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ABSTRACT

In many applications spanning healthcare, finance, and admissions, it is beneficial
to have personalized machine learning models that make predictions tailored to
subgroups. This can be achieved by encoding personalized characteristics (such
as age and sex) as model inputs. In domains where model trust and accuracy are
paramount, it is critical to evaluate the effect of personalizing models not only on
prediction accuracy but also on the quality of post-hoc model explanations. This
paper introduces a unifying framework to quantify and validate personalization ben-
efits in terms of both prediction accuracy and explanation quality across different
groups, extending this concept to regression settings for the first time –broadening
its scope and applicability. For both regression and classification, we derive novel
bounds for the number of personalized attributes that can be used to reliably val-
idate these gains. Additionally, through our theoretical analysis we demonstrate
that improvements in prediction accuracy due to personalization do not necessarily
translate to enhanced explainability, underpinning the importance to evaluate both
metrics when applying machine learning models to safety-critical settings such as
healthcare. Finally, we evaluate our proposed framework and validation techniques
on a real-world dataset, exemplifying the analysis possibilities that they offer. This
research contributes to ongoing efforts in understanding personalization benefits,
offering a robust and versatile framework for practitioners to holistically evaluate
their models.

1 INTRODUCTION

To prevent discrimination, protected attributes like sex, race, or religion are frequently restricted in
sensitive decision-making processes, such as employment (U.S. Equal Employment Opportunity
Commission, 1963), lending, education, and healthcare. These attributes are legally safeguarded, often
due to a history of bias or unequal treatment. However, in some applications, taking these demographic
factors into account can significantly improve prediction performance. This is especially true in
medicine, where using protected attributes can enhance clinical prediction models by accounting
for biological and sociocultural differences affecting health outcomes. For example, cardiovascular
disease risk prediction models often improve when including sex (Paulus et al., 2016; Huang et al.,
2024; Mosca et al., 2011) and race (Paulus et al., 2018), as men and women exhibit distinct heart
disease risk patterns, and racial differences –such as increased hypertension prevalence in African
Americans– are crucial for accurate risk assessment.

However, such sensitive attributes are known to increase bias in machine learning models (Kodiyan,
2019), so practitioners must ensure that they provide clear performance gains across all involved
subgroups before adopting them. In fact, while incorporating sensitive data often increases overall
accuracy, previous studies have already shown that personalization does not uniformly improve
performance across all population subgroups (Suriyakumar et al., 2023). To rigorously measure
personalization quality and fairness, the work of Monteiro Paes et al. (2022) introduced the Benefit
of Personalization (BoP) metric to quantify personalization gain in terms of model classification
prediction, based on comparing personalized model performance to that of a generic model trained
without group attributes. Additionally, they derive a practical information-theoretic limit on error
probability for classification tasks.
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Figure 1: Practioners should not dismiss personalized models just because they do not provide a clear
BoP gain in terms of prediction accuracy. We illustrate a toy example when, in such a context, there
is a BoP gain in terms of explainability (concept introduced in this work). On a classification task, we
compare a personalized model hp that uses group attributes with a generic model h0 without them,
both of them achieving perfect accuracy. Explanations for both models are generated, producing a
subset of input features that contribute most to the model’s predictions. For h0 this subset is X1, for
hp this subset is S. We evaluate the quality of these explanations using the two widely-used criteria of
sufficiency and comprehensiveness, which measure how original predictions change when only using
or excluding the important features, respectively. We observe that hp produces a lower sufficiency
and higher comprehensiveness than h0, reflecting an improvement in explanation quality.

Nevertheless, BoP metric has not yet been extended or bounded for regression models, which in
many inherently continuous processes can capture patterns that might be overlooked if data were
classified into discrete categories. For example, in the medical domain, instead of classifying glucose
levels as "low", "normal", or "high", regression can predict exact blood glucose levels in diabetes
patients, enabling more accurate insulin dosing and management (Butt et al., 2023). In addition to
this, no previous work has explored and audited personalization’s effect on model explainability, a
necessity for clinical decision-making and patient trust. For instance, in a study of pneumonia risk,
machine learning models counter-intuitively predicted lower mortality risk for patients with asthma,
and this finding actually reflected that asthma patients often received more aggressive care, lowering
their risk (Caruana et al., 2015). Without explainability methods to understand how models make
predictions, such insights could be missed, potentially leading to inadequate treatment decisions.

Contributions. This work addresses the previous points, aiming at gaining a wider and more
comprehensive understanding of the impact of using sensitive characteristics in machine learning
models. In particular, the main contributions of this paper include:

• We propose a generalized BoP framework to evaluate both model explanation quality and prediction
accuracy across classification and regression settings. This extension not only broadens BoP scope
and applicability, but also introduces a novel analysis on how protected attributes affects model’s
explainability (see Fig. 1). This approach is particularly valuable in contexts where understanding
model decisions is as critical as the decisions themselves. (Section 4)

• We prove rigorous statistical bounds for auditing the generalized BoP metrics in classification and
regression contexts. To the best of our knowledge, our work is the first to prove such bound to
evaluate BoP for regression. Further, our analysis improves the bounds for classification in the
previous work Monteiro Paes et al. (2022). (Section 5)

• Our theoretical analyses yield new insights into BoP across different settings. We demonstrate
that regression models can potentially utilize more group attributes than classification models
while keeping low testing error. Furthermore, we uncover a critical incompatibility: improvements
in prediction accuracy from personalization do not necessarily correlate with enhanced explain-
ability, underscoring the importance of evaluating both criteria in models where accuracy and
interpretability are paramount. (Section 5)

• We apply our framework and validation tests on a real-world dataset for a classification and a
regression task. In particular, our experimental results empirically demonstrate that personalization
can indeed affect accuracy and explainability differently. (Section 6)
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2 RELATED WORKS

Personalization Our research is part of a body of work that investigates how the use of personalized
features in machine learning models influences group fairness outcomes (Suriyakumar et al., 2023).
Monteiro Paes et al. (2022) defined a metric to measure the smallest gain in accuracy that any group
can expect to receive from a personalized model. The authors demonstrate how this metric can be
employed to compare personalized and generic models, identifying instances where personalized
models produce unjustifiably inaccurate predictions for subgroups that have shared their personal data.
However, this literature has focused on the classification framework and has not been generalized
to regression tasks. Furthermore, this work has been solely concerned with evaluating how model
accuracy is affected, and has not explored how personalizing a model affects the quality of its
explanations.

Explainability Typical approaches to model explanation involve measuring how much each input
feature contributes to the model’s output, highlighting important inputs to promote user trust. This
process often involves using gradients or hidden feature maps to estimate the importance of inputs
(Simonyan et al., 2014; Smilkov et al., 2017; Sundararajan et al., 2017; Yuan et al., 2022). For
instance, gradient-based methods use backpropagation to compute the gradient of the output with
respect to inputs, with higher gradients indicating greater importance(Sundararajan et al., 2017; Yuan
et al., 2022). The quality of these explanations is often evaluated using the principle of faithfulness
(Lyu et al., 2024; Dasgupta et al., 2022; Jacovi & Goldberg, 2020), which measures how accurately
an explanation represents the reasoning of the underlying model. Two key aspects of faithfulness
are sufficiency and comprehenesiveness (DeYoung et al., 2020; Yin et al., 2022); the former assesses
whether the inputs deemed important are adequate for the model’s prediction, and the latter examines
if these features capture the essence of the model’s decision-making process.

Personalization on Explainability The field of the effects of personalization on explainable machine
learning is largely unexplored. Previous work has investigated gaps in fidelity across subgroups
and found that the quality and reliability of explanations may vary across different subgroups
(Balagopalan et al., 2022). The work Balagopalan et al. (2022) trains a human-interpretable model
to imitate the behavior of a blackbox model, and characterizes fidelity as how well it matches the
blackbox model predictions. To achieve fairness parity, this paper explored using only features with
zero mutual information with respect to a protected attribute. However, it left feature importance
explanations out of its scope. Additionally, this work neither considers regression tasks nor looks at
how personalization affects differences in explanation quality across subgroups.

We extend related works tackling fairness in regression in Appendix Section A.

3 BACKGROUND AND PROBLEM SETTING

This section reviews relevant concepts and methodologies in the fields of personalization and explain-
ability, laying the groundwork to present and contextualize our contributions.

Notation. In what follows, let X ,S,Y denote, respectively, the feature, group attributes and label
spaces. Additionally, we denote an auditing dataset by

D = {(xi, si, yi)}Ni=1,

where N is the total number of samples and, for each sample i, xi ∈ X represents its feature vector,
si ∈ S its vector of group attributes, and yi ∈ Y the corresponding label or target.

Supervised learning and personalization. Within a supervised learning setting, a personalized
model hp : X × S → Y aims to predict an outcome variable Y ∈ Y using both an input feature
vector X ∈ X and a vector of group attributes S ∈ S . In such a setting, we are interested in analyzing
the benefits of personalization by comparing hp with a generic model h0 : X → Y that does not
use (sensitive) group attributes. We assume that these models are trained on a training dataset that is
independent of the auditing dataset D. The following definition enables us to measure the overall
performance of the model with respect to a cost function, thus facilitating this comparison:
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Definition 1 (Cost). The cost of a model h with respect to a cost function cost : Y × Y → R is
defined as:

C(h) ≜

{
E[cost(h(X), Y )] if h : X → Y (generic model)
E[cost(h(X,S), Y )] if h : X × S → Y (personalized model)

(1)

Analogously, Ĉ is an empirical estimate of C, e.g., Ĉ(h0) =
1
N

∑N
i=1 cost (h (xi) , yi).1

Since we are defining a framework that seeks to minimize cost, any chosen cost function should
satisfy the principle of “lower cost means better performance". Moreover, we note that this definition
can be easily extended and applied to different groups:
Definition 2 (Group Cost). The group cost, of a model h for group s ∈ S with respect to a cost
function cost : Y × Y → R is defined as:

Cs(h, s) ≜

{
E[cost(h(X), Y ) | S = s] if h : X → Y (generic model)
E[cost(h(X, s), Y ) | S = s] if h : X × S → Y (personalized model)

(2)

Evaluating Predictions. Previous cost definitions can be applied to evaluate model performance on
a prediction task. In this case, the cost function can be either the loss function ℓtrain used for training,
or an auxiliary evaluation of performance ℓeval. Most of the time, we will not distinguish between
ℓtrain and ℓeval and refer to this function as the loss ℓ, such that we have:

cost(h,x, y) ≜

{
ℓ(h(x), y) if h : X → Y (generic model)
ℓ(h(x, s), y) if h : X × S → Y (personalized model),

(3)

where:

ℓ(y, ŷ) ≜


∥y − ŷ∥2 if squared error loss (regression)
1 (y ̸= ŷ) if 0-1 loss (binary classification)
other loss functions if alternative models or custom losses.

(4)

By plugging ℓ into Def. 1 and 2, one can empirically evaluate model prediction performance across
all samples, and across subsets of samples designated by shared group attributes. This can be done
for generic (h0) or personalized models (hp).

Evaluating Explainability. Notably, previous cost definitions can also be applied to evaluate the
explainability of a model. Here, we focus on the subset of explainability techniques that output an
importance score for each model input –this importance score quantifying the sensitivity between
model inputs with regards to the model predictions.2 In particular, to evaluate explanations with
our framework, we use the cost functions of either comprehensiveness or sufficiency of a model’s
explanation (DeYoung et al., 2020), generalizing them to use any loss between predicted values.
These functions measure the quality of an explanation based on removing or only keeping important
features:3

Notation. An explanation E for a model h is defined as:

E = [e1 e2 . . . eN] , (5)

where each vector ei denotes the importance for each input feature of the i-th sample. For each
sample i, we find the top r features with the highest importance, so that we get Ji = {j1, · · · , jr},
representing the indices of the r largest values in ei.
• For a generic model h0, we denote by X\J the feature input when removing the top r most

important features, and by XJ the complement –only keeping the r most important ones.
• Analogously, for a personalized model hp, the top r most important features across X ∪ S are

either removed or selected. We denote the the resulting features+attributes set with top features
removed by S\J , and with only the top features kept by SJ .

1All other empirical definitions, including for individual samples, can be found in Appendix B and C.
2However, the way importance scores are found differs per explanation method –please refer to Yuan et al.

(2022) for a review of possible options.
3Removing/disregarding a feature simply means setting it to 0 (Ancona et al., 2018).
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Definition 3 (Incomprehensiveness). Incomprehensiveness measures the change in model prediction
when removing the top features4:

cost(h,x) ≜

{
−ℓ(h(x), h(x\J)) if h : X → Y (generic model)
−ℓ(h(x, s), h(x\J , s\J)) if h : X × S → Y (personalized model)

(6)

where ℓ is a measure of prediction performance as defined in Equation 4. A large negative incompre-
hensiveness score is desired, as it shows that removing the inputs most relevant to the explanation
significantly alters the prediction.

Sufficiency can be defined in a similar manner, but rather than removing the top r features, only the
top r features are preserved.
Definition 4 (Sufficiency). In the case of sufficiency, the cost function can be defined as follows:

cost(h, x) ≜

{
ℓ(h(x), h(xJ)) if h : X → Y (generic model)
ℓ(h(x, s), h(xJ , sJ)) if h : X × S → Y (personalized model)

(7)

where ℓ is a measure of prediction performance as defined in Equation 4.5 A low sufficiency score is
desired to verify that the inputs deemed important are sufficient for the prediction.

4 A GENERALIZED FRAMEWORK FOR BENEFIT OF PERSONALIZATION

Leveraging the cost definitions from Section 3, this section introduces a novel generalized approach
to quantify the Benefit of Personalization (BoP) –i.e. to rigorously measure whether a personalized
model (hp) performs better than its generic counterpart (h0). Drawing inspiration from Monteiro Paes
et al. (2022), we propose the first BoP framework that (i) incorporates explainability into the analysis
(apart from prediction accuracy), and that (ii) spans both regression and classification tasks.

We start by defining some relevant BoP concepts and metrics.

Notation. In what follows, we consider that a fixed data distribution PX,S,Y is given, and that h0

and hp models minimize the loss over the training dataset Dtrain.

Definition 5 (Population BoP). The gain from personalizing a model can be measured by comparing
the costs of the generic and personalized models:

BoP(h0, hp) ≜ C(h0)− C(hp). (8)
Definition 6 (Groupwise BoP). Similarly, the gain from personalizing a model across each subgroup
of samples can be obtained by:

BoPs(h0, hp, s) ≜ Cs(h0, s)− Cs(hp, s). (9)

Therefore, Groupwise BoP can be measured across all sensitive subgroups to understand exactly how
personalization affects each one of them. In fact, it is crucial to consider if personalization benefits
each subgroup equally, and more so to investigate whether personalization actively harms particular
subgroups (Monteiro Paes et al., 2022). The following concept is useful to identify the latter scenario:
Definition 7 (Minimal Group BoP).

γ (h0, hp) ≜ min
s∈S

(BoPs(h0, hp, s)) (10)

In particular, note that a positive Minimal Group BoP indicates that all subgroups receive better
performance with respect to the cost function. Contrary to this, a negative value reflects that at
least one group is disadvantaged by the use of personal attributes. When the Minimal Group BoP is
small or negative, the practitioner should reconsider the use of personalized attributes in terms of the
trustworthiness of the model for all subgroups.

In the following subsections we show how these abstract definitions can be used to measure BoP for
both predictions and explanations, each across both classification and regression tasks.

4Note that we negate the traditional notion of comprehensiveness, and propose the metric of incomprehen-
siveness, because we define our cost metrics such that lower cost means better performance.

5Note that in these definitions our focus is in explaining the model rather than the phenomenon Amara et al.
(2024). These definitions can be written for explanation of phenomena by replacing h(x) for the generic model
and h(x, s) for the personalized model with y in Equations 6 and 7.

5
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4.1 BOP FOR PREDICTION (BOP-P)

When analyzing BoP in terms of prediction accuracy, the main concern is to analyze how performance
differs across subgroups. We show how the Minimal Group BoP can be expressed for classification
and regression tasks (given a particular choice of loss function in each case).

Classification In the binary classification case, using the 0-1 loss function ℓ(y, h(x, s)) ≜ 1[y ̸=
h(x, s)], the Minimal Group BoP is:

γBOP−P (h0, hp;D) = min
s∈S

(Pr (h0(X) ̸= Y | S = s)− Pr (hp(X, s) ̸= Y | S = s)) ∈ [−1, 1].

In this setting, the Minimal Group BoP measures the minimum gain in accuracy between hp and h0.

Regression In the regression case, using the square error loss function, the Minimal Group BoP is:

γBOP−P (h0, hp;D) = min
s∈S

(
E
[
∥h0(X)− Y ∥2 | S = s

]
− E

[
∥hp(X, s)− Y ∥2 | S = s

])
∈ [−∞,+∞].

4.2 BOP FOR EXPLAINABILITY (BOP-X)

Lastly, we introduce novel and practical definitions of BoP for explainability, leveraging the incom-
prehensiveness and sufficiency cost functions. It is recommended that practioners apply both metrics
to understand the effects of personalization in terms of faithfulness as a whole. For the sake of space,
we only show expressions of the Minimal Group BoP in terms of sufficiency—both for classification
and regression—but the analogous incomprehensiveness expressions can be found in Appendix D.

Classification In the classification case, with the 0-1 loss function and using the cost function
defined for sufficiency, the Minimal Group BoP can be written as:

γBOP−X (h0, hp;D) = min
s∈S

(Pr (h0(X) ̸= h0(XJ) | S = s)

− Pr (hp(X, s) ̸= hp(XJ , s) | S = s)) , where γ ∈ [−1, 1].

Regression Using the cost function defined for sufficiency with the square error loss function, the
Minimal Group BoP in the case of regression can be written as:

γBOP−X (h0, hp;D) = min
s∈S

(
E
[
∥h0(X)− h0(XJ)∥2 | S = s

]
− E

[
∥hp(X, s)− hp(XJ , sJ)∥2 | S = s

])
, where γ ∈ [−∞,+∞].

5 STATISTICAL TESTS FOR GENERALIZED BOP

Calculating the BoP requires exact knowledge of the data distribution, a condition rarely met in
practice. Moreover, within the ubiquitous finite sample regime, it is critical to understand the
feasibility of the empirical BoP –given for instance a limited sample size, or a large number of group
attributes. In this section, drawing inspiration from Monteiro Paes et al. (2022), we first introduce a
hypothesis testing framework to assess whether a personalized model yields a substantial performance
improvement across all groups. Subsequently, we derive a novel information-theoretic bound on the
reliability of this procedure, both for binary and real-valued cost functions. In addition to this, we
investigate how the different BoP metrics of our framework relate to each other (classification vs.
regression, prediction vs. explainability), which leads to new insights into BoP.

All proofs for subsequent theorems, lemmas and corollaries can be found in Appendix Sections E.1,
E.2,E.3,F and H.

Hypothesis Test Given a personalized classifier hp, a generic classifier h0, and auditing dataset
D, we verify whether using a personalized model hp yields an ϵ > 0 gain in expected performances
compared to using the generic model h0. Note that the improvement ϵ is in cost function units,
and corresponds to the reduction in cost for the group for which moving from h0 to hp is least

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

advantageous –i.e. ϵ actually represents the improvement for the group that benefits the least from
the personalized model. In this context, we propose the following hypothesis test:

H0 : γ(h0, hp;D) ≤ 0 ⇔ Personalized hp does not bring any gain for at least one group,
H1 : γ(h0, hp;D) ≥ ϵ ⇔ Personalized hp yields at least ϵ improvement for all groups.

To actually perform this hypothesis test, we follow (Monteiro Paes et al., 2022) and propose the
following threshold test on the estimate of the BoP (i.e., the empirical BoP γ̂):

γ̂ ≥ ϵ ⇒ Reject H0: Conclude that personalization yields at least ϵ improvement for all groups.

Furthermore, we characterize the reliability of hypothesis tests in terms of their probability of error.
We define the probability of error Pe of the hypothesis test on H1 and H0 as:

Pe = Pr(Type I error) + Pr(Type II error)
= Pr(Rejecting H0|H0 is true) + Pr(Failing to reject H0|H1 is true)

If this probability exceeds 50%, the test is no more reliable than the flip of a fair coin, making it too
unreliable to support any meaningful verification. Therefore, it would be practical to compute a lower
bound on the worst case scenario for this probability of error, so that if this lower bounds exceeds
50%, we would not trust the test. We precisely derive such bounds for binary and regression cost
functions in the following paragraphs (applicable for both prediction and explainability).

Notation. We formalize our hypothesis test by an abstract decision function Ψ : (h0, hp,D, ϵ) →
{0, 1} such that Ψ(h0, hp,D, ϵ) = 1 ⇒ Reject H0.

Testing the BoP: Binary Cost Function The case of BoP for prediction in classification has
been studied in (Monteiro Paes et al., 2022). As the authors noted, the theorems and proofs can
be generalized to any scenario where the individual cost can be described by a Bernouilli random
variable –i.e., where the cost function takes values in {0, 1}, and consequently the individual BoP can
be described by a categorical random variable with values in {−1, 0, 1}. The next theorem refines
Theorem 1 of (Monteiro Paes et al., 2022) to provide a tighter lower bound:
Theorem 1 (Lower bound for categorical individual BoP). The lower bound writes:

min
Ψ

max
PX,S,Y ∈H0

QX,S,Y ∈H1

Pe ≥ 1− 1

2
√
d

(
1 + 4ϵ2

)m/2
(11)

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) ≥ ϵ. Dataset D is drawn from an
unknown distribution and has d groups where d = 2k, with each group having m = ⌊N/d⌋ samples.

Testing the BoP: Real-valued Cost Function Focusing next on regression tasks, we generalize the
previous discrete-domain theory to continuous cost functions. In particular, we derive from scratch
new lower bounds to any scenario where the individual BoP can be described by a Normal random
variable.6 Assuming that the value of ϵ is fixed, we provide the following theorem:
Theorem 2 (Lower bound for Gaussian individual BoP). The lower bound writes:

min
Ψ

max
PX,S,Y ∈H0

QX,S,Y ∈H1

Pe ≥ 1− 1

2
√
d
exp

(
ϵ2

σ2

)m/2

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) ≥ ϵ. Dataset D is drawn from an
unknown distribution and has d groups, with each group having m = ⌊N/d⌋ samples. σ is the
standard deviation of the BoP across participants, and is assumed to be the same across all groups.

By leveraging the lower bounds provided by Theorems 1 and 2, the remainder of this section aims to
answer how the different settings of our BoP framework connect and relate to each other.

6We additionally derive the bounds assuming the individual BoP can be described by a Laplacian distribution.
The corresponding theorems and proof are provided in Appendix Section E.3.
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Figure 2: Probability of error Pe versus number of attributes k defining the number of groups d = 2k

for varying number of samples N . In orange you see the line for a binary cost function and in blue
you see the values real-valued cost function for varying values of σ. In all cases, ϵ = 0.01. When
σ = 0.5, the exponential term in the lower bound for real-valued Pe becomes 4ϵ2, which can be
approximated as 1 + 4ϵ for small ϵ. Hence, we see the categorical BoP aligns with the real valued Pe
for σ = 0.5. We see that for small σ values in the real-valued case, the number of attributes k that
can be used before surpassing Pe ≥ 1/2 is higher than for the categorical case.

Does the maximum number of sensitive attributes allowed differ in Classification versus Re-
gression? Given the obtained bounds, we can compute the maximum number of attributes k for
which such a hypothesis test would make sense. To this end, we first prove that the lower bounds are
a increasing function of k:
Lemma 1. Given values of ϵ, n, σ fixed, the lower bounds in Theorems 1- 2 are monotonically
increasing functions of k, the number of sensitive attributes defining the number of groups d = 2k.

This result was known for the binary case, but we also prove it for the real-valued case. The following
results easily follow from the lemma:
Corollary 1 (Maximum number of attributes (binary cost function)). If we wish to maintain a
probability of error such that minmaxPe ≤ 1/2, then the number of attributes k should be chosen
below a value kmax that depends on the number of samples N :

kmax ≤ 1.4427W (N log(4ϵ2 + 1)), (12)

where W is the Lambert W function.

Corollary 2 (Maximum number of attributes (real-valued cost function)). If we wish to maintain a
probability of error such that minmaxPe ≤ 1/2 then the number of attributes k should be chosen
below a value kmax that depends on the number of samples N and on the value of σ.

kmax ≤ 1.4427W (
ϵ2N

σ2
) (13)

where W is the Lambert W function.
Corollary 3 (Maximum attributes (real-valued cost function) for all people). See Appendix I.

To better contextualize these theoretical results, Figure 2 plots the relation between k and Pe for a
binary and a real-valued cost function, considering common sample sizes in medical applications.
Looking at the number of attributes k allowed for Pe < 0.5, we clearly observe the consequences of
the extra dependence on σ in the real-valued case. In particular, note that it allows a higher number
of attributes than the binary case for small σ values. This tells a much more subtle story than for the
classification case, because the maximum number of attributes allowed depends on the distribution of
the BoP across participants.

Does the maximum number of sensitive attributes allowed differ in Prediction versus Explain-
ability? Within the setting of classification, the maximum number of sensitive attributes allowed
does not differ in prediction versus explainability given that both utilize an individual cost function
that can be described by a Bernoulli random variable. Within the setting of regression, the maximum

8
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attributes can differ between prediction and explainability (for both sufficiency and incomprehensiv-
ness) because it is dependent on the standard deviation of the BoP across participants. Therefore, the
number of allowed attributes will differ provided this value is different for each criteria evaluated.

Does BoP for Prediction Imply BoP for Explainability and Vice-Versa? Finally, we examine
the relationship between BoP-P and BoP-X. In the following theorem, we show that the absence of
BoP in terms of predictive accuracy does not necessarily imply the absence of benefits in terms of
explainability.

Theorem 3. There exists PX,S,Y such that BoP-P(h0, hp) = 0 and BoP-X(h0, hp) > 0

This theorem emphasizes the necessity of assessing the BoP in terms of both predictive accuracy
(BoP-P) and explainability (BoP-X). A personalized model may not demonstrate superior predictive
performance yet still improve explainability. Evaluating personalized models solely on predictive
accuracy risks can overlook substantial gains in interpretability—see Figure 1 for a visual example.

For a simple additive model, we can show that BoP-X = 0 does imply BoP-P = 0. Note that, by
BoP-X = 0, we mean both sufficiency and comprehensiveness do not improve with personalization.
Proving this for a general class of model remains an open question.

Lemma 2. Assume that h0 and hp are Bayes optimal classifiers and PX,S,Y follows an additive
model, i.e.,

Y = α1X1 + · · ·αtXt + αt+1S1 + · · ·+ αt+kSk + ϵ, (14)

where X1, · · · , Xt and S1, · · · , Sk are independent, and ϵ is an independent random noise. Then, if
BoP-X(h0, hp) = 0, BoP-P(h0, hp) = 0.

6 APPLYING THE FRAMEWORK

This section empirically evaluates the generalized framework introduced in Section 4 to classification
and regression tasks. Additionally, we leverage the validation tools developed in previous Section 5
to analyze the reliability of our results (shown in Table 1).

Datasets. We apply our framework to the High School Longitudinal Study (HSLS) dataset (Rogers
et al., 2018) utilizing two group attributes: Sex× Race ∈ {Female,Male} × {White,NonWhite}.
We downsample the most prevalent groups so that all groups have roughly the same number of
samples. For the regression task the goal is to predict the math IRT-estimated scale score. For the
binary classification task, we predict if the student’s score falls in the top 50% or bottom 50%. For
both classification and regression, we fit two neural network models: one with a one-hot encoding of
the group attributes (hp), and the other without group attributes (h0). Moreover, regression prediction
values are normalized to have mean 0 and standard deviation 1.

Explainability Method. To generate model explanations, we use the Captum Integrated gradients
explainer method (Sundararajan et al., 2017). This method calculates the gradient of the output
with respect to the input for each subject, and scales the result to get a contribution value for each
input feature. To evaluate BoP-X using sufficiency and incomprehensivess, we select an value r
such that 50% of features are kept or removed. Plots in Appendix J depict how sufficiency and
incomprehensiveness change for different values of r, as well as show the individual BoP distribution.

Experimental Results. Table 1 shows full results of the Population, Groupwise, and Minimal Group
BoP on the test set; the corresponding tables for the training dataset can be found in Appendix G.
The 0-1 and square loss cost functions are used for classification and regression, respectively.

Statistical Validation. To better understand the reliability of our empirical results, in Figure 3 we
visually compute the information-theoretic lower bounds on probability of error that our validation
framework provides for this dataset and these tasks. In particular, we get that we can trust our results
(Pe > 0.5) for (i) γBoP > 0.035 for all metrics in the classification task, and in the case of regression
(ii) γBoP−P > 0.02 for prediction accuracy, (iii) γBoP−X > 0.25 for incomprehensiveness, and
(iv) γBoP−X > 0.19 for sufficiency.

BoP-P Analysis. In the case of prediction accuracy, we observe that the personalized model hp

assigns less accurate predictions to specific subgroups for both classification and regression tasks

9
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Group n Classification Regression

Prediction Incomprehensiveness Sufficiency Prediction Incomprehensiveness Sufficiency

Female, NonWhite 274 0.011 -0.248 -0.259 0.005 1.97 3.72
Female, White 287 -0.063 -0.272 -0.254 -0.005 1.72 3.60
Male, NonWhite 274 0.004 -0.124 -0.153 0.004 1.48 4.15
Male, White 301 -0.070 -0.199 -0.189 0.014 1.56 3.37
All Population 1136 -0.031 -0.211 -0.214 0.005 1.68 3.70

Minimal Group BoP 1136 -0.070 -0.272 -0.259 -0.005 1.48 3.37

Table 1: Experimental results on the test set of the considered dataset, for both classification and
regression. All columns show the value of Ĉ(h0)− Ĉ(hp) evaluated for the corresponding metric.
Values that are worsened by hp are colored red.

Figure 3: Leveraging the validation framework, we plot how the Pe changes for different ϵ values for
a set N and k. On the left we use Theorem 1 for classification. On the right, Theorem 2 for regression
(which has an additional dependency on σ, hence producing diferent results for each metric).

–even decreasing the overall accuracy for the entire population. Notably, the minimal BoP-P in
classification exceeds 0.035, so we can conclude that in this case the use of sensitive attributes
worsens accuracy. However, results are inconclusive for regression according to our statistical test.

BoP-X Analysis. In the case of explainability, we observe a clear difference in terms of the type of
task. For classification, the personalized model worsens incomprehensiveness and sufficiency for all
subgroups. In contrast, in the regression setting it increases sufficiency and incomprehensiveness
across all of them. Additionally, in all explainability scenarios the statistical test is satisfied, so we
can trust these observations.

BoP-P vs. BoP-X. For regression, the fact that the Minimal BoP for prediction is below 0.02
impedes us to draw conclusions about the BoP-P vs. BoP-X comparison. But, on the other hand, in
classification we can conclude that sensitive attributes do worsen both explainability and prediction
accuracy. However, despite the limited insights of these particular results, these experimental results
exemplifies how this framework can be easily used to investigate the potential trade-offs between
prediction and explainability in personalized models.

7 CONCLUDING REMARKS

This work introduces a novel BoP framework that accommodates model accuracy and explainability,
both of which are paramount to building trust and transparency in sensitive settings. Additionally,
the framework also extends the BoP analysis to regression tasks, enabling its application to new
non-discretized scenarios. Through our theoretical analysis, we identified conditions for regression
and classification where testing and estimation methods lack sufficient reliability to guarantee
improvements across subgroups. Our findings also reveal that regression tasks have the potential to
benefit from more personalized attributes than classification tasks, and that improved accuracy from
personalization does not necessarily translate to enhanced explainability. Finally, and as exemplified
by our evaluation, our framework and accompanying tests facilitate nuanced decisions regarding the
use of protected attributes. Overall, this paper broadens the scope and applicability of BoP analysis
and in doing so contributes to the selection of more fair and interpretable models.

10
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