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ABSTRACT

In this paper, we address the problem of pose transfer. The goal is to generate a
source image in a new target pose. The pose is already provided by a set of spatial
landmarks. The transfer function is directly estimated from the difference between
the landmarks given in the new target pose and the landmarks of the source image.
Existing methods perform the task using two specialized networks, one to move
the patches of the source sample and the other one to generate the new patches that
are not visible in the source image. Contrary to these strategies, we develop an
end-to-end trainable neural network that learns to estimate both these visible and
invisible parts using a simple warping module. In other words, we propose a flow
estimation method that not only displaces the patches to their new locations but
also generates new pixels that are not visible in the source image, all in an unsuper-
vised manner without the need for a ground-truth flow map. In this way, moving
the patches and introducing new parts are unified into a single network, ensuring
that an overall solution is achieved for these two mutual tasks. Additionally, this
method avoids the need for a human observer to determine a trade-off between the
performance of the two separated networks, thus avoiding a cartoonish addition of
the new parts to the visible areas. Extensive experiments demonstrate the superi-
ority of our method over state-of-the-art algorithms. We conduct our experiments
on two well-known datasets: Deepfashion and Market1501.

1 INTRODUCTION

Pose transfer is one of the fundamental problems in computer vision with many applications in 3D
reconstruction, image animation, and virtual reality. The main objective is to generate a source
image in a new target pose. This pose is provided by a set of spatial keypoints.

The transfer function is directly estimated from the difference between the given keypoints in the
target pose and the keypoints of the source sample. Existing methods propose to estimate this
function using three consecutive modules. The first one receives a source image along with the
source pose and the target pose and estimates a flow map that displaces the patches of the source
image to their new location in the target pose. The second one receives this warped image along with
the target pose and learns to generate the remaining patches that are invisible in the source sample
but are newly introduced in the target pose. The final image is generated by applying a refinement
module on the concatenation of these so-called visible and invisible patches.

Despite promising results, these methods cannot be trained in an end-to-end way. This is due to the
concatenation of the features in the refinement module. As a spatial transformer, a warping module
(the first one) will only learn when the spatial transformation is the single factor that influences the
loss function [Jaderberg et al.| (2015). However, this is violated by concatenating the target pose to
the warping features. On the other hand, this concatenation is required to add the invisible parts to
the displaced patches. This means that the warping module must be trained separately from the rest
of the network, which comes with its own disadvantages: (1): it needs a human observer to validate
a trade-off between the performance of the warping module and the performance of the remaining
parts of the network. This is required as the warping aims to fit two images (the source and the target
images) which, due to the invisible parts of the samples, are not fully comparable. This leads to an
ill-posed problem with no ideal solution, so that the module never converges to the global minimum.
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Contrary to these methods, we propose a single-stage end-to-end trainable neural network where a
single warping module is responsible for both displacing the patches and generating the parts that
are newly introduced in the target pose. This ensures a single global solution is achieved for these
two complementary tasks, which in turn avoids a cartoonish addition of the invisible patches to the
visible partd]

The warping module of the existing pose transfer networks is in fact a deep neural network that
estimates the parameters of an affine transformation. This way, the network can easily handle any
long displacement of the samples. However, it reduces the learnable parameters of the flow estimator
to a few numbers. This hinders the application of this method for estimating a complex deformation.

To address this problem, we introduce a constrained spatial transformation. It is a pixel-wise flow
estimator in which the sampling locations are individually estimated for each pixel of the target
image. In this way, the spatial transformation is endowed with enough parameters, required for esti-
mating a complex transformation of the samples. The flow is directly estimated from the correlation
of the pose maps. This allows us to accurately encode any short or long-range displacements which
can not be achieved by a simple convolutional network.

Our transformation not only displaces the visible patches (to their new position in the target pose)
but also introduces the invisible parts to the warped version of the sample (by sampling from the
most similar areas of the existing patches in the source image). To do so, we alternate between two
different tasks. (1) we enforce the flow estimator to estimate an affine function (of the displacement)
if the target pose is a linear transformation of the source pose. (2) we enforce the flow estimator to
create a warped image that best fits the target sample.

In the following, we list the reasons why these two tasks can serve our goals in (a) recognizing the
visibility of the pixels in an unsupervised way, (b) keeping the neighborhood of the pixels in the
visible areas, and (3) introducing the invisible parts to the warped image, all by estimating a single
flow map:

* An affine transformation is a linear function that preserves the neighborhood of pixels

* A region is visible (in both the source and the target pose) only when it is transferred by a
linear function.

* The warped image is the only feature map that is used for generating the target image. We
do not benefit from any extra guiding map. This encourages the network to include all the
visible and the invisible parts into this single warped image.

* We enforce the flow function to be an affine transformation where the entire target pose
is a linear transformation of the entire source pose (all the pixels are linearly transferred).
However, as a pixel-wise transformation, the flow function learns to hold this affinity even
by parts. Therefore, a local part of the flow map can be estimated by an affine transforma-
tion if it is linearly displacecﬂ to the target pose. This allows the flow estimation to keep
the locality of the pixels just for the visible areas (whose transformations are mostly linear)
and to use an unconstrained transformation for the remaining parts.

2 RELATED WORK

Pose transfer: There are two different approaches for generating a novel pose of a human in an
RGB image: (i) parametric methods Thies et al.| (2016); (Corona et al.| (2021) that learn to fit a 3D
model on the RGB sample and then render the model from a novel view point with a different pose.
They have been so far applied to face Thies et al.|(2016) and body |Corona et al.|(2021). Despite the
memory advantage and remarkable control over the pose of the sample, these methods suffer from
certain disadvantages including the difficulty of fitting a 3D model on a 2D image. Moreover, they
have great difficulty with the lack of fine-grained details in the generated samples. This arises from

'In a two-stage model, the warping does not contribute to the adversarial training of the network and there-
fore to the photorealism of the generated samples. This causes a cartoonish addition of the invisible parts to the
visible areas.

2and thus is visible in both the source and the target image
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the generic 3D model that is shared between all the RGB samples. (ii) non-parametric models |[Liu
et al.| (2021); Tang et al.| (2020); Zhang et al.[(2021); Lv et al.| (2021)); [Tang & Sebe| (2021). These
methods are also known as exemplar-based techniques. The main idea is to remove the need for
a predefined 3D model. Rather, they propose to reconstruct the new images using a deep neural
network that is guided by the target pose of the samples. The pose can be represented by a set of
keypoints Ren et al.| (2020); Tang et al.| (2020); [Zhang et al.| (2021), edge maps |Ren et al.| (2020),
or segmentation maps [Liu et al.| (2021)); Zhang et al.[(2021). Unlike the parametric models, these
methods are proven to be more effective in generating the fine-grained textures of the samples.
Despite promising results, they have some difficulties to generate the textures that are not among
the training samples. This hinders the scalability of these methods for the vast majority of human
garments. The challenge can be well addressed by introducing a warping module in the latent space
of these networks. This module is supervised by an estimation of the flow map between the pose
of the source and the target samples Ren et al.| (2020); [Siarohin et al.| (2019bfaj; [2018); |[Zhang et al.
(2021)). However, these methods have significant difficulties with an accurate estimation of the flow
maps, especially between two completely different poses.

Flow estimation: Unsupervised flow estimation |Ren et al.[(2017); |Sabour et al.|(2021); Stone et al.
(2021); [Luo et al.| (2021)) is one of the most difficult tasks in computer vision, especially when
estimated from two very sparse sets of keypoints. The task is usually simplified by reducing the flow
function to a simple parametric model like first-order affine transformation [Siarohin et al.| (2018;
2019b;za) or thin spline transformation [Zhao & Zhang|(2022). In this case, the new position of each
pixel is determined by applying a simple algebraic operation on its current coordinates. There are
some other strategies to estimate the flow field from the UV maps|Albahar et al.|(2021));Sarkar et al.
(2021)), or 3D meshes|Li et al.| (2019). Compared to the keypoints, they provide a fine description of
the custom shape, which facilitates the estimation of the flow maps. However, these representations
are not easily accessible for an unseen pose that does not exist among the training samples. By
contrast, keypoints can be easily provided by drawing a few dots on an empty scene which is highly
convenient for many applications, making it the de facto standard of the pose transfer networks.

Unlike these methods, we propose a nonparametric strategy for unsupervised flow estimation which
handles any highly complex deformation of the samples. Our model offers the first strategy that
exploits the warping flow to generate the invisible parts of the samples. This allows to estimate the
visible patches and generate the invisible ones in a single warping module, thus facilitating the end-
to-end training of the flow estimation in a pose transfer network, which has not yet been investigated
in the literature.

3 OUR METHOD

Our main goal is to transfer the pose of a person, in an image, to a given target pose. To do so,
we propose a fully warping-based strategy where a warped version of the source image is the only
feature map that is used to generate the sample in its target pose. In this way, estimating the flow
map and generating the target sample are both included in a single network that can be trained in
an end-to-end way. The flow (warping) map is estimated from the collection of the source pose and
the target pose of the sample. Each pose is an empty image where the location of body joints is
indicated by a set of small Gaussian envelopes.

The typical use of a warping module is to displace the patches of an image to their target position.
However, unlike this strategy, we aim to develop a warping method that not only displaces the
patches but also generates the parts that are not visible in the source image but newly introduced
in its target pose. In this way, we avoid the need for an extra guiding map to indicate the location
of the invisible parts, which is important for the end-to-end training of the network. Indeed, this
approach prevents the network to be confused whether a decrease in the loss function comes from
the displacement of the patches or results independently from the guiding map.

Figure 1 shows the overall pipeline of our method. It includes two different modules: (1) a warping
module WV that learns to estimate a flow map between the pose of the source sample and the target
pose, and (2) a refinement network R that receives the warped version of the source image and
converts it to a photorealistic sample.
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Figure 1: Overall pipeline of our method, trained by alternating between two minimization tasks,
depicted on the left and right sides of the figure.

3.1 WARPING MODULE
3.1.1 FLOW ESTIMATION

Given a source pose p, € R"*™ and a target pose p; € R"*%, our warping module, JV, estimates a
flow map, fs; € R¥"% = W(p,, p;), which is later used to spatially transfe the source image
I, € R*>*"*% to its target pose. Our estimation consists of 7 different steps. It finally outputs a
flow map that is able to generate the unseen parts of the source sample I while displacing its visible
parts to their new locations in the target pose:

1. Projecting ps and p, to a feature space using a single convolutional network: ps — 2z,
Pt — 2

2. Creating a correlation tensor from z; and z; using the pairwise similarity of their pixels:
(2s,2t) = C

3. Flagging a single pixel of z, as the corresponding point for each pixel of z;. To do so, we
multiply @ by an attention tensor v: Q — vC

4. Estimating the flow map by applying a set of convolutional layers on Q~: Qy — fs

5. Applying fs+ to warp the source image. Then, we use a refinement network to estimate
the target sample from this warped image. The estimation is encouraged by minimizing the
distance between the output of the refinement network and the target sample.

6. Enforcing steps 1 to 4 to estimate an affine function if p; is a linear transformation of p;.

7. Alternating between the last two steps. In this way, the network leans to keep the vicinity of
pixels in those parts whose movements from p, to p; are linear (i.e., can be approximated
by an affine transformation) and use a non-constrained estimation for the remaining parts.

Creating a guided correlation map: (this corresponds to steps 1 to 3). The flow is directly es-
timated from the correlation of the source pose p, and the target pose p;. By correlation, we aim
to create a one-to-one correspondence between each target pixel and its corresponding point in the
source sample. This comes with two advantages: (1) each point in the target pose is compared with
all the pixels of the source pose. Thus, the network can easily handle any large displacements of
samples; (2) the network assigns each pixel to its relevant area in the source sample, even for those
pixels that correspond to an invisible part of the source image. In this case, the sampling point is
selected from an area with the closest texture.

To do so, both the source and the target poses are first projected to a feature space: p; M, zs €

Rmxhixwn g, My pmxhixwn where M s a fully convolutional network, h; and w; are
the spatial dimension of the feature maps, and m is the dimensionality of the features. Thus, we

3Here, the spatial transformation is a sampling operation which samples a source image in the pixel locations
of the flow map fs ¢
423 and z; are three dimensional feature maps
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have two dense feature maps which are later used for creating a dense correspondence between the
source and the target poses of the sample. The correlation is computed based on the pixel-wise scalar
product of the feature maps which is represented as follows:

C(i,4,,v,u) Z zs(1, 7))zt (v, w)[p] (1

p=1

where z5(4,j) € R™ and z(v,u) € R™. z4(i, j)[p] indicates the p-th element of the feature vector
in the spatial location (i, j) of the feature map z5. Then, we assign each pixel in the target pose to
only one pixel in the source sample. To do so, C' is filtered so as to keep the maximum similarity
for each target pixel, (v,u), and to mitigate the values of the other locations. The mitigation is
performed using an attention mechanism that gives more importance to the location of the maximum
similarities, while suppressing the values in other locations: (), = yC. However, as dot product
is a collective measure of the angle and the magnitude, its results are unbounded, causing it to be
sensitive to the magnitude of the generated sample. To avoid this, we normalize the features in each
spatial location, (u, v), of Q.:

@4(i,j, v, u)

Qi s v u) = —= =
VI (@ (i)

2

Estimating a flow map from a correlation tensor: (this corresponds to step 4) The flow is then
estimated by applying a set of convolutional layers on the refined correlation @-. To do so, we first
rasterise () so that all the (¢, j) locations are vectorized for each (v, u) point. The resulting tensor
is then passed to the convolutional layers: f,; = C;(Q.), where C; stands for the convolutional
filtering. Thus, the flow at each target position is estimated from the correlation of this point with
all the positions of the source pose. This ensures any long-range displacements are captured during
the process of flow estimation.

Finding the visibility of pixels in an unsupervised way: (this corresponds to steps 5 to 7) Up to
this point, we have a non-parametric flow estimator, where the sampling locations are individually
estimated for each pixel of the target sample. However, such estimation has no constraint to keep the
vicinity of the pixelsﬂ which is important when reconstructing the textures that are visible in both
the source and the target poses of the sample. In contrast, binding the estimation to keep the vicinity
for the entire 2D space restricts the ability of the flow map to introduce any novel region that is not
present in the source sample, especially for the regions with a novel shape, as the novel shapes can
not be reconstructed by duplicating the visible parts of the sample.

To avoid this problem, we enforce the flow estimator to keep the vicinity of the pixels just in the
visible areas. We approximate these regions with the areas that are displaced using a linear (affine)
transformation. Then, for the remaining areas, the flow is estimated without applying any constraint
on the pixel-wise estimator. This way, the vicinity of pixels, preserved by the affine transformation,
is just applied to the areas that are visible in both the source and the target poses of the sample.

We implement this strategy in an unsupervised manner. To do so, we make steps 1 to 4 to alternate
between two different tasks: (1) learning an affine transformation if the target pose is a linear trans-
formation of the source pose, (2) estimating a warping map that best reconstructs the target image
from the warped version of the source image.

For the first task, we first generate a random affine transformation using a few random parameters:

7 _ (_1)111 +ag az| (v by
[ = [vmves ol 1 o], 5
where ay, ..., a5 and by, bo are all random variables. If we sample the pixels of the target pose p;
using the generated affine transformation, it provides us with a novel pose p,; whose displacement
is linear with respect to the target pose. This pose is considered as the source pose of task (1). In

practice, we restrict the random values a1, ..., by so that the resulting transformation does not make
a big difference in the verticality of the human skeletons.

Here, we consider the vicinity in a large neighborhood which is more related to preserving the overall
integrity of patches in the source sample



Under review as a conference paper at ICLR 2023

Then, we generate the inverse flow of this transformation using the following equation:

HE (A ()

This transformation is the flow map that transfers the source sample to the target pose. We require
the target pose to be real. This avoids learning irrelevant mappings to a huge number of unrealistic
poses that never happen in the real world. This is the reason for calculating the inverse flow and
applying it on a randomly generated source pose. We refer to the flow map made by this affine
function as sy = {(v,u)|v € {1,...,h1},u € {1,..,w1}}.

Then, we minimize the distance between f,; and sy when the warping module receives p,; and p;
as its input samples. In this way, we enforce the pixel-wise flow map f; ; to be a linear function and
therefore to keep the integrity of the neighboring pixels.

Next, we need to avoid this integrity to be applied to the areas whose displacements are not linear
(the pixels that are invisible in the source image). To do so, we simply feed the module with the
original ps and p;, estimate the pixel-wise flow map fs ., and then utilize it to warp the source
sample. This warped image is then used to reconstruct the target sample. Since we do not use any
guiding map (in concatenation with our warped image), this reconstruction requires the network to
include all the invisible areas in the warped image. This is feasible due to the pixel-wise estimation
of the flow map that does not apply the same function to the entire space. Therefore, a point can be
sampled from any part of the source image regardless of the sampling location for its neighboring
pixels. In this way, the pixels can take any arbitrary shapes, which is necessary for a complete match
between the warped image and the target sample.

Finally, we only need to enforce the flow estimation to differentiate between the visible and the
invisible parts of the sample and to restrict the affinity of the transformation to the visible areas. This
is performed by alternating between task (1) and task (2). For task (1), we already enforced f ; to be
an affine function when the entire p; is a linear transformation of the entire p;. However, by nature
fs.¢ is a pixel-wise transformation. When we alternate between two tasks, one of which is a pixel-
wise transformation and the other one is the same function for the whole pixels, the network learns to
apply the holistic one in a local manner. Therefore, it learns to apply the affine transformation on the
local neighborhoods whose displacementf] are linear (visible pixels). It means, the network learns
to keep the vicinity of pixels in the local neighborhoods that are visible even if they are surrounded
by the invisible areas.

3.2 REFINEMENT NETWORK

Even if the warping module can ideally generate the invisible parts of a sample, it has no prior
information regarding the background of the images. In addition, warping has significant difficulties
with generating a realistic face or hands. Therefore, the refinement module R is used to inpaint these
regions and generate a photorealistic sample from the warped image. To do so, we benefit from a few
convolutional layers without any skip connection. The module receives the source image along with
the warping map generated by the flow estimation module. It first relies on a convolutional encoder
to project the input image into a low-dimensional feature space, 8, = E,.f(I;), then utilizes the
flow map to warp this resulting feature map, 1, = 7 (6, fs¢), where 7T is the sampling operation.
Next, we benefit from a convolutional decoder to reproject the warped feature map 7, to the original
dimension, ¥, = Dycf(ns). Yo is the image that estimates the target sample. Finally, f; ; is used for
direct sampling from the pixels of the source image which directly transfers the image to its target
pose.

The encoder-decoder configuration allows adding more learnable parameters to the refinement pro-
cess, which increases the overall performance of the network in generating fine-grained textures. In
practice, the module is responsible for generating realistic faces and hands, as well as correcting the
lines that are distorted due to inaccurate flow estimation of the warping module.

Shere, we mean the transformation between the source and the target pose of the sample
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3.3 LEARNING MODEL

For training, we use three loss functions, a perceptual loss L, an affine preserving loss L, ¢¥,
and a generative loss L,. In[Albahar et al| (2021)), the authors propose to use an identity loss to
preserve the identity of facial parts. However, our experiments showed that this could be misleading
when the facial parts are occluded in either the source or the target images. In addition, Zhou et al.
(2022) proposes to use a contextual loss to measure the similarity of non-aligned regions between
the generated sample and the ground truth target image. However, this violates our goal to best fit
the source image to the target pose without any non-aligned regions. L., is utilized to ensure a
pixel-level similarity between the generated image y, and the target sample I;, which is calculated

as follows:
per yth Z H(bz yo — & It)Hl 5

where ¢;(§) is the i-th feature map of a pre-trained network (here we benefit from VGG-19 |Si-
monyan & Zisserman| (2014) pre-trained on Imagenet Deng et al.| (2009)) when it is applied on §.
Inspired by |Siarohin et al.| (2019b)), we use four different resolutions of y, and I; as input of our
pre-trained model ¢ which ensures the similarity of the samples at different scales.

We also benefit from a generative loss, which encourages the photo-realism of the generated sam-
ples. To do so, both the warping and the refinement module are considered as the generator of our
network G = {WV, R} which competes against a discriminator D. Our discriminator is conditioned
on the target pose which means that both the generated and the target samples are first concatenated
to the target pose and then passed to the discriminator. Our generative loss is defined as follows:

Lg(yor It) = E[(1 = D(yo, pa))] +E[D(Ir. pa)] ©
where y, = G(Is, ps, Da)-

Additionally, we use an affine preserving loss that enforces the network to preserve the linearity of
the warping function in the regions where the target pose pg is a linear transformation of the source
pose.

'Caff(pt) = [W(pst,pt) — 5f||1 @)
where W(ps:, pt) is the pixel-wise flow map estimated by the warping module. The overall loss
function is defined as a weighted sum of L,.,, L4, and L,¢¢, where A; and )\ are empirically
determined to ensure the best quality of the generated samples.

£t = ‘Cper + Al‘cg + )\2£aff (8)

3.4 EXPERIMENTS

This section evaluates the performance of our method on two real-world datasets: Deepfashion
Liu et al.[(2016) and Market1505 [Zheng et al.| (2015). Deepfashion is a fashion-style dataset that
includes 52,712 images, mostly captured indoors against a white background. Images are of the size
256 x 256, all provided in JPG format. We use the same split of data provided by Zhu et al.| (2019)),
which includes 101,966 pairs of training samples and 8,570 test pairs. Each pair includes two images
of the same person captured in different poses. The pose of each image is already extracted using
OpenPose Cao et al.| (2017)).

3.4.1 EVALUATION METRICS

The evaluation is based on 3 different metrics: Structural Similarity Index Measure (SSIM) |Wang
et al.[(2004), Learned Perceptual Image Patch Similarity (LPIPS)|Zhang et al.| (2018)), and [;-norm.

3.4.2 QUANTITATIVE ANALYSIS

We compare our method with GFLA Ren et al.| (2020), FOMM |Siarohin et al.| (2019b), TPSMM
Zhao & Zhang|(2022)), and MRAA [Siarohin et al.[(2021). Similar to our method, they all provide an
estimation of the warping flow in an unsupervised manner. FOMM, TPSMM, and MRAA propose
to estimate the keypoints of RGB images using an internal module. However, for a fair comparison,
we modify this strategy so that the flow map is directly estimated from two sets of given keypoints.
We evaluate the performance of each method for estimating an accurate flow map which is the main
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Table 1: Comparison with the state-of-the-art on estimating  Table 2: Ablation study on the depth
the most accurate flow maps. The samples are generated by  of the C;. It projects the 4096-channel
direct sampling from the source images and compared with ()., to a 2-channel flow map f; ;

the target samples. Method |/ -norm | LPIPS(Alex)| LPIPS(VGG)
| Sz | Ours [FOMM |[MRAA | TPSMM|GFLA32|GFLA64 T-Tayer | 33.31 0.61 0.58
I;-norm 32 [13.11] 1326 [ 1379 | 13.66 | 14.18 | 14.01 2-layer | 27.92 0.59 0.51
ly-norm 256(15.52| 15.97 | 1558 | 16.12 | 28.13 | 20.25 3-layer | 21.17 0.47 0.44
SSIM 256|0.608| 0.604 | 0.607 | 0.617 | 0.554 | 0.615 4-layer | 16.14 0.42 0.39
LPIPS(Alex) [256| 0.39 | 047 | 042 | 045 | 052 | 048 5-layer | 15.96 0.40 0.35
LPIPS(VGG)|256| 0.35 | 042 | 038 | 041 | 049 | 044 6-layer | 15.52 0.39 0.35

Table 3: Ablation study on the refine-
ment module. We conduct two sets of
experiments with and without the re-

finement module.

Method |/ -norm|SSIM| LPIPS(Alex) |LPIPS(VGG)
w/o 42.13 10.504 0.84 0.92
Full 15.52 10.608 0.39 0.35

Table 4: Ablation study on L,rr. We
conduct experiments on the samples of

size 256 x 256
Method |l;-norm|SSIM|LPIPS(Alex)| LPIPS(VGG)

wlo Lapp| 42.13 [0.504 0.84 0.92
Full 15.52 |0.608 0.39 0.35

contribution of our method and also the main difference between these competing algorithms. To
do so, we first estimate a flow map using each of these networks (applied on a pair of the source
and target poses). The map is then rescaled to 256 x 256 pixel and then utilized to warp the source
image. Rescaling is performed by using the bilinear interpolation. Finally, the similarity of the
warped image and the target sample is reported in terms of three different measures SSIM, LPIPS,
and [{-norm..

The results are listed in Table 1. The evaluation is provided in two different scales 32 x 32 and
256 x 256. For 32 x 32, we first downsample each image to 32 x 32 and then upsample it to the
original dimension. All the competing algorithms use the same split of the dataset. This allows
for a fair comparison between the results. For training the competing methods, we follow the same
learning rate and the epoch number suggested in the original papers or the official implementations.

As can be seen, there are two versions of GFLA in two different scales, 32 x 32 and 64 x 64
which refer to the two flow maps estimated by this method. These maps are separately estimated
in the first stage of this method and individually contribute in two distinct layers of its second-stage
network. However, for FOMM, TPSMM, and MRAA, they provide a set of individual flow maps,
each estimated using a parametric model. But these maps are later accumulated into a single flow
map where each pixel of the final map is selected from one of these parametric estimations’} From
the table, our method outperforms the state-of-the-art on three out of four evaluation metrics and on
two scales which means the superiority of our method both in reconstructing the global shapes of
the target samples and in generating textures in their correct position.

3.4.3 VISUALIZATION

We further visualize a few samples of warped images generated by our method and each of these
competing algorithms. The results are shown in Fig. 2. As can be seen, none of the competing
methods are able to introduce the invisible parts into the warped images. GFLA suffers from some
unwanted distortions even for displacing the visible patches to their new locations. This happens
because its flow estimator makes no provision for covering the invisible parts of the sample. In con-
trast, FOMM, TSPM, and MRAA can ideally displace the visible patches but due to their parametric
estimation, they fail to estimate a correct flow map between two complex poses. As can be seen,
their attempt for introducing the invisible parts is limited to stretching or duplicating a part of im-
ages. Unlike these strategies, our method can estimate a highly complex flow function that not only
displaces the visible parts to their new location but also introduces any novel parts that are indicated
by the target pose, all by warping from the visible patches of the source sample.

7 A definition of the parametric flow estimation is provided in Section 1
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Sourceimage  Target pose  Targetimage TPSMM GFLA32 GFLA64

Figure 2: Visual comparison of our method and the state-of-the-art techniques (these images are
generated by direct sampling of pixels from a source image and not using a convolutional
network or a generative model).

3.4.4 ABLATION STUDY

We evaluate the efficiency of each block in our proposed algorithm. To do so, we consider two vari-
ants of our method: (1) our model without L, ¢, and (2) our model without a refinement network.
All the experiments are conducted on the same split of the dataset as in Section 3.1.

The results are reported in Tables 3 and 4. Without L, s, the model simply estimates the flow map
using a pixel-wise transformation without any encouragement for preserving the vicinity of pixels.
In this way, the model still generates the overall pose of the samples, however it fails to generate a
faithful appearance to the source images. The results in the Tables validate this assumption, where
the performance of model w/o Ly is significantly lower than the full model This proves the ef-
fectiveness of L,y in preserving the fidelity of the textures, especially for the visible parts whose
displacements are usually linear, even though L, has no prior knowledge about the visibility of
the pixels.

Without a refinement module, the model directly computes the flow map by minimizing the distance
between the warped image and the target sample. In this way, all the background estimations are
performed using the flow estimation module. This causes an overfitting issue when we fit too closely
to the details of the background regions. This can be verified by the result in Table 4, where a
refinement module significantly boosts the performance of our method on all the metrics.

We also conduct another experiment to evaluate the performance of the model when we use a pro-
jection network C; with different number of layers. The experiment is performed using six different
layers. The depth of the layers is respectively 128, 128, 96, 64, 32, and 2. As can be seen in Table 2,
the best performance is achieved when we use C; with five to six hidden layers which are considered
in the full model of our method.

4 CONCLUSION

We introduced an end-to-end model for generating a novel human pose using a single warping
module. This module not only displaces the pixels but also generates the pixels that are invisible
in the source image. This is required if the warped version of the source image is the only feature
map that is used for generating a novel pose of the sample. To do so, we proposed a non-parametric
flow estimator which is a pixel-wise transformation but learns to estimate an affine transformation
for the regions that are visible in both the source and the target samples. In this way, the visible parts
are transferred using a linear function that allows the vicinity of their textures to be preserved when
transferring from the source to the target pose. The visibility of pixels is captured in a completely
unsupervised manner. Our method does not use any priors about the dense position of the samples,
neither in the source nor in the target pose. We evaluated the performance of our flow estimation
module compared to a set of state-of-the-art algorithms. We also conduct another experiment on a
low-resolution image database to analyze the application of our method for boosting the performance
of the re-identification methods.
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A IMPLEMENTATION DETAILS

We implement M as a fully convolutional network. It benefits from 11 convolutional layers, each
headed with a Batch Normalization [Ioffe & Szegedy| (2015). The last layer outputs a feature map
z_with the size of 35 x 64 x 64 where 35 is the dimension of the features and 64 x 64 denotes the
spatial size of the feature map. Each channel of this map is then normalized using an /5 norm.

«y is implemented using the Soft Mutual filtering Rocco et al.|(2018) which preserves C(i, j, v, u) if
z5(%,j) and z¢(v, u) are the most similar pixels to each other, when comparing each of these pixels
with all the pixels of the other feature map.

C(i7j7 U’ u) C(i7-]7 1]) u)
maxasC(a, B,v,u) mazrasC(i, ], a, B)

Y(i, j,v,u) = 9)

where max,3C (o, 8, v,u) denotes the maximum similarity between z; (v, w) and the entire pixels
of zs(a, f) when € {1, ..., hy } and 8 € {1, ..., w1 }.

For C;, we use a 6-layer convolutional network, in which the first layer receives the rasterized tensor
of the size 4096 x 64 x 64 and the last one outputs a flow map of size 2 x 64 x 64. The depth of the
layers is respectively 128, 128, 96, 64, 32, and 2.

The encoder of the refinement network includes two convolutional layers each followed by a down-
sampling operation. The last layer outputs a feature map of size 256 x 64 x 64. The decoder is
implemented using 6 residual blocks along with 2 upsampling layers. We use a Bach Normalization
after each upsampling layer. The architecture of the Residual blocks is depicted in Fig. 3.
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Figure 3: Residual Figure 4: Our model when using skip connection in the refine-
Block of our refinement ment module.
network.

B DETAILS OF THE TRAINING PROCESS

We train our model for 300 epochs with a batch size of 7. Our regularization parameters A\; and
Ao are respectively set to 0.1 and 0.001. To ensure a stability of training, we first train our model
without a generative loss for approximately 100 epochs, using a learning rate of 1e — 6. Then, we
increase the learning rate of the refining decoder to le — 4 while reducing the learning rate of the
remaining parts to le — 8.
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Table 6: User study. The results are provided

Table 5: Effectiveness of a flow estimation based on two different questions from 6 vol-
i - i i _ unteers.
E;glrllinque on a person re-identification net Nathe g | Q1 | Q2
: ‘mAP ‘ Rankl \Ranks \Rankl() Ours/FOMM 82.7/17.3% 90.6/9.4%
Ours/MRAA 78.9/29.1% 84.7/15.3%

Ours/TPSMM 80.8/19.2% 87.71/12.3%
Ours/GFLA32 75.4/24.6% 77.2/22.8%
Ours/GFLA64 70.8/29.2% 75.6/24.4%

DG-Net++ 61.7| 82.1 | 90.2 | 92.7
Our method+DG-Net++| 63.8 | 83.8 | 93.0 | 954

C APPLICATION FOR PERSON RE-IDENTIFICATION

We also conduct another experiment to evaluate the performance of our method for a recognition
task. To do so, we train our model on a paired-image dataset to learn a flow map that generates a
novel view of a person. Then, we use this model for augmenting the training set of a re-identification
database. This way, we increase the number of poses that each person contribute to the training set.
Note that, we do not use the output of the Refinement network, but instead we generate the novel
views just by sampling the pixels using the estimated flow map. This allows us to evaluate the
performance of our flow estimation model in a task that does not necessarily require a detailed
image for the recognition process.

Our experiment is conducted on the Market1501 dataset. It contains 12,936 images of 751 identities
as the training samples and 19,732 images of 750 identities as queries. The images are all collected
outdoors using 6 different cameras.

For the flow field estimation, we use the paired dataset provided by [Zhu et al. (2019). Note that,
our model is an algorithm that learns to estimate a flow map from two skeletal poses and therefore
is not biased towards the appearance of the training samples. After training the flow estimator, we
randomly select 25 poses from the training set and transfer each of the training samples to all these
novel poses. All the background regions are replaced with gray. This provides us with 323,400
training samples which cover most of the natural poses that a human takes while walking on the
street. Then, we use this new dataset to fine-tune a pre-train re-identification network and then test
it on the query samples. Here, we use DG-Net++ |Zou et al.| (2020) as our baseline model. The
results are listed in Table 5. As can be seen, the result clearly demonstrates the effectiveness of
the augmentation on the performance of this method. We also provide a visualization of our flow
estimation technique on this dataset (Figure 5).

D USER STUDY

We ask 6 different people to evaluate the performance of our method compared with the state-of-
the-art. The evaluation is based on two different questions: (1) which algorithm better estimates the
pose of the samples? (2) which algorithm better generates the invisible parts of the samples. The
experiment is conducted on 80 images along with their new poses. The results are listed in Table 6,
further verifying the superiority of our method to the state-of-the-art.

Figure 5: Generating a sample from the Market database by direct sampling from the source image.
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E SKIP CONNECTION

We also conduct an experiment to evaluate the efficiency of skip connections in preserving the
fidelity of textures in our method. To do so, we use the structure shown in Figure 4. As can be
seen, the flow map (estimated by the warping module) is used to simultaneously sample from the
source image and its feature map. Then, the warped version of the source image is hierarchically
concatenated to the feature maps of different layers in the decoder of the refinement module. The
results of our experiments are shown in Figure 6. Our primary assumption was the effectiveness
of this strategy in boosting the fine-grained textures in the generated sample. However, as can be
seen, this way the network fails to preserve the integrity of the pixels which is mostly related to the
Gradient Confusion (GC) effect|Sankararaman et al.|(2020), caused by several sources of change for
the same concept in a network.

Figure 6: the effectiveness of skip connection, (a) source image, (b) target pose, (c) Generated
sample using the flow map estimated by Fig 4 (there is a duplication of the source patches in the
generated sample), (d) generated using the flow map of the configuration in Fig. 1.
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Figure 7: Additional comparison between our method and the state-of-the-art.
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Figure 8: Additional comparison between our method and the state-of-the-art.
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Figure 9: Additional comparison between our method and the state-of-the-art.
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Figure 10: Additional comparison between our method and the state-of-the-art.
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