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ABSTRACT

Large Vision Language Models (VLMs) have long struggled with visual-centric
understanding, with spatial reasoning emerging as a notable bottleneck due to its
reliance on effective image processing. Surprisingly, even simple spatial reasoning
tasks, such as recognizing “under” or “behind” relationships between only two
objects, pose significant challenges for current VLMs. We believe it is crucial to
use the lens of mechanism interpretability, diving into the model’s internal states to
examine the interactions between image and text tokens during spatial reasoning.
Our analysis of attention behaviors reveals significant differences in how VLMs
allocate attention to image tokens versus text tokens. By visualizing the areas of
images that receive the highest attention scores throughout intermediate layers, we
observe a notable pattern: errors often coincide with attention being misdirected
towards irrelevant objects within the image. Moreover, such attention patterns
exhibit substantial differences between familiar (e.g., “on the left side of ”) and
unfamiliar (e.g., “in front of ”) spatial relationships. Motivated by these findings,
we propose ADAPTVIS based on inference-time confidence scores to sharpen the
attention on highly relevant regions when the model exhibits high confidence, while
smoothing and broadening the attention window to consider a wider context when
confidence is lower. This novel decoding method shows significant improvement
(e.g., up to a 50 absolute point improvement) on spatial reasoning benchmarks such
as WhatsUp and VSR with negligible additional cost.

1 INTRODUCTION

Despite rapid advancements in Large Vision-Language Models (VLMs), a significant deficiency
persists, i.e., their struggle with vision-centric abilities (Gao et al., 2023; Kamath et al., 2023; Tong
et al., 2024a; Chen et al., 2024a). This limitation is particularly notable in spatial reasoning given
the simplicity of the task. Spatial reasoning involves inferring basic relationships between just two
objects, such as “left”, “right”, “above”, “below”, “behind”, or “front”, as shown in Figure 1. For
example, given the image with a book “behind” the candle in Figure 1, VLMs describe the book as
being “left” of the candle. This error is not an isolated incident but a frequent recurring pattern that
highlights a critical bottleneck in how VLMs process visual information.

Recent studies have started to probe potential issues in the vision-centric processing of VLMs,
questioning whether vision encoders like CLIP (Radford et al., 2021) adequately capture visual
information (Tong et al., 2024b;a). However, a crucial aspect remains underexplored: the intricate
interplay between vision and text tokens within models’ internal states. This gap underscores the
need for diving deeper into mechanism in the geometric understanding of visual scenes. While
recent work has made progress in the failure analysis of VLMs, investigating why VLMs make
errors (Kamath et al., 2023) such as object hallucination, these studies have primarily focused on
object-centric tasks to address the alignment between objects and the semantics of concepts. However,
spatial reasoning presents a fundamentally different and more challenging problem that has yet to be
thoroughly examined through the lens of mechanism interpretability. Spatial reasoning requires not
only object identification but also the ability to localize within visual scenes and understand their
interaction with text tokens. Therefore, we dive into the internal mechanisms of VLMs, specifically
examining how vision and text tokens are processed and interact in spatial reasoning.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Where is the book in 
relation to the candle?

Where is the cat in relation 
to the person?

VLM 
(e.g.LLaVA)
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Look at 
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BehindUnfamiliar!

Familiar!
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Look 
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Confidence:0.27

Above
Confidence:0.38

   Attention on image

Right

   Attention on image

Figure 1: The framework of ADAPTVIS. We adaptively intervene in the temperature of the attention
logits of the image tokens. 1). For generations with high confidence, we trust the attention pattern
and sharpen the attention distribution. 2). For generations with low confidence, we smoothen the
attention distribution to broaden the context window for better concentration on the correct objects.

We first hypothesize that if the VLM can adequately ground itself in visual scenes, it should be capable
of localizing objects and understanding their geometric structures within visual scenes. Building on
this, we further hypothesize that many failures of the VLM stem from how it distributes its attention
over the image tokens. Our focus on attention behavior is motivated by the intuitive connection
between attention mechanisms and spatial localization, particularly regarding how attention correlates
with object localization and is influenced by textual tokens. By closely examining the model’s
attention scores(logits)1 to images, we seek to answer the following questions: 1) What is the
potential cause for these failures? 2) Can we detect these failures within the model itself? In
other words, how do these failures manifest through internal patterns?

Our systematic analysis of attention scores throughout intermediate layers reveals a critical pattern:
the model tends to “focus” on question-relevant entities in the middle to high intermediate layers
when it could answer correctly, as evidenced by higher attention scores on these entities. Conversely,
failures often correlate with the model attending to irrelevant objects, as shown in Figure 6. Moreover,
we observe a pattern in the model’s output behavior: it frequently predicts spatial relationships
corresponding to the regions receiving the highest attention scores. For instance, if attention scores
are higher towards the lower part of the image, the model is likely to output “under”. Thus, incorrect
outputs may result from model’s failure to properly attend to the correct objects. Our analysis also
reveals image tokens receive significantly less attention than text tokens. This supports our hypothesis
that textual priors often outweigh visual information, hindering performance on vision-centric tasks.
For example, when shown an image of a cup clearly “under” a table, VLMs often misinterpret it as
being on the “left” side, likely due to over-reliance on common textual patterns over visual evidence.

As a result, our goal is to make VLMs look at images cleverly, i.e., sharpening its focus when confident,
and broadening or shifting its focus window when the model doubts its predictions. While previous
work has shown the effectiveness of guiding model attention using additional object labels (Chen
et al., 2024a; Zhang et al., 2024) or external object detectors (Li et al., 2024; You et al., 2024), we
leverage the signal within the model itself to regulate its attention behavior. We further examine
several signals from the model’s internal states to design an inner belief-based metric for guiding
attention, and finally choose the model’s generation probability as a reliable indicator of its confidence.
When the model is confident with its own generation (Figure 1) (the probability of generated tokens
exceeds a threshold), we trust the attention pattern on the image tokens by sharpening the attention
distribution. On the other hand, when the model is not confident, we smooth the image attention
distribution to expand the focused context window, thereby increasing the likelihood of focusing on
relevant objects. We include the exploration of other potential inner belief-based metrics at Appendix.

Experiments are done on typical spatial reasoning benchmarks WhatsUp (Kamath et al., 2023)
and VSR (Liu et al., 2023). To clearly observe and interpret model’s inner working mechanism
during spatial relationship generation, we adopt Question-Answering (QA) settings by reformatting
these benchmarks. These benchmarks cover a wide range of image distributions including both

1We use “attention scores” to indicate the attention logits in our whole paper.
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synthetic data (with clean backgrounds containing only two objects) to real scenario data (with noisy
backgrounds and multiple objects). Our results show that ADAPTVIS achieves up to 50 absolute
point gains across all benchmarks with minimal computational overhead.

2 BACKGROUND

We center our analysis on the attention behavior across layers to investigate how VLMs distribute
their attention over image tokens, aiming to gain deeper insights into spatial reasoning errors.

Notation Large VLMs like LLaVA (Liu et al., 2024a) consist of three components: a visual encoder
like CLIP (Radford et al., 2021), a pretrained language model and a projector to connect these
two parts. The visual encoder functions as a perception tool to “see” the image, while the image
information is processed through a projector to be mapped into the token space. The LLM part is often
based on the transformer architecture, consisting of L layers stacked together. Each layer consists of
two major components: a Multi-Head Attention (MHA) module, followed by a feed-forward network.
For each layer l, given the input X ∈ Rn×d (where n is the number of tokens and d is the embedding
dimension), the MHA module performs the self-attention function in each head Nh, and the output is
a concatenation of all heads’ outputs: MHA(l)(X) = Concat

(
N

(l,1)
h , . . . ,N

(l,H)
h

)
Wo, where H

is the number of heads, Nh is the output of head Nh, computed as

N
(l,h)
h = Softmax(A(l,h))V = Softmax

(
QK⊤
√
dh

+M

)
V , (1)

where attention logits A(l,h) is computed via Q = XWqh ,K = XWkh
,V = XWvh , and

Wqh ,Wkh
,Wvh ∈ Rd×dh are learnable projection matrix of the head Nh. A causal mask Mij = 0

if i ≥ j, and −∞ otherwise, prevents tokens from attending to future tokens.

3 DIVING INTO ATTENTION DISTRIBUTIONS

In this section, we systematically examine the influence of the absolute values of attention logits over
image tokens during spatial reasoning.

<image>
USER: Where is the 
beer bottle in relation 
to the armchair? 
Answer with left, right, 
on or under.

<image>
USER: Where is the 
beer bottle in relation 
to the armchair? 
Answer with left, right, 
on, under, front or 
behind.

For Controlled and COCO
4 Option

For VG
6 option

Figure 2: Prompts used in our evaluation.

Experiment settings We select a widely-used spatial
reasoning benchmark WhatsUp (Kamath et al., 2023)
since it contains both synthetic data and realistic data.
The synthetic data (Controlled Image)2 features clean
backgrounds with two objects, as shown in the upper
example of Figure 1. It comprises two subsets: Con-
trolled A, with one large object (e.g., table) and one
small object (e.g., cup), and Controlled B with two
small objects (e.g., book and plate). The realistic data,

as shown in the lower image of Figure 1, contains complex backgrounds with multiple objects,
sourced from MS COCO (Lin et al., 2014) and Visual Genome (Krishna et al., 2017) (referred to as
COCO and VG later). While realistic images present more challenges in localization, the synthetic
data enables clearer observation of VLMs’s inner workings with just two objects. Each image is
paired with a ground truth caption describing the spatial relationship of two objects. We reformat
the original ⟨image, caption⟩ setting into a generative question-answering setting ⟨image, question,
spatial label⟩, enabling evaluation of generative models like VLMs and tracing of internal states.
Questions are generated using GPT-4 (OpenAI, 2024), with prompts shown in Figure 2.

For evaluation, we apply accuracy of exact match as the primary metric. To maintain consistency
in the label space across datasets, we use a four-option setting ⟨left, right, on, under⟩ for the Con-
trolled Image and COCO subsets, and a six-option setting ⟨left, right, on, under, behind, front⟩ for
the VG as it contains additional spatial annotations.

Another aspect we analyze is the label distribution. In Controlled Image, labels are uniformly
distributed across categories (e.g., equal number of samples for “left”, “right”, “on”, “under”).
Another interesting feature of this dataset, which contributes to our choice to use it, is its contrastive

2We use Cont A and Cont B as abbreviations in the paper.
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Figure 3: The comparison of the average at-
tention scores received and the length between
the image tokens and text tokens in Cont A.
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Figure 4: The variance of image to-
ken’s attention scores through the
layers in Cont A benchmark.

setting. Controlled Image includes pairs of images with same objects in both “left” and “right”
positions, and sets of same objects exhibiting “left”, “right”, “on”, and “under” relationships. It
enables us further assess model performance using pair accuracy and set accuracy, requiring correct
identification of all relationships within a pair or set, defined by Kamath et al. (2023). It provides a
comprehensive evaluation of spatial relationships, especially when the objects involved are identical.

3.1 VLMS ALLOCATE SPARSE ATTENTION TO THE IMAGE

We analyze how output tokens attend to image tokens by extracting the attention logits across layers,
and present the following key findings: 1) The sum of attention scores to the image tokens is
significantly lower than that to all the input text tokens, despite the considerably higher number of
image tokens. In Figure 3, we focus on the attention scores from the first generated token and sum the
attention allocated to the image tokens. The results reveal that image tokens receive substantially less
attention, with text tokens receiving approximately nine times more. Although the image sequence
has a length of 576, compared to the text sequence, which typically ranges from 30 to 40 tokens
in our short question-answering setting, the model predominantly focuses on text when generating
outputs. In other words, image information is sparsely processed by the language model.

To further investigate, we extract attention scores across the middle layers to observe the flow of
information through the model. As shown in Figure 4, attention to the input image is highest in the
initial layers but decreases sharply within the first two layers to a very low value. In the middle layers,
we observe a slight increase, with attention reaching a modest peak. This leads to our second finding:
2) the model processes the image information primarily through the intermediate layers. Similar
observations have been made by Halawi et al. (2023) and Geva et al. (2023), where intermediate
layers tend to encode more factual knowledge.

3.2 IS THE ANSWER MORE ACCURATE IF THE MODEL SEES THE IMAGE MORE?
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70.970.971.6
73.1
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58.259.1
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55
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52.249.252.7

70

56.653.557

71.3
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acc performance

The AUROC of Image A8en9on and Confidence

Figure 5: Left: Accuracy for adding image attention for all image tokens. Right: AUROC of attention
scores relative to the model’s confidence.

Building on earlier observations, a natural question arises: since the attention scores assigned to the
image are relatively low compared to those for text, could increasing attention to the image improve
the factual accuracy of the model? To investigate this, we conduct a calibration experiment using two
statistical approaches. The first approach sums the attention scores assigned to the image as a metric,
while the second extracts the highest attention score among the image tokens. These metrics are then
evaluated to assess their effectiveness in distinguishing between correct and incorrect generations.
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However, as shown in Figure 5, the AUROC score using attention (the yellow and green bar) is
consistently lower than the AUROC score of the model’s self-confidence (the yellow bar), which we
measure by the probability of the output tokens. Additionally, we observe that the maximum attention
score provides better calibration than the average attention score, suggesting that key information
aligns more closely with maximal attention values. This suggests that the assumption “the more
attention the model pays to the image, the more accurate the results” holds only partially true. This
observation motivated us to explore more intelligent ways to focus on key visual features. In response,
we conducted an additional experiment by incrementally increasing the attention weights across
the entire image, where we intervened by augmenting the image attention logits with a constant
coefficient, as described by Zhang et al. (2023). In Figure 5, we observe that adding a constant weight
uniformly across all image tokens does not improve performance on spatial reasoning tasks.

4 DIVE INTO THE VISUAL PATTERNS

Building on our previous findings, it is clear that the overall attention allocated to the image is notably
low, and the attention weights on the image tokens are insufficient for distinguishing the factuality
of the model’s outputs. These findings necessitate a more fine-grained analysis of this issue. To
address this, we conduct a detailed investigation by mapping the 576 image tokens in LLaVA 1.5 to
their corresponding image patches (24× 24). This visualization enables us to examine the attention
patterns with greater granularity and clarity.

4.1 THE MODEL AUTOMATICALLY FOCUSES ON THE RELEVANT ENTITY WHEN CORRECTLY
ANSWERING QUESTIONS.

Figure 6: Attention visualization examples from the WhatsUp Dataset are shown. The left two
examples are answered correctly, while the right two are incorrect. For correctly answered questions,
the attention scores are precisely focused on the core entities mentioned. In contrast, incorrect
answers show attention scores distributed to irrelevant image regions. The visualizations use attention
from the 17th layer, and the title in each image is an abbreviation of “Where is A in relation to B”.

We separately examine the attention patterns for correctly and incorrectly answered questions. Our
observations reveal that hallucinations frequently occur due to two types of attention failures: (1)
insufficient attention to the correct object, and (2) misplaced attention on irrelevant objects in the
image. Figure 6 illustrates these findings. In the two correct examples on the left, the attention
scores are well-aligned with the referenced entities, with sufficient focus. On the other hand, the two
incorrect examples on the right demonstrate how the model incorrectly assigns attention, effectively
“seeing” the wrong parts of the image. While these examples highlight the qualitative differences
in attention patterns, they do not provide a quantitative metric that aligns with our goal–developing
a method to detect the reliability of internal states and enable intervention. Therefore, the primary
challenge lies in devising effective strategies to adjust the attention scores intelligently, given that we
have no prior information about the scores until a single inference run generates the attention map.

4.2 WHEN CAN WE TRUST A MODEL’S ATTENTION PATTERN, AND WHEN CAN WE NOT?

To determine when to focus more on the image and when to focus more on the text, we begin by
analyzing existing datasets to identify potential patterns. Our investigation starts with an examination
of label distributions across different subsets of the WhatsUp dataset. As shown in Figure 7 (left),
there is a clear label imbalance in the real-image datasets including COCO two and VG two, i.e., only

5
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Figure 7: Left: Comparison of label distributions across different subsets. Right: The model’s average
confidence in different golden spatial relationships within WhatsUp. “On etc” includes “on, above,
top”, while “Under etc” includes “under, below, bottom” The red box highlights instances where the
model is confident in its generation, while the blue box indicates the opposite.

a small portion of the samples have the relation of “behind” and “front”. In contrast, the synthetic
datasets, Cont A and Cont B, which are carefully curated, display more balanced label distributions.
Additionally, we evaluate the model’s confidence scores across these spatial relations by following the
approach of Kadavath et al. (2022), where the probability of the generated output is used to compute
confidence. Figure 7 (right) reveals that the model struggles with specific spatial relationships,
such as “on” and “under”, while demonstrating higher confidence in recognizing more common
relationships, like “left” and “right”. This observation aligns with our intuition that the model tends to
show greater confidence in cases where it performs well and lower confidence where it struggles. This
finding is consistent with previous work showing that models can convey their uncertainty through
confidence scores (Kadavath et al., 2022; Xiong et al., 2024). Motivated by this, we propose using
confidence as a metric to gauge the model’s familiarity with spatial relationships in images.

5 ADAPTVIS

Motivated by our observation of attention misallocation causing spatial reasoning errors (Section 5.1)
and the model’s familiarity with spatial relationships (Section 5.2), we propose a novel decoding
method, ADAPTVIS, and its basic version SCALINGVIS.

5.1 SCALINGVIS: TEMPERATURE SCALING TO IMAGE ATTENTION DISTRIBUTION

Our observations from Section 4.1 reveal that the model often misallocates attention logits within
images, leading to errors in spatial reasoning. To mitigate this, we aim to improve the model’s focus
on key visual features, enhancing its ability to correctly ground spatial relationships, particularly
in complex or ambiguous scenarios. To this end, we propose a simple yet effective approach that
dynamically adjusts image attention by modifying the temperature of the attention distributions.
Specifically, we intervene in the attention of the final input token (n-th position) to the image tokens.

A
(l,h)
n,j =

{
αA

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

(2)

where I represents the indices of all image tokens. In essence, we intervene in the attention score to
the image tokens by multiplying a coefficient α. We uniformly apply this coefficient to all H heads
across all L layers to avoid the need for extensive hyperparameter search. Multiplying the attention
scores in logit space by a coefficient α is equivalent to modifying the temperature T for Softmax,
where increasing α effectively decreases the temperature, leading to a sharper probability distribution
among the image tokens.

Experiment Setting We select two widely-used benchmarks on evaluating the model’s ability on
spatial reasoning WhatsUp (Kamath et al., 2023) (introduced in Section 2), and VSR (Liu et al.,
2023), which contains contains 1223 image-caption pairs with boolean labels. The original VSR is
designed in ⟨image, caption⟩ format to evaluate encoder models without generation capabilities. To
adapt it for our purposes, we utilize GPT-4o to generate questions for the VSR dataset. For evaluation,
we report both accuracy and F1 scores. A small validation set is allocated for each subset to optimize
the temperature based on validation performance, and the final test is conducted on the test set. For
both methods, the hyperparameter α is selected from [0.5, 0.8, 1.2, 1.5.2.0].
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Model Cont A Cont B COCO one COCO two VQ one VQ two
LLaVA-1.5 60.3 40.6 0.0 73.1 41.6 3.7 53 58.2 35.9 40.8
+ScalingVis 64.5 ↑4.2 40.6 ↑0.0 0.0 ↑0.6 75.2 ↑2.1 44.6 ↑3.0 9.8 ↑6.1 53.6 ↑0.6 59.4 ↑1.2 42.7 ↑6.8 48.1 ↑7.3

Best α 0.8 0.8 1.2 1.2 2.0 2.0

LLaVA-1.6 59.7 41.8 31.6 63.0 39.1 3.7 59.7 41.8 31.6 7.3
+ScalingVis 97.0 ↑37.3 76.4 ↑34.6 54.5 ↑22.9 73.4 ↑10.4 48.9 ↑9.8 15.9 ↑12.2 63.1 ↑3.4 47.7 ↑5.9 38.2 ↑6.6 14.6 ↑7.3

Best α 0.8 2.0 1.2 1.5 2.0 2.0

Table 1: Accuracy on WhatsUp (Metrics are in ×10−2). Best-performing method per model and
dataset are highlighted in bold; arrows indicate improvement over greedy decoding.

Results Our results for ScalingVis are presented in Table 1. By controlling the distribution of
attention weights, spatial reasoning performance improves significantly, with gains of up to 37.2
absolute points. An interesting pattern emerges: a temperature below one tends to enhance perfor-
mance on synthetic data in most cases (3 out of 4), while a temperature above one benefits real image
datasets across all cases. Table 1 indicates that for synthetic data, smoothing the image attention
logits improves performance. Conversely, for real image datasets (COCO and VG), the optimal
temperature is consistently above one, demonstrating that a sharper attention distribution helps the
language model discern relationships more effectively.

5.2 ADAPTVIS: CONFIDENCE-AWARE TEMPERATURE SCALING

One of the main limitations of SCALINGVISis the unclear underlying mechanism behind how different
values of α affect various distributions. Specifically, it remains unclear why synthetic data requires
a lower temperature while real data benefits from a higher temperature. To address this, we aim to
adaptively select the temperature on a per-sample basis. In this section, we introduce an extension of
SCALINGVIS: ADAPTVIS Decoding.

A
(l,h)
n,j =

{
α1A

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

, if C < β

(3a)

A
(l,h)
n,j =

{
α2A

(l,h)
n,j if j ∈ I

A
(l,h)
n,j otherwise

, if C > β

(3b)

Confidence-Based Attention Intervention Recall from Section 4.2 that we observe two distinct
patterns in the model’s factuality behavior: (1) synthetic data presents more unfamiliar cases than
the real data, and (2) VLMs could express uncertainty through confidence scores. These insights
motivate using confidence scores as a metric for adaptive intervention in the model’s internal states.
Our intuition is straightforward: when confidence is low, suggesting that the attention pattern may
be unreliable, we smooth the attention distribution. This encourages the model to explore a broader
range of image regions, increasing the likelihood of focusing on the correct patches. Conversely,
when confidence is high and attention is dispersed across the image, we sharpen the distribution to
concentrate on key objects more effectively. Specifically, we apply the targeted intervention to the

Figure 8: Attention scores on the patches before and after our intervention in the 17th layer for the
images in synthetic datasets Cont A and Cont B. We employ a “smoothing” intervention method
to expand the context length of the model’s focused area. From the figure, it is evident that the
model’s focused position undergoes significant changes after our intervention.
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Figure 9: Attention scores on the patches before and after our intervention in the 17th layer for the
images in real datasets COCO and VG. We utilize a “sharpening” intervention method to enhance
the original attention pattern. The highlighted areas remain largely consistent, with our method
serving to reinforce the focus rather than significantly altering it.

attention of the last input token (at the n-th position) directed toward the image tokens as shown in
Equation 5.2. Overall, we use (1) a large α > 1 when the Confidence C is large. This sharpens the
attention distribution and the relevant objects are paid more attention to. (2) a small α < 1 when the
confidence C is small. This mitigates the model’s excessive concentration on certain image tokens
and makes the overall attention distribution smoother across the image.

To illustrate the impact of coefficients greater or less than 1 on different relationships, Figure 10
shows accuracy and confidence variance for various ground-truth relationships. Results indicate that
for familiar relationships like ”left” (red) and ”right” (blue), coefficients greater than 1 boost accuracy
and confidence. Conversely, for less familiar relationships like ”under” (green) and ”on” (yellow),
coefficients less than 1 improve accuracy and confidence.

6 EXPERIMENTS

6.1 EVALUATION SETTINGS

We use the same hyperparameters for SCALINGVIS as in Section 5.1. For ADAPTVIS, we optimize
α1, α2, and β using the validation set from each distribution. Notably, we find that model performance
is robust across a range of these hyperparameters, generalizing effectively to other subsets within the
same distribution (as demonstrated in Table 4). We maintain consistency by using the same range
of α values for both methods. For β, we adjust per dataset: for WhatsUP, we select values from
[0.3, 0.65] for LLaVA-1.6 and [0.2, 0.55] for LLaVA-1.5 with a grid size of 0.05 (this higher range is
due to LLaVA-1.6 generally exhibiting higher confidence than LLaVA-1.5); for VSR, we take the
mean value of the average confidence scores corresponding to the two labels.

6.2 RESULTS

Our main results are presented in Table 2. By controlling the distribution of attention weights, we
observe a significant improvement in spatial reasoning ability, with gains of up to 50 absolute points.
In most cases, ADAPTVISachieves the best performance, particularly for synthetic datasets, as shown
in Table 3, where it significantly outperforms the generalized method. These findings suggest that
model performance varies considerably with the label distribution of the dataset, and smoothing the
distribution (by applying a coefficient smaller than 1) enhances performance. For the real-image
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Figure 10: Accuracy and Confidence comparison for different coefficients α.
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Model What’s Up VSR

COCO one COCO two VQ one VQ two Exact Match F1 score

LLaVA-1.5 53.0 58.2 35.9 40.8 62.4 51.3
+VCD 53.3 ↑0.3 58.2 35.8 ↓0.1 42.5 ↑1.7 62.4 50.6 ↓0.7
+Dola 53.7 ↑0.7 57.5 ↓0.7 36.2 ↑0.3 42.1 ↑1.3 62.8 ↑0.4 53.2 ↑1.9
+SCALINGVIS 53.6 ↑0.6 59.4 ↑1.2 42.7 ↑6.8 48.1 ↑7.3 64.9 ↑2.5 62.5 ↑11.2
+ADAPTVIS 53.6 ↑0.6 59.9 ↑1.7 42.7 ↑6.8 48.1 ↑7.3 65.0 ↑2.6 62.5 ↑11.2

LLaVA-1.6 59.7 41.8 31.6 7.3 58.8 29.4
+VCD 60.6 ↑0.9 44.9 ↑3.1 33.8 ↑2.2 11.6 ↑4.3 58.8 29.4
+Dola 59.7 41.5 ↓0.3 31.5 ↓0.1 7.3 59.3 ↑0.5 31.2 ↑1.8
+SCALINGVIS 63.1 ↑3.4 47.7 ↑5.9 38.2 ↑6.6 14.6 ↑7.3 59.1 ↑0.3 30.6 ↑1.2
+ADAPTVIS 63.1 ↑3.4 47.7 ↑5.9 35.2 ↑3.6 17.2 ↑9.9 62.7 ↑3.9 39.3 ↑9.9

Table 2: Results on WhatsUp and VSR (Metrics are in ×10−2). Best-performing method per model
and dataset are highlighted in bold; arrows indicate improvement over greedy decoding.

Model Controlled A Controlled B

Acc Pair Acc Set Acc Acc Pair Acc Set Acc

LLaVA-1.5 60.3 40.6 0.0 73.1 41.6 3.7
+VCD 61.5 ↑1.2 39.4 ↓1.2 0.0 73.4 ↑0.3 42.2 ↑0.6 3.7
+Dola 61.2 ↑0.9 41.6 ↑1.0 0.0 73.4 ↑0.3 42.2 ↑0.6 3.7
+SCALINGVIS 64.5 ↑4.2 40.6 0.0 75.2 ↑2.1 44.6 ↑3.0 9.8 ↑6.1
+ADAPTVIS 84.9 ↑24.6 61.2 ↑20.6 30.3 ↑30.3 83.8 ↑10.7 55.7 ↑14.1 18.3 ↑14.6

LLaVA-1.6 48.2 37.6 0.0 63.0 39.1 3.7
+VCD 61.8 ↑13.6 41.8 ↑4.2 10.9 ↑10.9 65.4 ↑2.4 41.6 ↑2.5 7.3 ↑3.6
+Dola 48.2 37.6 0.0 62.7 ↓0.3 39.1 3.7
+SCALINGVIS 97.0 ↑48.8 76.4 ↑38.8 54.5 ↑54.5 73.4 ↑10.4 48.9 ↑9.8 15.9 ↑12.2
+ADAPTVIS 98.2 ↑50.0 78.8 ↑41.2 57.0 ↑57.0 73.4 ↑10.4 48.9 ↑9.8 15.9 ↑12.2

Table 3: Results on WhatsUp’s Cont A and Cont B. (Metrics in ×10−2). Best-performing method
per model and dataset are highlighted in bold; arrows indicate improvement over greedy decoding.

datasets, as shown in Table 2, the adaptive method performs slightly better than the generalized
approach, indicating the model’s robustness across different label distributions.

It is important to note that the LLaVA-series models are trained on the COCO dataset, which makes
them highly confident and familiar with COCO and VG image types. Hence trusting the model’s
self-belief and sharpening image attention improves performance. Notably, for datasets containing a
high proportion of unfamiliar images, the adaptive setting proves to be significantly more effective.
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Figure 11: Performance com-
parison before and after SCAL-
INGVIS intervention (α = 0.5).

Reverse curse? Additionally, we observe that the model exhibits
a “reverse curse” phenomenon similar to that has been seen in lan-
guage models (Berglund et al., 2023). When we reverse the order
of the entities in Cont A (e.g., asking the model,“Where is the arm-
chair in relation to the beer bottle?” instead of “Where is the beer
bottle in relation to the armchair?”), there is a significant drop in
performance. As shown in Figure 11, the model’s performance
declines dramatically from a high score to an exceptionally low
one. This reveals that the existing VLMs’s attention pattern and
generation results could be significantly impacted by the prompt.
Our methods, however, consistently improve the model’s perfor-
mance. It suggests that adaptively intervening the attention score
is a generalizable method for different prompts.

Hyperparameter Out-of-Domain Test We evaluated the gen-
eralizability of common hyperparameters across datasets. Specifically, we applied the same set of
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four-option prompts to Controlled Images and COCO subsets. The results in Table 4 indicate that
ADAPTVIS consistently performs well across all subsets, confirming its generalizability.

Model Cont A Cont B COCO one COCO two

Acc Pair Acc Set Acc Acc Pair Acc Set Acc Acc Acc

LLaVA-1.5 60.3 40.6 0.0 73.1 41.6 3.7 53.0 58.2
+Ours 60.3 41.8 ↑1.2 2.4 ↑2.4 76.5 ↑3.4 48.3 ↑6.7 13.5 ↑9.8 53.6 ↑0.6 59.4 ↑1.2

Best α α1 = 0.5 α2 = 1.2 β = 0.3

Table 4: OOD test results on WhatsUp (Metrics in ×10−2). Arrows show growth over baseline.

How do the absolute values of attention scores vary before and after intervention? Figure 12
visualizes the attention logits for two-option Cont A (α=0.5) and six-option VG (α=2). An α of 0.5
decreases the absolute value of logits across layers, while an α of 2 increases them as layers progress.
This indicates that an α larger than 1 could strengthen the model’s orginal attention pattern.
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Figure 12: Attention logit distribution before (blue) and after (pink) intervention in the 14th layer (a
randomly chosen middle layer). From left to right, the plots represent: mean and max attention values
across heads for Cont A, and mean and max attention for Cont B. Red dots mark cases corrected by
our intervention. We could see that α of 0.5 shifts the line left, while α of 2 shifts it right.

7 RELATED WORK

The first line of our related work focuses on research into attention patterns in language models.
Some studies on attention patterns in LLMs reveal biased attention across context windows, such as
ineffective use of the middle context (Liu et al., 2024b) and initial token attention sinks (Xiao et al.,
2023). While some approaches use fine-tuning to overcome these biases (An et al., 2024), training-
free methods like input-adaptive calibration (Yu et al., 2024b) and position-specific interventions (Yu
et al., 2024a) offer efficient alternatives. PASTA (Zhang et al., 2023), a closely related method,
emphasizes attention on selected segments for specific heads; we extend this to VLMs without
manual segment specification or multiple validation runs. Our work is also related with failure
analysis in VLMs, VLMs have been shown to hallucinate more in multi-object recognition tasks
and rely on spurious correlations (Chen et al., 2024c), with systematic visual limitations highlighted
from a CLIP perspective (Tong et al., 2024b). Our work also connects to the decoding strategies for
reducing hallucinations decoding strategies to mitigate hallucinations include contrastive decoding
focusing on image regions (Leng et al., 2024), preference tuning through data augmentation (Wang
et al., 2024), and methods leveraging contrastive layers for enhanced knowledge extraction (Chuang
et al., 2023), as well as activation-based optimal answer identification (Chen et al., 2024b).

8 CONCLUSION AND FUTURE WORK

Our research uncovers the inner working mechanism of VLMs during spatial reasoning, which
is a critical limitation in VLMs and constrains their practical utility when requiring geometric
understanding of visual scenes. We identify key insights through an in-depth study of attention
behaviors across layers: 1) VLMs allocate surprisingly insufficient attention to image tokens; 2) the
location of attention on image tokens is more crucial than quantity; and 3) generation confidence
serves as a reliable indicator of its familiarity with the image and the correctness of its attention
pattern. Based on these findings, we propose ADAPTVIS, a novel decoding method that dynamically
adjusts attention distribution, significantly improving spatial reasoning performance. Future research
could focus on further exploring mechanism interpretability of VLMs on complicated geometric
structure understanding, such as long-horizon spatial reasoning, and investigate other reasons for
spatial reasoning bottleneck, such as the memorization of training data.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our ADAPTVIS approach, we have included all necessary hyperpa-
rameters and training configurations in Section 6. Our source code, including model architecture
details and pre-processing scripts, will be made available as an anonymous downloadable link in the
supplementary materials. Furthermore, for datasets used in our experiments, a detailed description of
the data preparation, along with any custom transformations, is described in Section 3. This structured
documentation aims to allow for seamless replication of our results across different environments.

ETHICS STATEMENT

This paper presents a method to enhance spatial understanding of visual-language models. We use
publicly available datasets and models that may contain biases. However, we think that there are
no ethical concerns that need to be highlighted at the current moment. As we enhance the spatial
reasoning capabilities of VLMs, we must also consider the ethical implications. Improved spatial
understanding in AI systems could raise privacy concerns, particularly in surveillance applications. It
is crucial that the development of these technologies is accompanied by robust ethical guidelines and
privacy safeguards. Furthermore, as these models become more capable, it is important to ensure
equitable access to the benefits they provide, avoiding scenarios where advanced AI widens existing
societal disparities.
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A APPENDIX

A.1 LIMITATIONS

Firstly, our methods, SCALINGVIS and ADAPTVIS, specifically address model-related spatial hallu-
cinations and self-alignment issues but are not designed to handle errors outside the language model’s
capabilities, such as the CLIP failures discussed by Tong et al. (2024b). Secondly, ADAPTVIS relies
on distribution-based confidence to adaptively set the confidence threshold β, we also observe that
the optimal α and β is different across different distributions and prompts. This dependence on a
validation set for tuning poses a limitation on its applicability.

A.2 BROAD IMPACT

Our research into the spatial reasoning capabilities of Large Vision Language Models (VLMs) has
significant implications across various domains of artificial intelligence and its real-world applications.
First and foremost, our findings highlight a critical limitation in current VLMs: while they excel
at object recognition, they struggle with basic spatial relationships. This gap between recognition
and spatial understanding has far-reaching consequences for the practical deployment of VLMs
in scenarios requiring geometric comprehension of visual scenes. Industries such as robotics,
autonomous navigation, and assistive technologies for the visually impaired are particularly affected.
For instance, a robot that can identify objects but cannot understand their spatial relationships may
struggle with tasks like picking and placing items or navigating complex environments. Similarly,
autonomous vehicles might face challenges in interpreting traffic scenarios accurately, potentially
compromising safety.

Our development of ADAPTVIS, a novel decoding method that dynamically adjusts attention distribu-
tion based on the model’s confidence, represents a significant step forward. By enhancing VLMs’
performance on spatial reasoning tasks, ADAPTVIS could unlock new possibilities in various fields.
In healthcare, improved spatial reasoning could lead to more accurate interpretation of medical
imaging, potentially improving diagnostic accuracy. In augmented reality applications, better spatial
understanding could enable more immersive and interactive experiences. For assistive technologies,
enhanced spatial reasoning could provide more accurate and useful descriptions of environments to
visually impaired individuals, significantly improving their independence and quality of life.

Looking ahead, our work opens up new avenues for research in AI and cognitive science. The
exploration of mechanism interpretability in VLMs, particularly for complex geometric structures
and long-horizon spatial reasoning, could provide insights into how artificial systems process and
understand spatial information. This could not only advance AI capabilities but also contribute to
our understanding of human spatial cognition. Additionally, investigating the role of training data
memorization in spatial reasoning bottlenecks could lead to more efficient and effective training
methods for future AI models.

In conclusion, our research not only addresses a fundamental limitation in current VLMs but also
paves the way for more versatile and capable AI systems. As we continue to advance VLMs’
capabilities in visually-driven tasks requiring nuanced spatial understanding, we have the potential to
significantly impact various sectors of society, from healthcare and assistive technologies to urban
planning and environmental monitoring. The future research ahead in this field is both exciting and
challenging, requiring ongoing collaboration between researchers, ethicists, and policymakers to
ensure that these advancements benefit society as a whole.

A.3 PROMPT SENSITIVITY ANALYSIS

To assess the robustness of our method, we varied the number of options in prompts for specific
WhatsUp subsets. For Cont A and Cont B, we reduce the number of options to two, simplifying
the task. Conversely, for COCO subsets, we increase the options to six, making it more challenging.
Table 5 shows that our SCALINGVIS method maintains consistent performance across all cases,

demonstrating robustness.
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Model Cont A Cont B COCO one COCO two
Acc Pair Acc Set Acc Acc Pair Acc Set Acc Acc Acc

LLaVA-1.5 76.4 43.0 4.8 74.6 41.0 1.2 30.8 42.6
+Ours 86.4 ↑10.0 61.2 ↑18.2 27.9 ↑23.1 87.8 ↑13.2 59.3 ↑18.3 22.0 ↑20.8 36.0 ↑5.2 48.6 ↑7.3

Best α 0.5 0.5 2 2

Table 5: Results on WhatsUp (Metrics in ×10−2). Arrows show improvement over greedy decoding.

A.4 RELATED WORK

Attention Patterns in Language Models Ongoing research has shown how large language models
(LLMs) exhibit biased attention across different parts of the context window. Liu et al. (2024b)
find that LLMs fail to effectively utilize the information in the middle of a long context window.
Meanwhile, Xiao et al. (2023) reveals an attention sink at the initial tokens of the input. Besides
finetuning methods to overcome such biases (An et al., 2024), some training-free methods have
been proposed with the benefit of their efficiency. Yu et al. (2024b) proposes to use input-adaptive
calibration to adjust the attention scores, while Yu et al. (2024a) intervenes in position-specific
hidden dimensions to alleviate the lost-in-the-middle phenomenon. A closely related work to ours
is PASTA (Zhang et al., 2023), which emphasizes the attention scores of specific text segments for
selected attention heads. We further develop this motivation on vision language models. Moreover,
our method does not require a manual specification of the emphasized segment or multiple validation
runs to identify effective attention heads.

Failure Analysis of Vision-Language Models Our work relates to research on hallucination
detection in VLMs. Chen et al. (2024c) examine multi-object recognition tasks, observing that
VLMs exhibit more hallucinations when dealing with multiple objects compared to single-object
scenarios. They also note a similar phenomenon to our findings: the distribution of tested object
classes impacts hallucination behaviors, suggesting that VLMs may rely on shortcuts and spurious
correlations. Additionally, Tong et al. (2024b) analyze VLM failures from a CLIP perspective,
highlighting that the visual capabilities of recent VLMs still face systematic shortcomings, partly due
to CLIP’s limitations in specific cases.

Decoding Strategies for Reducing Hallucinations This work is also connected to various decoding
and tuning strategies aimed at mitigating hallucinations in VLMs. Leng et al. (2024) introduce a
contrastive decoding method that emphasizes certain image regions. Wang et al. (2024) propose a
data-augmentation approach to create image-intensive datasets, followed by preference tuning on
this enhanced data. Furthermore, knowledge extraction techniques such as the method proposed
by Chuang et al. (2023) improve decoding by leveraging contrastive layers for better knowledge
extraction. Similarly, Activation Decoding (Chen et al., 2024b) identifies optimal answers as those
with the highest activation values within the context.

A.5 CASE STUDY

We show more case we could fix in this section.

Figure 13: Examples of our fixed case for α = 0.5
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Figure 14: Examples of our fixed case for α = 2.0

A.6 OTHER METRICS TO DISTINGUISH THE DISTRIBUTIONS

After analyzing the experimental results presented in Table 1, we further explored additional metrics
to distinguish the distributions and uncover their underlying characteristics during our preliminary
experiments. Specifically, we examined entropy and skewness. Entropy was selected based on the
hypothesis that parameter differences may stem from the familiarity of attention patterns in real
images, which are generally correct, versus synthetic images, where these patterns tend to be incorrect.
We posit that the model can express ”familiarity” through certain metrics derived from the attention
scores. For example, we hypothesize that the entropy of attention will be lower when the model
encounters familiar cases.

E
(
A(l,h)

n,j

)
= −

t∑
j=1

P̃
(
A(l,h)

n,j

)
log P̃

(
A(l,h)

n,j

)
(4)

In Equation 4,A(l,h)
n,j denotes the attention scores assigned by the h-th head in the l-th layer to the

j-th token in sequence n. The summation runs over j = 1 to t, where t is the total number of tokens
considered for this attention distribution. P̃

(
A(l,h)

n,j

)
is the normalized probability distribution of

these attention scores. This entropy measures the uncertainty or spread of the attention distribution
across tokens.

Our experimental results in Figure A.6 indicate that the attention distribution is heavily influenced
by image features. Notably, the attention distribution is more concentrated in synthetic datasets
than in real images. We attribute this to the fact that synthetic images tend to contain fewer objects,
resulting in a sharper attention distribution. However, this concentration does not provide a reliable
metric for measuring familiarity. Another possible metric is skewness. Another possible metric is
skewness, which captures the asymmetry of the attention distribution. A high skewness suggests
that the attention is predominantly focused on a few positions, while a low skewness indicates a
more balanced spread across multiple regions. By examining skewness, we aim to identify whether
the attention is being disproportionately allocated to particular image features, which could provide
additional insights into how familiarity is expressed through attention patterns. We could see from
Figure A.6 that Synthetic datasets show a higher skewness. However, it also related with the object
distribution, which is not the real factor behinds the difference.

S
(
A(l,h)

n,j

)
=

∑t
j=1 (j − µA)

3
P̃j

σ3
A

(5)

The summation runs over j = 1 to t, where t is the number of tokens considered in the attention
distribution. P̃j denotes the probability assigned to the j-th token in the normalized attention
distribution. The term µA is the mean of the distribution, and σA is its standard deviation. The
skewness is calculated as the normalized third central moment, which measures the asymmetry of the
attention distribution: a positive value indicates a distribution skewed to the right, while a negative
value indicates a skew to the left.
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Figure 15: The skewness and entropy distribution comparison between different subsets. Here we
use Controlled Images and COCO datasets due to all of them are in four option label space, which
enables us to eliminate the influence of prompts.

Dataset Relationship Types

Right Left On Under Behind Front

Controlled A 92 92 130 92 0 0
Controlled B 102 102 0 0 102 102
VG one 376 392 192 198 2 0
VG two 137 127 3 0 5 19
COCO one 564 576 363 744 0 0
COCO two 129 150 86 75 0 0

Table 6: Gold Answer Frequency by Spatial Relation in WhatsUp dataset

A.7 ADDITIONAL STATISTICS

We present the golden labels’ distribution in Table 6. We can see that the label space in synthetic
datasets is balanced while the real image datasets are imbalanced with more “left” and “right” and
fewer other relationships.
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