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Abstract
Graph Transformers (GTs) have demonstrated re-
markable performance in graph representation
learning over popular graph neural networks
(GNNs). However, self–attention, the core mod-
ule of GTs, preserves only low-frequency sig-
nals in graph features, leading to ineffectiveness
in capturing other important signals like high-
frequency ones. Some recent GT models help
alleviate this issue, but their flexibility and expres-
siveness are still limited since the filters they learn
are fixed on predefined graph spectrum or spec-
tral order. To tackle this challenge, we propose a
Graph Fourier Kolmogorov-Arnold Transformer
(GrokFormer), a novel GT model that learns
highly expressive spectral filters with adaptive
graph spectrum and spectral order through a
Fourier series modeling over learnable activa-
tion functions. We demonstrate theoretically and
empirically that the proposed GrokFormer fil-
ter offers better expressiveness than other spec-
tral methods. Comprehensive experiments on
11 real-world node classification datasets across
various domains, scales, and graph properties,
as well as 5 graph classification datasets, show
that GrokFormer outperforms state-of-the-art GTs
and GNNs. Our code is available at https:
//github.com/GGA23/GrokFormer.

1. Introduction
Graph neural networks (GNNs), which jointly encode graph
structures and node features, have been emerging as an ef-
fective generic tool for graph-structured learning problems
(Yi et al., 2023; Qiao et al., 2024). Despite their effective-
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ness, popular GNNs are often limited by issues like over-
smoothing (Oono & Suzuki, 2020) and over-squashing (Top-
ping et al., 2022). On the other hand, graph Transformers
(GTs) use a Transformer-based architecture (Vaswani et al.,
2017) to learn graph representations. Due to its strong ca-
pability in capturing long-range dependencies among graph
nodes, it offers a potential solution to address the issues in
popular GNNs.

One key ingredient to successful GTs is to effectively inte-
grate topological structure information into the Transformer
network. This may be achieved by various position encod-
ing methods such as Laplacian vectors and random walks
(Zhang et al., 2020; Dwivedi & Bresson, 2020; Kreuzer
et al., 2021; Kim et al., 2022; Wu et al., 2021). Other infor-
mation such as graph distances and path embeddings can
also be incorporated into GTs through their attention mech-
anism to improve the performance (Maziarka et al., 2020;
Ying et al., 2021; Chen et al., 2022; Choromanski et al.,
2022; Wu et al., 2024). However, despite the remarkable
success in graph representation learning, their performance
can be severely limited by the inherent low-pass nature
of the self-attention module, since it only preserves low-
frequency signals that highlight similarity between nodes
(Bastos et al., 2022; Wang et al., 2022; Shi et al., 2022). This
prevents GTs from capturing other important frequency sig-
nals, e.g., high-frequency signals that highlight difference
between nodes, which can be crucial for learning complex
relationships of nodes in diverse graphs.

To address this issue, inspired by polynomial GNNs (e.g.,
ChebyNet (Defferrard et al., 2016), GPRGNN(Chien et al.,
2021), BernNet(He et al., 2021),JacobiConv (Wang &
Zhang, 2022)) and A2GCN (Ai et al., 2024), some recent
methods are dedicated to capturing various frequency sig-
nals by order-K polynomial approximation. For example,
FeTA (Bastos et al., 2022) and PolyFormer (Ma et al., 2024)
learn the coefficients for order-K polynomial bases (e.g.,
Chebyshev, Monomial, or Bernstein basis) through the self-
attention mechanism. However, these polynomial filters are
typically approximated via K predefined bases with specific
frequency responses as illustrated in Figure 1(a), and thus,
they have a receptive field of size K in information passing,
leading to a locality modeling and limited flexibility and
expressivity. Consequently, they are often unable to fit com-
plicated graph filters well, as shown by the failure of the
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Figure 1: (a) The frequency response range of K filter bases
{b1(λ), b2(λ), · · · , bk=K(λ)}, k ∈ [1,K] for GrokFormer,
Specformer, and polynomial filters at the spectrum λ w.r.t.
spectral order k, where colors represent the varying fre-
quency components of spectrum at different orders. Polyno-
mial filters typically have fixed bases, e.g., λ, λ2, · · · , λK ,
corresponding to the K filter curves that capture the spe-
cific curvilinear frequencies, whereas Specformer adaptively
learns the filter bases at the first-order spectrum, enabling
it to capture arbitrary frequency responses in the spectrum
plane of k = 1. In contrast, our GrokFormer filter bases are
capable of capturing arbitrary frequency responses across
K different spectral planes. (b) Low-comb filter (ground
truth) and the approximated filters generated by the filters of
GorkFormer and Specformer, and the Bernstein polynomial
filter in BernNet.

prevalent Bernstein polynomial in fitting a low-comb filter
in Figure 1(b). To effectively encode such spectrum informa-
tion and achieve a more global graph modeling, Specformer
(Bo et al., 2023) performs self-attention over the N eigenval-
ues after positional encoding to build learnable filter bases.
As shown in Figure 1(a), the frequency response of its filter
bases can be arbitrary on the first-order graph Laplacian
spectrum. Although it shows impressive effectiveness, its
filter learning has a computational complexity of O(N2),
making it difficult to simultaneously capture higher-order
spectral information, and thus misses some important fre-
quency components embedded in higher-order spectrum.
Therefore, the learning capacity of the Specformer filter
is limited to the specific first-order spectrum and thus it
struggles to fit the complicated low-comb filter in Figure
1(b). Accordingly, the key question we ask here is: can
we have a GT that efficiently and flexibly extracts rich fre-
quency signals across the multi-order spectrum of the graph
Laplacian?

To answer this question, we propose a novel GT model,
called Graph Fourier Kolmogorov-Arnold Transformers
(GrokFormer), which provides an efficient approach for
learning order- and spectrum-adaptive graph filter for GTs.
In particular, motivated by Kolmogorov-Arnold Networks
(KANs) (Liu et al., 2024), GrokFormer leverages learn-

Table 1: Our proposed filter vs. existing spectral filters.

Models Order-adaptive Spectrum-adaptive

GNNs ChebyNet, GPRGNN,
✓ ×BernNet, JacobiConv

GTs
FeTA, PolyFormer ✓ ×

Specformer × ✓
GrokFormer (Ours) ✓ ✓

able activation functions modeled as Fourier series over
K-order graph Laplacian spectrum, producing K adaptive
filter bases. As shown in Figure 1(a), these bases can capture
any frequency response across the spectrum of both low and
high orders (i.e., from 1st to Kth orders). Furthermore, we
devise learnable order coefficients to assign varying impor-
tance to the K filter bases, enabling an adaptive adjustment
in fitting the graph spectral order. The resulting filter in
GrokFormer is adaptive/learnable in both graph spectrum
and spectral order, having better adaptivity than existing pop-
ular filters, as shown in Table 1. In doing so, GrokFormer
filter can more flexibly capture a broader range frequency
responses, offering significantly better expressiveness than
other filters (see Figure 1(b)). The main contributions are as
follows:

• We propose a novel GT model, GrokFormer, that can
effectively capture a wide range of frequency signals
in an order- and spectrum-adaptive manner. To the best
of our knowledge, this is the first GT model that has
a learnable filter in both graph spectrum and spectral
order.

• We further introduce a graph filter learning approach,
namely Graph Fourier KAN, that leverages learnable
activation functions modeled as Fourier series to learn
a set of spectral filter bases. The learned filter enables
GrokFormer to model diverse frequency signals from
a broad graph spectrum of both low and high order.

• We theoretically show that the GrokFormer filter of-
fers better learning ability than state-of-the-art (SOTA)
competing filters, and empirically demonstrate the su-
periority of GrokFormer over SOTA GNNs and GTs
on real-world node- and graph-level datasets.

2. Related Work
Graph Neural Networks. Existing GNNs are mainly di-
vided into two main streams: spatial-based and spectral-
based methods. Spatial-based GNNs, like GCN (Kipf &
Welling, 2017), SGC (Wu et al., 2019) and GAT (Veličković
et al., 2018), update node representations by aggregating
information from neighbors. By stacking multiple layers,
they may learn long-range dependencies but suffer from
over-smoothing and over-squashing. Some improved spa-
tial methods, such as H2GCN (Zhu et al., 2020), HopGNN
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(Chen et al., 2023c) and SHGCN (Yan et al., 2025) propose
to combine first-hop and multi-hop neighborhood represen-
tations. Other studies (Xu et al., 2019; Dong et al., 2021)
point out from a spectral perspective that GCN only consid-
ers the first-order Chebyshev polynomial, which acts as a
low-pass filter. Subsequently, various spectral-based GNNs
have been proposed, such as, GPRGNN (Chien et al., 2021),
BernNet (He et al., 2021) and JacobiConv (Wang & Zhang,
2022) learn arbitrary graph spectral filters by order-K poly-
nomial approximation. HiGCN (Huang et al., 2024) uses
Flower-Petals Laplacians in simplicial complexes to learn
polynomial filters across varying topological scales. How-
ever, the information passing in these polynomial models is
local, and their filters with fixed bases have limited learning
ability.

Graph Transformers. Compared to GNNs, the attention
weights in Transformers can be viewed as a weighted ad-
jacency matrix of a fully connected graph, capturing long-
range dependencies. Some GTs combine both and are pop-
ular in graph representation learning, such as Graphormer
(Ying et al., 2021), GraphGPS (Rampášek et al., 2022),
GRIT (Ma et al., 2023), SAT (Chen et al., 2022), Node-
Former (Wu et al., 2022), NAGphormer (Chen et al., 2023a),
GCFormer (Chen et al., 2024b), and SGFormer (Wu et al.,
2024) are proposed by incorporating various graph struc-
tural information into the Transformer architecture. How-
ever, these GTs are limited by the inherent low-pass nature
of the self-attention mechanism (Bastos et al., 2022). Ad-
vanced GTs have increasingly focused on capturing various
frequency signals to tackle the issue. SignGT (Chen et al.,
2023b) designs a signed self-attention mechanism to capture
low- and high-frequency signals. FeTA (Bastos et al., 2022)
and PolyFormer (Ma et al., 2024) extract various frequency
information via polynomial approximation like polynomial
GNNs. Specformer (Bo et al., 2023) develops learnable filter
bases, offering greater spectral expressiveness compared to
polynomials with fixed bases. However, such spectral filters
still struggle to achieve the desired frequency response due
to their limited focus on the specific first-order spectrum.

3. Preliminaries
3.1. Notations

An attributed graph is represented as G = (V, E ,X), where
V denotes the node set with vi ∈ V and |V| = N , E denotes
the edge set, and X ∈ RN×F is a set of node attributes.
Each vi has a F -dimensional feature representation xi. The
topological structure of G is represented by an adjacency
matrix A = [aij ] ∈ RN×N , aij = aji = 1 if (vi, vj) ∈ E ,
and aij = aji = 0 otherwise. D ∈ RN×N denotes a
diagonal degree matrix with dii =

∑
j aij . The normalized

Laplacian matrix L is defined by L = IN −D− 1
2AD− 1

2 ,
where IN ∈ RN×N denotes an identity matrix.

3.2. Graph Filter

L = UΛU⊤ denotes the spectral decomposition of a Lapla-
cian matrix, where U = (u1, u2, . . . , uN ) is a complete set
of orthonormal eigenvectors, also known as graph Fourier
modes, and Λ = diag

(
{λi}Ni=1

)
is a diagonal matrix of the

eigenvalues of L. The Fourier transform of a graph signal
x ∈ RN×1 is written as x̂ = U⊤x. The inverse transform
is x = Ux̂ (Shuman et al., 2013). Per convolution theorem,
the convolution of the graph signal x with a spectral filter
G having its frequency response as h can be obtained by:

x ∗G = Uh(Λ)U⊤x = Udiag[h(λ1), · · · , h(λN )]U⊤x,
(1)

where h(Λ) applies h element-wisely to the diagonal entries
of Λ, i.e., [h(Λ)]ii = h(λi). A powerful spectral filter can
exploit useful frequency components in graphs.

3.3. Self-Attention

Multi-head self-attention is a key module of Transformers,
having strong ability to capture interactions between any
pair of input instances, e.g., graph nodes in GTs. Let X
denote the input of self-attention, and for simplicity of il-
lustration, we consider the single-head self-attention in the
equation below. It first projects X into three subspaces query
Q, key K, and value V through three projection matrices
WQ,WK ,WV . The self-attention is then calculated as:

Attetion(Q,K,V) = softmax(
QK⊤
√
d

)V, (2)

where d is query dimension, Q = XWQ, K = XWK ,
and V = XWV .

3.4. Kolmogorov-Arnold Network

KAN is grounded in the Kolmogorov-Arnold representation
theorem (Kolmogorov, 1957; Ismayilova & Ismailov, 2024),
which states that for a function f :

f(x1, . . . , xn) =

2n+1∑
q=1

Φq(

n∑
p=1

ϕq,p(xp)), (3)

where ϕq,p is trainable activation function, and Φq: [0,1]
→ R and ϕq,p : R → R are univariate functions that map
each input variable xp. It create an arbitrary function at each
hidden neuron by overlaying multiple nonlinear functions
onto the input features. For a single-layer KAN Φ with an
input dimension of nin and the output dimension of nout:

xout
j =

nin∑
i=1

ϕi,j

(
xin
i

)
, (4)

where xi denotes the i-th dimension of x, and ϕi,j represents
a learnable nonlinear function, often parameterized as a
linear combination of B-splines (Liu et al., 2024).
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Figure 2: Overview of GrokFormer. In addition to the use of self-attention to capture global information in the spatial
domain, a novel Graph Fourier KAN is proposed in GrokFormer the achieve global graph modeling in the spectral domain.
This design enables a strong adaptability in both spectral order and graph spectrum, offering superior expressive power in
capturing diverse graph frequency signals. GrokFormer synthesizes the spatial and spectral representations by a standard
summation and normalization layer, followed by a Feed-Forward Network (FFN) layer for prediction.

4. Methodology
GrokFormer is a novel GT framework empowered by a
Graph Fourier Kolmogorov-Arnold Network (KAN)-based
spectral graph convolutional filter, as shown in Figure 2.
Graph Fourier KAN in GrokFormer is devised in a way that
can adaptively learn diverse frequency signals from a wide
range of spectral order and graph spectrum, going beyond
the self-attention mechanism in GTs.

4.1. The Proposed GrokFormer Filter

The Formulation. To capture various frequencies in a flexi-
ble and efficient manner, we design a novel spectral graph
convolution module, named Graph Fourier KAN. Motivated
by KAN, which use learnable functions parameterized as
splines instead of traditional weight parameters to achieve
parameter-efficient learning, we devise learnable functions
to learn eigenvalue-specific filter functions over the order-K
spectrum of the graph Laplacian, thereby improving the
expressiveness of the filters. However, the spline in KAN
is piecewise and difficult to train (Xu et al., 2024), which
does not meet our goal to develop an efficient filter learning
method. To address this issue, we turn to finding multi-
ple relatively simple nonlinear functions. To this end, we
propose a novel approach that leverages Fourier series rep-
resentation to parameterize each learnable function. The
specific filter function can be accordingly defined as follows:

ϕh(λ) =

K∑
k=1

M∑
m=0

(
cos

(
mλk

)
· akm + sin

(
mλk

)
· bkm

)
,

(5)
where K is the highest order the filter can model, M rep-
resents the number of frequency components (or grid size),

and both of which are hyperparameters; akm and bkm are
trainable Fourier coefficients.

Compared to existing popular graph filters, ϕh(λ) has the
following three advantages. (i) Effectiveness: The orthog-
onality of polynomial bases is a nice property in learning
filters (Wang & Zhang, 2022; Bo et al., 2023). Sine and co-
sine in the Fourier series are orthogonal, our graph Fourier
KAN inherits this property, enabling effective learning of
graph filters. Also, many sine and cosine terms with differ-
ent frequency components can well support the modeling
of rich frequency information in our filter. (ii) Convergence
guarantee: In approximation theory (Pinkus, 2000), the fact
that the Fourier series attains the best convergence rate for
function approximation supports the fast convergence for
our method. (iii) Global graph modeling: The filter func-
tion can effectively attend to all eigenvalues, allowing the
learned graph Laplacian to construct a fully connected graph
that captures global information (Bo et al., 2023).

Order and Spectrum Adaptability. The filter is aimed to
adaptively consider a variety of graph Laplacian spectrum
from the 1st order up to the Kth order (K-order graph spec-
trum for short). To adaptively capture diverse frequency
patterns across different orders, we rewrite Eq. (5) and de-
fine a set of learnable bases at a specific order k as follows:

bk(λ) =

M∑
m=0

(
cos

(
mλk

)
· am + sin

(
mλk

)
· bm

)
, (6)

where k = [1, 2, · · · ,K]. Subsequently, we introduce a
learnable order coefficient αk to adaptively synthesize the
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filter bases from a wide range of orders as follows:

h(λ) =

K∑
k=1

αkbk(λ) (7)

Therefore, the corresponding spectral graph convolution in
GrokFormer is defined as follows,

X
(l)
F = Udiag(h(λ))U⊤X(l−1), (8)

where diag(·) creates a diagonal matrix, X(0) = fθ(X),
and fθ is a two-layer MLP (embedding layer).

Theoretical Analysis. Below we show theoretically that our
proposed filter can flexibly fit graph patterns of any spectral
order K and graph spectrum.

Proposition 4.1. Our graph filter h(λ) is learnable in both
spectral order and graph spectrum:

h(λ) =

K∑
k=1

αk

M∑
m=0

(
cos

(
mλk

)
· akm + sin

(
mλk

)
· bkm

)
,

(9)
where the spectral order k is adaptively determined by co-
efficient αk while the spectrum λ at the specific order k is
adaptively determined by coefficients akm and bkm.

Due to this adaptability, existing advanced filters are special
cases of our GrokFormer filter, showing its better universal-
ity and flexibility in graph pattern modeling.

Proposition 4.2. Existing polynomial filters that can be
formulated as h(λ) =

∑K
k=0 αkλ

k are a simplified variant
of our graph filter.

Proposition 4.3. The graph filter in Specformer is a simpli-
fied variant of our graph filter.

We further show below in Proposition 4.4 that GrokFormer
filter has strong expressiveness and can learn permutation-
equivariant node representations.

Proposition 4.4. Our filter h(λ) can approximate any con-
tinuous function and constructs a permutation-equivariant
spectral graph convolution.

All proofs are provided in Appendix C.

4.2. Network Architecture of GrokFormer

GrokFormer is built upon the original implementation of a
classic Transformer encoder. Specifically, we apply layer
normalization (LN) on the representations before feeding
them into other sub-layers, i.e., the multi-head self-attention
(MHA) and the feed-forward blocks (FFN). Here, we use
an efficient MHA (EMHA) that switches the order from
(QK⊤)V to Q(K⊤V) of Eq. (2) (Shen et al., 2021),
which helps reduce the complexity without affecting per-
formance. We synthesize the representations from both

the EMHA module and the proposed Graph Fourier KAN
module through summation to generate informative node
representations. We formally characterize the GrokFormer
layer as follows:

X
′(l) = EMHA(LN(X(l−1))) +X(l−1) +X

(l)
F ,

X(l) = FFN(LN(X
′(l))) +X

′(l).
(10)

In the final layer of GrokFormer, we calculate the prediction
scores of the nodes from class c. This score is given by:

Ŷ = softmax(X(L)), (11)

where X(L) is the output of the final layer, and Ŷ is the
predicted class label.

Then, GrokFormer can be trained by minimizing the cross
entropy between the predicted and the ground-truth labels:

Lce = −
∑
i∈VL

C∑
c=1

Yic ln Ŷic, (12)

where C is the number of classes, Y is the real labels, and
VL is the training set.

4.3. Complexity and Scalability Analysis

Complexity. Firstly, like previous methods (Bo et al.,
2023; 2024), GrokFormer also needs spectral decompo-
sition, which is done offline in the preprocessing step and
has the complexity of O(N3). Secondly, GrokFormer’s
forward process involves an embedding layer with the
complexity of O(Nd2), efficient self-attention with com-
plexity of O(Nd2), filter base learning with complexity
of O(KNM), and graph convolution with complexity of
O(N2d). Note that explicitly constructing the spectral filter
matrix Udiag(h(λ))U⊤ in Eq. (8) incurs a high computa-
tional cost of O(N3). To address this, we leverage matrix
associativity and compute U⊤X first, which reduce the com-
plexity to O(N2d). As a result, the overall forward pass
complexity of GrokFormer is O(Nd(N + 2d) +KNM).

Scalability. In large graphs, GrokFormer can use Sparse
Generalized Eigenvalue (SGE) algorithms, as outlined in
earlier studies (Cai et al., 2021; Bo et al., 2023; 2024),
to compute q eigenvalues and corresponding eigenvectors,
in which case the decomposition complexity and the for-
ward complexity will reduce to O(N2q) (q ≪ N ) and
O(2Nd2 +KqM +Nqd), respectively. Empirical results
for computational cost can be found in Section 5.5.

5. Experiments
In this section, we conduct comprehensive experiments on
both synthetic and real-world datasets to verify the effec-
tiveness of our GrokFormer. More experiments can be seen
in Appendix B.
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Table 2: Node classification results on five homophilic and five heterophilic datasets: mean accuracy (%) ± std. The best
results are in bold, while the second-best ones are underlined. ‘OOM’ means out of memory

Homophilic Datasets Heterophilic Datasets
Cora Citeseer Pubmed Photo WikiCS Physics Penn94 Chameleon Squirrel Actor Texas

Spatial-based GNNs
GCN 87.14±1.01 79.86±0.67 86.74±0.27 88.26±0.73 82.32±0.69 97.74±0.35 82.47±0.27 59.61±2.21 46.78±0.87 33.23±1.16 77.38±3.28

GAT 88.03±0.79 80.52±0.71 87.04±0.24 90.94±0.68 83.22±0.78 97.82±0.28 81.53±0.55 63.13±1.93 44.49±0.88 33.93±2.47 80.82±2.13

H2GCN 87.96±0.37 80.90±1.21 89.18±0.28 95.45±0.67 83.45±0.26 97.19±0.13 81.31±0.60 61.20±4.28 39.53±0.88 36.31±2.58 91.89±3.93

HopGNN 88.68±1.06 80.38±0.68 89.15±0.35 94.49±0.33 84.73±0.59 97.86±0.16 OOM 65.25±3.49 57.83±2.11 39.33±2.79 89.15±4.04

Spectral-based GNNs
ChebyNet 86.67±0.82 79.11±0.75 87.95±0.28 93.77±0.32 82.95±0.45 97.25±0.78 81.09±0.33 59.28±1.25 40.55±0.42 37.61±0.89 86.22±2.45

GPRGNN 88.57±0.69 80.12±0.83 88.46±0.33 93.85±0.28 82.58±0.89 97.25±0.13 81.38±0.16 67.28±1.09 50.15±1.92 39.92±0.67 92.95±1.31

BernNet 88.52±0.95 80.09±0.79 88.48±0.41 93.63±0.35 83.56±0.61 97.36±0.30 82.47±0.21 68.29±1.58 51.35±0.73 41.79±1.01 93.12±0.65

JacobiConv 88.98±0.46 80.78±0.79 89.62±0.41 95.43±0.23 84.13±0.49 97.56±0.28 83.35±0.11 74.20±1.03 57.38±1.25 41.17±0.64 93.44±2.13

HiGCN 89.23±0.23 81.12±0.28 89.95±0.13 95.33±0.37 83.14±0.78 97.65±0.35 OOM 68.47±0.45 51.86±0.42 41.81±0.52 92.15±0.73

Graph Transformers
Transformer 71.83±1.68 70.55±1.20 86.66±0.50 89.58±1.05 77.36±1.25 OOM OOM 45.21±2.01 33.17±1.32 39.95±0.64 88.75±6.30

GraphGPS 83.42±1.22 75.87±0.71 86.62±0.53 94.35±0.25 79.26±0.57 97.60±0.05 OOM 46.07±1.51 34.14±0.73 37.68±0.94 83.71±5.85

NodeFormer 87.32±0.92 79.56±1.10 89.24±0.23 95.27±0.22 81.03±0.94 96.45±0.28 69.66±0.83 56.34±1.11 43.42±1.62 34.62±1.82 84.63±3.47

SGFormer 87.87±2.67 79.62±1.63 89.07±0.14 94.34±0.23 82.71±0.56 97.96±0.81 76.65±0.49 61.44±1.37 45.82±2.17 41.69±0.63 92.46±1.48

NAGphormer 88.15±1.35 80.12±1.24 89.70±0.19 95.49±0.11 83.41±0.34 97.85±0.26 73.98±0.53 54.92±1.11 48.55±2.56 40.08±1.50 91.80±1.85

Specformer 88.57±1.01 81.49±0.94 90.61±0.23 95.48±0.32 85.15±0.63 97.75±0.53 84.32±0.32 74.72±1.29 64.64±0.81 41.93±1.04 88.23±0.38

PolyFormer 87.67±1.28 81.80±0.76 90.68±0.31 94.08±1.37 83.62±0.17 98.08±0.27 79.27±0.26 60.17±1.39 44.98±3.03 41.51±0.71 89.02±5.44

GrokFormer 89.57±1.43 81.92±1.25 91.39±0.51 95.52±0.52 85.57±0.65 98.31±0.18 83.59±0.26 75.58±1.73 65.12±1.59 42.98±1.48 94.59±2.08

5.1. Performance for Node Classification

Dataset Description. We conduct node classification ex-
periments on 11 widely used datasets in previous graph
spectral models (Bo et al., 2023; He et al., 2021; Deng et al.,
2024), including six homophilic datasets, i.e., Cora, Cite-
seer, Pubmed, the Amazon co-purchase graph Photo (He
et al., 2021), an extracted subset of Wikipedia’s Computer
Science articles–WikiCS (Dwivedi et al., 2023), and a co-
authorship network Physics (Shchur et al., 2018; Chen et al.,
2024a). We also evaluate on five heterophilic datasets, i.e.,
Wikipedia graphs Chameleon and Squirrel, the Actor co-
occurrence graph (Pei et al., 2020), webpage graphs Texas
from WebKB, and Penn94, a large-scale friendship network
from the Facebook 100 (Lim et al., 2021). A more detailed
description can be found in Appendix A.1.

Baselines and Settings. We compare GrokFormer with
sixteen competitive baselines, including four spatial-based
GNNs, five spectral-based GNNs, and seven GTs. Note
that PolyFormer has multiple variants, and we use the Poly-
Former(Cheb) as the baseline. Following the previous works
(He et al., 2021; Huang et al., 2024; Bo et al., 2023), we
randomly split the node set into train/validation/test set with
ratio 60%/20%/20%, and generate 10 random splits to evalu-
ate all models on the same splits. We report the average clas-
sification accuracy and standard deviation for each model.
For polynomial GNNs, we set the order of polynomials K
= 10, consistent with their original setting. For the baseline
models, we adopt the hyperparameters provided by the au-
thors. In the large-scale datasets Physics and Penn94, we
implement truncated spectral decomposition for both Grok-
Former and Specformer to enhance scalability, selecting
the 3,000 eigenvectors associated with the smallest (low-

Table 3: Graph classification results.

PROTEINS MUTAG PTC-MR IMDB-B IMDB-M
Kernel methods

GK 71.4±0.3 81.7±2.1 55.3±1.4 65.9±1.0 43.9±0.4

WL kernel 75.0±3.1 90.4±5.7 59.9±4.3 73.8±3.9 50.9±3.8

DGK 71.7±0.5 82.7±1.4 57.3±1.1 67.0±0.6 44.6±0.5

GNN methods
DGCNN 75.5±0.9 85.8±1.8 58.6±2.5 70.0±10.9 47.8±10.9

GCN 75.2±2.8 85.1±5.8 63.1±4.3 73.8±3.4 55.2±0.3

GIN 76.2±2.8 89.4±5.6 64.6±7.0 75.1±5.1 52.3±2.8

GDN 81.3±3.1 97.4±2.7 75.6±7.6 79.3±3.3 55.2±4.3

HiGCN 77.0±4.2 91.3±6.4 66.2±6.9 76.2±5.1 52.7±3.5

Graph Transformers
Transformer 66.3±8.4 81.9±9.7 57.3±7.0 71.1±3.8 45.8±3.8

Graphormer 68.5±2.3 82.5±3.8 59.2±4.6 73.5±3.8 48.9±2.3

SGFormer 74.6±3.0 88.6±6.3 65.2±4.2 74.7±4.1 56.4±3.4

NAGphormer 72.5±2.3 89.9±10.4 66.5±5.6 75.1±4.3 51.7±3.5

Specformer 70.9±6.0 96.3±5.3 82.9±4.9 86.6±2.7 58.5±3.9

PolyFormer 70.1±2.8 91.0±5.2 78.6±5.4 76.7±3.6 56.1±3.5

GrokFormer 78.2±4.6 99.5±1.6 94.8±6.5 88.5±5.8 62.2±4.3

frequency) and largest (high-frequency) eigenvalues. More
detailed settings can be found in Appendix A.2.

Results. The results are reported in Table 2, which shows
the superiority of GrokFormer over state-of-the-art baselines
in both homophilic and heterophilic datasets.

Both spatial-based and spectral-based models perform well
on the homophilic networks as they can easily capture the
similarity information between neighbors, and the low-pass
filter is easy to fit in the homophilic networks. Although
some GT-based methods, like GraphGPS, also capture the
similarity information between neighbors by integrating
GNNs with Transformers, resulting in certain performance
improvement compared to vanilla Transformer, their heavy
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Table 4: Filter fitting results in the form of SSE ↓ (R2 score ↑). Lower SSE (higher R2) indicates better performance.

Models Low-pass High-pass Band-pass Band-rejection Comb Low-comb
exp(-10λ2) 1-exp(-10λ2) exp(-10(λ− 1)2) 1-exp(-10(λ− 1)2) |sin(πλ)| hδ(λ)

GCN 3.5149(.9872) 68.6770(.2400) 26.2434(.1074) 21.0127(.9440) 49.8023(.3093) 31.1371(.9158)
GAT 2.6883(.9898) 21.5288(.7447) 13.8871(.4987) 12.9724(.9643) 22.0646(.6998) 29.2842(.9270)
ChebyNet 0.8284(.9973) 0.7796(.9902) 2.3071(.9100) 2.5455(.9934) 4.0355(.9455) 5.0966(.9866)
GPRGNN 0.4378(.9983) 0.1046(.9985) 2.1593(.8952) 4.2977(.9894) 4.9416(.9283) 8.6554(.9768)
BernNet 0.0319(.9999) 0.0146(.9998) 0.0388(.9984) 0.9419(.9973) 1.1073(.9853) 4.5643(.9878)
Specformer 0.0015(.9999) 0.0029(.9999) 0.0010(.9999) 0.0027(.9999) 0.0062(.9999) 0.0283(.9998)
GrokFormer 0.0011(.9999) 0.0012(.9999) 0.0004(.9999) 0.0024(.9999) 0.0021(.9999) 0.0029(.9999)

emphasis on global information and dependence on a freely
learned attention matrix often make them susceptible to
overfitting.

Heterophilic networks usually require complicated filters
that have their spectrum adaptive over all eigenvalues to
perform well. Thus, only Specformer and our GrokFormer
can learn and fit such complex filters; the other methods
fail to perform satisfactorily. Compared to Specformer,
our GrokFormer performs better because our filter lever-
ages both order- and spectral-adaptive learning power, while
Specformer ignores the order-adaptive. In addition, Spec-
former learns node representations solely from the spectral
domain, whereas our GrokFormer takes into account both
spectral and spatial information simultaneously. Besides,
GrokFormer can scale up in large graphs via the use of
efficient self-attention and truncated decomposition.

5.2. Performance for Graph Classification

Dataset. We also conduct graph classification experiments
on five TU benchmarks from diverse domains. They in-
clude three bioinformatics graph datasets, i.e., PROTEINS
(Borgwardt et al., 2005), PTC-MR (Toivonen et al., 2003),
and MUTAG (Debnath et al., 1991) and two social net-
work datasets, i.e., IMDB-BINARY and IMDB-MULTI
(Yanardag & Vishwanathan, 2015) (see Appendix A.1 for
more details).

Baselines and Settings. We compare GrokFormer with
diverse comepting models, including kernel-based methods:
GK (Shervashidze et al., 2009), WL kernel (Shervashidze
et al., 2011) and DGK (Yanardag & Vishwanathan, 2015),
popular GNN-based models: DGCNN (Zhang et al., 2018),
GCN, GIN (Xu et al., 2018), GDN (Zhao et al., 2020), and
HiGCN, as well as GTs. We follow the same evaluation
protocol of InfoGraph (Sun et al., 2020) to conduct a 10-fold
cross-validation scheme and report the maximum average
validation accuracy across folds (see Appendix A.2).

Results. The performance of graph classification is pre-
sented in Table 3. We find that the proposed GrokFormer
outperform state-of-the-art baselines on 4 out of 5 datasets
and achieve 11.9% relative improvement in PTC-MR. In

addition, compared to the kernel-based models, our ap-
proaches achieve a greater improvement, with a maximum
improvement of 34.9% in PTC-MR. GNNs and GTs gen-
erally perform better than traditional kernel methods. Re-
markably, due to its more expressive power, GrokFormer
shows consistent superiority over the strongest baseline,
Specformer, achieving an average improvement of 5.6%
across all datasets.

5.3. Effectiveness of GrokFormer in Learning
Pre-defined and Unknown Filter Patterns

5.3.1. PRE-DEFINED FILTERS IN SYNTHETIC DATASETS

Following prior work (Bo et al., 2023), we generate datasets
with six filter patterns of various levels of difficulty. Specifi-
cally, images with a resolution of 100 × 100 from the Image
Processing in Matlab library1 are taken, with the image rep-
resented as a 2D regular grid graph with 4-neighborhood
connectivity. The pixel values serve as node signals ranging
from 0 to 1. These image share the same adjacency ma-
trix A ∈ R10000×10000 and the m-th image has its graph
signal xm ∈ R10000. We apply six different predefined
filters to the spectral domain of its signal, with each filter
detailed in Table 4, where hδ(λ) of Low-comb is defined
as I[0,0.5](λ) + |sin(πλ)| I(0.5,1) + |sin(2πλ)| I[1,2], with
IΩ = 1 when λ ∈ Ω, IΩ = 0 otherwise.

We compare the capability of our GrokFormer filter with
six baselines, including GCN, GAT, ChebyNet, GPRGNN,
BernNet, and Specformer, in fitting these pre-defined fil-
ter patterns through a node regression task. The hy-
perparameters for our model were probed in M ∈
{16, 32, 64, 128, 256}, K ∈ {1, 2, · · · , 10}. For baselines,
we set the hyper-parameters suggested by their authors and
tune the hidden dimensions to maintain a consistent param-
eter scale. Two popular evaluation criteria – the sum of
squared errors and the R2 score – are used.

The fitting results are reported in Table 4. We can observe
that (1) Our GrokFormer filter consistently achieve the best
performance in both metrics. For complex graph filters, such

1https://ww2.mathworks.cn/products/image.html
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Figure 3: Filters learned by our GrokFormer on Cora and
Citeseer (homophilic graphs), and Squirrel and Texas (het-
erophilic graphs). See Appendix B.2 for the other datasets.

as Comb and Low-comb, our filter can also perform very
well, demonstrating its strong expressivity in fitting the com-
plex filters. (2) GCN and GAT can only learn low-pass filter
well, which is not effective in heterophilic graph learning.
(3) Polynomial-based spectral GNNs, ChebyNet, GPRGNN,
and BernNet perform better than GCN by approximating
graph filtering using order-adaptive polynomials. However,
their expressiveness is still limited in learning complex fil-
ters due to fixed filter bases. (4) Specformer learns filters
through spectrum adaptation, possessing stronger expres-
sive ability than polynomial filters, but it is still weaker than
our filter in fitting higher-order patterns as it is pre-fixed to
1st order spectrum, leading to less effective performance
in fitting Comb and Low-comb. Visualization of the filter
fitting results is provided in Appendix B.1.

5.3.2. UNKNOWN FILTERS IN REAL-WORLD
HOMOPHILIC AND HETEROPHILIC DATASETS

We investigate the filters learned by GrokFormer on real-
world homophilic and heterophilic datasets used in Table 2.
Note that no exact ground truth filter patterns are known on
these real-world datasets, but the visualization of the learned
spectrum offers important insights into how the spectrum
and order adaptability in GrokFormer enables the learning
of complex homophily/heterophily relations.

Adaptability in Graph Spectrum. To analyze the impor-
tance of spectrum adaptability, we plot the filters learned by
GrokFormer on two typical homophilic datasets, Cora and
Citeseer, and two heterophilic datasets, Squirrel and Texas,
in Figure 3. We observe that GrokFormer learns a low-
pass filter on Cora and Citeseer, aligning with their strong
homophily. In contrast, on Texas, which exhibits strong
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Figure 4: Order adaptivity analysis results on two ho-
mophilic graphs, including Cora and Pubmed, and two het-
erophilic graphs including Squirrel and Chameleon. See
Appendix B.3 for the other datasets.

heterophily, GrokFormer adaptively learns a high-pass filter
to capture the differential information between nodes. On
Squirrel, which has dense and mostly heterophilic edges,
GrokFormer also effectively learns the heterophily, result-
ing in a comb-alike filter. Importantly, GrokFormer does
not require prior knowledge to manually tune the spectrum
hyperparameters to achieve this; it learns to adaptively fit dif-
ferent filters hidden in the graphs with different homophilic
and heterophilic properties. Similar results can be found for
the other datasets in Appendix B.2.

Adaptability in Graph Spectral Order. Similarly, we
also analyze the order adaptability of GrokFormer on Cora,
Pubmed, Squirrel and Chameleon. To this end, we evaluate
the accuracy performance of GrokFormer with all other
settings fixed except that we increase the order K from one
to six, from which we observe the relation of k and K w.r.t.
the best accuracy. The results are shown in Figure 4. Cora
and Pubmed are strong homophilic network that expect the
low-pass filter, and such filter is easy to learn, on which
GrokFormer fits the graph adaptively with a small K (i.e.,
K ≤ 3) rather than overfitting it with a large K. Squirrel
and Chameleon have a large number of heterophilic edges,
requiring a more complex frequency response (see Figure
3), on which GrokFormer learns to adaptively use a large
K (i.e., K > 3) for capturing rich frequency components
instead of restricting in using small K values. Additionally,
we can observe that the maximum order coefficient αk is
distributed within the K ≤ 3 order filter basis on Cora and
Pubmed, while on Squirrel and Chameleon, as the order
K increases, the largest order coefficient αk extends to
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Table 5: Ablation studies on node- and graph-level tasks

Method Node-level Graph-level
Cora Penn94 Texas PROTEINS IMDB-B

SE 77.42±1.77 76.29±0.35 90.33±2.36 71.4±3.7 74.9±3.8

GFKAN 88.98±1.25 81.36±0.29 93.62±3.04 76.1±3.5 87.3±2.5

Full Model 89.57±1.43 83.59±0.26 94.59±2.08 78.2±4.6 88.5±5.8

the higher-order filter basis. This shows that our method
can learn to adaptively assign a large weight to the most
suitable filter bases, thereby achieving a synthesized filter
specifically for the training graph. More results can be found
for the other datasets in Appendix B.3.

5.4. Ablation Study

The ablation study is performed to analyze the performance
of GrokFormer (Full Model) compared to its two variants:
i) Self-attention-E (SE), which contains only efficient self-
attention mechanism in GrokFormer, with the proposed
spectral graph convolution module removed; ii) Graph
Fourier KAN (GFKAN) that keeps the spectral graph con-
volution module only. The results on three node classi-
fication datasets and two graph classification datasets are
reported in Table 5. It can be observed that Self-attention-E
shows good performance in some datasets such as Texas,
outperforming most spatial methods in Table 2, due to its
ability to capture the feature similarity of the global node.
However, it struggles to perform well on the other graph
datasets due to its limitation in capturing non-low frequency
graph information. The proposed Graph Fourier KAN sig-
nificantly enhances the performance, showing competitive
performance against the state-of-the-art competing methods
in Table 2. This superiority benefits from its order and spec-
trum adaptability that enables expressive graph representa-
tion learning without using self-attention. However, on the
large-scale dataset penn94, which exhibits a low level of ho-
mophily, relying solely on spectral information from Graph
Fourier KAN proves insufficient. GrokFormer achieves
consistently improved performance only when both Graph
Fourier KAN and self-attention are integrated, demonstrat-
ing its ability to effectively synthesize the strengths of both
modules and outperform its individual variants.

5.5. Empirical Time and Space Complexities

In this section, we apply Cora and Penn94 to verify the effi-
ciency of GrokFormer. We test the time and space overheads
of GrokFormer and two spectral GTs, i.e., PolyFormer and
Specformer.

Setup. To perform a fair comparison, we run each model for
1,000 epochs and report the total time and space costs. We
set the hidden dimension d = 64 for all methods. For Spec-
former and our GrokFormer, we use use full eigenvectors
for Cora and 6,000 eigenvectors for Penn94. We set K = 10

Table 6: The training cost in terms of GPU memory (MB)
and running time (s).

Dataset Method Memory (MB) Time (s)

Cora
PolyFormer 1836 13.58
Specformer 1509 4.35
GrokFormer 1267 3.23

Penn94
PolyFormer 14113 121.78
Specformer 5053 9.39
GrokFormer 4647 8.13

for polynomial bases of PolyFormer. The pre-processing of
all models is not included in the training time. The results
are shown in Table 6.

Results. From Table 6, we can find that our GrokFormer
shows high efficiency. Compared with Specformer that
performs self-attention on N eigenvalues with O(N2) com-
plexity, Fourier series representation in our GrokFormer of-
fers lower training complexity, scaling linearly with O(N).
PolyFormer needs to calculate the self-attention weights of
K polynomial bases for N times, which requires a lot of
computations, but Specformer and our GrokFormer only
need to calculate Udiag(λ)U⊤X once for non-local infor-
mation passing. Besides, Specformer and our GrokFormer
utilize a 2-layer MLP (embedding layer) on the feature ma-
trix X to reduce the feature dimension F to number of
classes C (C ≪ F ) before information passing, but Poly-
Former does not have this embedding layer, so it consumes
more computation. In the large graph Penn94, Specformer
and our GrokFormer use truncated spectral decomposition
to reduce the forward complexity, so it is more efficient than
PolyFormer.

6. Conclusion and Future Work
This paper presents GrokFormer, a novel GT model that
learns expressive, adaptive spectral filters through order-K
Fourier series modeling, overcoming the limitations of self-
attention to effectively capture rich frequency signals in a
broad range of graph spectrum and order. Experiments on
the synthetic dataset show that the proposed GrokFormer
filter is more expressive than SOTA graph filters used in
GNNs and GTs. Comprehensive experiments on real-world
datasets also demonstrate that the superiority of GrokFormer
over SOTA GNNs an GTs. A promising future direction
is to learn graph filters with strong expressiveness more
efficiently, without the need for spectral decomposition.
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son, J., Soljačić, M., Hou, T. Y., and Tegmark, M.
Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Ma, J., He, M., and Wei, Z. Polyformer: Scalable node-wise
filters via polynomial graph transformer. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2118–2129, 2024.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P., and Lim, S.-N. Graph in-
ductive biases in transformers without message passing.
In International Conference on Machine Learning, pp.
23321–23337. PMLR, 2023.

Maziarka, Ł., Danel, T., Mucha, S., Rataj, K., Tabor, J., and
Jastrzebski, S. Molecule attention transformer. arXiv
preprint arXiv:2002.08264, 2020.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
International Conference on Learning Representations,
2020.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks. In
8th International Conference on Learning Representa-
tions, 2020.

Pinkus, A. Weierstrass and approximation theory. Journal
of Approximation Theory, 107(1):1–66, 2000.

Qiao, H., Wen, Q., Li, X., Lim, E.-P., and Pang, G. Gener-
ative semi-supervised graph anomaly detection. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, pp. 10–15, 2024.
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A. EXPERIMENTAL DETAILS
A.1. DATASETS

Table 7: Statistics of node classification datasets.

Datasets Cora Citeseer Pubmed Photo WikiCS Physics Penn94 Chameleon Squirrel Actor Texas
#Nodes 2,708 3,327 19,717 7,650 11701 34,493 41,554 2,277 5,201 7,600 183
#Edges 5,429 4,732 44,338 238,163 216,123 247,962 1,362,229 36,101 217,073 33,544 295
#Features 1,433 3,703 500 745 300 500 4,814 2,325 2,089 931 1,703
#Classes 7 6 3 8 10 5 2 5 5 5 5
H 0.81 0.74 0.80 0.83 0.57 0.91 0.47 0.23 0.22 0.22 0.06

The homophily ratio H in Table 7 as a measure of the graph homophily level is used to define graphs with strong
homophily/heterophily. The homophily ratio is defined as H =

|{(vi,vj):(vj ,vi)∈E∧yi=yj}|
|E| (Zhu et al., 2020), which is the

fraction of edges in a graph which connect nodes that have the same class label. Homophily ratio H → 1 represents the
graph exhibit strong homophily, while the graph with strong heterophily (or low/weak homophily) have small homophily
ratio H → 0.

Table 8: Statistics of graph classification datasets

Datasets PROTEINS MUTAG PTC-MR IMDB-B IMDB-M
#Graphs 1113 188 344 1000 1500
#Classes 2 2 2 2 3
#Nodes (Max) 620 28 109 136 89
#Nodes (Avg.) 39.06 17.93 14.29 19.77 13.00
#Edges (Avg.) 72.82 19.79 14.69 13.06 65.93

A.2. DETAILED EXPERIMENTAL SETUP

A.2.1. OPERATING ENVIRONMENT

For the implementation, we utilize NetworkX, Pytorch, and Pytorch Geometric for model construction. All experiments are
conducted on NVIDIA GeForce RTX 3090 GPUs with 24 GB memory, TITAN Xp GPU machines equipped with 12 GB
memory.

A.2.2. NODE CLASSIFICATION

We train all models with the Adam optimizer (Diederik & Ba, 2015) following previous works (Bo et al., 2021; 2023). We
run the experiments with 2,000 epochs and stop the training in advance if the validation loss does not continuously decrease
for 200 epochs. Classification accuracy is used as a metric to evaluate the performance of all models (Kipf & Welling, 2017;
Veličković et al., 2018). For the large-scale dataset Penn94, (Lim et al., 2021) provides five official splits, so we run it five
times to report the mean accuracy. For other datasets, we run the experiments ten times, each with a different random split.
Moreover, due to the increased number of nodes and edges, we set K = 10 for Penn94.

The hyper-parameter ranges we used for tuning on each dataset are as follows:

• Number of layers: {1, 2, 3};

• Number of Fourier series expansion terms: {16, 32, 64};

• Number of heads: {1, 2, 3, 4, 5};

• Hidden dimension: {64, 128};

• Learning rate: {0.01, 0.005};

• Number of K: {1, 2, 3, 4, 5, 6, 10};
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Figure 5: Illustrations of six filters and their approximations learned by our GrokFormer filter, BernNet, and Specformer.

• Weight decays: {5e-3, 5e-4, 5e-5};

• Dropout rates: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

A.2.3. GRAPH CLASSIFICATION

We use the Adam optimizer to train all models. Following (Sun et al., 2020), we perform 10-fold cross validation. We report
the average and standard deviation of validation accuracies across the 10 folds within the cross-validation. We implement
readout operations by conducting max pooling to obtain a global embedding for each graph. Since the computational
complexity of vanilla self-attention in graph classification task can be alleviated by tuning batch size, we employ the vanilla
self-attention mechanism in the graph-level representation learning. Hyperparameter selection range is as follows:

• Number of layers: {1, 2};

• Epoch: {100, 200, 300};

• Learning rates: {0.01, 0.005, 0.001};

• Weight decay: {0.0, 0.0005, 0.00005};

• Dropout rate: {0.0, 0.05, 0.1};

• Number of Fourier series expansion terms: {16, 32, 64};

• Hidden dim: {32, 64, 128};

• Number of K: {1, 2, 3, 4, 5, 6};

• Batch size: {128};
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Figure 6: Filters learned from real-world datasets with varying graph properties by our GrokFormer.

B. MORE EXPERIMENTAL RESULTS
B.1. VISUALIZATION OF LEARNED FILTERS ON SYNTHETIC DATASETS

Here we illustrate six filters and their approximations learned by our GrokFormer filter, BernNet, and Specformer in Figure
5. In general, GrokFormer filter can learn a precise approximation of these filters. However, polynomial filter of BernNet is
difficult to fit these filters, especially other complex filters beyond low-pass and high-pass filters. Although Specformer
has been well fitted, our proposed filter can perform much better, especially on filters with more complex patterns, such as
Comb and Low-comb.

B.2. VISUALIZATION OF LEARNED FILTERS ON REAL-WORLD DATASETS

In this section, we visualize more filter results learned by our GrokFormer on real-world datasets. From Figure 6, we find
that (1) on homophilic graphs, our proposed filter learns low-pass filters with different amplitude and frequency responses
for them, which is consistent with the homophily property, i.e., the low-frequency information is important in the homophilic
scenario. (2) Edges in Chameleon and Penn94 datasets are dense and mostly heterophilic, so our proposed filter learns
comb-alike filters with complex frequency components for them. (3) our GrokFormer filter learns an all-pass filter on the
Actor dataset protecting its raw features, which is consistent with the fact that its raw features are associated with labels (He
et al., 2021).

B.3. ADAPTIVITY IN GRAPH SPECTRAL ORDER

Figure 7 shows additional results on order adaptivity. We observe that GrokFormer achieves the best performance when K
is small on all homophilic datasets. This is because the low-pass filters desired by homophilic networks (see Figure 6) are
easy to learn. GrokFormer fits the graph adaptively with a small K rather than overfitting it with a large K. In addition,
as shown in Figure 3 and Figure 6, a high-pass filter required by the strong heterophilic network Texas, and an all-pass
filter desired by the Actor are also easy to learn, so GrokFormer fits them adaptively with a small K. However, for Penn94,
which have dense edges and predominantly heterophilic, complex comb-like filters (see Figure 6) are required. As a result,
GrokFormer learns to adaptively use a larger K to capture a broader range of frequency components, rather than restricting
itself to a small K. Moreover, we can find that GrokFormer filter assign the largest order coefficient ak to K ≤ 3 order
filter basis on these datasets that expect simple filters (low-pass, all-pass, high-pass), while on Penn94, the largest order
coefficient ak extends to the higher-order filter basis. This demonstrates that our method can effectively learn order-adaptive
filters for datasets with varying properties.

B.4. GRAPH CLASSIFICATION AND REGRESSION

In this section, we conducts experiments on additional graph-level datasets, including a subset (12K) of ZINC molecular
graphs (250K) dataset (Irwin et al., 2012), the super-pixels dataset CIFAR10 (Dwivedi et al., 2023), and a long-range graph
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Figure 7: Order adaptivity analysis results.

Table 9: Detailed information of additional graph-level datasets.

#Graphs Avg. #nodes Avg. #edges Node feat. (dim) Edge feat. (dim) Tasks Metric
ZINC 12,000 23.2 24.9 Atom Type (28) Bond Type (4) Regression MAE

CIFAR10 60,000 117.6 941.1 Pixel[RGB]+Coord (5) Node Dist (1) Classification ACC
Peptides-func 15,535 150.9 307.3 Atom Encoder (9) Bond Encoder (3) Classification AP

benchmark Peptides-func (Dwivedi et al., 2022). We choose graph Transformers with positional or structural embedding
(Graphormer, GraphGPS and GRIT) as the baselines. All experiments are conducted on the standard train/validation/test
splits of the evaluated benchmarks. We use the hyperparameter for the baselines as suggested in their respective papers. Our
hyper-parameters and ranges were as follows:

• Dropout: {0.0, 0.05, 0.1};

• Number of layers: {4, 6, 8};

• Number of Fourier series expansion terms: {16, 32, 64};

• Number of heads: {1, 2, 3, 4, 5};

• Learning rate: {0.001, 0.0001, 0.0005};

• Number of K: {1, 2, 3, 4, 5, 6};

• Weight decays: {5e-4, 5e-5};

Table 10: Results on additional graph-level datasets. ‘∗’ means edge feature is not encoded.

ZINC (MAE↓) CIFAR10 (ACC↑) Peptides-func (AP↑) Peptides-func∗

Graphormer 0.122 - - -
GraphGPS 0.070 72.31 0.6535 0.6257
GRIT 0.060 75.67 0.6988 0.6458
GrokFormer 0.076 74.26 0.6415 0.5987
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• Internal MPGNN: {GCN, GatedGCN(Bresson & Laurent, 2017)};

From the results, we observe that GrokFormer achieves better performance than Graphormer and performs comparably
well to GraphGPS. GrokFormer slightly underperforms GRIT on ZINC and CIFAR10, while the performance margin on
Peptides-func is relatively large. GRIT is designed to improve GT’s expressiveness in large datasets by incorporating graph
inductive biases, so it shows an advantage on long-range graph dataset. Although GraphGPS achieves better performance
on ZINC and Peptides-func, it exhibits suboptimal results on CIFAR10 and the node-level datasets due to overfitting. In
GrokFomer, we aim to enhance the GT’s capability to capture various frequency information on graphs by designing an
expressive filter. It achieves a relatively better balance between the generalization ability and the expressiveness, leading to a
robust performance on both node-level and graph-level datasets.

C. THEORETICAL PROOFS
In the following, we present the proof for Proposition 4.1.

Proof. For the spectrum of graph Laplacian λ, the corresponding arbitrary order is given by [λ0;λ1;λ2; · · · ;λK ]. When
processed by the order-wise MLP with the trainable weight w = [w0, w1, · · · , wK ] ∈ R1×K , the new spectrum λnew is
updated as λnew = w0λ

0 + w1λ
1 + w2λ

2 + · · ·+ wKλK .

In Eq. (9), we eliminate the learnable nonlinear function over the spectrum and define our GrokFormer filter function as
follows:

h(λ) =

K∑
k=0

αkλ
k, (13)

where αk is learned based on the k-order spectrum λk. This value serves as order-adaptive weight for the polynomial filter
similar to wk of MLP. Therefore, the designed GrokFormer filter function is learnable in terms of the spectral order.

Secondly, GrokFormer filter function can be reduced into a simpler form as follows, when removing the order adaptivity
term and the higher-order term:

h(λ) =

M∑
m=0

(cos (mλ) · am + sin (mλ) · bm) . (14)

Here, sin(mλ) and cos(mλ) with m ∈ [0,M ] scale the spectrum with different frequency components. Therefore,
different scales of the spectrum are adjustable due to the presence of learnable coefficient am and bm. They serves as
the spectrum-adapted weights for the filter. Therefore, GrokFormer filter function is also learnable in terms of the graph
spectrum.

In the following, we present the proof for Proposition 4.2.

Table 11: The filter form of polynomial GNNs

Model Filter
APPNP h(λ) =

∑K
k=0

γk

1−γ (1− λ)k

GPR-GNN h(λ) =
∑K

k=0 γk(1− λ)k

BernNet h(λ) =
∑K

k=0 αk

(
K
k

)
(1− λ

2 )
K−k(λ2 )

k

JacobiConv h(λ) =
∑K

k=0 αk

∑k
s=0

(k+a)!(k+b)!(−λ)k−s(2−λ)s

2ks!(k+a−s)!(b+s)!(k−s)!

Proof. Polynomial filters are popular in graph representation learning. We show below that the state-of-the-art (SOTA)
polynomial filters listed in Table 11 is a simplified form of our proposed filter, some of which are utilized by SOTA methods
such as FeTA (Bastos et al., 2022) and PolyFormer (Ma et al., 2024).
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First of all, the polynomial filter functions in Table 11 can be uniformly written as follows:

h(λ) = α0 + α1λ+ α2λ
2 + · · ·αKλK =

K∑
k=0

αkλ
k, (15)

where α is a learnable parameter. These polynomial functions have fixed filter bases (i.e., λ, λ2, · · · , λK ), which approximate
arbitrary spectral filters in an order-adaptive manner. According to the above Proof for Proposition 4.1, our proposed filter
can be simplified to:

h(λ) =

K∑
k=0

αkλ
k. (16)

Therefore, these polynomial filters are the case of a simplified variant of our GrokFormer filter.

Below, we present the proof for Proposition 4.3.

Proof. The very recent model Specformer (Bo et al., 2023) learns graph filters hs(λ) via eigenvalue encoding, which can be
treated as a linear combination of position encoding in graph Transformer when the self-attention matrix is set to the identity
matrix:

hs(λ) = a0λ+

d/2∑
i=1

aisin(
ϵλ

100002i/d
) +

d/2∑
i=1

bicos(
ϵλ

100002i/d
), (17)

where ϵ is a hyperparameter and d is the dimension. ai and bi are learnable parameters. If M = d/2 and m = ϵ
10000i/M

are
used, Eq. (17) can be rewritten as follows:

hs(λ) = a0λ+

M∑
i=1

(sin(mλ) · ai + cos(mλ) · bi). (18)

Therefore, the Specformer filter learns over the specific first-order spectrum of graph Laplacian.

In Eq. (18), the term a0λ can be combined into sine and cosine terms in an approximate manner. Suppose that constants R
and ϕ can be found such that:

a0λ = R sin(λ+ ϕ). (19)

We can approximate a0λ as a linear combination of R sin(λ+ ϕ). Given that the sine function has the linear combination
form sin(x+ ϕ) = sin(x) cos(ϕ) + cos(x) sin(ϕ), we can get the following:

a0λ = R(sin(λ) cos(ϕ) + cos(λ) sin(ϕ)), (20)

where R, cos(ϕ), sin(ϕ) are constants. Therefore, Eq. (18) can be rewrite as follows,

hs(λ) = θ1 sin(λ) + θ2 cos(λ) +

M∑
i=2

(sin(mλ) · ai + cos(mλ) · bi), (21)

where θ1 = R cos(ϕ)a1 and θ2 = R sin(ϕ)b1.

According to the above Proof for Proposition 4.1, our GrokFormer filter can be written as follows:

h(λ) =

M∑
m=0

(sin (mλ) · am + cos (mλ) · bm) . (22)

We can further write the Eq. (22) in the following form:

h(λ) = a0 + a1 sin(λ) + b1 cos(λ) +

M∑
i=2

(sin (iλ) · ai + cos (iλ) · bi) . (23)

Comparing Eq. (21) and Eq. (23), it is clear that the Specformer filter is a simplified variant of our GrokFormer filter.
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Next, we provide the proof for Proposition 4.4.

Proof. According to the uniform convergence of Fourier series (Stein & Shakarchi, 2011), for any continuous real-valued
function f(x) on [a,b] and f

′
(x) is piece-wise continuous on [a,b] and any ϵ > 0, there exists a Fourier series P (x)

converges to f(x) uniformly such that
max
a≤x≤b

|P (x)− f(x)| < ϵ. (24)

Since the eigenvalues fall in the range [0, 2] and our GrokFormer filter is constructed from Fourier series representation, our
filter can approximate any continuous function in the interval [0, 2] based on the uniform convergence of Fourier series
above.

Secondly, the spectral graph convolution in Eq. (8) based on the learnable filter is permutation equivariant because
(PUP⊤)(PΛP⊤)(PUP⊤)⊤ = P(UΛU⊤)P⊤, given an arbitrary permutation matrix P.
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