototypes by leveraging prior knowledge of in- and out-of-distribution samples.
Our definition is as follows. Positive samples are in-distribution samples provided in the context of
the current task that includes both support and query samples. Negative samples, in contrast, do not
belong to the context of the current task, and hence are out-of-distribution. Negative samples can
either provide additional cues that reduce ambiguity, or act as distractors to prevent the learner from
overfitting. Note that negative samples should have the same domain as positive samples so that their
cues are insightful to the learner, but positive and negative samples are not required to have the same
domain as the base data.

To effectively use positive and negative samples in few-shot learning, the following conditions must
be met: 1) The regularization guided by out-of-distribution samples can be combined with traditional
loss functions for classification; 2) The regularization should be applicable for both inductive and
transductive inference; and 3) The requirement on negative data should be minimal i.e., does not need
any sort of labels except for aforementioned conditions.

4.1 Refining prototype with distractor samples

We formulate the regularization as a new objective function for training. To capitalize negative
samples to reduce the ambiguity, we propose leveraging the large-margin principle as in Large

Margin Nearest Neighbors (LMNN) [59, 59]. In these works, Weinberger et al. propose a loss
function with two competing terms to learn a distance metric for nearest neighbor classification:
a “pull” term to penalize the large distance between the embeddings of two nearby neighbors,
which likely belong to the same class, and a “push” term to penalize the small distance between the
embeddings of samples of difference classes.

In this work, we seek to learn prototypes for all categories instead of a distance metric. We do not
have labels (i.e., categories) of all samples (e.g., transductive inference) but only the prior knowledge
about whether a sample is in- or out-of-distribution. Thus, we adapt the above objective of margin
maximization for these two groups, namely in- and out-of-distribution, with the distance function
being the sum of distances from a sample to all prototypes. The goal is minimizing distances from
positive samples to prototypes, while maximizing distances from negative samples to prototypes.
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In our objective function, we keep the original “pull” term while introducing our new “push” term:
we do not explicitly enforce large distances between positive samples and negative samples, but only
attempt to maximize distances between prototypes and negative samples:

Lnaive =

NposX

i=1

KX

k=1

� · d(wk,xi) �
NnegX

j=1

KX

k=1

� · d(wk,xj) (2)

Note that � is scaling factor of distance-based classifier as in Equation 1. However, this objective
does not take into account class assignments for positive samples. To tackle this problem, we use
weighted distances between prototypes and samples to simultaneously optimize both objectives:

Lmargin =

NposX

i=1

KX

k=1

� · d(wk,xi)SG[ p(k|xi,W)]

| {z }
Lpull

�
NnegX

j=1

KX

k=1

� · d(wk,xj)SG[ p(k|xj ,W)]

| {z }
Lpush

(3)

where SG[·] is the stop-gradient operator. Intuitively, the positive sample will “pull” the prototypes
to its location proportional to its distance to the prototypes. Subsequently, the prototype of each class
will move closer to the positive samples of that class. At the same time, the prototype is enforced to
move away from the negative samples, thus discarding features that might lead to high similarity to
out-of-distribution data.

We note that removing SG[·] in Equation 3 would result in a different underlying objective, which
empirically leads to a decrease in performance. Particularly, the objective without stop-gradient will
also be compounded of an auxiliary term for entropy maximization (see Section B). Thus, devoid of
meticulous regularization would deteriorate the performance. The above observation is in line with
Boudiaf et al. [2]. In summary, POODLE optimizes the classifier on novel tasks with the following
objectives:

LPOODLE = Lce + ↵ · Lpull � � · Lpush (4)

where ↵ and � control the “push” and “pull” coefficients respectively and Lce denotes the standard
cross-entropy loss. To the best of our knowledge, the proposed objective is the first loss function
(in test phase) that can be effective for both inductive and transductive inference. Please see the
supplemental document for the pseudo-code (Section C).

4.2 On negative samples
Choice of negative samples. For in-domain FSL, we simply leverage the base data as negative
samples. For cross-domain FSL, one approach would be using a set of samples drawn from classes
that are disjoint to novel classes Cn as negative examples. However, in some cases such negative
examples might not be available. Thus, we consider another approach where we have a set of
unlabeled data of a set of classes Cu from the target domain (Cu might overlap with Cn) as negative
examples, similar to [41]. We name the above two approaches as disjoint and noisy negative sampling,
respectively in the context of cross-domain FSL. Intuitively, when the number of categories of
unlabeled data (i.e., |Cu|) grow larger, the noise of mixing positive and negative samples in noisy

negative samples pool will be reduced.

The burden of additional data. It is worth pointing out that POODLE does not break the setup of
FSL as it does not require any additional data of novel classes, thus, still has a few samples from novel
tasks. As POODLE obligates additional data in the form of OOD samples, one might ask how practical
the algorithm is. For in-domain FSL, the negative samples can be easily obtained by adopting the
training data as we already know Cn \ Cb = ?. Even in extreme case where we only have access to
the pretrained models, we empirically find that (`2-normalized) uniformly random noise can work
surprisingly well (Section 4.3). For cross-domain FSL, even though POODLE requires additional OOD
data, we find that these samples can be: 1) noisy with both positive and negative samples; and 2)
fairly efficient - in our experiments, we can “reuse" 400 OOD samples for all tasks, which is very
efficient compared to other methods that might use up to 20% unlabeled data of training set [41].

4.3 Intriguing effectiveness of uniform random features

One caveat of POODLE is the obligation of accessing to OOD samples. Fortunately, we find that
POODLE can use the uniform random features on the hypersphere as negative samples for in-domain
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FSL. Particularly, we can uniformly sample latent vectors from SD�1 as an alternative to the distractor
samples from base training data, thus, eliminating the need for accessing to training data.

Our use of uniform distribution as negative examples is inspired by that feature uniformity is a
desirable property for contrastive loss [57, 5], and so a good representation prefers such uniformity.
The problem of uniformly distributing points on the unit hypersphere is related to minimizing pairwise
loss [31, 1], which links well to the theory of supervised classification with softmax and cross-entropy
(equivalent to minimizing pairwise loss or maximizing mutual information) [3, 45].

Therefore, using uniform distribution as negative samples works for in-domain FSL because they will
approximate the features of samples from base training data. For cross-domain FSL, this approach
will fail because random features (which are similar to samples from the training domain) have a
large discrepancy with the target domain, thus, not inducing meaningful cues. Intuitively, the more
similar between domains of OOD and test samples, the higher performance gain POODLE can achieve.
Our experiments in Section 5.4 empirically prove aforementioned postulation.

5 Experiments

In this section, we conduct extensive experiments to demonstrate the performance gain of our method
on standard inductive, transductive, cross-domain FSL. To demonstrate the robustness of our method
across datasets/network architectures, we keep the hyperparameters fixed for all experiments.

5.1 Experimental setup
Datasets. We evaluate our approach on three common FSL datasets. The mini-Imagenet dataset [56]
consists of 100 classes chosen from the ImageNet dataset [48] including 64 training, 16 validation,
and 20 test classes with 60,000 images of size 84 ⇥ 84. The tiered-Imagenet [46] is another FSL
dataset which is also derived from the ImageNet dataset with 351 base, 97 validation, and 160 test
classes with 779,165 images of size 84 ⇥ 84. Caltech-UCSD Birds (CUB) has 200 classes split
into 100, 50, 50 classes for train, validation and test following [6]. Furthermore, we also carry
out experiments on iNaturalist 2017 (iNat) [54], EuroSAT [22], and ISIC-2018 (ISIC) [7] for the
(extreme) cross-domain FSL. The description for these datasets can be found in the supplemental
document (Section D.1).

Implementation details. We use ResNet12 as our feature extractor. It is a residual network [61]
with 12 layers split into 4 residual blocks. For pre-training on the base classes, we train our backbones
with the standard cross-entropy loss for 100 epochs. The optimizer has a weight decay of 5e�4, and
the initial learning rate of 0.05 is decreased by a factor of 10 after 60, 80 epochs in mini-ImageNet
and 60, 80, 90 epochs in tiered-ImageNet. We use the batch size of 64 for all the networks. For
fine-tuning on the novel classes, we utilize Adam optimizer [32] with fixed learning rate of 0.001,
�1 = 0.9, �2 = 0.999, and do not use weight decay. The classifier is trained with 250 iterations.
The coefficients of “push/pull” loss are ↵ = 1 and � = 0.5 respectively. For negative samples, we
randomly select K = 400 samples from the out-of-distribution samples pool for each novel task.
We evaluate the performance of POODLE in 5-way-1-shot and 5-way-5-shot settings on 2000 random
tasks with 15 queries each.

5.2 Standard FSL

We first experiment with the standard FSL setup (also known as in-domain FSL) in which the number
of query samples is uniformly distributed among classes.

Evaluation with various baselines. Table 1 shows the results of our approach with various baselines,
which described in Section 3, with the inductive inference (positive samples are support images). As
can be seen, our approach consistently boosts the performance of all baselines by a large margin (1-
3%). Interestingly, the POODLE-R variant outperforms the CE loss variant significantly and performs
comparatively with the POODLE-B variant. We hypothesize that the normalized representations of the
samples extracted from the base classes are uniformly distributed.

Table 2 demonstrates the efficacy of each loss term of POODLE in transductive inference (positive
samples are support and query images). We can see that using the “pull” loss with query samples
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Table 1: Comparison to different baselines for the standard FSL (a.k.a in-domain FSL) on mini-
ImageNet, tiered-Imagenet and CUB in the inductive setting with Resnet-12 as backbone. Here,
POODLE-B and POODLE-R indicate that the negative samples are sampled from the base classes and
the random uniform distribution respectively.

mini-ImageNet tiered-ImageNet CUB
Baseline Variant 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Simple
CE Loss 61.33 80.76 67.42 84.44 75.60 89.88
POODLE-B 63.79 81.41 69.26 84.97 75.96 90.06
POODLE-R 64.38 81.35 69.34 85.03 76.22 89.99

Rot
CE Loss 64.57 82.89 68.26 85.09 76.39 91.10
POODLE-B 66.78 83.65 69.74 85.45 77.26 91.30
POODLE-R 67.20 83.54 69.86 85.56 77.35 91.43

Rot + KD
CE Loss 65.91 82.95 69.43 84.93 79.70 92.28
POODLE-B 67.50 83.71 70.42 85.26 80.23 92.36
POODLE-R 67.80 83.50 70.47 85.24 80.05 92.37

Table 2: Comparison to different baselines on mini-ImageNet, tiered-Imagenet and CUB with and
without the proposed loss in the transductive settings. Here, Lb

pull and Lu
pull indicate that the

negative samples are sampled from the base classes and the random uniform distribution respectively.

mini-ImageNet tiered-ImageNet CUB
Baseline Loss 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Simple

CE 61.33 80.76 67.42 84.44 75.60 89.88
CE + Lpull 70.91 83.04 75.58 86.10 84.91 91.60

CE + Lpull � Lb
push 74.21 83.71 78.72 86.57 87.04 91.84

CE + Lpull � Lu
push 74.82 83.67 79.24 86.64 87.13 91.60

Rot

CE 64.57 82.89 68.26 85.09 76.39 91.10
CE + Lpull 74.42 85.20 76.59 86.75 85.93 93.02

CE + Lpull � Lb
push 77.30 85.91 79.74 87.25 88.68 93.23

CE + Lpull � Lu
push 77.69 85.86 80.31 87.33 89.07 93.35

Rot + KD

CE 65.91 82.95 69.43 84.93 79.70 92.28
CE + Lpull 74.90 85.09 77.07 86.50 88.22 93.68

CE + Lpull � Lb
push 77.56 85.81 79.67 86.96 89.88 93.80

CE + Lpull � Lu
push 77.24 85.53 79.97 86.91 90.02 93.68

improve the inductive baseline significantly, being as effective as other transductive algorithms.
Combining with “push” term, the classifier is further enhanced.

We also conduct experiments with additional loss functions including self-supervised loss (SSL) and
knowledge distillation (KD) in Figure 2a. Our approach consistently improves the generalization of
all baselines without additional computation cost (in the training phase) as justified in Figure 2b. The
improvement of POODLE on other backbones and datasets is reported in the supplemental document
(Section D.2).

Comparison to the state-of-the-art approaches. We report the performance of our network in
comparison with state-of-the-art methods in both transductive and inductive settings (with and without
information from the query images) in Table 3. We can see that our approach remarkably improves
the performance of the baseline and achieves a comparable performance with the state-of-the-art
approaches in the tiered-ImageNet. In mini-ImageNet and CUB we significantly outperform the
prior work in both inductive and transductive settings. Experimental results on other backbones are
reported in the supplementary document (Section D.2).
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Figure 2: (a) Effectiveness of our approach applied to standard FSL. (a) Our approach consistently
yields accuracy gains on different backbones, in comparison with those obtained by self-supervised
loss (SSL) and knowledge distillation (KD) in 5-way-1-shot protocol on mini-Imagenet with inductive
setting. (b) Total time and memory cost (in training stage) when adopting SSL, KD, and our method.
Note that we apply KD for T = 2 generation as in [53]. No large overhead is incurred in our method.

Table 3: Comparison to the state-of-the-art methods on mini-ImageNet, tiered-Imagenet and CUB
using inductive and transductive settings. The results obtained by our models (blue pearl-shaded)
are averaged over 2,000 episodes.

mini-ImageNet tiered-ImageNet CUB
Method Transd. Backbone 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML [15]

7

ResNet-18 49.6 65.7 - - 68.4 83.5
RelatNet [24] ResNet-18 52.5 69.8 - - 68.6 84.0
MatchNet [56] ResNet-18 52.9 68.9 - - 73.5 84.5
ProtoNet [50] ResNet-18 54.2 73.4 - - 73.0 86.6
Neg-cosine [37] ResNet-18 62.3 80.9 - - 72.7 89.4
MetaOpt [33] ResNet-12 62.6 78.6 66.0 81.6 - -
SimpleShot [58] ResNet-18 62.9 80.0 68.9 84.6 68.9 84.0
Distill [53] ResNet-12 64.8 82.1 71.5 86.0 - -
Rot + KD + POODLE ResNet-12 67.80 83.72 70.42 85.26 80.23 92.36
RelatNet + T [24]

3

ResNet-12 52.4 65.4 - - - -
TPN [39] ResNet-12 59.5 75.7 - - - -
TEAM [43] ResNet-18 60.1 75.9 - - - -
Ent-min [10] ResNet-12 62.4 74.5 68.4 83.4 - -
CAN+T [24] ResNet-12 67.2 80.6 73.2 84.9 - -
LaplacianShot [66] ResNet-18 72.1 82.3 79.0 86.4 81.0 88.7
TIM-GD [2] ResNet-18 73.9 85.0 79.9 88.5 82.2 90.8
Simple + POODLE ResNet-12 74.21 83.71 78.72 86.57 87.04 91.84
Rot + KD + POODLE ResNet-12 77.56 85.81 79.67 86.96 89.93 93.78

5.3 Cross-domain FSL

In this section, we conduct experiments to demonstrate the efficacy of our approach even with a
challenging task: extreme cross-domain FSL as first introduced in [21, 41]. Many FSL algorithms
are known to fail in such a challenging scenario [6].

Recall that we have two setups for cross-domain FSL (Section 4.2), in which cases, the negative
samples are drawn from disjoint and noisy negative samples pool. Here, we provide the detailed
setting of each scheme when transferring a network trained on mini-Imagenet to target domains. It is
worth mentioning that we only consider inductive inference for comparison with prior work.

Disjoint negative samples. As mentioned before, we evaluate the results of cross-domain FSL on
test split of these datasets while employing the train split to draw negative samples. Since the number
of categories in EuroSAT and ISIC is relatively small (10 and 7 respectively) compare to the number
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Table 4: The results of the domain-shift setting from mini-Imagenet to CUB, iNat, ISIC, and EuroSAT
with Rot + KD baseline. The results obtained by our models (blue pearl-shaded) are averaged over
2,000 episodes. The baselines with ? notation show the results using the setup of disjoint negative
samples, and the baselines without the ? show the results using the setup of noisy negative samples.

CUB iNat ISIC EuroSAT
Baseline 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Transfer [41] - - - - 30.71 43.08 60.73 80.30
SimCLR [41] - - - - 26.25 36.09 43.52 59.05
Transfer + SimCLR [41] - - - - 32.63 45.96 57.18 77.61
STARTUP (no SS) [41] - - - - 32.24 46.48 62.90 81.81
STARTUP [41] - - - - 32.66 47.22 63.88 82.29
Rot + KD + CE 49.98 69.44 48.90 66.58 32.35 43.81 65.00 80.01
Rot + KD + POODLE-R 50.04 69.78 48.94 66.87 32.21 43.87 63.97 79.85
Rot + KD + POODLE-B 52.61 70.78 50.62 67.31 33.56 44.17 66.21 80.51

Rot + KD + CE ? 50.28 69.64 48.80 66.72 - - - -
Rot + KD + POODLE-R ? 50.25 69.97 48.84 67.03 - - - -
Rot + KD + POODLE-B ? 53.11 70.96 50.46 67.45 - - - -

of “way” in novel task (5), we only concern with iNat and CUB. Precisely, we follow [6] and [58] to
split CUB and iNat respectively.

Noisy negative samples. We assume that we have 20% unlabeled data from the target domain
and the rest 80% of data is used for testing. Although a large number of classes are beneficial to
POODLE as discussed above, we also carry out experiments with ISIC and EuroSAT to evaluate the
performance of extreme cross-domain FSL with our approach.

From the Table 4 we can see that the improvement of POODLE with the disjoint negative samples
(the bottom rows) and the noisy negative samples (the middle rows) when transferring knowledge
from mini-ImageNet to iNat, CUB, ISIC, and EuroSAT. We can observe that despite the extreme gap
between target/source domains and a very noisy mix of in- and out-of-distribution samples in negative
samples pool (in case of EuroSAT and ISIC), POODLE can successfully boost the performance of
baselines in all experiments. We also report the performance of other approaches, which have same
setup as noisy negative samples, in Table 4.

5.4 Ablation study

In this section, we present results of some presentative ablation study to get more insight of POODLE
behaviors. For more in-depth experiments, we refer reader to supplementary document.

5.4.1 The effect of domain discrepancy between positive-negative samples

Intuitively, the more similar between domains of OOD and test samples, the higher performance
gain POODLE can achieve. To understand how our method works when OOD data is from various
domains, we train our classifier and compare the performance when using random uniform distribution
and other datasets as negative examples. The result of this experiment is reported in Table 5. We can
observer that the more similar of OOD domain to test domain, the higher the performance gain we
can achieve. Thus, we should always aim to leverage the OOD samples of test domain.

On the performance of random features: For in-domain FSL i.e., test domains are mini-Imagenet
and tiered-Imagenet, using uniform examples has the best and second-best accuracy when tested
on mini-ImageNet and tiered-ImageNet, respectively. As aforesaid, the uniform random features
will reflect the distribution of mini-Imagenet samples (which the network is pre-trained on). Thus,
random features are effective for in-domain FSL.

For cross-domain FSL (i.e., test domains are CUB and EuroSAT), using random uniform features -
which is approximately equal to using samples from mini-Imagenetet - does not work because the
discrepancy between the source and target domain is extremely large, e.g., animal (mini-Imagenet) vs
satellite images (EuroSAT).
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Table 5: Evaluating (simple) Resnet-12 trained on mini-Imagenet on different test/OOD domains
in the 1-shot inductive protocol (10,000 episodes). random, mini, tiered, CUB, EuroSAT denote
mini-Imagenet, tiered-Imagenet, CUB, EuroSAT dataset respectively. The OOD/test samples are
drawn from the standard train/test split of each dataset, respectively. The 95% confidence interval is
roughly 0.20 for all results.

OOD domain
w/o OOD random mini tiered CUB EuroSAT

Test domain
mini 61.63 64.30 64.08 63.72 62.71 61.76
tiered 63.04 64.28 64.01 64.50 63.85 62.78
CUB 48.55 48.88 49.01 49.10 51.40 49.18
EuroSAT 65.18 63.85 64.58 64.25 64.70 66.04

Table 6: The results of the various approaches to learn a better classifier with pretrained Rot + KD

baseline on mini-Imagenet. The results are obtained by averaging over 10,000 episodes.

Method 1-shot 5-shot
baseline 66.32± 0.20 82.99± 0.13
1) w/ learning cosine classifier 66.66± 0.20 82.84± 0.13
2) w/ naive OOD 66.36± 0.20 83.08± 0.13
3) w/ large-margin w/o negative samples 66.32± 0.20 83.01± 0.13
4) w/ label smoothing 66.13± 0.20 80.81± 0.13
POODLE-B 67.84± 0.20 83.72± 0.13
POODLE-R 68.20± 0.20 83.60± 0.13

5.4.2 Comparison against simple approaches for enhance pretrained models

To better understand the effectiveness of our method, we also compare to four methods that learn
better classifiers on novel classes with pre-trained features. The results are reported in Table 6.

1. Learning cosine classifier: The classifier in inference phase is fine-tuned using CE loss with the
support samples of each task. In our experiments, this approach does not bring any meaningful
improvement similar to [58].

2. Naive OOD: we fine-tune a (k + 1)-way classifier with 1 additional class for OOD samples using
CE loss. Naive OOD performs worse because the OOD samples are drawn from several classes of
the training set, which are well-clustered and separated, we cannot find a "prototype" with a linear
classifier to match all of them.

3. Large-margin w/o negative samples: only use push term in POODLE. This approach is not better
than cosine-distance because the initialized prototype (mean of all samples from specific class)
is already well-clustered and optimal i.e., close to the ground-truth class prototype and far away
from others for the observed samples.

4. Label smoothing: we use label smoothing for CE loss (ground-truth class has the probability of
0.9 and uniformly distribute 0.1 to the rest. This method does not work well because it only makes
learned prototypes not be far away from samples from other classes.

6 Conclusions and future work

In this work, we have proposed the concept of leveraging out-of-distribution samples set to improve
the generalization of few-shot learners and realize it by a simple yet effective objective function. Our
approach consistently boosts the performance of FSL across different backbone networks, inference
types (inductive/transductive), and the challenging cross-domain FSL.

Future work might seek to exploit different sampling strategies (i.e., how to select negative samples)
to further boost the performance and reduce time/memory complexity; another interesting direction
is enhancing the robustness of the classifier when we have both positive and negative samples in the
same sampling pool; leveraging domain adaptation to reduce the need of in-domain negative samples
is also a promising research direction.
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