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Abstract

The hearing-impaired community is often underserved due to
barriers such as a lack of linguistically appropriate services,
especially in non-native English-speaking countries. This pa-
per presents RuSignBot, a novel isolated word-to-sign gener-
ation for the Russian language based on an adapted Mimic-
Motion architecture. To enhance the realism and expressive-
ness of output videos, we introduce a domain adaptation strat-
egy on a large-scale sign language corpus. Quantitative eval-
uation demonstrates that our fine-tuned model achieves supe-
rior performance in standard full-reference metrics, specifi-
cally SSIM and PSNR, compared to its base version. Further-
more, we propose a human-centric Sign Understandability
Score and conduct a user study with fluent signers. The results
confirm that the generated signs are recognized with high ac-
curacy, underscoring the model’s communicative efficacy. To
facilitate practical application, we integrate the model into a
Telegram-based application that converts user-input text into
animated sign language videos. The system supports both de-
fault and user-defined avatars, highlighting its potential for
real-world deployment in assistive technology contexts.

Code and pre-trained models —
https://github.com/ds-hub-sochi/mimic_text2video

Introduction

The hearing-impaired community is often underserved due
to barriers such as a lack of linguistically appropriate ser-
vices (McKee et al. 2022; Kaur et al. 2024). Sign lan-
guage serves as a primary linguistic medium for hearing-
impaired communities worldwide (Novopoltsev et al. 2024;
Wong, Camgoz, and Bowden 2024). Yet, technologies for
automated sign language generation (SLG) remain limited
in accessibility and linguistic expressiveness, especially for
specific languages with limited labeled data available for
model training. Two distinct methodological paradigms cur-
rently dominate the field of SLG, each presenting signifi-
cant limitations. The first approach employs neural end-to-
end models, often based on sequence-to-sequence or diffu-
sion architectures, to generate pose sequences or videos di-
rectly from input text or glosses (Fang et al. 2024). While
promising, these methods are highly data-intensive and fre-
quently fail to accurately articulate linguistically complex
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manual parameters, such as precise handshapes and move-
ments. The second paradigm comprises pose-guided sys-
tems, which leverage human pose keypoints to drive the
video generation process from a source image (Fang et al.
2024). Although effective in controlling global body motion,
these systems are critically limited by the inherent inaccura-
cies of pose estimation algorithms. Errors in extracting fine-
grained hand configurations and facial landmarks directly
propagate through the generation process, resulting in out-
put videos that often lack the articulatory precision required
for natural and intelligible sign language communication.

A significant portion of this underserved community uses
American Sign Language (ASL), which is a distinct lan-
guage, and many hearing-impaired individuals face difficul-
ties in accessing healthcare information and services that
are not provided in a culturally or linguistically appropri-
ate manner, especially in non-native English-speaking coun-
tries (Murphy and Dodd 2010). In this paper, we introduce
RuSignBot, a novel approach for generating isolated signs
in Russian Sign Language (RSL). Our core contribution is
a domain adaptation of the MimicMotion model (Zhang
et al. 2024) for SLG, leveraging its confidence-aware pose
guidance mechanism to prioritize reliable keypoints for pre-
cise articulation and reduced motion artifacts. We quanti-
tatively validate our approach using standard full-reference
metrics (e.g., PSNR, SSIM), demonstrating clear gains over
the baseline model. We also introduce a human-centric eval-
uation methodology to assess the naturalness and intelligi-
bility of synthesized signs. The implemented system oper-
ates by retrieving video exemplars via sign gloss from a
database and using their extracted ground-truth pose key-
points to guide the synthesis of a photo-realistic signing
avatar. Finally, we demonstrate the practical viability of this
technology through a fully-functional Telegram bot, provid-
ing an accessible interface for text-to-sign video generation
with support for both a default avatar and custom user up-
loads.

Related Work

Rule-based systems and animated avatars initially addressed
SLG (Cox et al. 2002; Braffort et al. 2016). These methods
leveraged predefined linguistic rules and glossaries to ensure
grammatical correctness but often produced rigid and unnat-
ural animations, failing to capture essential nuances, such as
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Figure 1: RuSignBot user interface

non-manual signals (Kipp et al. 2011).

The field has since shifted to data-driven neural ap-
proaches, enabling the learning of complex grammatical
structures and generating more fluid motion (Saunders,
Camgoz, and Bowden 2020c; Zelinka and Kanis 2020; Inan
et al. 2022). However, these methods are hindered by the
scarcity of large parallel datasets, and their output is limited
to pose data, which lacks the visual detail required for fully
comprehensible communication.

To overcome this visual deficit, recent work has integrated
generative video models (Saunders, Camgoz, and Bowden
2020a; Xiao, Qin, and Yin 2020; Ventura, Duarte, and Giré-
i Nieto 2020). Pose-conditioned GANs have been employed
to synthesize photo-realistic signers, significantly enhancing
intelligibility and user acceptance over prior methods (Saun-
ders, Camgoz, and Bowden 2020b; Stoll et al. 2018, 2020).
However, a fundamental limitation persists: these methods
often result in unnatural articulations or artifacts.

More recently, diffusion models have demonstrated supe-
rior performance in generating high-fidelity, temporally co-
herent videos (Tripathy, Kannala, and Rahtu 2021; Mallya
et al. 2020). The MimicMotion model, in particular, has
shown notable success in generating videos of human ac-
tions with impressive detail and accuracy (Zhang et al.
2024). Despite these advancements, a critical challenge re-
mains: they often fail to capture the fast, small movements
typical of sign language.

Building upon these advancements, we propose a novel
approach based on the MimicMotion framework (Zhang
et al. 2024) to ensure high visual fidelity and linguistic ac-
curacy. This is achieved by explicitly modeling the intricate
synchrony of sign language through specialized pre-training
on a large, domain-specific corpus of sign language.

Proposed Approach

To provide an accessible and user-friendly interface for sign
language generation, we designed a modular pipeline that
transforms natural language text into a video of an avatar
performing the corresponding signs in RSL. This complete
pipeline has been integrated into a practical Telegram bot
application (Fig. 1). Our system (Fig. 2) consists of three
core modules that operate sequentially to achieve this goal.
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Figure 2: Sign Language Generation System Architecture

1. Input Text Preprocessing Module. Our generative
model requires precise pose sequences; however, text in-
put remains the most natural and accessible method for
users. This module bridges that gap by converting an input
word in either Russian or English into a standardized gloss
label from our RSL database, which is derived from the
Slovo dataset (Kapitanov et al. 2023). The processing begins
with lemmatizing the input word, followed by an attempt to
match it directly against the database dictionary. For out-
of-vocabulary words, the module conducts an embedding-
based similarity search. It encodes the lemma using a multi-
lingual Sentence Transformer and retrieves the nearest gloss
via a FAISS index of precomputed gloss embeddings.

2. Gloss-Video Matcher. The primary function of this
module is to provide the ground-truth visual sign language
data necessary to guide the subsequent video generation pro-
cess. Utilizing the gloss label obtained from the first module,
this component is responsible for retrieving a corresponding
example of the sign from a curated database of sign language
videos. To address out-of-vocabulary words or unsuccess-
ful gloss matches, the linguistic module employs a fallback
strategy that returns the sign corresponding to the dictionary
word with the closest semantic meaning, identified through
an embedding search.

3. Sign Language Generation Module is the core gen-
erative component of our system. It takes the retrieved sign
video and a user-defined avatar image as input. The mod-
ule first extracts a sequence of human pose keypoints (e.g.,
hand, body, face landmarks) from the retrieved video. This
pose sequence, along with the target avatar, is then fed into
our adapted MimicMotion model (Zhang et al. 2024). The
model, which we have specifically trained for this task, gen-
erates a novel video of the chosen avatar performing the sign
(Fig. 3). The output preserves the precise articulation from
the retrieved pose data while rendering it seamlessly with
the user’s preferred avatar, striking a balance between high
visual quality and low inference latency for interactive use.

The backend of our system is implemented in PyTorch
with GPU acceleration support via CUDA to handle the
computational demands of the diffusion model. The system
generates videos at a resolution of 576px and 15 FPS, pro-
viding a user-friendly and responsive text-to-sign interaction
experience. The current average latency from the query to
the generated video is between 1 and 1.5 minutes.
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Figure 3: Sample frames generated by the proposed system.

Our Sign Language Generation Model

MimicMotion (Zhang et al. 2024) is a pose-guided human
video generation framework that incorporates confidence-
aware pose guidance. It utilizes confidence maps to priori-
tize reliable keypoints during synthesis, thereby enhancing
spatial accuracy and temporal consistency. These properties
make MimicMotion especially suitable for generating high-
quality sign language videos, where clarity of hand shape
and fluidity of motion are essential. However, the base Mim-
icMotion algorithm is not explicitly designed for sign lan-
guage, necessitating domain-specific training to capture the
fine-grained articulations required in SLG.

Data

We use the validation subset of the How2Sign dataset
(Duarte et al. 2021), specifically its green-screen studio
component. This data consists of 1,741 frontal-view RGB
video clips (1280x720 resolution, 30 FPS, ~ 5.4 seconds),
each paired with English sentences and 2D body pose key-
points. The dataset features 11 signers, including deaf or
hard-of-hearing individuals who use ASL as their primary
language, thereby ensuring linguistic authenticity and natu-
ral signing production. While the dataset provides keypoints,
we opted for enhanced accuracy by re-extracting them us-
ing the DWPose model (Yang et al. 2023), as proposed in
(Zhang et al. 2024).

Training

The proposed framework utilizes frozen, pre-trained com-
ponents from the Stable Video Diffusion model (Blattmann
et al. 2023). Specifically, it employs the Variational Autoen-
coder (VAE) encoder and decoder, which encode frames
into a latent space and reconstruct them with temporal con-
sistency. The primary learnable component of the system
is a spatiotemporal U-Net (Ronneberger, Fischer, and Brox
2015), which performs denoising in latent space and adapts
to new motion patterns based on pose sequences and refer-
ence images. Additionally, PoseNet (Kendall, Grimes, and
Cipolla 2015) encodes both pose and confidence data to
guide motion synthesis.

The input of the training pipeline (Fig. 4) is RGB frames,
reference images, and pose sequences. The model learns to
synthesize videos that faithfully replicate motion trajecto-
ries while maintaining visual appearance. The loss function
is based on per-pixel MSE, regionally weighted by the confi-
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Figure 4: Proposed SLG model of RuSignBot

VAE Decoder

dence of keypoints. Additional scaling of the loss is applied
to hand regions to improve articulation fidelity.

To evaluate training quality, we conducted a visual assess-
ment on the Slovo dataset (Kapitanov et al. 2023) for RSL.
As shown in Fig. 5, we observed a degradation in quality
in later epochs, particularly in motion realism and the natu-
ralness of the facial expressions exhibited by the generated
character. Hence, we limited the number of training epochs.

Experiments

To evaluate our SLG model, we computed two key metrics,
SSIM and PSNR, using a sample of 100 randomly selected,
non-repeating glosses from the Slovo dataset’s glossary.
These metrics provide critical insights into the perceptual
quality and structural integrity of generated sign language
videos. PSNR focuses on pixel-level fidelity, and SSIM eval-
uates structural similarity. The results indicate that domain
adaptation is effective in achieving a high-quality model for
SLG (Table 1).

The MimicMotion model was selected as the foundation



Figure 5: Training curve for our model

Table 1: SSIM, PSNR, and APE results for the MimicMo-
tion model with and without domain-specific training

Model SSIM 1 | PSNR 1 APE |
Original MimicMotion 0.7597 | 19.7309 | 0.4723 £ 0.07
SLG MimicMotion (Ours) | 0.8169 | 21.1261 | 0.4567 £ 0.05

for our approach due to its proven ability to replicate refer-
ence movements with high fidelity. We quantified this ca-
pability using the keypoint-based Average Position Error
(APE) metric, conducting evaluations both before and after
a specific pre-training phase. This metric is used to assess
the fidelity of generated 2D poses by quantifying the aver-
age Euclidean distance between the predicted and ground-
truth joint positions across all frames. The analysis was per-
formed on the same 100 samples, similarly to other metrics
reported in Table 1. The resulting APE scores for the original
MimicMotion model and our proposed model were found
to be similar (Table 1). This outcome demonstrates that the
proposed pre-training successfully preserved the model’s
core capacity for high-fidelity motion generation and even
slightly enhanced its movement accuracy.

The primary objective of sign language generation is to
produce semantically accurate and intelligible animations.
To move beyond kinematic metrics and directly assess func-
tional performance, we introduce the “Sign Understandabil-
ity Score” (SUS) metric. This metric quantifies the core
communicative efficacy of a generated sign by measuring
its recognition rate (Makarov et al. 2019; Savchenko 2012;
Savchenko and Belova 2015), evaluating whether the in-
tended meaning is successfully conveyed.

We evaluated a set of 50 generated sign videos (across two
packs of 20 and 30). Each video was presented to 20 dis-
tinct signers of RSL (a total of 40 unique participants). Par-
ticipants provided free-form text responses describing the
recognized sign. These responses were normalized using a
predefined lemmatization dictionary (e.g., collapsing “go”,
“walking” to “walk”; “cowardly” to “be afraid”) to account
for semantic equivalence and lexical variation. The per-sign
accuracy was calculated as the proportion of correct iden-
tifications after normalization. The final SUS metric is the
mean accuracy across all 50 signs, representing the aver-
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Table 2: SUS, SSIM, and PSNR results for our system in a
set of 20 and 30 generated sign videos pack

Samples SUS SSIM | PSNR
A pack of 20 words | 0.668 | 0.772 | 20.767
A pack of 30 words | 0.845 | 0.837 | 22.247
Mean for two packs | 0.7565 | 0.8045 | 21.907

age probability that a generated sign will be correctly un-
derstood, as shown in Fig. 6.

The values of metrics SUS, SSIM, and PSNR for each
word pack, along with their averages, are presented in Ta-
ble 2. Analysis of these data reveals a correlation between
the standard full-reference metrics and the proposed human-
centric SUS metric.

Conclusion and Future Work

This study presents a practical word-to-sign synthesis
system for Russian Sign Language using a customized
MimicMotion framework. Experiments have shown that
our model, fine-tuned using a domain-specific approach,
achieves superior performance in quantitative metrics
(PSIM and SSIM) compared to its base version. Further-
more, our human-centric evaluation demonstrated a high
level of understandability, confirming that native RSL users
accurately recognize the generated signs.

RSL synthesis algorithms have a wide range of applica-
tions, primarily in enhancing accessibility for the Deaf and
hard-of-hearing community. In our Telegram-based RuSign-
Bot, we demonstrated the potential of using this technology
for intuitive, user-driven sign language learning and commu-
nication, supporting both default and custom avatars.

Future research will pursue two primary directions. First,
we aim to significantly expand the system’s lexicon by aug-
menting both the training dataset and the gloss database.
Second, we will focus on advancing from generating iso-
lated signs to modeling fluent, continuous sign language se-
quences. Furthermore, the proposed pipeline is not limited
to RSL and can be adapted for other sign languages, pro-
vided the necessary pose and video data are available. An-
other promising direction is to optimize the model for faster
inference, making it suitable for real-time applications in a
broader range of devices.
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