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Abstract
Generative language models are trained on di-001
verse, general-domain corpora. However, this002
limits their applicability to narrower domains,003
and prior work has shown that continued in-004
domain training can provide further gains. In005
this paper, we introduce a method to scale006
domain adaptation to many diverse domains007
using a computationally efficient adapter ap-008
proach. Our method is based on the observa-009
tion that textual domains are partially overlap-010
ping, and we represent domains as a hierarchi-011
cal tree structure where each node in the tree is012
associated with a set of adapter weights. When013
combined with a frozen pretrained language014
model, this approach enables parameter shar-015
ing among related domains, while avoiding016
negative interference between unrelated ones.017
Experimental results with GPT-2 and a large018
fraction of the 100 most represented websites019
in C4 show across-the-board improvements in-020
domain. We additionally provide an inference021
time algorithm for a held-out domain and show022
that averaging over multiple paths through the023
tree enables further gains in generalization,024
while adding only a marginal cost to inference.025

1 Introduction026

Pretrained language models (PLMs) (Peters et al.,027

2018; Devlin et al., 2019; Liu et al., 2019; Radford028

et al., 2019), trained on massive general-domain029

corpora, have enabled great progress in many natu-030

ral language processing (NLP) benchmarks (Wang031

et al., 2018). Nonetheless, continuing pretraining032

(as a dense model) a PLM on a narrower domain033

(Han and Eisenstein, 2019; Lee et al., 2019) is ben-034

eficial, although computationally expensive (Ma-035

ronikolakis and Schütze, 2021), which indicates036

that domain-relevant data is important for down-037

stream tasks. Sparse models that use mixtures of038

experts (Lepikhin et al., 2021) have recently been039

proposed to allow efficient training.040

Prior work typically assumes that individual do-041

mains are distinct, and models them accordingly.042
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Figure 1: We model domains as a hierarchical tree
structure that associates adapters with nodes, allowing
parameter sharing among related domains. Internet do-
mains appear as leaf nodes. During training, we acti-
vate the adapters along the path to a leaf to specialize a
language model to the domain corresponding to it.

For example, Gururangan et al. (2020, 2021) train 043

one model for each textual domain, either in a 044

dense or sparse manner. This is related to data 045

selection (Moore and Lewis, 2010; Axelrod et al., 046

2011; Plank and van Noord, 2011), which aims to 047

select the best matching data for a new domain. 048

This process does not scale to multiple domains 049

efficiently, as the parameters grow linearly with the 050

domains. It also does not allow sharing represen- 051

tations among related domains during training, as 052

each domain is modeled with a separate set of pa- 053

rameters. At the other extreme, training one model 054

on all domains as is common during unsupervised 055

pretraining does not account for their similarities 056

and differences and might hinder the model’s gen- 057

eralization ability due to negative interference. 058

As an alternative, we start with the observation 059

that the term “domain” typically denotes a distribu- 060

tion over language characterizing a given topic or 061

genre, and that domains are partially overlapping. 062

For example, a sentiment model processing hotel 063

reviews could be expected to benefit by also in- 064

cluding data from restaurant reviews, which might 065

in turn benefit from cooking recipes, but combing 066

hotel reviews and recipes may be detrimental. 067

To overcome this problem, we propose a data- 068
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driven approach to modeling domains that automat-069

ically clusters them in a tree using PLM represen-070

tations. We then introduce an efficient method that071

specializes a PLM in a number of domains lever-072

aging their hierarchical structure. Our approach073

allows parameter sharing among related domains,074

while avoiding negative transfer among unrelated075

ones using adapters (Rebuffi et al., 2017; Houlsby076

et al., 2019), which are lightweight layers, added077

after each transformer (Vaswani et al., 2017) layer.078

Each node in the tree is associated with a sepa-079

rate set of adapters, that are only activated for a080

particular domain. For instance, data from BOOK-081

ING.COM activates parameters in nodes 3, 6, and 7,082

allowing parameter sharing with the highly related083

YELP.COM through nodes 6 and 7 (Figure 1).084

We verify the efficacy of our approach in two set-085

tings. First, we manually define a tree structure, us-086

ing websites as the leaves. In this first few-domain087

setting, our method outperforms prior work includ-088

ing single and multi-domain adapters added to GPT-089

2 (Radford et al., 2019) when tested in-domain. We090

further show that our method generalizes better to091

held-out websites than the baselines.092

We then scale our model to a many-domain set-093

ting across almost 100 websites. We induce the094

hierarchical structure in an unsupervised way using095

representations from GPT-2 with a Gaussian Mix-096

ture Model (GMM) (Aharoni and Goldberg, 2020)097

and hierarchical clustering, similar to Das Gupta098

et al. (2015). In this way, the clusters model tex-099

tual domains and the GMM provides a mechanism100

to automatically find the closest training websites101

to any held-out website. Empirical results show102

across-the-board improvements over strong base-103

lines when evaluated in-domain. We also show104

that an efficient inference-time algorithm that aver-105

ages over multiple paths through the tree improves106

generalization when tested on held-out websites.1107

2 Hierarchical Representation of108

Domains109

In this section, we present the intuition for a hier-110

archical ordering of domains. We then describe111

how we add a hierarchical structure to a PLM and112

present the training process. Additionally, we show113

how a path in the tree is selected to evaluate the in-114

domain and out-of-domain sets. We finally discuss115

the computational cost of our approach compared116

to the baselines and our experimental setup.117

1Our code will be released.

2.1 Text domains and provenance 118

As there is no commonly-accepted definition of a 119

domain in text (Plank, 2016), we define a domain 120

to be a Gaussian cluster from a GMM using PLM 121

representations (Aharoni and Goldberg, 2020). In 122

practice, we use the provenance of a piece of text 123

(in our case the website publishing the text) to as- 124

sign the text to a domain by building a map from 125

website to domain using a small sample of text. In 126

some cases a domain contains a single website, and 127

in others several related websites (see §4). 128

2.2 Hierarchical Structure 129

Domains generally overlap with each other and 130

have different degrees of granularity. A model that 131

encodes them should both capture domain-specific 132

and general-domain information. To this end, we 133

propose representing the data as a tree. An example 134

of a tree structure is shown in Figure 1. Text from 135

specific websites is encoded in the leaf nodes (such 136

as FRONTIERSIN.ORG, JOURNALS.PLOS.ORG), 137

while more general-domain knowledge is encoded 138

in the upper nodes (SCIENTIFIC ARTICLES). 139

2.3 Model Architecture 140

Assuming a corpus with data from n domains, we 141

consider the setting where we have a pretrained 142

model M . We want to use M to adapt to n new 143

domains. To this end, we can leverage adapters. 144

Adapter layer. Adapters are typically added to 145

model M in each transformer layer and are trained 146

to a task, while M remains unchanged. An adapter 147

uses as input the output of the previous layer. It is 148

formally defined as WU ReLU(WD LN(hi)) +hi 149

,where hi is the output of the i-th layer, of dimen- 150

sion m, LN is a layer-normalization (Ba et al., 151

2016), WD is a down-projection in Rm×d, and 152

WU is an up-projection in Rd×m, and d is the bot- 153

tleneck dimension of the adapter module. 154

Single Adapters. To adapt to n domains, one so- 155

lution is to train n adapters (per transformer layer), 156

one for each domain. The number of parameters 157

added from single adapters grows linearly with the 158

number of domains (O(n)). 159

Multi-Domain Adapters. Another solution is to 160

add just one set of adapters to model M . The 161

adapter weights will be updated based on data from 162

all n domains. This is a dense model that does 163

not permit modular training. For n domains, the 164

number of parameters added is constant. 165

Hierarchical Adapters. We propose associating 166
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each of the nodes in a tree that represents domains167

with a set of adapters and adding them to M . This168

sparse model adds parameters that scale logarith-169

mically (O(log(n)) with the number of domains170

because of the binary tree structure (Figure 1).171

While Houlsby et al. (2019) insert adapters but172

re-train layer normalization parameters of M and173

Bapna and Firat (2019) introduce new layer normal-174

ization parameters for every adapter, we introduce175

just one set of layer normalization parameters in176

each transformer layer and these parameters are177

shared between all adapters of a transformer layer.178

2.4 Training & Computational Cost179

When our input consists of data from a particular180

domain, we only update the adapter layers of the181

path that leads to this domain (Figure 1).182

Supposing we have a mini-batch from FRON-183

TIERSIN.ORG, the hidden state hi of the i-th layer184

is the input of adapter1i (the adapter of node 1185

for transformer layer i). hi is also the input of186

adapter5i (parent) and adapter7i (root). Their out-187

puts y1i , y
5
i , y

7
i are averaged. The final representa-188

tion yi is the input to the next transformer layer.189

Using this simple training process, we allow190

sharing between related domains. Upper nodes191

in the tree are updated more often than leaves, thus192

they are better trained and encode more domain-193

general knowledge. More precisely, the root node194

of the hierarchical model in Figure 1 is updated for195

each sequence, but the leaf nodes are only updated196

using sequences from the associated domain.197

In terms of computation, although our model198

adds a large number of trainable parameters (to-199

tal parameters), only a small fraction of them is200

used for each forward pass (active parameters), as201

shown in Table 1. At inference time, to evaluate202

performance on a domain using the tree of Figure 1,203

our approach with a single path uses 126M parame-204

ters (GPT-2 has 112M and the adapters of each path205

account for 14M parameters). When we average206

two paths, 23M parameters are added to GPT-2.207

Kaplan et al. (2020) provided a detailed break-208

down of compute cost for transformer LMs. For209

a model with N non-embedding parameters, the210

approximate cost of a forward pass is 2N flops per211

token. Extending their calculations to our setting,212

for a model with L layers, model dimension dmodel,213

adapter bottleneck size d, a single adapter adds214

4Ldmodeld flops per forward pass over the cost of215

running GPT-2. Our hierarchical method requires216

Few-Domain Many-Domain
Setup Setup

H
ie

ra
rc

hi
ca

l(
ou

rs
) Adapter Size 256 64

# Adapters 7 49
Average path length 3 8
Total parameters 33M 58M
Active parameters 14M 9.5M
Number of updates - root 22K 11K
Number of updates - leaf 5.5K 400

M
ul

ti-
do

m
ai

n Adapter Size 768 512
# Adapters 1 1
Average path length 1 1
Total parameters 14M 9.5M
Active parameters 14M 9.5M
Number of updates 22K 11K

Table 1: Parameters used by our approach and the
multi-domain adapters. The few-domain and many-
domain setup are explained in § 3 and § 4 respectively.

running T adapters per layer per forward pass, 217

where T is the average tree depth. For the many- 218

domain setting in §4 with L = 12, dmodel = 768, 219

d = 64, N = 84M, T = 8, this gives an increase 220

of ~11% flops over GPT-2. At inference time, using 221

two paths (§4.5) the increase is 22% over GPT-2. 222

For fair comparison between our method and 223

the baselines, we scale the adapter size so that our 224

proposed model and the multi-domain adapters (the 225

most related baseline) use the same number of flops. 226

Following the previous paragraph, the adapter sizes 227

in our hierarchical model are smaller by a factor of 228

1/T then those in the baseline models (Table 1). 229

2.5 In-domain/Out-of-domain Evaluation 230

At inference time, we need to define which path 231

should be activated for each domain. When we per- 232

form in-domain evaluation, this is straightforward. 233

We always activate the path that leads to the node 234

that is assigned to this specific domain. 235

For out-of-domain evaluation, we need to find 236

the path that better fits the held-out domain. We 237

can also use multiple paths, as the computational 238

cost is small. We describe in detail how we run 239

out-of-domain evaluation in the following two sec- 240

tions, which present a manually defined (§3) and an 241

automatically created hierarchical structure (§4). 242

2.6 Experimental Setup 243

We use GPT-2 (12 transformer layers; hidden size 244

768) as the pretrained model. GPT-2 has a vocabu- 245

lary of 50,264 BPE (Sennrich et al., 2016) tokens 246

and 112M parameters. Our code is built with Py- 247

Torch (Paszke et al., 2017), using the HuggingFace 248

library (Wolf et al., 2020). We run all experiments 249
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on NVIDIA A100 GPUs with 40GB of RAM. We250

split our corpora in 800-token sequences. Models251

are trained with the Adam optimizer (Kingma and252

Ba, 2015) with an initial learning rate of 1e−3 and253

we accumulate gradients over 2 updates.254

3 Hierarchical Domain Adaptation with255

a Manually Created Tree256

In this section, we implement the model described257

in the prior section for a very limited number of258

domains (few-domain setup), to comprehensively259

examine design choices and verify the performance,260

before moving to a large-scale setting in §4.261

3.1 Data262

We select four websites to be represented by leaf263

nodes in our tree: two that contain scientific arti-264

cles (FRONTIERSIN.ORG, JOURNALS.PLOS.ORG)265

and two that contain reviews (BOOKING.COM and266

YELP.COM). We use text from the released version267

(Dodge et al., 2021) of C4 (Raffel et al., 2020), a268

web-scale corpus of English data; the first three269

domains are some of the largest sources of text in270

C4. We also use YELP.COM, a publicly available271

dataset. Dataset sizes are shown in Appendix A.1.272

3.2 Approach273

We use the hierarchical structure shown in Figure274

1, with two leaf nodes representing scientific arti-275

cles sharing a parent, two leaf nodes representing276

reviews sharing a parent, and a single grandparent277

shared by the two parents. This tree structure was278

manually chosen using domain knowledge. We use279

a pretrained GPT-2 model as our base model, and280

add one set of adapters per node in the tree (one281

adapter per transformer layer for each node). We282

freeze the weights of GPT-2 and train the adapters283

on language modeling of the domains of interest.284

The training process is explained in detail in §2.4.285

3.3 Experimental Setup286

Our hierarchical model adds 7 sets of adapters to287

GPT-2, one for each node in the tree. Each adapter288

has a bottleneck dimension d of 256. For each289

training step, one path through the tree is active (so,290

3 adapters) depending on which domain of text is291

represented in the current batch (see §2.4). Active292

nodes are used in the forward pass and updated in293

the backward pass (during training), while those294

that are not active are not used in the computation.295

We evaluate two baselines: a multi-domain 296

adapter, trained on all in-domain data, and sin- 297

gle adapters, each trained on data from a different 298

website. We ensure that the hierarchical model uses 299

the same amount of compute for a forward pass as 300

the multi-domain adapter baseline (using d = 768 301

and 1 adapter/path). We also train each model to an 302

equal amount of data from each domain. Results 303

are shown after 20 epochs of training (22K steps).

GPT-2 single multi hierarchical
adapters adapters adapters

frontiersin 22.2 16.1 15.8 15.5
journals 24.5 16.6 16.3 15.8
booking 29.7 9.7 9.9 9.2
yelp 36.2 24.3 25.3 23.8

average 27.7 15.8 15.9 15.2

Table 2: In-domain evaluation perplexity for the few-
domain setting (§3). Hierarchical adapters consistently
provide better scores compared to the baselines.

304

3.4 In-Domain Results 305

In-domain evaluation scores are presented in Table 306

2. Our model clearly surpasses the multi-domain 307

adapter baseline in all domains. On average, hier- 308

archical adapters lower the perplexity by 0.7 com- 309

pared to multi-domain adapters. Compared to just 310

evaluating GPT-2, our model yields a large im- 311

provement, confirming prior work that suggests 312

that further training a PLM in-domain is highly ef- 313

fective. Single adapters perform roughly equivalent 314

to multi-domain adapters in this scenario. 315

3.5 Out-of-Domain Results 316

We perform evaluation on 7 unseen domains, some 317

of which represent similar textual domains to our 318

in-domain data, while others are quite different. 319

For example, NCBI, LINK.SPRINGER, and SCHOL- 320

ARS.DUKE contain text from scientific documents, 321

similar to two of our in-domain sources of text, 322

but TECHCRUNCH and MEDIUM are quite dissim- 323

ilar to the in-domain text. All models outperform 324

the baseline of just evaluating GPT-2, as shown in 325

Table 3. We hypothesize that the pretraining data 326

from GPT-2, which has not been publicly released, 327

had a somewhat different distribution to C4, and 328

thus further training on any data from C4 seems 329

to improve performance. The best out-of-domain 330

results are obtained with hierarchical adapters. 331

However, which set of single adapters we should 332

use to evaluate a held-out domain is not obvious. 333

For example, to evaluate on LONELYPLANET, it 334
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GPT-2 single multi hierarchical
adapters adapters adapters

ncbi 20.5 18.2 17.6 17.3
link.springer 27.7 24.5 22.7 22.6
scholars.duke 22.7 20.1 20.3 19.9
techcrunch 27.7 27.1 26.3 27.1
medium 29.1 30.0 27.9 28.5
tripadvisor 41.3 36.6 34.1 26.0
lonelyplanet 35.5 27.1 24.3 25.3

average 29.2 26.2 24.8 23.8

Table 3: Out-of-domain evaluation perplexity for the
small setting (§ 3). For the hierarchical model, 2 paths
through the tree are used for the evaluation. The hierar-
chical model on average outperforms the baselines.

intuitively makes sense to use adapters trained on a335

reviews/travelling domain (BOOKING or YELP), but336

for LINK.SPRINGER, the model trained on a scien-337

tific articles (FRONTIERSIN or JOURNALS) might338

be more suitable. We have no a priori criterion to339

choose the most appropriate model. This is also340

true for our proposed model. We show the best341

evaluation scores using single adapters in Table 3342

(full evaluation in Appendix A.2).343

For the hierarchical adapter model, we show344

evaluation scores using various paths in Table 4.345

As expected, using a single path, the hierarchical346

model performs best leveraging the path of a web-347

site that is most similar to the unseen website. For348

example, the best evaluation score for NCBI is ob-349

tained with the path that leads to JOURNALS, while350

the best score for TRIPADVISOR using the path that351

leads to BOOKING. Using two paths (either the352

paths of FRONTIERS and JOURNALS, or BOOKING353

and YELP), results generally improve. For science354

or technology websites, using the paths of the sci-355

ence domain considerably boosts the hierarchical356

model’s performance. For reviews/travelling web-357

sites, using both paths of the reviews domain is358

beneficial. This confirms our intuition that the hi-359

erarchical structure proposed adequately models360

domains, preventing negative transfer.361

Comparing our hierarchical adapters to multi-362

domain adapters, using a single path, hierarchical363

adapters perform worse than multi-domain adapters364

(average scores of columns 1-4 in Table 4 are365

worse than the average score of column 3 in Ta-366

ble 3). However, with a second path active, hier-367

archical adapters outperform all other approaches368

(Table 3). This highlights an advantage: they are369

extensible even after training, allowing for flex-370

ible performance-efficiency trade-offs that dense371

approaches (like multi-domain adapters) do not.372

1 path 2 paths
journals frontiers booking yelp science reviews

ncbi 17.6 18.7 34.8 26.0 17.3 26.3
link.springer 23.3 23.3 37.0 33.1 22.6 31.8
scholars.duke 20.7 20.7 35.5 29.4 19.9 28.8
techcrunch 27.7 27.9 34.8 32.8 27.1 29.4
medium 29.4 29.4 35.9 36.2 28.5 30.6
tripadvisor 47.9 47.9 37.0 38.1 45.6 26.0
lonelyplanet 39.6 40.0 25.5 38.9 38.5 25.3

average 29.5 29.7 34.4 33.5 28.5 28.3

Table 4: Out-of-domain evaluation of the hierarchical
model using different paths. The left part of the table
shows scores using a single path. The right part shows
results using the average of two paths, corresponding
to either the scientific articles or the reviews domain.

4 Hierarchical Domain Adaptation with 373

an Automatically Created Tree 374

In this section, we scale our approach to a many- 375

domain setup, using a larger set of domains, and 376

thus a much larger hierarchy, adding more adapters 377

in our model. In the previous section, we manually 378

selected a tree based on our domain knowledge, but 379

in this section we automatically create a tree using 380

unsupervised methods. We leverage domain clus- 381

ters obtained using Gaussian Mixture Models and 382

hierarchical clustering and provide an algorithm for 383

out-of-domain evaluation, leveraging the flexibility 384

of hierarchical adapters, that can be combined to 385

improve performance with a minimal cost. 386

4.1 Data 387

As a training and evaluation corpus, we use data 388

from C4. Specifically, we use text from 30 web- 389

sites as our training corpus and we perform out-of- 390

domain evaluation of our model and the baselines 391

on 38 other websites. All websites used belong to 392

the top 100 sites in C4 (details in Appendix A.1). 393

4.2 Approach 394

We want to create a hierarchical structure that repre- 395

sents relations between domains. To this end, we fit 396

a Gaussian Mixture Model (GMM) and then use an 397

agglomerative clustering algorithm on the GMM. 398

A GMM assumes that all data points are generated 399

from a mixture of a k Gaussian distributions and 400

defines the probability for data points to belong to 401

any of these distributions. We consider a GMM 402

to be suitable choice because it accounts for the 403

uncertainty of cluster assignment and provides soft 404

assignments that we use at inference. 405

Similar to Aharoni and Goldberg (2020), we gen- 406

erate contextual representations of 1K sequences 407
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Figure 2: Dendrogram obtained from agglomerative clustering based on the average KL divergences of the GMMs.
This diagram illustrates the hierarchical structure of 30 of the most high-resource websites on C4. The leaf nodes
correspond to the cluster centers and are mapped to the websites they assign the highest probability to.

(uniformly sampled) from each of our 30 training408

websites using GPT-2. We use PCA for dimension-409

ality reduction. We then fit a GMM with 30 compo-410

nents to our data (so, 30 Gaussians/clusters). After411

that, we find the Gaussian which assigns highest412

probability to text from each website, and remove413

any Gaussian which does not assign the highest414

probability to any website (it can be the case that415

text from more than one websites could be drawn416

by the same Gaussian). The websites and their417

corresponding clusters are shown in Figure 2.418

For hierarchical clustering, we use the sym-419

metrized Kullback-Leibler (KL) divergence as a420

distance metric. Suppose we have two multivariate421

normal distributions (means µ0, µ1, covariance ma-422

trices Σ0,Σ1) obtained by the GMM. To measure423

the difference between the two distributions, if they424

have the same dimension N , we compute the KL425

divergence. Because it is asymmetric, we cannot426

use it to measure the distance between distributions,427

so we compute the symmetrized version as follows:428

429

DKL(N0‖N1) =
1

2
tr
(

Σ−1
1 Σ0) + ln

(
det Σ1

det Σ0

))
+

1

2

(
(µ1 − µ0)TΣ−1

1 (µ1 − µ0)−N
)

(1)
430

DKLsym(N0,N1) =

1

2
(DKL(N0‖N1) +DKL(N1‖N0)) (2)431

Using Equation 2 as a distance metric, we use432

agglomerative clustering to infer the structure of 433

our data. We start from 25 clusters, computed by 434

the GMM (5 are ignored because do not assign a 435

high probability to data samples from any website, 436

see Appendix A.3 for the confusion matrix). The 437

clustering algorithm leads to a tree (see Figure 2). 438

Nodes 0-24 correspond to the clusters of the GMM. 439

Each website is assigned to a specific cluster. 440

4.3 Experimental Setup 441

For PCA, we use 100 dimensions. For the hierar- 442

chical clustering, we use distances computed using 443

the symmetrized KL divergence. We get a tree of 444

49 nodes, shown in Figure 2. We add 49 adapters 445

to GPT-2, one for each node. For a single training 446

step, just one path in the tree is active (as in §3). 447

In this set of experiments, we used our compu- 448

tational budget to compare against our strongest 449

baseline, multi-domain adapters, as that provided 450

the most competitive results in §3. Comparing 451

against single adapters could be relevant but we 452

focus on our strongest baseline, as single adapters 453

have shown to be less able to generalize to held- 454

out domains. We train both our hierarchical model 455

and the multi-domain adapter baseline for 4 epochs 456

(11K steps), using 1 GPU per model and stopping 457

after 51 hours. We oversample the low-resource 458

domains to avoid overfitting. We use d = 64 for 459

hierarchical adapters, as the average path length is 460

8 and d = 512 for the multi-domain adapter, since 461

it adds just 1 adapter/transformer layer (Table 1). 462
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Figure 3: In-domain evaluation perplexity. Hierarchical adapters consistently outperform the multi-domain adapter
on all websites used during training.

4.4 In-Domain Results463

Our in-domain results are shown in Figure 3. To464

evaluate our model in-domain, we use the path465

that leads to the cluster that assigns the highest466

probability to the domain of interest (the same as467

during training). For example, to evaluate the per-468

formance of the model on PCWORLD, we use the469

path that leads to cluster 4. The average path length470

in the tree is 8, so we “activate” 8 adapters on av-471

erage at every training step and also for in-domain472

evaluation. Our approach consistently outperforms473

multi-domain adapters, yielding +1.3 on average in474

terms of perplexity (see Appendix A.4 for details).475

4.5 Out-of-Domain Results476

We perform out-of-domain evaluation on 38 held-477

out websites (dataset sizes in Appendix A.1). We478

want to automatically find the best path in the tree479

for a held-out website. To this end, we use the480

fitted GMM to assign probabilities to data from the481

held-out websites. We intuitively want to place a482

held-out website close to similar training websites,483

so that it can benefit from positive transfer.484

To do that, for a given out-of-domain website i,485

we assume we have a set ofN sequences (in our ex-486

periments N = 1, 000) that we can use to find the487

best path; this path is used to evaluate the rest of the488

data from this website (e.g., for computing perplex-489

ity). Following a similar procedure to our training490

regime, we use GPT-2 to encodeN sequences, then491

use the fitted GMM to find the probability assigned492

to each of the N vectors by each cluster (i.e., each493

leaf node). The single best path leads to the leaf494

node that corresponds to cluster m, where m as-495

signs the highest probability to the largest fraction496

of the N sequences from website i. The second 497

best path through the tree leads to cluster n that 498

assigns highest probability to the second-most num- 499

ber of theN sequences from website i. Thus, using 500

the GMM clusters and the hierarchical structure, 501

without training more parameters, we are able to 502

evaluate out-of-domain data using the adapters that 503

were trained on the most related domains. This is 504

similar to the “cached” setting in Gururangan et al. 505

(2021), and it does require a held-out set of N se- 506

quences that are only used for finding the best path 507

through the tree (and not for computing perplexity). 508

This is realistic setting when one has a significant 509

amount of data from a single source, and we leave 510

other approaches (e.g., finding the best path for 511

every input sequence individually) to future work. 512

We show in Table 5 results of the out-of-domain 513

evaluations. Our hierarchical adapter model outper- 514

forms the baseline of just evaluating GPT-2. We no- 515

tice that using a single path, our approach provides 516

worse results compared to multi-domain adapters. 517

In this evaluation, the multi-domain adapters and 518

the hierarchical model have the same number of 519

active parameters, but the adapters in the hier- 520

archical model are trained on less data (except 521

the adapter associated with the root, which has 522

the same number of updates as the multi-domain 523

adapter but is significantly smaller). However, by 524

having two paths through the tree active, the hi- 525

erarchical adapter model leverages its modularity 526

and surpasses multi-domain adapters, obtaining an 527

improvement of +0.6 in terms of perplexity. 528

At inference time, our approach with a single 529

active path uses 122M parameters (112M of GPT-2 530

and ~10M parameters for a path of average length). 531
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When two paths are active, at most 132M parame-532

ters are used. The overhead is thus quite small; if533

the two paths have some overlap, this computation534

is potentially significantly less. On average, active535

parameters in our model are trained on less data536

than multi-domain adapters (e.g., leaf nodes only537

see on average 400 updates, as shown in Table 1).538

Out-of-domain GPT-2 multi hierarchy hierarchy
scores adapters 1 path 2 paths

reuters.com 20.9 16.0 16.4 16.3
ibtimes.co.uk 24.3 19.5 19.7 19.5
bbc.com 23.6 19.1 18.9 18.7
tripadvisor.com 40.4 34.8 35.9 33.8
cnet.com 26.8 23.3 22.2 22.9
telegraph.co.uk 30.9 23.6 24.5 22.2
theatlantic.com 28.5 23.6 23.8 23.6
foxbusiness.com 22.9 17.5 19.9 18.2
thesun.co.uk 26.8 19.9 19.9 18.2
nydailynews.com 24.5 19.3 19.5 18.2
dailystar.co.uk 20.7 13.9 12.2 12.2
fastcompany.com 27.9 21.3 21.5 20.9
nypost.com 26.3 18.9 18.9 18.7
businessinsider.com 24.3 20.5 20.7 20.9
deadline.com 33.1 26.3 33.1 26.8
breitbart.com 22.9 16.9 17.8 17.1
techcrunch.com 27.7 21.5 21.8 20.1
nme.com 28.2 20.1 23.8 20.5
fool.com 23.8 22.2 22.4 22.2
finance.yahoo.com 22.6 20.1 20.3 20.1
youtube.com 15.3 14.2 14.4 13.5
ncbi.nlm.nih.gov 20.7 18.5 18.4 18.2
scholars.duke.edu 22.6 20.7 20.3 20.3
inquisitr.com 22.4 17.5 16.4 16.4
simple.wikipedia.org 22.2 19.5 20.5 19.5
kickstarter.com 26.6 24.0 24.8 22.2
mashable.com 27.1 22.0 22.0 21.8
booking.com 29.7 22.9 24.5 22.0
etsy.com 28.8 26.3 26.8 24.5
fineartamerica.com 25.5 26.6 26.6 24.5
github.com 32.8 30.3 30.6 30.6
journals.plos.org 23.3 20.1 20.1 18.2
itunes.apple.com 34.8 28.8 33.1 30.0
agreatertown.com 44.7 40.0 39.6 35.9
premium.wpmudev.org 31.5 27.7 30.0 27.7
homestars.com 34.1 29.4 28.2 28.2
reference.com 28.5 24.5 25.3 24.5
cnbc.com 21.1 17.6 18.4 17.6

average 26.8 22.3 23.0 21.7

Table 5: Out-of-domain evaluation perplexity. With 1
path, our hierarchical model performs worse than the
baseline. However, using paths of the 2 closest clusters
to a held-out website, our approach yields better results.
We show the paths used in detail in Appendix A.3.

5 Related work539

Our approach draws on prior work in domain adap-540

tion and efficient language model fine-tuning.541

Domain Adaptation. A large research area in542

NLP is domain adaptation (Jiang and Zhai, 2007;543

Daumé III, 2007). Fine-tuning a PLM using data544

from the target task (Howard and Ruder, 2018)545

or the target domain (Rietzler et al., 2020; Han546

and Eisenstein, 2019) has shown to be helpful to 547

mitigate the domain shift between train and test 548

data distributions of the same task. Gururangan 549

et al. (2020) showed that a PLM can further im- 550

prove by fine-tuning on data from a domain that is 551

related to the domain of the task (DAPT). While 552

this work suggests fine-tuning a different model to 553

the domain of each task, our approach trains a sin- 554

gle model to adapt to all domains. Also, although 555

DAPT does not permit parameter sharing between 556

domains, our hierarchical adapter model leverages 557

domain similarities to improve adaptation. 558

Domain expert mixture (DEMix) layers (Guru- 559

rangan et al., 2021) that condition a LM on the 560

domain of input text have been recently proposed. 561

DEMix layers replace feed-forward layers in a 562

transformer and each of them is updated only us- 563

ing data from a specific domain. Then, a modular 564

LM is trained from scratch. On the contrary, we 565

use a PLM and only train adapter layers on the 566

target domains. Since each feed-forward layer is 567

replaced with a mixture of experts, the parameters 568

added grow linearly with the domains. In our ap- 569

proach, however, the number of parameters grows 570

logarithmically, due to the hierarchical structure. 571

Adapters. Efficient fine-tuning using adapters (Re- 572

buffi et al., 2017; Houlsby et al., 2019) is preva- 573

lent in many NLP taks, such as machine transla- 574

tion (Bapna and Firat, 2019), cross-lingual trans- 575

fer (Pfeiffer et al., 2020) and dependency parsing 576

(Üstün et al., 2020). Adapters can be trained on a 577

single task or language (Pfeiffer et al., 2020), but 578

also multilingually (Stickland et al., 2021). To the 579

best of our knowledge, we are the first to use them 580

in a hierarchical structure for domain adaptation. 581

6 Conclusion & Future Work 582

In this paper, we present a novel approach for effi- 583

cient domain adaptation on multiple domains using 584

hierarchical adapters that encode the similarities 585

and differences of domains, allowing parameter 586

sharing but avoiding negative transfer. We start 587

with a manually defined tree and then scale to a 588

large tree, created in an unsupervised way. We 589

also provide an evaluation-time algorithm that can 590

combine paths to best adapt to an unseen domain. 591

In the future, we would like to investigate a more 592

efficient evaluation-time approach, using only a 593

few tokens of an unseen domain. It would also be 594

interesting to extend our model to a multi-lingual 595

setup. 596
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7 Limitations and Risks597

Our work uses generative pretrained language mod-598

els. As such models are trained on large datasets599

from text in the Internet, they encode biases that600

could harm marginalized populations (Bender et al.,601

2021). The specialized language model we propose602

could be used for propaganda or hate speech gen-603

eration, same as any other language model. How-604

ever, our hierarchical adapter model permits adding605

modular components and we believe that it could606

potentially be used to detoxify language genera-607

tion, following Liu et al. (2021). This is in line608

with recent work on sparse models (Gururangan609

et al., 2021; Artetxe et al., 2021).610

References611

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised612
domain clusters in pretrained language models. In613
Proceedings of the 58th Annual Meeting of the Asso-614
ciation for Computational Linguistics, pages 7747–615
7763, Online. Association for Computational Lin-616
guistics.617

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor618
Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,619
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru,620
Giri Anantharaman, Xian Li, Shuohui Chen, Halil621
Akin, Mandeep Baines, Louis Martin, Xing Zhou,622
Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke623
Zettlemoyer, Mona Diab, Zornitsa Kozareva, and624
Ves Stoyanov. 2021. Efficient large scale language625
modeling with mixtures of experts.626

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.627
2011. Domain adaptation via pseudo in-domain data628
selection. In Proceedings of the 2011 Conference on629
Empirical Methods in Natural Language Processing,630
pages 355–362, Edinburgh, Scotland, UK. Associa-631
tion for Computational Linguistics.632

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-633
ton. 2016. Layer normalization.634

Ankur Bapna and Orhan Firat. 2019. Simple, scalable635
adaptation for neural machine translation. In Pro-636
ceedings of the Conference on Empirical Methods in637
Natural Language Processing and the International638
Joint Conference on Natural Language Processing639
(EMNLP-IJCNLP), pages 1538–1548.640

Emily M. Bender, Timnit Gebru, Angelina McMillan-641
Major, and Shmargaret Shmitchell. 2021. On the642
dangers of stochastic parrots: Can language models643
be too big? In Proceedings of the 2021 ACM Confer-644
ence on Fairness, Accountability, and Transparency,645
FAccT ’21, page 610–623, New York, NY, USA. As-646
sociation for Computing Machinery.647

Mithun Das Gupta, Srinidhi Srinivasa, J. Madhukara, 648
and Meryl Antony. 2015. Kl divergence based ag- 649
glomerative clustering for automated vitiligo grad- 650
ing. In 2015 IEEE Conference on Computer Vision 651
and Pattern Recognition (CVPR), pages 2700–2709. 652

Hal Daumé III. 2007. Frustratingly easy domain adap- 653
tation. In Proceedings of the 45th Annual Meeting of 654
the Association of Computational Linguistics, pages 655
256–263, Prague, Czech Republic. Association for 656
Computational Linguistics. 657

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 658
Kristina Toutanova. 2019. BERT: Pre-training of 659
deep bidirectional transformers for language under- 660
standing. In Proceedings of the Conference of the 661
North American Chapter of the Association for Com- 662
putational Linguistics: Human Language Technolo- 663
gies, pages 4171–4186. 664

Jesse Dodge, Maarten Sap, Ana Marasović, William 665
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A Appendix858

A.1 Corpus description859

In Table 8, we present the sizes of the training and860

evaluation corpora used for the many-domain setup.861

Only one corpus is used for the few-domain but862

not the many-domain experimental setting, namely863

YELP.COM2. This corpus has 684M training to-864

kens and 20M evaluation tokens. We randomly865

sub-sample 53M training tokens of this corpus for866

our first, few-domain setup, as we want to train a867

balanced model. Extensive documentation of the868

corpus is available from Dodge et al. (2021). We869

use the C4 corpus in accordance with the terms of870

use3.871

A.2 Few-Domain Setup872

In Table 3, we present out-of-domain evaluation873

perplexities for the first experimental setup. For874

the single adapters model, we present the best-875

performing models in the table. In order to allow876

for an exhaustive comparison, we also present the877

evaluation results of all the trained single adapter878

models on all held-out websites in Table 6. We see,879

for example, that when evaluating on the traveling880

website TRIPADVISOR, the single adapter model881

that was trained on either BOOKING or YELP pro-882

vides the lowest perplexity scores, confirming our883

intuition that for a held-out website, we should use884

a model trained on a very similar domain.885

single adapters trained on baseline
booking yelp frontiers journals GPT-2

ncbi 20.1 20.1 19.7 18.2 20.5
link.springer 27.1 27.1 24.5 24.5 27.7
scholars.duke 22.2 22.2 22.2 20.1 22.7
techcrunch 27.1 27.1 27.1 27.1 27.7
medium 30.0 30.0 30.0 30.0 29.1
tripadvisor 36.6 36.6 49.4 49.4 41.3
lonelyplanet 30.0 27.1 40.4 40.4 35.5

Table 6: Out-of-domain evaluation of single adapters
in the few-domain setup (§3). We evaluate every set
of single adapters in 7 different websites. The best re-
sults for every out-of-domain website (underlined) are
shown in Table 3.

A.3 Many-Domain Setup886

Confusion Matrix. Figure 4 depicts the confusion887

matrix of the GMM. We can observe visually that888

some clusters assign a high probability to multiple889

internet domains, while others remain empty. This890

shows that the intuition have for what a domain is891

2www.yelp.com/dataset
3commoncrawl.org/terms-of-use/

In-domain scores GPT-2 multi hierarchical
adapters adapters

ign.com 30.0 25.5 23.8
insiderpages.com 30.0 19.7 18.4
eventbrite.com 34.5 27.4 25.5
androidheadlines.com 21.8 17.1 16.0
link.springer.com 27.9 22.6 21.5
librarything.com 29.4 17.6 16.9
csmonitor.com 29.4 25.8 24.8
city-data.com 36.2 31.2 30.3
forums.macrumors.com 37.0 27.7 26.0
glassdoor.com 20.7 7.9 7.5
oreilly.com 27.4 21.5 20.5
pcworld.com 24.3 19.7 18.9
express.co.uk 22.2 15.0 14.0
answers.sap.com 60.3 34.5 30.3
prweb.com 25.8 20.1 18.9
instructables.com 32.8 28.2 26.6
deviantart.com 42.5 33.1 31.2
entrepreneur.com 26.3 22.0 20.9
si.com 22.2 17.3 16.4
gsmarena.com 56.3 34.5 31.2
wired.com 30.0 24.3 23.8
medium.com 29.1 23.1 22.6
baltimoresun.com 27.1 20.9 20.1
npr.org 22.2 18.0 17.5
frontiersin.org 22.0 18.4 17.2
chicagotribune.com 27.1 21.1 20.7
foxnews.com 22.2 15.3 14.9
aljazeera.com 22.2 17.8 17.1
dailymail.co.uk 27.1 21.1 20.7
lonelyplanet.com 35.5 19.5 17.1

average 30.0 22.3 21.0

Table 7: In-domain evaluation perplexity for the many-
domain setup (we note that the hierarchical model uses
a single path).

does not correspond exactly to the cluster obtained 892

by an unsupervised, data-driven approach. Our 893

visualization is based on publicly available code4. 894

Out-of-domain Evaluation. As mentioned in 895

§4.5, to run evaluation on a given out-of-domain 896

website i, we use two paths of the trained hierar- 897

chical model. The first path leads to the leaf node 898

that corresponds to clusterm (withm assigning the 899

highest probability to the largest fraction of N se- 900

quences from website i) and the second path leads 901

to cluster n, where n assigns the highest probabil- 902

ity to the second-most number of the N sequences. 903

We present the clusters m and n (and the websites 904

they were mapped to during training) in Table 9. 905

A.4 Experimental Details 906

Because we wanted to keep a modest computa- 907

tional budget, we did not perform multiple training 908

runs for the hierarchical models and the baselines. 909

Results are reported over a single run. 910

4github.com/roeeaharoni/unsupervised-domain-clusters
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Train (Eval.) Tokens Train (Eval.) Tokens

T
R

A
IN

IN
G

C
O

R
P

U
S

frontiersin.org 38M (6M)

E
V

A
L

U
A

T
IO

N
C

O
R

P
U

S

journals.plos.org 53M (6M)
chicagotribune.com 31M (4M) fool.com 34M (4M)

link.springer.com 28M (4M) businessinsider.com 32M (4M)
aljazeera.com 26M (3M) theatlantic.com 30M (4M)

instructables.com 25M (3M) booking.com 30M (4M)
npr.org 25M (3M) kickstarter.com 26M (3M)

dailymail.co.uk 25M (3M) telegraph.co.uk 25M (3M)
csmonitor.com 23M (3M) cnet.com 24M (3M)

baltimoresun.com 23M (3M) ncbi.nlm.nih.gov 23M (3M)
city-data.com 22M (3M) foxbusiness.com 23M (3M)

forums.macrumors.com 22M (3M) cnbc.com 20M (2M)
medium.com 22M (3M) ibtimes.co.uk 18M (2M)
foxnews.com 22M (3M) reuters.com 17M (2M)

si.com 18M (2M) bbc.com 17M (2M)
wired.com 18M (2M) nypost.com 15M (2M)
prweb.com 17M (2M) nydailynews.com 14M (2M)

express.co.uk 16M (2M) fastcompany.com 14M (2M)
entrepreneur.com 16M (2M) mashable.com 14M (2M)

androidheadlines.com 14M (2M) thesun.co.uk 13M (2M)
pcworld.com 14M (2M) techcrunch.com 13M (2M)

gsmarena.com 12M (2M) inquisitr.com 13M (2M)
eventbrite.com 11M (1M) youtube.com 11M (1M)

ign.com 10M (1M) itunes.apple.com 11M (1M)
oreilly.com 9M (1M) breitbart.com 10M (1M)

deviantart.com 9M (1M) etsy.com 10M (1M)
insiderpages.com 8M (1M) github.com 10M (1M)
lonelyplanet.com 6M (1M) agreatertown.com 9M (1M)
answers.sap.com 6M (1M) premium.wpmudev.org 9M (1M)

glassdoor.com 4M (500K) deadline.com 9M (1M)
librarything.com 3M (500K) dailystar.co.uk 9M (1M)

reference.com 7M (1M)
scholars.duke.edu 7M (1M)

tripadvisor.com 7M (1M)
simple.wikipedia.org 6M (1M)

nme.com 5M (1M)
homestars.com 3M (500K)

fineartamerica.com 2M (500K)

Table 8: Domains that make up our in-domain (training) and out of-domain (evaluation) corpus for the large setup,
including the size of our training and evaluation data. All data is extracted from C4 (Raffel et al., 2020).
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www.frontiersin.org
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In
te

rn
et

 D
om

ai
n

872 0 0 9 1 9 0 0 0 7 3 0 0 0 6 5 4 0 1 0 58 6 0 9 0 0 0 0 2 8

8 969 0 0 0 0 0 3 5 6 0 0 0 0 0 2 3 1 0 0 0 1 0 0 0 0 0 0 0 2

0 754 0 0 1 137 0 2 0 4 0 0 0 0 3 1 1 75 0 0 1 16 0 0 0 0 0 0 1 4

1 0 0 847 1 0 0 0 0 0 3 0 0 0 3 1 0 3 0 1 136 4 0 0 0 0 0 0 0 0

0 0 0 0 762 1 10 0 0 5 11 0 0 0 0 0 0 0 0 0 0 12 0 0 194 0 0 0 0 5

4 0 0 0 0 785 15 3 1 72 2 0 0 0 2 0 16 5 0 0 0 84 0 0 0 0 0 1 2 8

1 1 0 0 5 102 213 174 0 1 1 0 0 0 2 13 0 14 11 0 17 5 0 43 0 0 0 370 26 1

2 3 0 0 0 3 145 761 3 3 0 0 0 0 4 39 3 8 0 0 7 15 0 4 0 0 0 0 0 0

2 0 0 7 6 1 6 22 848 3 10 0 0 4 10 11 1 1 0 8 6 52 0 0 0 0 0 2 0 0

0 4 0 0 1 0 1 0 0 886 1 0 0 0 0 1 0 102 0 0 0 3 0 1 0 0 0 0 0 0

0 0 0 2 97 0 1 0 4 0 810 0 0 2 16 1 0 32 0 0 1 34 0 0 0 0 0 0 0 0

11 0 0 487 14 0 2 0 2 0 172 0 0 0 10 2 0 11 0 0 263 20 0 4 0 0 0 1 1 0

0 0 0 1 2 0 2 0 0 0 0 0 868 0 10 4 0 0 0 0 0 0 0 0 0 0 0 5 108 0

0 0 0 0 1 1 0 0 0 5 3 0 0 982 1 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0

0 219 0 1 68 46 14 20 0 2 31 0 0 0 91 18 0 427 0 0 27 18 0 6 0 0 0 0 9 3

1 0 0 0 30 0 6 1 42 0 12 0 0 1 4 877 5 0 0 0 2 19 0 0 0 0 0 0 0 0

10 0 0 0 0 5 24 7 20 1 0 0 0 0 21 17 849 1 0 0 4 39 0 0 0 0 0 0 2 0

0 1 0 8 2 13 12 22 0 0 21 0 0 0 12 3 0 802 0 0 61 31 0 6 0 0 0 3 3 0

0 0 0 0 0 0 1 0 0 0 0 0 126 0 1 0 0 0 769 0 1 0 0 0 0 0 0 0 102 0

1 0 0 59 0 0 0 0 40 0 1 0 0 0 0 1 0 0 0 890 2 6 0 0 0 0 0 0 0 0

21 3 0 62 68 29 185 24 3 6 43 0 0 0 17 28 1 59 1 0 280 126 0 15 0 0 0 15 14 0

6 3 0 2 66 28 39 19 6 3 289 0 0 5 33 14 6 219 15 0 29 185 0 5 0 0 0 26 2 0

0 6 0 1 1 137 28 315 0 2 0 0 0 0 1 16 0 12 189 0 11 0 0 34 0 0 0 36 211 0

1 1 0 0 13 129 94 124 0 6 1 0 0 0 4 16 0 10 5 0 13 6 0 434 0 0 0 105 38 0

0 0 0 0 424 0 0 0 0 6 3 0 0 0 7 0 0 0 0 0 0 0 0 0 560 0 0 0 0 0

1 11 0 2 2 118 46 268 0 6 0 0 0 0 1 15 0 10 147 0 23 7 0 39 0 0 0 63 236 5

0 0 0 2 35 3 30 43 0 2 0 0 0 0 24 11 0 2 85 0 6 5 0 15 0 0 0 322 415 0

0 0 0 0 2 7 55 7 0 0 0 0 8 0 2 0 0 1 4 0 5 0 0 1 0 0 0 823 84 1

0 0 0 3 14 23 43 17 0 0 0 0 65 0 18 16 0 1 12 0 4 4 0 2 0 0 0 95 669 14

0 1 0 0 0 3 18 0 0 12 0 0 0 0 14 15 0 0 0 0 0 0 0 0 0 0 0 8 0 929

Figure 4: Confusion Matrix. The x-axis depicts the clusters that the internet domains are assigned to. If no data
samples are added to a cluster (for example, cluster 2), the corresponding Gaussian distribution is not used for
the hierarchical clustering. The y-axis depicts the internet domains used for training. The cluster numbers shown
here are not the exact ones shown in the final dendrogram, but one can easily observe that, for example, the same
cluster (in this example, cluster 7) assigns the highest probability to CITY-DATA.COM, BALTIMORESUN.COM and
CHICAGOTRIBUNE.COM. This is mirrored in Figure 2 of the main paper.
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Held-out Website Path to Cluster m Train. Website of Cluster m Path to Cluster n Train. Website of Cluster n

reuters.com 14 aljazeera.com 15 npr.org
ibtimes.co.uk 9 dailymail.co.uk 14 aljazeera.com
bbc.com 9 dailymail.co.uk 3 express.co.uk
tripadvisor.com 5 insiderpages.com 22 lonelyplanet.com
cnet.com 18 wired.com 17 androidheadlines.com
telegraph.co.uk 9 dailymail.co.uk 14 aljazeera.com
theatlantic.com 0 city-data.com 14 aljazeera.com
foxbusiness.com 11 prweb.com 15 npr.org
thesun.co.uk 9 dailymail.co.uk 3 express.co.uk
nydailynews.com 9 dailymail.co.uk 6 si.com
dailystar.co.uk 3 express.co.uk 9 dailymail.co.uk
fastcompany.com 1 entrepreneur.com 18 wired.com
nypost.com 9 dailymail.co.uk 6 si.com
businessinsider.com 1 entrepreneur.com 18 wired.com
deadline.com 8 librarything.com 9 dailymail.co.uk
breitbart.com 14 aljazeera.com 0 city-data.com
techcrunch.com 18 wired.com 1 entrepreneur.com
nme.com 8 librarything.com 9 dailymail.co.uk
fool.com 1 entrepreneur.com 15 npr.org
finance.yahoo.com 1 entrepreneur.com 15 npr.org
youtube.com 11 prweb.com 15 npr.org
ncbi.nlm.nih.gov 4 link.springer.com 19 frontiersin.org
scholars.duke.edu 4 link.springer.com 19 frontiersin.org
inquisitr.com 9 dailymail.co.uk 18 wired.com
simple.wikipedia.org 10 csmonitor.com 8 librarything.com
kickstarter.com 16 deviantart.com 18 wired.com
mashable.com 18 wired.com 9 dailymail.co.uk
booking.com 5 insiderpages.com 22 lonelyplanet.com
etsy.com 13 instructables.com 5 insiderpages.com
fineartamerica.com 16 deviantart.com 13 instructables.com
github.com 7 oreilly.com 2 answers.sap.com
journals.plos.org 4 link.springer.com 19 frontiersin.org
itunes.apple.com 20 gsmarena.com 8 librarything.com
agreatertown.com 22 lonelyplanet.com 5 insiderpages.com
premium.wpmudev.org 2 answers.sap.com 7 oreilly.com
homestars.com 5 insiderpages.com 13 instructables.com
reference.com 13 instructables.com 10 csmonitor.com
cnbc.com 15 npr.org 1 entrepreneur.com

Table 9: The two paths used for evaluation of the hierarchical adapter model on each held-out website.
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