
How Does Quantization Affect Multilingual LLMs?

Anonymous ACL submission

Abstract

Quantization techniques are widely used to im-001
prove inference speed and deployment of large002
language models. While a wide body of work003
examines the impact of quantized LLMs on004
English tasks, none have examined the effect005
of quantization across languages. We conduct006
a thorough analysis of quantized multilingual007
LLMs, focusing on their performance across008
languages and at varying scales. We use auto-009
matic benchmarks, LLM-as-a-Judge methods,010
and human evaluation, finding that (1) harm-011
ful effects of quantization are apparent in hu-012
man evaluation, and automatic metrics severely013
underestimate the detriment: a 1.7% average014
drop in Japanese across automatic tasks cor-015
responds to a 16.0% drop reported by human016
evaluators on realistic prompts; (2) languages017
are disparately affected by quantization, with018
non-Latin script languages impacted worst; and019
(3) challenging tasks such as mathematical rea-020
soning degrade fastest. As the ability to serve021
low-compute models is critical for wide global022
adoption of NLP technologies, our results urge023
consideration of multilingual performance as a024
key evaluation criterion for efficient models.025

1 Introduction026

Multilingual large language models (LLMs) have027

the power to bring modern language technology to028

the world, but only if they are cheap and reliable.029

Known as the low-resource double bind, under-030

served languages and severe compute constraints031

often geographically co-occur (Ahia et al., 2021),032

meaning that for wide adoption, multilingual LLMs033

must be highly-performant and lightweight.034

With the shift towards large models, quantiza-035

tion is a widely adopted technique to reduce cost,036

improve inference speed, and enable wider deploy-037

ment of LLMs. Work on quantization, however, is038

by-and-large evaluated in English only (e.g. Xiao039

et al., 2023; Ahmadian et al., 2024; Frantar et al.,040

2022). No works to our knowledge have charac- 041

terized the impact of quantization on the multilin- 042

gual generation capabilities expected from modern 043

LLMs. Ubiquitous use of compression techniques 044

in the real world drives urgency to the question how 045

are multilingual models impacted? 046

Our question is timely, given recent work show- 047

ing that compression techniques such as quanti- 048

zation and sparsity amplify disparate treatment of 049

long-tail features, which may have implications 050

for under-represented languages in multilingual 051

LLMs (Hooker et al., 2019, 2020; Ahia et al., 2021; 052

Ogueji et al., 2022). Indeed, many model designs 053

choices implicitly overfit to a handful of resource 054

rich languages: from tokenizer choice, to weight- 055

ing of training data, and to widely-used quantiza- 056

tion techniques. Focusing on a small subset of 057

high-resource languages in design degrades model 058

performance for overlooked languages (Schwartz 059

et al., 2022; Kotek et al., 2023; Khandelwal et al., 060

2023; Vashishtha et al., 2023; Khondaker et al., 061

2023; Pozzobon et al., 2024), introduces secu- 062

rity vulnerabilities (Yong et al., 2023; Nasr et al., 063

2023; Li et al., 2023a; Lukas et al., 2023; Deng 064

et al., 2023), and unfairly passes high costs to non- 065

English users faced with high latency (Held et al., 066

2023; Durmus et al., 2023; Nicholas and Bhatia, 067

2023; Ojo et al., 2023; Ahia et al., 2023). 068

We analyze four state-of-the-art multilingual 069

LLMs across 3 different sizes ranging from 8 to 103 070

billion parameters and covering up to 23 languages, 071

under various quantization techniques. Critically, 072

it is vital that we move beyond automatic eval- 073

uation and gather real human feedback on per- 074

formance cost. We thus perform multilingual hu- 075

man evaluation on challenging real-world prompts 076

in addition to LLM-as-a-Judge and evaluation on 077

standard automatic benchmarks such as multilin- 078

gual MMLU (Hendrycks et al., 2020), MGSM (Shi 079

et al., 2023), and FLORES-200 (Costa-jussà et al., 080
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2022a). Across experimental set-ups we find that:081

1. Automatic metrics severely underestimate082

damage from quantization. Automatic083

evaluations estimate performance deteriora-084

tion relative to FP16 across tasks at −0.3%085

(French) and −1.7% (Japanese) vs −16.6%086

and −16.0% reported by human evaluators.087

2. Quantization affects languages differently.088

Non-Latin script languages are more greatly089

harmed on average. Across tasks, Latin-script090

languages scored −0.7% relative to FP16 for a091

103B parameter model while non-Latin scripts092

scored −1.9%. For a smaller 8-billion param-093

eter model, drops were −3.0% vs. −3.7%.094

3. Challenging tasks degrade fastest. Math-095

ematical reasoning (−13.1%), performance096

on real-world challenging prompts judged097

by humans (−10.5%), and LLM-as-a-Judge098

(−25.9%) are severely reduced.099

4. Occasionally, quantization brings benefits.100

Similar to Ahia et al. (2021) and Ogueji et al.101

(2022) on sparsity, we find that quantization102

benefits model performance in some cases:103

e.g., an average 1.3% boost across tasks for a104

35B model quantized with W8A8.105

As the first to broadly study the impact of quan-106

tization on multilingual LLMs, our work is part of107

a wider body of literature that considers the impact108

of model design choices on downstream perfor-109

mance. Our results urge attention to multilingual110

performance at all stages of system design.111

2 Background112

Quantization compresses the weights and poten-113

tially activations of a neural network to lower-bit114

representations. Compression can be done by train-115

ing the model at lower precision, known as Quanti-116

zation Aware Training (QAT), or performed on the117

final model weights, known as Post Training Quan-118

tization (PTQ). Given the difficulties in training119

LLMs especially at precision lower than 16-bits120

floating point, PTQ methods which perform the121

quantization single-shot without needing gradient122

updates are highly desirable. Training is completed123

at higher precision, then weights/activations are124

quantized without further training. In this work,125

we focus on post-training quantization because of126

its simplicity and applicability at scale. PTQ of127

LLMs can be further categorized into:128

Weight-Only Quantization Weight matrices are129

quantized offline and the compressed matrices are130

loaded from memory during inference. Quantized 131

weight matrices have a smaller memory footprint 132

compared to FP16 (2× smaller for 8-bit and almost 133

4× smaller for 4-bit), enabling inference with less 134

compute. In memory-bound scenarios, it also en- 135

ables faster inference due to fewer bytes transferred 136

from GPU memory to the compute units. 137

For a weight matrix W ∈ Rdin×dout and input 138

X ∈ Rseq×din , if only a single scaling factor is 139

used for naive quantization (per-tensor), then the 140

quantized weights are given by: 141

WQ = ∆ ·
⌊
W

∆

⌉
, ∆ =

max(|W|)
2N−1

(1) 142

where ∆ ∈ R denotes the scale, N the bit precision, 143

|.| the absolute value over each element in W and 144

⌊.⌉ rounding to the nearest integer. 145

A single scaling factor might not be enough if 146

the distribution of parameters in the weight matrix 147

has high variance; thus one could increase the gran- 148

ularity of quantization by using a scale for each 149

output dimension (per-column), i.e., ∆ ∈ Rdout . 150

However, when N is aggressively lowered to 4 bits 151

or lower, even per-column granularity might be in- 152

sufficient to cover the range of values in a column. 153

The granularity can be further increased by using 154

a shared scale for a subset of input dimensions 155

called groups (g), thus the scale ∆ ∈ R
din
g

×dout . A 156

commonly used group size is 128. 157

Equation 1 gives the simplest way to quantize 158

the weights. For N ≤ 4 bits, using more ad- 159

vanced Weight-Only Quantization methods like 160

GPTQ (Frantar et al., 2022) or AWQ (Lin et al., 161

2024) leads to better downstream performance. 162

Weight-and-Activation Quantization As the 163

name suggests, Weight-and-Activation Quantiza- 164

tion quantizes the model activations alongside the 165

weights. Unlike Weight-Only Quantization where 166

weights can be quantized offline, quantization of 167

activations happens at runtime. One could compute 168

the quantization scales for various activations by 169

using a small slice of training or validation data 170

(static scaling) but this method typically has large 171

degradation (Xiao et al., 2023). For minimal degra- 172

dation, it is preferred to calculate the quantization 173

scaling factor dynamically (dynamic scaling) for 174

each input on-the-fly. While quantizing activa- 175

tions is more difficult, reducing the precision of 176

the activations alongside the weights enables the 177

usage of specialized low-precision matrix multi- 178

plication hardware in modern GPUs leading to up 179
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to 2× improvement in throughput. For a weight180

matrix W ∈ Rdin×dout and input X ∈ Rseq×din ,181

naive Weight-and-Activation Quantization with per-182

token input granularity and per-column weight183

granularity can be done by:184

WQ:,j =

⌊
W:,j

∆W
:,j

⌉
,∆W

:,j =
max(|W:,j |)

2N−1
(2)185

XQi,: =

⌊
Xi,:

∆X
i,:

⌉
,∆X

i,: =
max(|Xi,:|)

2N−1
(3)186

Y = ∆X ⊙ (XQWQ)⊙∆W (4)187

where, ∆W ∈ Rdout , ∆X ∈ Rseq and ⊙ denotes188

element-wise multiplication by broadcasting the189

elements to match the shape of the operands.190

3 Experiment Set-up191

Models We evaluate Command R+1, Command192

R2, and Aya 23 models (Aryabumi et al., 2024)193

as representatives of state-of-the-art multilingual194

LLMs. Command models are 103 and 35 billion195

parameters, and Aya 23 models are 35 and 8 billion196

parameters, respectively. We quantize the models197

using the open weights on HuggingFace.198

Quantization For Command R and R+, we eval-199

uate both weight-only quantization at 8-bit (W8200

with per-column scaling) and 4-bit (W4-g with201

group-wise scaling using GPTQ (Frantar et al.,202

2022)), as well as weight-and-activation quan-203

tization at 8-bit (W8A8 with per-column scaling204

for weights and per-token scaling for activations).205

Ahmadian et al. (2024) show that if the206

model is trained with the right hyper-parameters,207

naive Weight-and-Activation Quantization has min-208

imal degradation. Otherwise, one may leverage209

SmoothQuant (Xiao et al., 2023) to smoothen210

the distribution of activations making them more211

amenable to quantization. We therefore also ex-212

plore W8A8-SmoothQuant (a W8A8 variant with213

SmoothQuant) for Command R+ as well as a 4-bit214

weight-only quantized variant with column-wise215

scaling (W4) to understand the impact of scaling216

granularity at extremely low-bit precision. Fol-217

lowing (Frantar et al., 2022; Xiao et al., 2023),218

we use 128 English samples for calibration for219

SmoothQuant and GPTQ.220

For Aya 23 8B and 35B, we use bitsandbytes3 to221

1https://docs.cohere.com/docs/command-r-plus
2https://docs.cohere.com/docs/command-r
3https://github.com/TimDettmers/bitsandbytes

obtain 8-bit and 4-bit quantized models. Bitsand- 222

bytes uses LLM.int8() (Dettmers et al., 2022)— 223

similar to W8A8 described above except that it per- 224

forms certain computations in FP16. Bitsandbytes 225

4-bit uses the NF4 datatype (Dettmers et al., 2023) 226

to perform Quantile Quantization which limits 227

degradation at the expense of inference speedups. 228

3.1 Automatic Evaluation 229

We evaluate in 10 primary languages: Arabic, 230

French, German, English, Spanish, Italian, Por- 231

tuguese, Korean, Japanese, and Chinese. Quan- 232

tized models are compared to the original FP16 233

versions, and we primarily report results as rela- 234

tive degradation compared to this FP16 baseline: 235

%∆ =
scorequantized − scoreFP16

scoreFP16
∗ 100 (5) 236

Raw numeric results are in the Appendix. Results 237

are averaged over 5 runs.4 238

Multilingual MMLU (mMMLU) This multi- 239

domain question answering task consists of 240

14,000+ multiple-choice questions. We translate 241

MMLU (Hendrycks et al., 2020) to 9 languages 242

with Google Translate and refer to this version as 243

mMMLU. We measure accuracy in a 5-shot setting. 244

An example is in Table A1. 245

MGSM (Shi et al., 2023) MGSM is a genera- 246

tive mathematics evaluation set manually translated 247

from GSM8K (Cobbe et al., 2021). Of our tar- 248

get languages, it is available for German, Spanish, 249

French, Japanese, and Chinese. We report accuracy 250

over the 250-item test set for each language. 251

FLORES-200 (Costa-jussà et al., 2022b) This 252

well-known multi-way parallel test set evaluates 253

translation capabilities. We translate into and out 254

of English, and report SacreBLEU (Post, 2018). 255

Language Confusion (Under Review et al., 2024) 256

These test sets assess a model’s ability to respond 257

in a user’s desired language. In the monolingual 258

setting, prompts are in language l and the model 259

must respond in language l. For instance, a user 260

prompts in Arabic, so implicitly desires an Arabic 261

response. In the cross-lingual variant, a prompt is 262

provided in English but the user requests output 263

in a different language l′.5 fastText (Joulin et al., 264

4k=0, p=0.75, temperature=0.3, except mMMLU, which,
as a QA eval, is run deterministically with t=0.

5An example from the Okapi subsection of the evaluation
is: “Reply in Spanish. Explain a common misconception about
your topic. Topic: Using AI to Augment Human Capabilities”
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2016) language identificaion is run over the out-265

put. We report line-level pass rate (LPR), i.e., the266

percentage of responses for which all lines in the267

response are in the user’s desired language.268

Aya Evaluation Aya 23 models are evaluated269

using an extended version of the Aya evaluation270

setup (Aryabumi et al., 2024) using the unseen dis-271

criminative tasks (XWinograd (Muennighoff et al.,272

2023), XCOPA (Ponti et al., 2020), XStoryCloze273

(Lin et al., 2022)), mMMLU (Okapi; Dac Lai et al.,274

2023), MGSM, and Belebele (Bandarkar et al.,275

2023) from eval-harness (Gao et al., 2023).6276

We evaluate models on languages included in the277

covered 23 languages, except for the unseen tasks278

where we use all available languages.7 Aya eval-279

uations allow us to add: Czech, Greek, Hebrew,280

Hindi, Indonesian, Dutch, Persian, Polish, Roma-281

nian, Russian, Turkish, Ukrainian, Vietnamese.282

3.2 Human Evaluation283

We run human evaluation in Spanish, French, Ko-284

rean, and Japanese.285

Internal Evaluation Suite 150 diverse prompts286

designed to be more complex than public evalu-287

ation benchmarks. As such, we expect greater288

degradation with increased quantization given the289

difficulty of the samples. Prompts for all four lan-290

guages are translated by humans from an English291

seed prompt, ensuring that respective language-292

specific subsets share the same prompts.293

Aya Dolly-200 (Singh et al., 2024) We use multi-294

lingual data from the Aya Evaluation Suite to assess295

open-ended generation capabilities. For Korean296

and Japanese, we use prompts from the Aya Dolly-297

200 test set (dolly-machine-translated), which298

are automatically translated from English Dolly-299

15k (Conover et al., 2023) then human-curated to300

avoid references requiring specific cultural or ge-301

ographic knowledge. For French and Spanish, we302

use dolly-human-edited, a human post-edited ver-303

sion of dolly-machine-translated. For each lan-304

guage, we evaluate using the first 150 prompts.305

6We follow the setup used by Üstün et al. (2024): each
evaluation is run once, and for FLORES, no sampling is used
and metric is spBLEU.

7mMMLU: ar, de, es, fr, hi, id, it, nl, pt, ro, ru, uk, vi, zh.
MGSM: de, es, fr, ja, ru, zh. Belebele: ar, cs, de, es, el, fr, hi,
id, it, ja, ko, nl, fa, pl, pt, ro, ru, tr, uk, vi, zh. FLORES: ar, cs,
zh, nl, fr, de, el, he, hi, id, it, ja, ko, fa, pl, pt, ro, ru, es, tr, uk,
vi.

Annotator Statistics Annotations and transla- 306

tions were completed by native-level speakers of 307

the respective languages, each of whom is also 308

fluent in English. Annotators were paid by the 309

hour, with compensation above the federal mini- 310

mum wage of the country of employment. 311

Annotation Interface We use a pairwise eval- 312

uation setup. Annotators see a prompt and two 313

(shuffled) completions of the FP16 model and a 314

quantized variant. They rate each response on a 315

5-point Likert scale, then express a preference be- 316

tween the two model outputs (tie, weak preference, 317

strong preference). We encourage annotators to 318

avoid tied rankings. Win rates are based on the 319

ranking preferences alone. 320

3.3 LLM/RM-as-a-Judge 321

Because human evaluation is costly and time- 322

intensive, it is common to use an “LLM-as-a-Judge” 323

to rate model completions (e.g. Li et al., 2023b; 324

Zheng et al., 2023). Reward models (RMs) can 325

also simulate human preference. An RM scores 326

multiple completions given the same prompt, and 327

the prompt-completion pair with the higher score 328

is deemed preferred. We call this RM-as-a-Judge. 329

We assess quantized model outputs using LLM- 330

and RM-as-a-Judge. In the former, an LLM se- 331

lects a preferred response from a <instruction, 332

modelA_completion, modelB_completion> tu- 333

ple (see Table A2). Following (Üstün et al., 2024; 334

Aryabumi et al., 2024) we use GPT-48 as an LLM 335

proxy judge. To minimize bias, we randomize 336

the order of model outputs. For RM-as-a-Judge, 337

a multilingual reward model scores <prompt, 338

completion> pairs for each model output, over 339

which we calculate win-rate. We report win-rates 340

of quantized models versus the FP16 baseline. 341

We assess the outputs of quantized models over 342

the Internal Evaluation Suite and Aya Dolly-200 343

described in Section 3.2. We use the same prompt 344

and completion pairs as in human evaluation, which 345

provides the ability to relate LLM/RM-as-a-Judge 346

performance with human evaluation. 347

4 Results 348

To clearly see the many-faceted impact of quanti- 349

zation, we discuss our results by quantization level 350

(§4.1), by task (§4.2), by language (§4.3), by model 351

8Specifically, gpt-4-turbo (gpt-4-1106-preview):
https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4
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size (§4.4), and by quantization strategy (§4.5). We352

then report LLM-as-a-Judge and RM-as-a-Judge353

(§4.6) and human evaluation results (§4.7).354

4.1 By Quantization Level355

Command R and R+ In Table 1, we aggregate356

results of each metric for each level of quantization.357

We average scores across languages, then calcu-358

late the relative percentage drop from FP16.9 We359

discuss results of W8, W8A8, and W4-g quanti-360

zation, which are variants available for both Com-361

mand model sizes. Most results follow intuition:362

greater quantization leads to larger performance363

degradation: −0.2% for W8, −0.8% for W8A8,364

and −0.9% overall for the 103B model. An ex-365

ception is W8A8 for the 35B, which experiences a366

slight boost overall due to higher performance on367

translation and language confusion evaluations.368

Aya 23 Models Table 2 shows the aggregated369

results for Aya 23 models on the extended Aya370

evaluations (Aryabumi et al., 2024) at W8, and371

W4 quantization. We find a similar trend with372

Command models where W4 often leads to a larger373

relative drop compared to W8 variants, consistent374

across tasks and languages. W8, however, does not375

substantially drop performance in any task.376

4.2 By Task377

Mathematical reasoning as measured by MGSM is378

strikingly affected by quantization. Relative perfor-379

mance of the 35B W4-g model is a dismal −13.1%380

on average, with as poor as −17.3% in Chinese381

(Table A3). MGSM and Belebele are the two tasks382

with the highest performance drop for Aya 23 mod-383

els at W4 quantization drops of 7.5% and 8.5% on384

the 8B model, respectively, followed by mMMLU.385

On FLORES, relative drops are sensitive to trans-386

lation direction: the more challenging EN→L2 is387

impacted more than L2→EN (−1.4% vs −1.2%388

for Aya 23 35B, −1.8% vs −1.0% for Aya 23 8B).389

The same effect is observed in most Command390

models. Quantization does not noticeably impact391

unseen discriminative tasks (XWinograd, XCOPA,392

XStoryCloze: Table A4). Full raw and relative393

results by task are in the Appendix.394

Curiously, there are some fleeting performance395

boosts: an increase of 1.8–2.1% on MGSM and396

mild improvements on FLORES with W8 on Aya397

9Ex. For 103B W4-g MGSM, scores were: {de: 71.2, es:
75.7, fr: 69.0, ja: 58.0, zh: 68.9}, thus the average score was
68.6—a 2.9% drop from FP16 ( 68.6−70.6

70.6
= −0.029).

models and a similar translation boost of the 35B 398

Command model at W8A8. Quantization has no 399

effect or causes a mild improvement on the mono- 400

lingual language confusion task (except for 35B 401

W4-g), and cross-lingual language confusion per- 402

formance is boosted with greater quantization. 403

4.3 By Language 404

We next ask, Are languages differently affected 405

by quantization? Table 3 shows performance av- 406

eraged over mMMLU, FLORES, and Language 407

Confusion tasks, with Table 4 further including 408

MGSM for supported languages. Metrics are on 409

different scales, so we average relative change 410

(%∆) rather than raw scores.10 We further sep- 411

arate into languages written in the Latin/Roman 412

script, which also are the subset of Indo-European 413

languages (Ltn/IE) versus those using other scripts 414

(¬Ltn/IE). W4-g is severely degrading across lan- 415

guages for the 35B Command model, and a re- 416

lationship between language and performance is 417

apparent: ¬Ltn/IE languages typically degrade 418

more. Chinese and Korean are particularly harmed 419

at W4. The effect is seen consistently across all au- 420

tomatic metrics for Command models, with limited 421

exception. Table 5 is discussed more thoroughly in 422

Section 4.5, but also shows this discrepancy. 423

Interestingly, W8A8 quantization of the 35B 424

model seems to help on average across all lan- 425

guages. The magnitude is primarily due to W8A8 426

helping on cross-lingual language confusion. 427

4.4 By Model Size 428

Across evaluations at the most extreme quantiza- 429

tion (W4/W4-g), smaller models are more sensi- 430

tive: W4-g variants of 103B and 35B Command 431

record −0.9% and −2.8% performance relative to 432

FP16 on average, with a stark difference of −2.9% 433

vs. −13.1% on MGSM. Aya 23 35B/8B record 434

−2.8%/−3.7% on average, with their largest gap 435

occurring in Belebele (−5.9% vs. −8.5%). 436

4.5 By Quantization Strategy 437

We evaluate variants of the 103B Command model 438

with SmoothQuant (W8A8-sq), and a more naive 439

W4 variant using per-column quantization instead 440

of group-wise scaling. We compare W8A8-sq to 441

10Ex. to arrive at −1.3% for 103B W8A8 in Ara-
bic, we average relative performance for mMMLU,
FLORES En↔L2, and Language Confusion tasks:
avg({−2.2%,−1.0%,−1.3%, 0.0%,−1.8%}) = −1.3%.
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Avg. FLORES Language Confusion
Rel. %∆ mMMLU MGSM L2→En En→L2 Monolingual Cross-lingual

FP16 - 66.7 - 70.6 - 37.7 - 39.6 - 99.2 - 91.5 -
W8 -0.2% 66.7 0.0% 69.9 -1.0% 37.7 0.0% 39.6 0.0% 99.2 0.0% 91.2 -0.3%
W8A8-sq -0.5% 66.3 -0.5% 69.5 -1.6% 37.8 0.2% 39.1 -1.3% 99.2 0.0% 91.5 0.1%
W8A8 -0.8% 65.6 -1.7% 69.8 -1.1% 37.7 0.0% 39.1 -1.2% 99.4 0.2% 90.4 -1.2%
W4-g -0.9% 65.7 -1.4% 68.6 -2.9% 37.8 0.4% 39.4 -0.5% 99.2 0.0% 90.5 -1.1%

103B

W4 -2.5% 63.8 -4.3% 64.4 -8.8% 37.1 -1.6% 39.0 -1.6% 99.3 0.1% 92.8 1.4%

FP16 - 59.4 - 49.8 - 32.4 - 35.5 - 98.7 - 66.5 -
W8 -0.2% 59.3 -0.1% 49.4 -0.7% 32.3 -0.2% 35.4 -0.2% 98.8 0.1% 66.3 -0.2%
W8A8 0.2% 59.3 -0.2% 47.1 -5.5% 32.9 1.6% 35.8 0.9% 99.0 0.3% 68.9 3.7%

35B

W4-g -2.8% 58.2 -2.0% 43.3 -13.1% 31.7 -1.9% 35.3 -0.7% 98.3 -0.4% 67.1 1.0%

Table 1: Per-dataset average performance across non-English languages for 103B and 35B Command models
at varying levels of quantization. %∆ the relative performance vs. FP16 [ex., for MGSM at W4-g on the 35B:
43.3−49.8

49.8 ∗ 100 = −13.1%.] Languages: ar, de, es, fr, it, ja, ko, pt, zh; except MGSM: de, es, fr, ja, zh. Any
discrepancy is due to rounding: raw scores and %∆ were calculated at full precision.

Avg. Unseen mMMLU FLORES
Rel. %∆ Tasks ↑ (Okapi) ↑ MGSM ↑ Belebele ↑ L2→En ↑ En→L2 ↑

FP16 - 70.8 - 58.2 - 51.2 - 77.6 - 42.9 - 37.8 -
W8 0.1% 70.6 -0.2% 57.9 -0.5% 52.1 1.8% 77.1 -0.6% 43.0 0.1% 37.9 0.3%Aya 23 35B
W4 -2.8% 70.5 -0.3% 56.6 -2.3% 48.1 -6.0% 73.0 -5.9% 42.4 -1.2% 37.2 -1.4%

FP16 - 67.6 - 48.2 - 34.7 - 64.8 - 39.8 - 34.8 -
W8 0.3% 67.6 0.1% 47.8 -0.9% 35.4 2.1% 64.6 -0.3% 39.7 0.5% 34.8 0.2%Aya 23 8B
W4 -3.7% 67.5 -0.2% 46.7 -3.2% 32.1 -7.5% 59.3 -8.5% 39.1 -1.0% 34.1 -1.8%

Table 2: Per-dataset average performance across non-English languages for 35B and 8B Aya 23 models
at varying levels of quantization. %∆ is relative performance vs. FP16. We follow the evaluation setup of
Aryabumi et al. (2024) and evaluate on languages in the 23 languages list. On “Unseen Tasks” (XWinograd,
XCOPA, XStoryCloze), we use all the available languages. See Section 3.1 for details and language list.

W8A8, and W4-g to W4. Table 5 shows the ef-442

fect of using SmoothQuant and Group-Wise scal-443

ing strategies. On average and across mMMLU,444

MGSM, and FLORES, Group-Wise scaling greatly445

improves over column-wise W4, recovering over446

6 percentage points lost on MGSM for Ltn/IE lan-447

guages. SmoothQuant has a similar effect on av-448

erage and for mMMLU, though to a lesser degree.449

Curiously, SmoothQuant harms MGSM scores450

slightly, and Group-Wise scaling degrades cross-451

lingual language confusion. We again observe that452

¬Ltn/IE languages suffer more in nearly all cases.453

On cross-lingual language confusion, strategies454

aimed to retain performance have different effects:455

SmoothQuant recovers all lost from naive W8A8456

but is not helpful for monolingual language confu-457

sion (whereas naive W8A8 was), but Group-Wise458

scaling is actively damaging. In contrast, column-459

wise W4 quantization on cross-lingual language460

confusion benefits Ltn/IE languages and Arabic461

only,11 worsening the rest. Thus, while the quan-462

11Full results in Table A11.

tization strategies tend to aid performance overall, 463

the story is nuanced: there may be adverse effects 464

on specific tasks. More research is needed to under- 465

stand this, but it is intriguing to consider the effect 466

that lower-precision might have on the ability to 467

produce output in a desired language, and maintain 468

that language once decoding begins. 469

4.6 LLM/RM-as-a-Judge 470

Table 6 shows relative performance of quantized 471

variants of the 103B model evaluated with LLM- 472

and RM-as-a-Judge.12 In nearly all cases, the LLM 473

and RM agree that W4 and W4-g quantization 474

severely harm performance on our challenging In- 475

ternal test set. On average across languages, the 476

LLM and RM agree on the ranking of model qual- 477

ity over Internal. Results on the easier Dolly test 478

set are less clear-cut: The LLM reports greater 479

degradation for W8, W8A8-sq, and W4-g on In- 480

ternal than on Dolly (in fact, it asserts that quality 481

improved for multiple languages and quantization 482

12Calculation: Quantized Win Rate−50
50

, as 50 is the expected win-
rate of two FP16 models compared.
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ar de es fr it ja ko pt zh avg Ltn/IE ¬

W8 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% -0.4% -0.2% -0.1% -0.1% -0.1%
W8A8-sq -0.6% 0.2% -0.3% 0.1% -0.6% -0.3% -0.1% -0.7% -0.8% -0.3% -0.3% -0.4%
W8A8 -1.3% -0.9% -0.5% -0.5% -0.8% -0.3% -1.3% -0.8% -0.9% -0.8% -0.7% -0.9%
W4-g -0.8% -0.2% -0.4% 0.1% -0.4% -0.4% -0.6% -1.2% -0.9% -0.5% -0.4% -0.7%

103B

W4 -1.0% -0.6% 0.1% -0.8% -1.2% -1.4% -2.9% -0.8% -2.3% -1.2% -0.7% -1.9%

W8 0.3% -0.5% -0.1% -0.2% -0.4% 0.3% -0.1% 0.1% -0.3% -0.1% -0.2% 0.0%
W8A8 2.0% 2.5% 0.7% 1.0% 1.2% 1.1% 0.9% 1.4% 1.0% 1.3% 1.3% 1.3%35B
W4-g -1.1% -1.1% 0.1% -0.3% -0.1% -2.3% -1.4% -0.6% -1.3% -0.9% -0.4% -1.5%

Table 3: Per-language relative performance (%∆) vs. FP16, averaged over mMMLU, FLORES, and Language
Confusion tasks. Ltn/IE are Latin-script/Indo-European languages: de, es, fr, it, pt. ¬ are the rest: ar, ja, ko, zh.

de es fr ja zh avg Ltn/IE ¬

W8 0.1% -0.1% -0.3% -0.4% -0.2% -0.2% -0.1% -0.3%
W8A8-sq 0.4% -0.9% -0.1% -0.3% -1.2% -0.4% -0.2% -0.8%
W8A8 -0.4% -1.0% -0.6% -0.1% -1.3% -0.7% -0.6% -0.7%
W4-g -0.5% -0.5% -0.3% -1.7% -1.1% -0.8% -0.4% -1.4%

103B

W4 -2.3% -1.1% -1.7% -3.0% -3.5% -2.3% -1.7% -3.3%

W8 -0.6% -0.3% -0.1% -0.4% 0.0% -0.2% -0.3% -0.2%
W8A8 1.3% -0.6% 0.3% -0.3% 0.0% 0.1% 0.3% -0.2%35B
W4-g -3.7% -1.8% -1.7% -3.8% -4.0% -3.0% -2.4% -3.9%

Table 4: Per-language relative performance (%∆) vs.
FP16, averaged over MGSM, mMMLU, FLORES,
and Language Confusion tasks. Ltn/IE are Latin-
script/Indo-European: de, es, fr. ¬ are the rest: ja, zh.

levels on Dolly), but the RM disagrees. Internal483

shows more pronounced degradation overall, with a484

12.4% average relative drop in winrate versus 3.0%485

onDolly across quantization levels. Perhaps Dolly486

prompts are easy enough that models output similar487

responses, creating more noise in the judgments;488

future work could examine this hypothesis.489

4.7 Human Evaluation490

Human evaluation paints a similar picture in Ta-491

ble 7, with some outliers. Average performance492

drops steadily across evaluated languages on the493

Internal test set, which has more difficult prompts.494

The sharpest decline is in French, with −16.6% at495

W4-g. Curiously, there is an initial 7.4% boost for496

Japanese with W8, but it falls to −16.0% with more497

extreme quantization. Interestingly, human annota-498

tors generally prefer outputs of quantized models499

on Dolly prompts in Japanese, too, but disprefer500

those in other languages. We see more pronounced501

degradation on Internal overall, with an average502

relative drop of 5.7% versus 2.4% for Dolly.503

5 Related Work504

Impact of Compression on Multilingual Tasks505

There is a scarcity of research examining the impact506

of compression and quantization on multilingual507

tasks. Paglieri et al. (2024) study the impact of mul- 508

tilingual calibration sets on quantization, but their 509

evaluation is English-only. Ramesh et al. (2023) 510

study the effect of compression on multilingual 511

model fairness in terms of classification accuracy, 512

showing that while monolingual evaluation indi- 513

cates a negative impact, multilingual evaluation dif- 514

fers across languages and dimensions. Kharazmi 515

et al. (2023) show that recovering compression- 516

cauesd performance loss of LSTMs is harder in 517

a multilingual setting than monolingually. In ma- 518

chine translation, Diddee et al. (2022) show that 519

distillation has a varied effect by language due to 520

dependence on priors such as amount of synthetic 521

data used and confidence of the teacher models, 522

while quantization exhibits more consistent perfor- 523

mance trends across languages. Our work is the 524

first, to our knowledge, to study the effect of quan- 525

tization on LLMs and for open-ended generation. 526

More broadly, multilingual data is an example 527

of long tail data. Prior work shows that compres- 528

sion techniques like quantization and sparsity am- 529

plify disparate treatment of long-tail rare features 530

(Hooker et al., 2019; Ahia et al., 2021; Ogueji et al., 531

2022; Hooker et al., 2020). Ogueji et al. (2022) 532

show that depending on how out of distribution the 533

task data is, sparsity-based compression can some- 534

times avoid overfitting to the training data, making 535

a model better suited to the downstream task. Ahia 536

et al. (2021) find that sparsity preserves machine 537

translation performance on frequent sentences, but 538

disparately impacts infrequent sentences. 539

Quantization of LLMs A recent line of work has 540

emerged on techniques to improve performance of 541

quantized LLMs, with the sole focus on English 542

models and data for tuning and evaluation (Ahma- 543

dian et al., 2024; Dettmers et al., 2022; Xiao et al., 544

2023; Bondarenko et al., 2024; Gong et al., 2024). 545
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FLORES Language Confusion
Avg. Rel. % mMMLU MGSM L2 → En En → L2 Monolingual Cross-lingual

Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬

W8A8 -0.7% -1.0% -1.3% -2.1% -0.9% -1.3% -0.1% 0.1% -1.0% -1.6% 0.0% 0.4% -0.9% -1.6%
W8A8-sq -0.4% -0.7% -0.4% -0.8% -1.3% -1.9% 0.2% 0.0% -1.1% -1.6% -0.1% 0.1% 0.1% 0.0%

W4 -1.9% -3.3% -3.9% -4.9% -8.0% -10.2% -1.3% -2.0% -1.1% -2.3% 0.1% 0.1% 2.9% -0.4%
W4-g -0.6% -1.4% -1.1% -1.9% -1.8% -4.9% 0.2% 0.7% -0.3% -0.8% 0.1% -0.1% -0.9% -1.3%

Table 5: Effect of mitigation strategies on W8A8 and W4 quantization on the 103B model. Percentage points
off FP16 baseline for W8A8-sq vs. naive W8A8 and W4-g vs. W4, broken down by Latin-script/Indo-European
languages (Ltn/IE) versus others (¬). Avg. Rel. % reports averaged performance all datasets.

fr es ja ko avg Ltn/IE ¬
LLM RM LLM RM LLM RM LLM RM LLM RM LLM RM LLM RM

W8 1.0% -0.7% -10.2% 7.5% -5.4% 5.4% 7.5% -5.8% -1.8% 1.6% -4.6% 3.4% 1.0% -0.2%
W8A8-sq -18.4% -5.1% -3.7% 4.1% 2.0% 4.7% 3.7% -5.1% -4.1% -0.3% -11.0% -0.5% 2.9% -0.2%
W4-g -10.5% -17.0% -16.6% 2.0% -15.3% 0.0% -5.8% -15.6% -12.1% -7.7% -13.6% -7.5% -10.5% -7.8%

Internal

W4 -30.2% -20.4% -33.0% -17.0% -21.7% -20.0% -18.6% -27.6% -25.9% -21.2% -31.6% -18.7% -20.2% -23.8%

W8 -1.3% 2.0% 7.3% -4.0% -6.0% -5.3% 2.7% 2.0% 0.7% -1.3% 3.0% -1.0% -1.7% -1.7%
W8A8-sq -15.3% -8.7% 8.7% -8.0% -1.3% 1.3% -8.0% -4.7% -4.0% -5.0% -3.3% -8.3% -4.7% -1.7%
W8A8 -7.4% 2.7% -4.0% -3.3% -15.3% -1.3% -11.3% -3.3% -9.5% -1.3% -5.7% -0.3% -13.3% -2.3%

Dolly

W4-g -3.4% -2.7% 13.3% 4.7% 2.7% -15.3% 5.3% -5.3% 4.5% -4.7% 5.0% 1.0% 4.0% -10.3%

Table 6: Relative performance vs. FP16 of 103B quantized models according to LLM/RM-as-a-Judge over
Internal and Aya Dolly subsampled test sets. Raw win-rates in Table A12.

fr es ja ko avg Ltn/IE ¬

W8 -7.4% 0.6% 7.4% -12.0% -2.8% -3.4% -2.3%
W8A8-sq -9.4% -7.4% -2.0% 4.0% -3.7% -8.4% 1.0%Internal
W4-g -16.6% -4.6% -16.0% -4.6% -10.5% -10.6% -10.3%

W8 0.6% -5.4% 12.0% 0.0% 1.8% -2.4% 6.0%
W8A8-sq -7.4% -8.6% 0.0% -3.4% -4.8% -8.0% -1.7%Dolly
W4-g -9.4% -1.4% 2.6% -8.0% -4.1% -5.4% -2.7%

Table 7: Relative performance vs. FP16 of 103B quan-
tized models according to human evaluators over In-
ternal and Aya Dolly subsampled test sets.

Even the most recent (Li et al., 2024; Liu et al.,546

2024) omit the multilingual dimension without ac-547

knowledging the limitation. Multilinguality and548

compression are both integral parts of LLMs, and549

our work explores this new territory.550

Model design choices We consider how design551

choices such as quantization impact performance552

for users of different languages. A wider body of553

work examines how design choices impact perfor-554

mance on underrepresented features or subgroups.555

Zhuang et al. (2021) and Nelaturu et al. (2023) find556

that hardware choice incurs disparate impact on557

underrepresented features. Wang et al. (2022) es-558

tablish that distillation imposes similar trade-offs,559

but the disproportionate harm to the long-tail could560

be mitigated by modifying the student-teacher ob-561

jective. Ko et al. (2023) evaluate the positive role of562

ensembling disproportionately favoring underrep-563

resented attributes. Bagdasaryan and Shmatikov564

(2019) show that differential privacy techniques565

like gradient clipping and noise injection dispro- 566

portionately impact underrepresented features. 567

6 Conclusion & Future Work 568

We examine widely adopted quantization tech- 569

niques for model compression and ask, How do 570

they impact different languages? We perform an 571

extensive study of quantization in state-of-the-art 572

multilingual LLMs—from 8 billion to 103 billion 573

parameters—in 20+ languages using automatic 574

metrics, LLM-as-a-Judge, RM-as-a-Judge, and hu- 575

man evaluation. We find that: (1) Damage from 576

quantization is much worse than appears from au- 577

tomatic metrics: even when not observed automat- 578

ically, human evaluators notice it. (2) Quantiza- 579

tion affects languages to varying degrees, with non- 580

Latin script languages more severely affected on au- 581

tomatic benchmarks. (3) Challenging tasks degrade 582

fast and severely: math performance is strikingly 583

reduced, as are responses on realistic challenging 584

prompts judged by humans. On a bright note, quan- 585

tization occasionally brings performance benefits. 586

Our results urge attention to multilingual perfor- 587

mance at all stages of system design. Researchers 588

might extend our work to consider the impact of 589

other decisions on multilingual performance, in- 590

cluding on languages excluded from training and 591

out-of-distribution tasks. By being mindful of the 592

impact on long-tail features, we’ll build better sys- 593

tems to serve the world. 594
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7 Limitations595

Generality of findings Due to the number of596

methods, languages, and benchmarks we examine,597

we focus our evaluation on models from two fami-598

lies (Command R and Aya). As we observe similar599

trends across these models, our findings are likely600

to generalize to other LLMs. Nevertheless, models601

that have been optimized differently or trained with602

a focus on specific tasks such as code or mathemat-603

ical reasoning may behave differently.604

Under-represented languages For our study, we605

focused on languages that were supported by the606

models we evaluated. Performance deterioration607

is likely even larger for languages that are not or608

severely under-represented in the pre-training data.609

For such languages, evaluation is also more chal-610

lenging due to poor availability of benchmark data611

and human annotators.612
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A Appendix935

A.1 Prompts for mMMLU and936

LLM-as-a-Judge937

The following are multiple choice questions (with answers)
about clinical knowledge.

다음중파제트병에대한설명으로옳은것은무엇입니까?
A.긴뼈가휘어지는것이특징
B.척수압박은흔한합병증이다
C.심부전은알려진합병증이아니다
D.병적골절은특징이아닙니다.
Answer: B
...

Table A1: mMMLU prompt. Following Achiam et al.
(2023), letter choices and “Answer” are kept in English.
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Example Prompt

I want you to create a leaderboard of different large-language models. To do so, I will give you the conversations (prompts)
given to the models, and the responses of two models. Please rank the models based on which responses would be preferred by
humans. All inputs and outputs should be python dictionaries.

Here is the prompt:
{

"conversation": """User: La tomate est-elle un fruit ou un légume?""",
}

Here are the outputs of the models:
[

{
"model": "model_1",
"answer": """La tomate est un fruit. Plus précisément, il s’agit d’un fruit charnu, issu de la transformation de l’ovaire de la

fleur du plant de tomate."""
},
{
"model": "model_2",
"answer": """La tomate est un fruit du point de vue botanique, car elle contient des graines et se développe à partir de la

fleur d’une plante. Cependant, en cuisine, on considère souvent la tomate comme un légume en raison de son utilisation dans des
plats salés et de sa saveur moins sucrée par rapport à d’autres fruits."""

}
]

Now please rank the models by the quality of their answers, so that the model with rank 1 has the best output. Then return a list
of the model names and ranks, i.e., produce the following output:
[

{’model’: <model-name>, ’rank’: <model-rank>},
{’model’: <model-name>, ’rank’: <model-rank>}

]

Your response must be a valid Python dictionary and should contain nothing else because we will directly execute it in Python.
Please provide the ranking that the majority of humans would give.

Table A2: Example Input for LLM-as-a-Judge. Template derived from Li et al. (2023b):
https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/evaluators_configs/
gpt-3.5-turbo-1106_ranking/ranking_prompt.txt
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A.2 Full Task Results938

de es fr ja zh avg

W8 0.3% -0.9% -1.6% -2.7% -0.1% -1.0%
W8A8 2.1% -3.5% -1.1% 0.6% -3.2% -1.0%
W4-g -1.9% -1.3% -2.3% -7.9% -1.9% -3.0%
W8A8-sq 1.1% -3.7% -1.5% -0.1% -3.6% -1.6%

103B

W4 -11.0% -7.0% -5.9% -10.9% -9.6% -8.8%

W8 -1.3% -1.1% 0.6% -3.7% 1.6% -0.8%
W8A8 -4.4% -6.8% -3.6% -7.6% -5.4% -5.6%35B
W4-g -16.7% -10.9% -9.0% -11.5% -17.3% -13.1%

Table A3: Percentage drop off FP16 baseline on MGSM.
AVG is the average of percentage drops, so that all lan-
guages are on the same scale (as opposed to languages
with higher raw scores dominating the averages)

Avg XSC XCOPA XWNG

FP16 67.6 62.3 59.8 80.7
Aya-23-8b W8 67.6 62.4 60.0 80.6

W4 67.5 62.3 59.6 80.6

FP16 70.8 65.1 62.8 84.4
Aya-23-35b W8 70.6 65.0 62.9 83.9

W4 70.5 64.8 62.3 84.5

Table A4: Performance of quantized Aya 23 models
on unseen discriminative tasks. XStoryCloze (XSC),
XCOPA, and XWinograd (XWNG).

15



English → L2 L2 → English

ar de es fr it ja ko pt zh avg ar de es fr it ja ko pt zh avg

103B

FP16 27.1 40.0 30.1 50.6 33.1 33.1 29.1 51.0 45.1 37.7 45.0 46.3 33.4 48.6 36.5 29.5 33.0 52.2 32.1 39.6
W8 27.2 40.0 30.0 50.7 33.1 33.2 29.1 50.9 45.1 37.7 45.2 46.3 33.4 48.5 36.5 29.5 33.0 52.1 32.0 39.6
W8A8-sq 26.8 40.3 30.0 51.0 33.0 33.1 29.3 51.2 45.1 37.8 44.5 46.2 32.9 48.1 35.9 29.3 32.5 51.6 31.2 39.1
W8A8 26.9 39.8 30.0 50.9 33.0 33.7 29.0 51.1 45.1 37.7 44.4 45.9 33.1 47.9 36.2 29.2 32.5 51.8 31.4 39.1
W4-g 27.3 40.4 30.1 51.0 33.0 33.9 29.3 50.9 44.7 37.8 44.9 46.4 33.2 48.4 36.3 29.3 32.7 52.0 31.6 39.4
W4 26.9 39.1 29.9 50.0 32.8 32.8 27.9 50.3 44.0 37.1 44.2 45.8 33.1 47.9 36.0 29.0 32.3 51.8 30.9 39.0

35B

FP16 20.1 33.5 27.8 44.5 29.7 27.0 22.7 45.5 40.4 32.4 38.4 41.2 31.8 43.1 34.0 26.2 28.4 48.1 28.4 35.5
W8 20.0 33.4 27.8 44.5 29.7 26.9 22.9 45.3 40.3 32.3 38.3 41.1 31.7 43.0 34.0 26.4 28.2 48.0 28.2 35.4
W8A8 21.2 34.1 27.8 45.1 30.0 27.6 23.1 46.1 40.8 32.9 38.5 42.2 31.7 43.5 34.2 26.5 28.6 48.6 28.7 35.8
W4-g 18.8 32.9 27.7 43.9 29.6 26.0 22.1 45.1 39.7 31.7 38.3 41.4 31.0 43.1 34.0 25.5 28.1 48.0 28.0 35.3

Table A5: Full results (raw BLEU score) on FLORES

English → L2 L2 → English

ar de es fr it ja ko pt zh avg ar de es fr it ja ko pt zh avg
W8 0.1% 0.1% -0.4% 0.2% 0.1% 0.3% -0.2% -0.3% 0.1% 0.0% 0.4% -0.1% -0.1% -0.1% -0.1% -0.1% 0.0% -0.1% -0.1% 0.0%
W8A8-sq -1.1% 0.8% -0.4% 0.7% -0.2% 0.2% 0.7% 0.3% 0.1% 0.1% -1.2% -0.1% -1.4% -1.0% -1.8% -0.7% -1.6% -1.1% -2.9% -1.3%
W8A8 -1.0% -0.4% -0.5% 0.5% -0.4% 1.8% -0.4% 0.1% 0.0% 0.0% -1.3% -0.8% -1.1% -1.4% -1.0% -1.2% -1.7% -0.8% -2.1% -1.3%
W4-g 0.7% 1.0% -0.3% 0.8% -0.3% 2.6% 0.5% -0.3% -0.8% 0.4% -0.3% 0.2% -0.6% -0.3% -0.6% -0.7% -0.9% -0.3% -1.4% -0.6%

103B

W4 -0.8% -2.2% -0.7% -1.3% -0.9% -0.8% -4.3% -1.5% -2.3% -1.6% -1.8% -1.1% -0.8% -1.4% -1.6% -1.7% -2.2% -0.7% -3.6% -1.7%

W8 -0.7% -0.4% -0.1% 0.0% 0.0% -0.2% 0.7% -0.4% -0.2% -0.1% -0.2% -0.2% -0.5% -0.3% 0.0% 0.8% -0.5% -0.1% -0.6% -0.2%
W8A8 5.5% 1.9% 0.1% 1.4% 0.9% 2.1% 1.9% 1.4% 0.9% 1.8% 0.5% 2.5% -0.6% 0.9% 0.5% 1.1% 0.8% 1.1% 1.0% 0.9%35B
W4-g -6.7% -1.9% -0.4% -1.3% -0.4% -3.9% -2.8% -0.7% -1.7% -2.2% -0.1% 0.6% -2.5% 0.0% -0.1% -2.8% -1.1% -0.2% -1.4% -0.8%

Table A6: Percentage drop off FP16 baseline on Flores. AVG is the average of percentage drops, so that all
languages are on the same scale (as opposed to languages with higher raw scores dominating the averages)

de es fr ja zh avg

103B

FP16 72.6 76.6 70.6 63.0 70.2 70.6
W8 72.8 75.9 69.5 61.3 70.2 69.9
W8A8 74.1 73.9 69.8 63.4 68.0 69.8
W4-g 71.2 75.7 69.0 58.0 68.9 68.6
W8A8-sq 73.4 73.8 69.6 62.9 67.7 69.5
W4 64.6 71.3 66.5 56.1 63.5 64.4

35B

FP16 56.6 57.3 51.8 38.8 44.4 49.8
W8 55.9 56.6 52.1 37.4 45.1 49.4
W8A8 54.2 53.4 49.9 35.8 42.0 47.1
W4-g 47.2 51.0 47.1 34.3 36.7 43.3

Table A7: Raw MGSM scores (accuracy)
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ar de es fr it ja ko pt zh avg

103B

FP16 64.0 68.3 68.7 68.0 69.3 64.4 62.3 70.0 65.0 66.7
W8 64.1 68.3 68.7 68.1 69.4 64.3 62.3 69.9 65.0 66.7
W8A8 62.6 67.1 68.2 67.4 68.3 62.9 60.8 68.7 64.1 65.6
W4-g 62.9 67.5 68.2 67.6 68.6 62.8 61.1 68.6 64.0 65.7
W8A8-sq 63.5 67.9 68.8 68.0 69.1 63.6 61.8 69.2 64.9 66.3
W4 60.5 65.7 66.5 65.4 66.6 61.1 59.3 66.7 62.1 63.8

35B

FP16 56.5 60.7 62.3 61.8 62.0 56.4 54.8 62.0 57.9 59.4
W8 56.5 60.6 62.2 61.8 61.9 56.4 54.7 62.1 57.9 59.3
W8A8 56.4 60.5 62.5 61.9 62.0 55.8 54.5 61.8 58.1 59.3
W4-g 55.4 59.7 62.0 61.0 60.7 54.4 53.2 60.8 56.6 58.2

Table A8: Raw results on mMMLU (accuracy)

ar de es fr it ja ko pt zh avg

W8 0.2% 0.0% 0.0% 0.1% 0.1% -0.2% 0.0% -0.1% 0.0% 0.0%
W8A8 -2.2% -1.8% -0.7% -1.0% -1.5% -2.3% -2.4% -1.8% -1.4% -1.7%
W4-g -1.7% -1.2% -0.7% -0.6% -1.0% -2.5% -1.9% -2.0% -1.5% -1.5%
W8A8-sq -0.8% -0.6% 0.1% 0.1% -0.3% -1.3% -0.8% -1.1% -0.2% -0.5%

103B

W4 -5.5% -3.8% -3.1% -3.9% -3.8% -5.1% -4.8% -4.8% -4.4% -4.4%

W8 0.0% -0.2% -0.2% 0.0% -0.2% 0.0% -0.2% 0.2% 0.0% -0.1%
W8A8 -0.2% -0.3% 0.3% 0.2% 0.0% -1.1% -0.5% -0.3% 0.3% -0.2%35B
W4-g -1.9% -1.6% -0.5% -1.3% -2.1% -3.5% -2.9% -1.9% -2.2% -2.0%

Table A9: Percentage drop off FP16 baseline on mMMLU. AVG is the average of percentage drops, so that all
languages are on the same scale (as opposed to languages with higher raw scores dominating the averages)

ar de es fr it ja ko pt zh avg ar de es fr it ja ko pt zh avg

103B

FP16 99.3 100.0 99.3 99.6 100.0 98.6 100.0 98.3 97.9 99.2 93.0 90.6 91.2 91.6 93.0 93.1 91.1 88.3 91.3 91.5
W8 99.0 100.0 99.5 99.4 99.8 99.2 99.8 97.8 98.5 99.2 92.6 91.1 91.7 91.4 92.9 92.8 91.3 87.4 89.7 91.2
W8A8 99.3 100.0 99.5 99.8 100.0 99.0 99.8 98.1 99.1 99.4 91.3 89.3 91.0 91.1 91.8 93.0 89.3 87.3 89.2 90.4
W4-g 99.1 100.0 99.6 99.9 100.0 97.4 100.0 98.1 98.9 99.2 90.6 89.9 90.7 91.7 93.1 92.8 90.6 85.4 89.6 90.5
W8A8-sq 99.4 100.0 99.3 99.6 100.0 98.6 100.0 97.7 98.4 99.2 93.3 91.5 91.4 92.4 92.1 93.3 92.1 87.6 90.0 91.5
W4 99.4 100.0 99.4 99.7 99.8 99.6 99.0 98.9 98.4 99.3 95.8 94.3 95.9 93.8 93.6 92.6 88.9 90.5 89.7 92.8

35B

FP16 99.2 97.0 98.1 99.2 99.6 99.6 99.0 99.0 97.7 98.7 58.8 59.6 69.0 73.0 63.6 66.3 69.2 64.2 74.6 66.5
W8 99.7 97.0 98.1 98.9 100.0 99.8 99.0 99.3 97.4 98.8 59.8 58.6 69.2 72.8 62.3 66.8 68.7 64.3 74.5 66.3
W8A8 99.9 98.0 97.1 98.9 100.0 100.0 100.0 99.0 98.4 99.0 61.0 63.9 72.1 75.1 66.2 68.3 70.1 67.4 76.3 68.9
W4-g 99.4 95.0 96.5 99.9 100.0 99.8 97.0 98.3 98.6 98.3 60.4 59.3 72.8 73.3 64.8 65.4 70.4 64.6 73.0 67.1

Table A10: Raw scores for Language confusion metrics. Left: Monolingual, Right: Cross-lingual

Monolingual Cross-Lingual
ar de es fr it ja ko pt zh avg ar de es fr it ja ko pt zh avg

W8 -0.3% 0.0% 0.2% -0.2% -0.2% 0.6% -0.2% -0.5% 0.6% 0.0% -0.5% 0.5% 0.5% -0.2% -0.1% -0.3% 0.3% -1.0% -1.8% -0.3%
W8A8 0.0% 0.0% 0.2% 0.2% 0.0% 0.4% -0.2% -0.2% 1.2% 0.2% -1.8% -1.5% -0.2% -0.6% -1.2% -0.2% -1.9% -1.1% -2.3% -1.2%
W4-g -0.2% 0.0% 0.3% 0.4% 0.0% -1.2% 0.0% -0.2% 1.0% 0.0% -2.6% -0.8% -0.6% 0.1% 0.1% -0.3% -0.5% -3.3% -1.8% -1.1%
W8A8-sq 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.6% 0.5% 0.0% 0.3% 1.0% 0.2% 0.9% -0.9% 0.2% 1.1% -0.8% -1.4% 0.1%

103B

W4 0.0% 0.0% 0.1% 0.1% -0.2% 1.0% -1.0% 0.6% 0.5% 0.1% 3.0% 4.0% 5.1% 2.3% 0.6% -0.5% -2.4% 2.5% -1.8% 1.4%

W8 0.5% 0.0% 0.0% -0.3% 0.4% 0.2% 0.0% 0.3% -0.3% 0.1% 1.7% -1.6% 0.2% -0.3% -2.0% 0.8% -0.8% 0.3% -0.2% -0.2%
W8A8 0.7% 1.0% -0.9% -0.3% 0.4% 0.4% 1.0% 0.0% 0.7% 0.3% 3.8% 7.2% 4.4% 2.9% 4.1% 3.1% 1.2% 5.0% 2.3% 3.8%35B
W4-g 0.2% -2.1% -1.6% 0.7% 0.4% 0.2% -2.0% -0.7% 0.9% -0.4% 2.8% -0.5% 5.4% 0.5% 1.9% -1.3% 1.7% 0.6% -2.2% 1.0%

Table A11: Percentage drop off FP16 baseline on Language Confusion Metrics. AVG is the average of percentage
drops, so that all languages are on the same scale (as opposed to languages with higher raw scores dominating the
averages)

17



fr es ja ko avg Ltn/IE ¬
LLM RM LLM RM LLM RM LLM RM LLM RM LLM RM LLM RM

W8 50.5 49.7 44.9 53.7 47.3 52.7 53.7 47.1 49.1 50.8 47.7 51.7 50.5 49.9
W8A8-sq 40.8 47.5 48.1 52.0 51.0 52.4 51.9 47.5 48.0 49.8 44.5 49.7 51.4 49.9
W4-g 44.8 41.5 41.7 51.0 42.4 50.0 47.1 42.2 44.0 46.2 43.2 46.3 44.7 46.1

Internal

W4 34.9 39.8 33.5 41.5 39.2 40.0 40.7 36.2 37.1 39.4 34.2 40.7 39.9 38.1

W8 49.3 51.0 53.7 48.0 47.0 47.3 51.3 51.0 50.3 49.3 51.5 49.5 49.2 49.2
W8A8-sq 42.3 45.7 54.3 46.0 49.3 50.7 46.0 47.7 48.0 47.5 48.3 45.8 47.7 49.2
W8A8 46.3 51.3 48.0 48.3 42.3 49.3 44.3 48.3 45.2 49.3 47.2 49.8 43.3 48.8

Dolly

W4-g 48.3 48.7 56.7 52.3 51.3 42.3 52.7 47.3 52.2 47.7 52.5 50.5 52.0 44.8

Table A12: LLM/RM-as-a-Judge Raw win-rates of 103B quantized models vs. FP16 over Internal and Aya Dolly
subsampled test sets.

fr es ja ko avg Ltn/IE ¬
W8 46.3 50.3 53.7 44.0 48.6 48.3 48.9
W8A8-sq 45.3 46.3 49.0 52.0 48.2 45.8 50.5Internal
W4-g 41.7 47.7 42.0 47.7 44.8 44.7 44.9
W8 50.3 47.3 56.0 50.0 50.9 48.8 53.0
W8A8-sq 46.3 45.7 50.0 48.3 47.6 46.0 49.2Dolly
W4-g 45.3 49.3 51.3 46.0 48.0 47.3 48.7

Table A13: Human evaluation raw win-rates of 103B quantized models vs. FP16 over Internal and Aya Dolly
subsampled test sets.

mMMLU Avg Avg en ar de es fr hi id it nl pt ro ru uk vi zh
(w/o en) (w/ en)

FP16 48.2 48.6 54.6 45.1 50.0 50.9 51.0 39.7 48.8 50.7 49.7 50.8 49.9 47.8 46.8 46.5 47.1
Aya-23-8b W8 47.8 48.2 54.2 44.9 49.9 50.5 50.6 39.4 48.5 50.2 49.4 50.6 49.2 47.4 46.3 45.7 46.4

W4 46.7 47.1 53.4 43.9 48.4 49.4 49.0 38.4 47.5 49.1 47.9 49.1 48.0 46.2 45.6 44.9 46.1

FP16 58.2 58.8 66.7 53.9 60.4 61.6 62.0 47.8 58.9 61.5 60.3 62.0 59.7 57.8 56.3 55.3 57.5
Aya-23-35b W8 57.9 58.5 66.2 53.8 60.0 61.7 61.7 47.4 58.7 61.1 60.0 61.6 59.1 57.5 56.1 54.9 57.5

W4 56.6 57.2 65.2 52.3 58.7 60.3 60.4 45.7 57.4 59.8 58.6 60.5 57.7 56.5 55.0 53.8 56.1

Table A14: Aya 23 models’ language-specific results for Multilingual MMLU (Okapi)

Belebele Avg Avg en ar cs de el fr hi id it ja ko nl fa pl pt ro ru es tr uk vi zh
(w/o eng) (w/ eng)

FP16 64.8 65.3 77.0 65.6 61.9 65.6 64.0 69.6 54.3 67.4 65.7 65.2 61.7 63.8 63.6 61.3 69.1 65.7 69.7 67.0 58.1 66.8 62.3 72.2
Aya-23-8b W8 64.6 65.1 76.1 64.3 61.8 64.8 63.0 70.4 54.2 67.4 64.6 65.4 61.4 64.3 63.9 59.8 68.7 65.4 68.7 67.4 58.1 67.0 63.7 71.8

W4 59.3 59.9 73.8 61.9 57.0 61.6 57.7 65.7 49.8 64.7 58.3 60.7 51.1 60.7 58.2 54.9 62.0 59.8 63.9 61.1 50.1 61.0 58.8 66.2

FP16 77.6 77.9 84.7 78.9 78.2 77.1 76.4 81.9 65.6 77.8 79.8 75.9 73.3 77.7 75.8 75.8 83.8 78.9 79.6 81.0 74.1 77.6 78.3 81.2
Aya-23-35b W8 77.1 77.4 84.6 77.3 78.8 77.2 76.6 82.4 65.6 77.6 80.8 74.8 73.7 77.6 74.9 74.8 82.9 77.1 78.9 80.8 72.0 77.2 77.0 80.3

W4 73.0 73.4 83.2 73.8 74.9 73.2 70.8 78.1 61.0 73.9 76.2 71.7 67.4 73.0 71.4 70.4 80.1 74.3 73.3 77.0 68.2 73.0 71.4 78.8

Table A15: Aya 23 models’ language-specific results for Belebele

MGSM (5-shot) Avg Avg de en es fr ja ru zh
(w/o eng) (w/ eng)

FP16 34.7 36.6 40.4 48.0 45.2 38.8 12.8 38.0 32.8
Aya-23-8b W8 35.4 36.9 39.6 45.6 45.6 38.8 13.6 38.8 36.0

W4 32.1 33.5 39.6 42.4 42.0 34.0 7.2 33.6 36.0

FP16 51.2 53.7 61.6 68.4 58.4 55.6 22.8 58.0 50.8
Aya-23-35b W8 52.1 54.2 54.4 66.4 61.2 60.4 24.4 57.2 55.2

W4 48.1 50.7 58.8 66.0 54.8 54.8 18.4 53.6 48.4

Table A16: Aya 23 models’ language-specific results for MGSM
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FLORES English→X
Avg ar cs zh nl fr de el he hi id it ja ko fa pl pt ro ru es tr uk vi

FP16 34.8 36.3 35.7 30.1 32.2 51.0 39.3 34.0 35.0 27.2 43.4 34.7 24.9 22.0 30.0 28.4 50.2 41.6 35.0 31.5 29.1 34.2 39.0
Aya-23-8b W8 34.8 36.5 36.1 30.6 32.1 51.4 39.5 33.9 35.0 27.0 43.2 34.8 24.8 22.2 30.4 28.5 50.0 42.0 34.9 31.4 28.9 34.3 39.0

W4 34.1 35.4 35.0 29.4 31.8 50.2 39.2 33.4 33.3 26.4 42.8 34.3 24.3 21.5 29.6 28.0 49.8 40.9 34.2 31.2 28.1 33.7 38.5

FP16 37.8 40.0 39.1 34.0 33.4 54.1 42.5 36.3 39.5 31.9 44.7 36.6 28.7 25.5 33.4 30.7 53.1 43.3 38.9 32.1 33.8 38.2 41.0
Aya-23-8b W8 37.9 40.0 39.0 33.8 33.6 53.9 42.9 36.2 40.0 32.3 44.8 36.5 28.9 25.5 33.7 30.9 53.2 43.4 38.7 32.2 33.8 38.3 41.4

W4 37.2 39.3 38.0 33.1 32.9 53.3 42.5 36.0 39.1 31.2 44.6 36.1 28.2 25.1 32.6 30.0 52.8 42.6 38.3 32.0 33.2 37.8 40.8

X→English

FP16 39.5 42.4 42.0 31.6 35.8 48.1 46.5 38.7 43.7 37.4 45.5 37.9 29.9 30.9 36.5 33.6 51.7 46.7 38.6 35.4 36.9 41.2 38.2
Aya-23-8b W8 39.7 42.1 42.5 31.9 35.6 48.1 46.7 39.2 44.2 37.7 45.5 38.2 30.0 31.3 36.8 33.7 52.0 46.6 38.5 35.5 37.0 41.6 38.4

W4 39.1 41.4 42.2 31.6 35.7 47.4 46.2 38.1 42.8 36.2 44.7 38.5 29.7 30.1 36.7 33.1 51.9 46.1 38.3 35.8 35.7 40.7 37.6

FP16 42.9 46.4 45.3 34.8 37.7 50.6 48.9 42.4 48.3 42.7 48.5 40.5 33.7 35.3 41.3 36.4 54.8 49.5 41.6 37.7 42.2 44.8 41.4
Aya-23-8b W8 43.0 46.4 45.4 34.9 37.5 50.7 49.0 42.2 48.6 42.9 48.7 40.5 34.0 35.1 41.4 36.4 54.8 49.5 41.7 37.3 42.2 45.0 41.5

W4 42.4 45.7 44.9 34.2 37.2 50.4 48.5 41.8 47.3 41.8 48.0 40.8 33.1 34.4 40.5 35.8 54.3 49.2 41.6 37.5 41.4 44.2 40.9

Table A17: Aya 23 models’ language-specific results for Flores
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