Efficient Hierarchical Domain Adaptation
for Pretrained Language Models

Anonymous ACL submission

Abstract

Generative language models are trained on di-
verse, general-domain corpora. However, this
limits their applicability to narrower domains,
and prior work has shown that continued in-
domain training can provide further gains. In
this paper, we introduce a method to scale
domain adaptation to many diverse domains
using a computationally efficient adapter ap-
proach. Our method is based on the observa-
tion that textual domains are partially overlap-
ping, and we represent domains as a hierarchi-
cal tree structure where each node in the tree is
associated with a set of adapter weights. When
combined with a frozen pretrained language
model, this approach enables parameter shar-
ing among related domains, while avoiding
negative interference between unrelated ones.
Experimental results with GPT-2 and a large
fraction of the 100 most represented websites
in C4 show across-the-board improvements in-
domain. We additionally provide an inference
time algorithm for a held-out domain and show
that averaging over multiple paths through the
tree enables further gains in generalization,
while adding only a marginal cost to inference.

1 Introduction

Pretrained language models (PLMs) (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019; Radford
et al., 2019), trained on massive general-domain
corpora, have enabled great progress in many natu-
ral language processing (NLP) benchmarks (Wang
et al., 2018). Nonetheless, continuing pretraining
(as a dense model) a PLM on a narrower domain
(Han and Eisenstein, 2019; Lee et al., 2019) is ben-
eficial, although computationally expensive (Ma-
ronikolakis and Schiitze, 2021), which indicates
that domain-relevant data is important for down-
stream tasks. Sparse models that use mixtures of
experts (Lepikhin et al., 2021) have recently been
proposed to allow efficient training.

Prior work typically assumes that individual do-
mains are distinct, and models them accordingly.

oL
® ®
© ol o

frontiersin.org journals.plos.org booking.com yelp.com

scientific
articles

reviews

Figure 1: We model domains as a hierarchical tree
structure that associates adapters with nodes, allowing
parameter sharing among related domains. Internet do-
mains appear as leaf nodes. During training, we acti-
vate the adapters along the path to a leaf to specialize a
language model to the domain corresponding to it.

For example, Gururangan et al. (2020, 2021) train
one model for each textual domain, either in a
dense or sparse manner. This is related to data
selection (Moore and Lewis, 2010; Axelrod et al.,
2011; Plank and van Noord, 2011), which aims to
select the best matching data for a new domain.
This process does not scale to multiple domains
efficiently, as the parameters grow linearly with the
domains. It also does not allow sharing represen-
tations among related domains during training, as
each domain is modeled with a separate set of pa-
rameters. At the other extreme, training one model
on all domains as is common during unsupervised
pretraining does not account for their similarities
and differences and might hinder the model’s gen-
eralization ability due to negative interference.

As an alternative, we start with the observation
that the term “domain” typically denotes a distribu-
tion over language characterizing a given topic or
genre, and that domains are partially overlapping.
For example, a sentiment model processing hotel
reviews could be expected to benefit by also in-
cluding data from restaurant reviews, which might
in turn benefit from cooking recipes, but combing
hotel reviews and recipes may be detrimental.

To overcome this problem, we propose a data-

driven approach to modeling domains that automat-
ically clusters them in a tree using PLM represen-
tations. We then introduce an efficient method that
specializes a PLM in a number of domains lever-
aging their hierarchical structure. Our approach
allows parameter sharing among related domains,
while avoiding negative transfer among unrelated
ones using adapters (Rebuffi et al., 2017; Houlsby
et al., 2019), which are lightweight layers, added
after each transformer (Vaswani et al., 2017) layer.
Each node in the tree is associated with a sepa-
rate set of adapters, that are only activated for a
particular domain. For instance, data from BOOK-
ING.COM activates parameters in nodes 3, 6, and 7,
allowing parameter sharing with the highly related
YELP.COM through nodes 6 and 7 (Figure 1).

We verify the efficacy of our approach in two set-
tings. First, we manually define a tree structure, us-
ing websites as the leaves. In this first few-domain
setting, our method outperforms prior work includ-
ing single and multi-domain adapters added to GPT-
2 (Radford et al., 2019) when tested in-domain. We
further show that our method generalizes better to
held-out websites than the baselines.

We then scale our model to a many-domain set-
ting across almost 100 websites. We induce the
hierarchical structure in an unsupervised way using
representations from GPT-2 with a Gaussian Mix-
ture Model (GMM) (Aharoni and Goldberg, 2020)
and hierarchical clustering, similar to Das Gupta
et al. (2015). In this way, the clusters model tex-
tual domains and the GMM provides a mechanism
to automatically find the closest training websites
to any held-out website. Empirical results show
across-the-board improvements over strong base-
lines when evaluated in-domain. We also show
that an efficient inference-time algorithm that aver-
ages over multiple paths through the tree improves
generalization when tested on held-out websites.'

2 Hierarchical Representation of
Domains

In this section, we present the intuition for a hier-
archical ordering of domains. We then describe
how we add a hierarchical structure to a PLM and
present the training process. Additionally, we show
how a path in the tree is selected to evaluate the in-
domain and out-of-domain sets. We finally discuss
the computational cost of our approach compared
to the baselines and our experimental setup.

'Our code will be released.

2.1 Text domains and provenance

As there is no commonly-accepted definition of a
domain in text (Plank, 2016), we define a domain
to be a Gaussian cluster from a GMM using PLM
representations (Aharoni and Goldberg, 2020). In
practice, we use the provenance of a piece of text
(in our case the website publishing the text) to as-
sign the text to a domain by building a map from
website to domain using a small sample of text. In
some cases a domain contains a single website, and
in others several related websites (see §4).

2.2 Hierarchical Structure

Domains generally overlap with each other and
have different degrees of granularity. A model that
encodes them should both capture domain-specific
and general-domain information. To this end, we
propose representing the data as a tree. An example
of a tree structure is shown in Figure 1. Text from
specific websites is encoded in the leaf nodes (such
as FRONTIERSIN.ORG, JOURNALS.PLOS.ORG),
while more general-domain knowledge is encoded
in the upper nodes (SCIENTIFIC ARTICLES).

2.3 Model Architecture

Assuming a corpus with data from n domains, we
consider the setting where we have a pretrained
model M. We want to use M to adapt to n new
domains. To this end, we can leverage adapters.
Adapter layer. Adapters are typically added to
model M in each transformer layer and are trained
to a task, while M remains unchanged. An adapter
uses as input the output of the previous layer. It is
formally defined as WY ReLU(WP LN(h;)) + h;
,where h; is the output of the i-th layer, of dimen-
sion m, LN is a layer-normalization (Ba et al.,
2016), WP is a down-projection in R™*¢, and
WY is an up-projection in R?™, and d is the bot-
tleneck dimension of the adapter module.

Single Adapters. To adapt to n domains, one so-
lution is to train n adapters (per transformer layer),
one for each domain. The number of parameters
added from single adapters grows linearly with the
number of domains (O(n)).

Multi-Domain Adapters. Another solution is to
add just one set of adapters to model M. The
adapter weights will be updated based on data from
all n domains. This is a dense model that does
not permit modular training. For n domains, the
number of parameters added is constant.
Hierarchical Adapters. We propose associating

each of the nodes in a tree that represents domains
with a set of adapters and adding them to M. This
sparse model adds parameters that scale logarith-
mically (O(log(n)) with the number of domains
because of the binary tree structure (Figure 1).
While Houlsby et al. (2019) insert adapters but
re-train layer normalization parameters of M and
Bapna and Firat (2019) introduce new layer normal-
ization parameters for every adapter, we introduce
just one set of layer normalization parameters in
each transformer layer and these parameters are
shared between all adapters of a transformer layer.

2.4 Training & Computational Cost

When our input consists of data from a particular
domain, we only update the adapter layers of the
path that leads to this domain (Figure 1).

Supposing we have a mini-batch from FRON-
TIERSIN.ORG, the hidden state h; of the i-th layer
is the input of adapteril (the adapter of node 1
for transformer layer). h; is also the input of
adapter? (parent) and adapter! (root). Their out-
puts yil, yi5, yz are averaged. The final representa-
tion y; is the input to the next transformer layer.

Using this simple training process, we allow
sharing between related domains. Upper nodes
in the tree are updated more often than leaves, thus
they are better trained and encode more domain-
general knowledge. More precisely, the root node
of the hierarchical model in Figure 1 is updated for
each sequence, but the leaf nodes are only updated
using sequences from the associated domain.

In terms of computation, although our model
adds a large number of trainable parameters (fo-
tal parameters), only a small fraction of them is
used for each forward pass (active parameters), as
shown in Table 1. At inference time, to evaluate
performance on a domain using the tree of Figure 1,
our approach with a single path uses 126M parame-
ters (GPT-2 has 112M and the adapters of each path
account for 14M parameters). When we average
two paths, 23M parameters are added to GPT-2.

Kaplan et al. (2020) provided a detailed break-
down of compute cost for transformer LMs. For
a model with N non-embedding parameters, the
approximate cost of a forward pass is 2/V flops per
token. Extending their calculations to our setting,
for a model with L layers, model dimension dpodel,
adapter bottleneck size d, a single adapter adds
4 Ldyoge1d flops per forward pass over the cost of
running GPT-2. Our hierarchical method requires

Few-Domain Many-Domain

Setup Setup

2 Adapter Size 256 64
5 # Adapters 7 49
'S Average path length 3 8
£ Total parameters 33M 58M
S Active parameters 14M 9.5M
é’ Number of updates - root 22K 11K
Number of updates - leaf 5.5K 400

£ Adapter Size 768 512
E # Adapters 1 1
-8 Average path length 1 1
% Total parameters 14M 9.5M
= Active parameters 14M 9.5M
Number of updates 22K 11K

Table 1: Parameters used by our approach and the
multi-domain adapters. The few-domain and many-
domain setup are explained in § 3 and § 4 respectively.

running 7" adapters per layer per forward pass,
where T is the average tree depth. For the many-
domain setting in §4 with L = 12, dyoqe1 = 768,
d =64, N = 84M, T = 8, this gives an increase
of ~11% flops over GPT-2. At inference time, using
two paths (§4.5) the increase is 22% over GPT-2.
For fair comparison between our method and
the baselines, we scale the adapter size so that our
proposed model and the multi-domain adapters (the
most related baseline) use the same number of flops.
Following the previous paragraph, the adapter sizes
in our hierarchical model are smaller by a factor of
1/T then those in the baseline models (Table 1).

2.5 In-domain/Out-of-domain Evaluation

At inference time, we need to define which path
should be activated for each domain. When we per-
form in-domain evaluation, this is straightforward.
We always activate the path that leads to the node
that is assigned to this specific domain.

For out-of-domain evaluation, we need to find
the path that better fits the held-out domain. We
can also use multiple paths, as the computational
cost is small. We describe in detail how we run
out-of-domain evaluation in the following two sec-
tions, which present a manually defined (§3) and an
automatically created hierarchical structure (§4).

2.6 Experimental Setup

We use GPT-2 (12 transformer layers; hidden size
768) as the pretrained model. GPT-2 has a vocabu-
lary of 50,264 BPE (Sennrich et al., 2016) tokens
and 112M parameters. Our code is built with Py-
Torch (Paszke et al., 2017), using the HuggingFace
library (Wolf et al., 2020). We run all experiments

on NVIDIA A100 GPUs with 40GB of RAM. We
split our corpora in 800-token sequences. Models
are trained with the Adam optimizer (Kingma and
Ba, 2015) with an initial learning rate of 1e~3 and
we accumulate gradients over 2 updates.

3 Hierarchical Domain Adaptation with
a Manually Created Tree

In this section, we implement the model described
in the prior section for a very limited number of
domains (few-domain setup), to comprehensively
examine design choices and verify the performance,
before moving to a large-scale setting in §4.

3.1 Data

We select four websites to be represented by leaf
nodes in our tree: two that contain scientific arti-
cles (FRONTIERSIN.ORG, JOURNALS.PLOS.ORG)
and two that contain reviews (BOOKING.COM and
YELP.COM). We use text from the released version
(Dodge et al., 2021) of C4 (Raffel et al., 2020), a
web-scale corpus of English data; the first three
domains are some of the largest sources of text in
C4. We also use YELP.COM, a publicly available
dataset. Dataset sizes are shown in Appendix A.1.

3.2 Approach

We use the hierarchical structure shown in Figure
1, with two leaf nodes representing scientific arti-
cles sharing a parent, two leaf nodes representing
reviews sharing a parent, and a single grandparent
shared by the two parents. This tree structure was
manually chosen using domain knowledge. We use
a pretrained GPT-2 model as our base model, and
add one set of adapters per node in the tree (one
adapter per transformer layer for each node). We
freeze the weights of GPT-2 and train the adapters
on language modeling of the domains of interest.
The training process is explained in detail in §2.4.

3.3 Experimental Setup

Our hierarchical model adds 7 sets of adapters to
GPT-2, one for each node in the tree. Each adapter
has a bottleneck dimension d of 256. For each
training step, one path through the tree is active (so,
3 adapters) depending on which domain of text is
represented in the current batch (see §2.4). Active
nodes are used in the forward pass and updated in
the backward pass (during training), while those
that are not active are not used in the computation.

We evaluate two baselines: a multi-domain
adapter, trained on all in-domain data, and sin-
gle adapters, each trained on data from a different
website. We ensure that the hierarchical model uses
the same amount of compute for a forward pass as
the multi-domain adapter baseline (using d = 768
and 1 adapter/path). We also train each model to an
equal amount of data from each domain. Results

are shown after 20 epochs of training (22K steps).

GPT-2 single multi hierarchical

adapters adapters adapters

frontiersin 222 16.1 15.8 15.5
journals 24.5 16.6 16.3 15.8
booking 29.7 9.7 9.9 9.2
yelp 36.2 24.3 25.3 23.8
average 27.7 15.8 15.9 15.2

Table 2: In-domain evaluation perplexity for the few-
domain setting (§3). Hierarchical adapters consistently
provide better scores compared to the baselines.

3.4 In-Domain Results

In-domain evaluation scores are presented in Table
2. Our model clearly surpasses the multi-domain
adapter baseline in all domains. On average, hier-
archical adapters lower the perplexity by 0.7 com-
pared to multi-domain adapters. Compared to just
evaluating GPT-2, our model yields a large im-
provement, confirming prior work that suggests
that further training a PLM in-domain is highly ef-
fective. Single adapters perform roughly equivalent
to multi-domain adapters in this scenario.

3.5 Out-of-Domain Results

We perform evaluation on 7 unseen domains, some
of which represent similar textual domains to our
in-domain data, while others are quite different.
For example, NCBI, LINK.SPRINGER, and SCHOL-
ARS.DUKE contain text from scientific documents,
similar to two of our in-domain sources of text,
but TECHCRUNCH and MEDIUM are quite dissim-
ilar to the in-domain text. All models outperform
the baseline of just evaluating GPT-2, as shown in
Table 3. We hypothesize that the pretraining data
from GPT-2, which has not been publicly released,
had a somewhat different distribution to C4, and
thus further training on any data from C4 seems
to improve performance. The best out-of-domain
results are obtained with hierarchical adapters.
However, which set of single adapters we should
use to evaluate a held-out domain is not obvious.
For example, to evaluate on LONELYPLANET, it

GPT-2 single multi hierarchical

adapters adapters adapters

ncbi 20.5 18.2 17.6 17.3
link.springer 27.7 24.5 22.7 22.6
scholars.duke 22.7 20.1 20.3 19.9
techcrunch 27.7 27.1 26.3 27.1
medium 29.1 30.0 27.9 28.5
tripadvisor 413 36.6 34.1 26.0
lonelyplanet 35.5 27.1 24.3 25.3
average 29.2 26.2 24.8 23.8

Table 3: Out-of-domain evaluation perplexity for the
small setting (§ 3). For the hierarchical model, 2 paths
through the tree are used for the evaluation. The hierar-
chical model on average outperforms the baselines.

intuitively makes sense to use adapters trained on a
reviews/travelling domain (BOOKING or YELP), but
for LINK.SPRINGER, the model trained on a scien-
tific articles (FRONTIERSIN or JOURNALS) might
be more suitable. We have no a priori criterion to
choose the most appropriate model. This is also
true for our proposed model. We show the best
evaluation scores using single adapters in Table 3
(full evaluation in Appendix A.2).

For the hierarchical adapter model, we show
evaluation scores using various paths in Table 4.
As expected, using a single path, the hierarchical
model performs best leveraging the path of a web-
site that is most similar to the unseen website. For
example, the best evaluation score for NCBI is ob-
tained with the path that leads to JOURNALS, while
the best score for TRIPADVISOR using the path that
leads to BOOKING. Using two paths (either the
paths of FRONTIERS and JOURNALS, or BOOKING
and YELP), results generally improve. For science
or technology websites, using the paths of the sci-
ence domain considerably boosts the hierarchical
model’s performance. For reviews/travelling web-
sites, using both paths of the reviews domain is
beneficial. This confirms our intuition that the hi-
erarchical structure proposed adequately models
domains, preventing negative transfer.

Comparing our hierarchical adapters to multi-
domain adapters, using a single path, hierarchical
adapters perform worse than multi-domain adapters
(average scores of columns 1-4 in Table 4 are
worse than the average score of column 3 in Ta-
ble 3). However, with a second path active, hier-
archical adapters outperform all other approaches
(Table 3). This highlights an advantage: they are
extensible even after training, allowing for flex-
ible performance-efficiency trade-offs that dense
approaches (like multi-domain adapters) do not.

1 path 2 paths

journals frontiers booking yelp | science reviews
ncbi 17.6 18.7 348 26.0 17.3 26.3
link.springer 233 23.3 37.0 33.1 22.6 31.8
scholars.duke 20.7 20.7 355 294 19.9 28.8
techcrunch 27.7 279 348 328 271 294
medium 294 29.4 359 36.2 28.5 30.6
tripadvisor 479 479 37.0 38.1 45.6 26.0
lonelyplanet 39.6 40.0 255 389 38.5 25.3

average 29.5 29.7 344 335 ‘ 28.5 28.3

Table 4: Out-of-domain evaluation of the hierarchical
model using different paths. The left part of the table
shows scores using a single path. The right part shows
results using the average of two paths, corresponding
to either the scientific articles or the reviews domain.

4 Hierarchical Domain Adaptation with
an Automatically Created Tree

In this section, we scale our approach to a many-
domain setup, using a larger set of domains, and
thus a much larger hierarchy, adding more adapters
in our model. In the previous section, we manually
selected a tree based on our domain knowledge, but
in this section we automatically create a tree using
unsupervised methods. We leverage domain clus-
ters obtained using Gaussian Mixture Models and
hierarchical clustering and provide an algorithm for
out-of-domain evaluation, leveraging the flexibility
of hierarchical adapters, that can be combined to
improve performance with a minimal cost.

4.1 Data

As a training and evaluation corpus, we use data
from C4. Specifically, we use text from 30 web-
sites as our training corpus and we perform out-of-
domain evaluation of our model and the baselines
on 38 other websites. All websites used belong to
the top 100 sites in C4 (details in Appendix A.1).

4.2 Approach

We want to create a hierarchical structure that repre-
sents relations between domains. To this end, we fit
a Gaussian Mixture Model (GMM) and then use an
agglomerative clustering algorithm on the GMM.
A GMM assumes that all data points are generated
from a mixture of a k£ Gaussian distributions and
defines the probability for data points to belong to
any of these distributions. We consider a GMM
to be suitable choice because it accounts for the
uncertainty of cluster assignment and provides soft
assignments that we use at inference.

Similar to Aharoni and Goldberg (2020), we gen-
erate contextual representations of 1K sequences

48

a7
.
46
45
.
44
43
42
39
40 33
4 35 37 '_js
34 38 30 31 B 27 36 29 25 26
.o@p & (‘90 ero 'boo @é 0‘9o %0?)’9 & @,02@ \bpoo& & & é\q.o . ?5’0 & é\po B %'00' *”Qo 3 boo A & \ﬁo ‘{@’p(;&
& F & T & {\\\o' Fola T ¢ & @ & @ & & &€ & & ‘eof’
g & I SEE PR & P T & & P
; AP P e 5
. \Qé‘ ,sz\r‘ §\ § & \o‘° &
&

Figure 2: Dendrogram obtained from agglomerative clustering based on the average KL divergences of the GMMs.
This diagram illustrates the hierarchical structure of 30 of the most high-resource websites on C4. The leaf nodes
correspond to the cluster centers and are mapped to the websites they assign the highest probability to.

(uniformly sampled) from each of our 30 training
websites using GPT-2. We use PCA for dimension-
ality reduction. We then fit a GMM with 30 compo-
nents to our data (so, 30 Gaussians/clusters). After
that, we find the Gaussian which assigns highest
probability to text from each website, and remove
any Gaussian which does not assign the highest
probability to any website (it can be the case that
text from more than one websites could be drawn
by the same Gaussian). The websites and their
corresponding clusters are shown in Figure 2.

For hierarchical clustering, we use the sym-
metrized Kullback-Leibler (KL) divergence as a
distance metric. Suppose we have two multivariate
normal distributions (means i, (1, covariance ma-
trices X, 1) obtained by the GMM. To measure
the difference between the two distributions, if they
have the same dimension N, we compute the KL
divergence. Because it is asymmetric, we cannot
use it to measure the distance between distributions,
so we compute the symmetrized version as follows:

B 1 1 det 31
DKL(NOHNI) = §tr <El EQ) + In <det 20))
1

+ 5 (= o) ™20 (i1 — o) = N) - (1)
DKLsym(NO7N1) =
1

5(DKL(NoHNl)+DKL(N1HNO)) 2

Using Equation 2 as a distance metric, we use

agglomerative clustering to infer the structure of
our data. We start from 25 clusters, computed by
the GMM (5 are ignored because do not assign a
high probability to data samples from any website,
see Appendix A.3 for the confusion matrix). The
clustering algorithm leads to a tree (see Figure 2).
Nodes 0-24 correspond to the clusters of the GMM.
Each website is assigned to a specific cluster.

4.3 Experimental Setup

For PCA, we use 100 dimensions. For the hierar-
chical clustering, we use distances computed using
the symmetrized KL divergence. We get a tree of
49 nodes, shown in Figure 2. We add 49 adapters
to GPT-2, one for each node. For a single training
step, just one path in the tree is active (as in §3).
In this set of experiments, we used our compu-
tational budget to compare against our strongest
baseline, multi-domain adapters, as that provided
the most competitive results in §3. Comparing
against single adapters could be relevant but we
focus on our strongest baseline, as single adapters
have shown to be less able to generalize to held-
out domains. We train both our hierarchical model
and the multi-domain adapter baseline for 4 epochs
(11K steps), using 1 GPU per model and stopping
after 51 hours. We oversample the low-resource
domains to avoid overfitting. We use d = 64 for
hierarchical adapters, as the average path length is
8 and d = 512 for the multi-domain adapter, since
it adds just 1 adapter/transformer layer (Table 1).

60.0

55.0 B gpt2 multi-domain @ hierarchical

50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

PP &S S & & 906690@ & 00@ PP o& IO 9@:(\@ @690 . \90@ o

\O"QQ@ &eé&(\\e} 6\\0@9 ‘\«9@ (§¢Q; o(.\\\o \\,6"’\ 0@0\9 960o P é’@&o&\ @cf)' @e’bq ¢ qx\ . éo\e, \'b&fb{‘ e’&o‘ @@db @@ b\o@ @e&‘ § &\\@@‘ {\0\»(\0 +Q®4\A &Q}@*@-@\Q RN
ébd‘ & &\o’b. 6‘59 «° S & ébe < Q,‘\Q&\x@ 6\,\00 & K & <® S \«Ol 009“ © ¢ & o‘*

D RS & 2 N S N N

Figure 3: In-domain evaluation perplexity. Hierarchical adapters consistently outperform the multi-domain adapter

on all websites used during training.

4.4 In-Domain Results

Our in-domain results are shown in Figure 3. To
evaluate our model in-domain, we use the path
that leads to the cluster that assigns the highest
probability to the domain of interest (the same as
during training). For example, to evaluate the per-
formance of the model on PCWORLD, we use the
path that leads to cluster 4. The average path length
in the tree is 8, so we “activate” 8 adapters on av-
erage at every training step and also for in-domain
evaluation. Our approach consistently outperforms
multi-domain adapters, yielding +1.3 on average in
terms of perplexity (see Appendix A.4 for details).

4.5 Out-of-Domain Results

We perform out-of-domain evaluation on 38 held-
out websites (dataset sizes in Appendix A.1). We
want to automatically find the best path in the tree
for a held-out website. To this end, we use the
fitted GMM to assign probabilities to data from the
held-out websites. We intuitively want to place a
held-out website close to similar training websites,
so that it can benefit from positive transfer.

To do that, for a given out-of-domain website ¢,
we assume we have a set of N sequences (in our ex-
periments N = 1, 000) that we can use to find the
best path; this path is used to evaluate the rest of the
data from this website (e.g., for computing perplex-
ity). Following a similar procedure to our training
regime, we use GPT-2 to encode N sequences, then
use the fitted GMM to find the probability assigned
to each of the IV vectors by each cluster (i.e., each
leaf node). The single best path leads to the leaf
node that corresponds to cluster m, where m as-
signs the highest probability to the largest fraction

of the N sequences from website 7. The second
best path through the tree leads to cluster n that
assigns highest probability to the second-most num-
ber of the /V sequences from website ¢. Thus, using
the GMM clusters and the hierarchical structure,
without training more parameters, we are able to
evaluate out-of-domain data using the adapters that
were trained on the most related domains. This is
similar to the “cached” setting in Gururangan et al.
(2021), and it does require a held-out set of N se-
quences that are only used for finding the best path
through the tree (and not for computing perplexity).
This is realistic setting when one has a significant
amount of data from a single source, and we leave
other approaches (e.g., finding the best path for
every input sequence individually) to future work.

We show in Table 5 results of the out-of-domain
evaluations. Our hierarchical adapter model outper-
forms the baseline of just evaluating GPT-2. We no-
tice that using a single path, our approach provides
worse results compared to multi-domain adapters.
In this evaluation, the multi-domain adapters and
the hierarchical model have the same number of
active parameters, but the adapters in the hier-
archical model are trained on less data (except
the adapter associated with the root, which has
the same number of updates as the multi-domain
adapter but is significantly smaller). However, by
having two paths through the tree active, the hi-
erarchical adapter model leverages its modularity
and surpasses multi-domain adapters, obtaining an
improvement of +0.6 in terms of perplexity.

At inference time, our approach with a single
active path uses 122M parameters (112M of GPT-2
and ~10M parameters for a path of average length).

When two paths are active, at most 132M parame-
ters are used. The overhead is thus quite small; if
the two paths have some overlap, this computation
is potentially significantly less. On average, active
parameters in our model are trained on less data
than multi-domain adapters (e.g., leaf nodes only
see on average 400 updates, as shown in Table 1).

Out-of-domain GPT-2 multi hierarchy hierarchy
scores adapters 1 path 2 paths
reuters.com 20.9 16.0 16.4 16.3
ibtimes.co.uk 243 19.5 19.7 19.5
bbc.com 23.6 19.1 18.9 18.7
tripadvisor.com 40.4 34.8 359 338
cnet.com 26.8 233 222 229
telegraph.co.uk 30.9 23.6 24.5 22.2
theatlantic.com 28.5 23.6 23.8 23.6
foxbusiness.com 229 17.5 19.9 18.2
thesun.co.uk 26.8 19.9 19.9 18.2
nydailynews.com 24.5 19.3 19.5 18.2
dailystar.co.uk 20.7 13.9 12.2 12.2
fastcompany.com 279 21.3 21.5 20.9
nypost.com 26.3 18.9 18.9 18.7
businessinsider.com 243 20.5 20.7 20.9
deadline.com 33.1 26.3 33.1 26.8
breitbart.com 229 16.9 17.8 17.1
techcrunch.com 27.7 21.5 21.8 20.1
nme.com 28.2 20.1 23.8 20.5
fool.com 23.8 22.2 22.4 22.2
finance.yahoo.com 22.6 20.1 20.3 20.1
youtube.com 15.3 14.2 14.4 13.5
ncbi.nlm.nih.gov 20.7 18.5 18.4 18.2
scholars.duke.edu 22.6 20.7 20.3 20.3
inquisitr.com 224 17.5 16.4 16.4
simple.wikipedia.org 222 19.5 20.5 19.5
kickstarter.com 26.6 24.0 24.8 22.2
mashable.com 27.1 22.0 22.0 21.8
booking.com 29.7 229 24.5 22.0
etsy.com 28.8 26.3 26.8 24.5
fineartamerica.com 25.5 26.6 26.6 24.5
github.com 32.8 30.3 30.6 30.6
journals.plos.org 233 20.1 20.1 18.2
itunes.apple.com 34.8 28.8 33.1 30.0
agreatertown.com 44.7 40.0 39.6 359
premium.wpmudev.org 31.5 27.7 30.0 27.7
homestars.com 34.1 29.4 28.2 28.2
reference.com 28.5 24.5 253 24.5
cnbc.com 21.1 17.6 18.4 17.6
average 26.8 22.3 23.0 21.7

Table 5: Out-of-domain evaluation perplexity. With 1
path, our hierarchical model performs worse than the
baseline. However, using paths of the 2 closest clusters
to a held-out website, our approach yields better results.
We show the paths used in detail in Appendix A.3.

5 Related work

Our approach draws on prior work in domain adap-
tion and efficient language model fine-tuning.

Domain Adaptation. A large research area in
NLP is domain adaptation (Jiang and Zhai, 2007;
Daumé 111, 2007). Fine-tuning a PLM using data
from the target task (Howard and Ruder, 2018)
or the target domain (Rietzler et al., 2020; Han

and Eisenstein, 2019) has shown to be helpful to
mitigate the domain shift between train and test
data distributions of the same task. Gururangan
et al. (2020) showed that a PLM can further im-
prove by fine-tuning on data from a domain that is
related to the domain of the task (DAPT). While
this work suggests fine-tuning a different model to
the domain of each task, our approach trains a sin-
gle model to adapt to all domains. Also, although
DAPT does not permit parameter sharing between
domains, our hierarchical adapter model leverages
domain similarities to improve adaptation.
Domain expert mixture (DEMix) layers (Guru-
rangan et al., 2021) that condition a LM on the
domain of input text have been recently proposed.
DEMix layers replace feed-forward layers in a
transformer and each of them is updated only us-
ing data from a specific domain. Then, a modular
LM is trained from scratch. On the contrary, we
use a PLM and only train adapter layers on the
target domains. Since each feed-forward layer is
replaced with a mixture of experts, the parameters
added grow linearly with the domains. In our ap-
proach, however, the number of parameters grows
logarithmically, due to the hierarchical structure.
Adapters. Efficient fine-tuning using adapters (Re-
buffi et al., 2017; Houlsby et al., 2019) is preva-
lent in many NLP taks, such as machine transla-
tion (Bapna and Firat, 2019), cross-lingual trans-
fer (Pfeiffer et al., 2020) and dependency parsing
(Ustiin et al., 2020). Adapters can be trained on a
single task or language (Pfeiffer et al., 2020), but
also multilingually (Stickland et al., 2021). To the
best of our knowledge, we are the first to use them
in a hierarchical structure for domain adaptation.

6 Conclusion & Future Work

In this paper, we present a novel approach for effi-
cient domain adaptation on multiple domains using
hierarchical adapters that encode the similarities
and differences of domains, allowing parameter
sharing but avoiding negative transfer. We start
with a manually defined tree and then scale to a
large tree, created in an unsupervised way. We
also provide an evaluation-time algorithm that can
combine paths to best adapt to an unseen domain.

In the future, we would like to investigate a more
efficient evaluation-time approach, using only a
few tokens of an unseen domain. It would also be
interesting to extend our model to a multi-lingual
setup.

7 Limitations and Risks

Our work uses generative pretrained language mod-
els. As such models are trained on large datasets
from text in the Internet, they encode biases that
could harm marginalized populations (Bender et al.,
2021). The specialized language model we propose
could be used for propaganda or hate speech gen-
eration, same as any other language model. How-
ever, our hierarchical adapter model permits adding
modular components and we believe that it could
potentially be used to detoxify language genera-
tion, following Liu et al. (2021). This is in line
with recent work on sparse models (Gururangan
et al., 2021; Artetxe et al., 2021).

References

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747—
7763, Online. Association for Computational Lin-
guistics.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor
Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria Lin,
Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru,
Giri Anantharaman, Xian Li, Shuohui Chen, Halil
Akin, Mandeep Baines, Louis Martin, Xing Zhou,
Punit Singh Koura, Brian O’Horo, Jeff Wang, Luke
Zettlemoyer, Mona Diab, Zornitsa Kozareva, and
Ves Stoyanov. 2021. Efficient large scale language
modeling with mixtures of experts.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain adaptation via pseudo in-domain data
selection. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 355-362, Edinburgh, Scotland, UK. Associa-
tion for Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.

Ankur Bapna and Orhan Firat. 2019. Simple, scalable
adaptation for neural machine translation. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing and the International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 1538—-1548.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
FAccT 21, page 610-623, New York, NY, USA. As-
sociation for Computing Machinery.

Mithun Das Gupta, Srinidhi Srinivasa, J. Madhukara,
and Meryl Antony. 2015. KI divergence based ag-
glomerative clustering for automated vitiligo grad-
ing. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2700-2709.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
256-263, Prague, Czech Republic. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4171-4186.

Jesse Dodge, Maarten Sap, Ana Marasovi¢, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1286—1305, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Suchin Gururangan, Mike Lewis, Ari Holtzman,
Noah A. Smith, and Luke Zettlemoyer. 2021. Demix
layers: Disentangling domains for modular lan-
guage modeling.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
83428360, Online. Association for Computational
Linguistics.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsu-
pervised domain adaptation of contextualized em-
beddings for sequence labeling. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 4238-4248, Hong Kong,
China. Association for Computational Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the International Conference on
Machine Learning, Proceedings of Machine Learn-
ing Research, pages 2790-2799.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
http://arxiv.org/abs/2112.10684
http://arxiv.org/abs/2112.10684
http://arxiv.org/abs/2112.10684
https://aclanthology.org/D11-1033
https://aclanthology.org/D11-1033
https://aclanthology.org/D11-1033
http://arxiv.org/abs/1607.06450
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1109/CVPR.2015.7298886
https://doi.org/10.1109/CVPR.2015.7298886
https://doi.org/10.1109/CVPR.2015.7298886
https://doi.org/10.1109/CVPR.2015.7298886
https://doi.org/10.1109/CVPR.2015.7298886
https://aclanthology.org/P07-1033
https://aclanthology.org/P07-1033
https://aclanthology.org/P07-1033
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/2021.emnlp-main.98
http://arxiv.org/abs/2108.05036
http://arxiv.org/abs/2108.05036
http://arxiv.org/abs/2108.05036
http://arxiv.org/abs/2108.05036
http://arxiv.org/abs/2108.05036
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031

Long Papers), pages 328-339, Melbourne, Australia.
Association for Computational Linguistics.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in NLP. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics, pages 264-271,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv,
abs/2001.08361.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-
trained biomedical language representation model
for biomedical text mining. Bioinformatics,
36(4):1234-1240.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
{GS}hard: Scaling giant models with conditional
computation and automatic sharding. In Interna-
tional Conference on Learning Representations.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. 2021. DExperts: Decoding-
time controlled text generation with experts and anti-
experts. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 6691-6706, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Antonis Maronikolakis and Hinrich Schiitze. 2021.
Multidomain pretrained language models for green
NLP. 1In Proceedings of the Second Workshop
on Domain Adaptation for NLP, pages 1-8, Kyiv,
Ukraine. Association for Computational Linguistics.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220-224, Uppsala, Sweden. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam

10

Lerer. 2017. Automatic differentiation in pytorch.
In NIPS 2017 Workshop on Autodiff.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227-2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Jonas Pfeiffer, Ivan Vuli¢, Iryna Gurevych, and Se-
bastian Ruder. 2020. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654-7673, Online. Association for Computa-
tional Linguistics.

Barbara Plank. 2016. What to do about non-standard
(or non-canonical) language in nlp. In Proceed-
ings of the 13th Conference on Natural Language
Processing, KONVENS 2016, Bochum, Germany,
September 19-21, 2016, volume 16 of Bochumer Lin-
guistische Arbeitsberichte.

Barbara Plank and Gertjan van Noord. 2011. Effec-
tive measures of domain similarity for parsing. In
Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 1566—1576, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-

text transformer. Journal of Machine Learning Re-
search, 21(140):1-67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural In-
formation Processing Systems.

Alexander Rietzler, Sebastian Stabinger, Paul Opitz,
and Stefan Engl. 2020. Adapt or get left behind:
Domain adaptation through BERT language model
finetuning for aspect-target sentiment classification.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4933-4941, Mar-
seille, France. European Language Resources Asso-
ciation.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational

https://aclanthology.org/P07-1034
https://aclanthology.org/P07-1034
https://aclanthology.org/P07-1034
https://arxiv.org/abs/1412.6980v5
https://arxiv.org/abs/1412.6980v5
https://arxiv.org/abs/1412.6980v5
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2021.adaptnlp-1.1
https://aclanthology.org/2021.adaptnlp-1.1
https://aclanthology.org/2021.adaptnlp-1.1
https://aclanthology.org/P10-2041
https://aclanthology.org/P10-2041
https://aclanthology.org/P10-2041
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://www.linguistics.rub.de/konvens16/pub/2_konvensproc.pdf
https://www.linguistics.rub.de/konvens16/pub/2_konvensproc.pdf
https://www.linguistics.rub.de/konvens16/pub/2_konvensproc.pdf
https://aclanthology.org/P11-1157
https://aclanthology.org/P11-1157
https://aclanthology.org/P11-1157
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://aclanthology.org/2020.lrec-1.607
https://aclanthology.org/2020.lrec-1.607
https://aclanthology.org/2020.lrec-1.607
https://aclanthology.org/2020.lrec-1.607
https://aclanthology.org/2020.lrec-1.607
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

Linguistics (Volume 1: Long Papers), pages 1715-
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Asa Cooper Stickland, Xian Li, and Marjan
Ghazvininejad. 2021. Recipes for adapting
pre-trained monolingual and multilingual models to
machine translation. In Proceedings of the Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 3440-3453.

Ahmet Ustiin, Arianna Bisazza, Gosse Bouma, and
Gertjan van Noord. 2020. UDapter: Language adap-
tation for truly Universal Dependency parsing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2302-2315, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

11

https://doi.org/10.18653/v1/2021.eacl-main.301
https://doi.org/10.18653/v1/2021.eacl-main.301
https://doi.org/10.18653/v1/2021.eacl-main.301
https://doi.org/10.18653/v1/2021.eacl-main.301
https://doi.org/10.18653/v1/2021.eacl-main.301
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://doi.org/10.18653/v1/2020.emnlp-main.180
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A Appendix

A.1 Corpus description

In Table 8, we present the sizes of the training and
evaluation corpora used for the many-domain setup.
Only one corpus is used for the few-domain but
not the many-domain experimental setting, namely
YELP.COM?. This corpus has 684M training to-
kens and 20M evaluation tokens. We randomly
sub-sample 53M training tokens of this corpus for
our first, few-domain setup, as we want to train a
balanced model. Extensive documentation of the
corpus is available from Dodge et al. (2021). We
use the C4 corpus in accordance with the terms of

USC3 .

A.2 Few-Domain Setup

In Table 3, we present out-of-domain evaluation
perplexities for the first experimental setup. For
the single adapters model, we present the best-
performing models in the table. In order to allow
for an exhaustive comparison, we also present the
evaluation results of all the trained single adapter
models on all held-out websites in Table 6. We see,
for example, that when evaluating on the traveling
website TRIPADVISOR, the single adapter model
that was trained on either BOOKING or YELP pro-
vides the lowest perplexity scores, confirming our
intuition that for a held-out website, we should use
a model trained on a very similar domain.

single adapters trained on baseline

booking yelp frontiers journals GPT-2

ncbi 20.1 20.1 19.7 18.2 20.5
link.springer 27.1 27.1 24.5 24.5 27.7
scholars.duke 222 222 222 20.1 22.7
techcrunch 27.1 27.1 27.1 27.1 27.7
medium 30.0 30.0 30.0 30.0 29.1
tripadvisor 36.6 36.6 49.4 49.4 41.3
lonelyplanet 30.0 27.1 40.4 40.4 35.5

Table 6: Out-of-domain evaluation of single adapters
in the few-domain setup (§3). We evaluate every set
of single adapters in 7 different websites. The best re-
sults for every out-of-domain website (underlined) are
shown in Table 3.

A.3 Many-Domain Setup

Confusion Matrix. Figure 4 depicts the confusion
matrix of the GMM. We can observe visually that
some clusters assign a high probability to multiple
internet domains, while others remain empty. This
shows that the intuition have for what a domain is

Zwww.yelp.com/dataset
3commoncrawl.org/terms-of-use/

12

In-domain scores GPT-2 multi hierarchical

adapters adapters
ign.com 30.0 25.5 23.8
insiderpages.com 30.0 19.7 18.4
eventbrite.com 34.5 27.4 25.5
androidheadlines.com 21.8 17.1 16.0
link.springer.com 27.9 22.6 21.5
librarything.com 29.4 17.6 16.9
csmonitor.com 29.4 25.8 24.8
city-data.com 36.2 31.2 30.3
forums.macrumors.com 37.0 27.7 26.0
glassdoor.com 20.7 7.9 7.5
oreilly.com 27.4 21.5 20.5
pcworld.com 24.3 19.7 18.9
express.co.uk 222 15.0 14.0
answers.sap.com 60.3 345 30.3
prweb.com 25.8 20.1 18.9
instructables.com 32.8 28.2 26.6
deviantart.com 42.5 33.1 312
entrepreneur.com 26.3 22.0 20.9
si.com 222 17.3 16.4
gsmarena.com 56.3 34.5 31.2
wired.com 30.0 243 23.8
medium.com 29.1 23.1 22.6
baltimoresun.com 27.1 20.9 20.1
npr.org 222 18.0 17.5
frontiersin.org 22.0 18.4 17.2
chicagotribune.com 27.1 21.1 20.7
foxnews.com 222 15.3 14.9
aljazeera.com 222 17.8 17.1
dailymail.co.uk 27.1 21.1 20.7
lonelyplanet.com 355 19.5 17.1
average 30.0 223 21.0

Table 7: In-domain evaluation perplexity for the many-
domain setup (we note that the hierarchical model uses
a single path).

does not correspond exactly to the cluster obtained
by an unsupervised, data-driven approach. Our
visualization is based on publicly available code*.
Out-of-domain Evaluation. As mentioned in
§4.5, to run evaluation on a given out-of-domain
website 7, we use two paths of the trained hierar-
chical model. The first path leads to the leaf node
that corresponds to cluster m (with m assigning the
highest probability to the largest fraction of N se-
quences from website) and the second path leads
to cluster n, where n assigns the highest probabil-
ity to the second-most number of the NV sequences.
We present the clusters m and n (and the websites
they were mapped to during training) in Table 9.

A.4 Experimental Details

Because we wanted to keep a modest computa-
tional budget, we did not perform multiple training
runs for the hierarchical models and the baselines.
Results are reported over a single run.

*github.com/roeeaharoni/unsupervised-domain-clusters

https://www.yelp.com/dataset
https://commoncrawl.org/terms-of-use/
https://github.com/roeeaharoni/unsupervised-domain-clusters

Train (Eval.) Tokens Train (Eval.) Tokens

frontiersin.org 38M (6M) journals.plos.org 53M (6M)
chicagotribune.com 31M (4M) fool.com 34M (4M)
link.springer.com 28M (4M) businessinsider.com 32M (4M)
aljazeera.com 26M (3M) theatlantic.com 30M (4M)
instructables.com 25M (3M) booking.com 30M (4M)

npr.org 25M (3M) kickstarter.com 26M (3M)

dailymail.co.uk 25M (3M) telegraph.co.uk 25M (3M)
csmonitor.com 23M (3M) cnet.com 24M (3M)
baltimoresun.com 23M (3M) ncbi.nlm.nih.gov 23M (3M)
city-data.com 22M (3M) foxbusiness.com 23M (3M)
forums.macrumors.com 22M (3M) cnbe.com 20M (2M)
medium.com 22M (3M) ibtimes.co.uk 18M (2M)

foxnews.com 22M (3M) reuters.com 17M (2M)

si.com 18M (2M) bbc.com 17M (2M)

wired.com IsM2M) | nypost.com 15M (2M)

2 prweb.com Mm@eM) | 2 nydailynews.com 14M (2M)
& express.co.uk 16M(2M) | % fastcompany.com 14M (2M)
8 entrepreneur.com 16M (2M) Lz) mashable.com 14M (2M)
g androidheadlines.com 14M(2M) | © thesun.co.uk 13M (2M)
= pcworld.com M 2M) | & techcrunch.com 13M (2M)
< gsmarena.com 12M (2M) 2 inquisitr.com 13M (2M)
ﬁ eventbrite.com 11M (1M) g youtube.com 11M (1M)
ign.com 10M (1M) = itunes.apple.com 11M (1M)

oreilly.com M (1M) breitbart.com 10M (1M)

deviantart.com M (1M) etsy.com 10M (1M)
insiderpages.com SM (1M) github.com 10M (1M)
lonelyplanet.com 6M (1M) agreatertown.com M (1IM)
answers.sap.com 6M (1M) premium.wpmudev.org OM (1M)
glassdoor.com 4M (500K) deadline.com IM (1M)
librarything.com 3M (500K) dailystar.co.uk M (1M)
reference.com ™ (1M)

scholars.duke.edu ™ (1M)

tripadvisor.com ™ (1M)

simple.wikipedia.org 6M (1M)

nme.com SM (1IM)

homestars.com 3M (500K)

fineartamerica.com 2M (500K)

Table 8: Domains that make up our in-domain (training) and out of-domain (evaluation) corpus for the large setup,
including the size of our training and evaluation data. All data is extracted from C4 (Raffel et al., 2020).

13

Www_ign‘com typd 0 0 9 1 9 0 0 0 7 3 O O O 6 5 4 0 1 0 58 6 0 9 0 0 0 O 2 8
www.insiderpages.com |/ 8 g&& o o o o o 3 5 6 0 0 0 0 0 2 3 1 0 0 0 1 0 0 O 0 O 0 0 2
www.eventbrite.com | o g4 o o 1 137 0 2 0o 4 0 0 O O 3 1 1 75 0 0 1 16 0 0 O 0O O 0 1 4
www.androidheadlines.com {1 o o g1 o o o o o0 3 0 0 0 3 1 0 3 0 113 4 0 0 0 0 0O O 0 O
|ink,springer.c()m -0 0 0 O 110 0 0 5 1 0 0 O O O O O O O O 12 0 0 194 0 0 O 0 5
WWW,”brarything.com -4 0 0 0 O 15 g 1 §2a 2 0o o0 o0 2 0O 16 5 0 0 0 8 0 0O 0 0 O 1 2 8
www.csmonitor.com - 1 1 0 0 5 102213174 0 1 1 0O 0 0 2 13 0 14 11 0 17 5 0 43 0 0 0 370 26 1
www.city-data.com 42 3 0o 0 0 3 145
forums.macrumors.com = 2 0 0 7 6 1 6 10 11 1 1 0 8 6 52 0 0 0 0 O 2 0o 0
www.glassdoor.com |0 4 0 0 1 0 1
www.oreill.com |0 o o 2 97 0 1 6 1 0 32 0 0 1 3 0 0 0 0 0 0 0 0
www.pcwoﬂd.com -1 0 o E 4 0 2 10 2 0 11 0 0 26320 0 4 0 O O 1 1 O
Www.express.co.uk -0 0 O a 2 0 2 10 4 0o 0 O o0 O 0O 0 0 o o0 o0 5 108 0

answers.sap.com - 0 o0 o0 1 1 0

WWW.erebACOm -0 219 0 1 68 46 14 91 18 O 427 0 O 27 18 0 6 O O O O 9 3
www.instructables.com {1 o o o0 3 o0 6 1 4 0 122 0 0 1 4 fEyMs 0 0O O 2 19 0 0 0 0 O 0 0 O
WWW.deViantart.COm =10 0 0 0 0 5 24 7 20 1 0 0 0 0 21 17 grel 1 0 0 4 39 0 0 0 0 0 0 2 0
WWW.entrepreneUr.COm - 0 1 0 8 2 13 12 22 O 0 21 O 0 0 12 3 0 0 0 61 31 0 6 0 0 0 3 3 0
www.si.,com {0 0 o0 0 0 o0 1 0O 0 0O o0 0 126 0 1 0 0 O g o 1 0O 0 0 o O o0 0 102 0
www.gsmarena.com - 1 0O 0 59 0 0 0 0 40 O al 0 0 0 o 1 0 0 O EE 2 6 0 0 0 O 0 O 0o 0
www.wired.com —{21 3 0 62 68 29 185 24 3 6 43 0 0 O 17 28 1 59 1 0 280126 0 15 0 0O O 15 14 0
medium.com -{ 6 3 0 2 66 28 39 19 6 3 289 0 O 5 33 14 6 219 15 0 29 185 0 5 0 O 0 26 2 0
www.baltimoresun.com {0 6 0 1 1 137 28 315 0 2 0O 0 0 o 1 16 0 12 189 0 11 O O 34 0 O 0 36 211 O
Www_npr‘org -1 1 1 0 0 13 129 94 124 0 6 1 0 0 0 4 16 0 10 5 0 13 6 0 434 o0 0 0 105 38 0
WWW.frontierSin.Org - 0 0 0 0 424 o) 0 0 6 3 0 0) 7 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0
www.chicagotribune.com -1 11 0 2 2 118 46 268 0 6 0O O O O 1 15 O 10 147 0 23 7 0O 39 0 0O O 63 236 5
www.foxnews.com -{ 06 0 0 2 35 3 30 43 0 2 0O 0 O 0 24 11 0 2 8 O 6 5 0 15 0 0 0 322415 0
WWW.anazeera.C0m -0 0 0 0 2 7 E558 7 0O 0 o0 o 8 0 2 0o 0 1 4 0 5 0o 0 1 0o 0 o 84 1
WWW.dainmaiI.co.uk -0 O O 3 14 23 43 17 0 O O O 65 0 18 16 O 1 12 0 4 4 0 2 0 0 0 95 ﬁ 14

www.lonelyplanet.com 4o 1 o o o 3 18 0 0 12 0 0 0 0 14 15 0 0 0 0 0 0 0 0O O O 0 8 0 E
I I
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Figure 4: Confusion Matrix. The x-axis depicts the clusters that the internet domains are assigned to. If no data
samples are added to a cluster (for example, cluster 2), the corresponding Gaussian distribution is not used for
the hierarchical clustering. The y-axis depicts the internet domains used for training. The cluster numbers shown
here are not the exact ones shown in the final dendrogram, but one can easily observe that, for example, the same
cluster (in this example, cluster 7) assigns the highest probability to CITY-DATA.COM, BALTIMORESUN.COM and
CHICAGOTRIBUNE.COM. This is mirrored in Figure 2 of the main paper.

14

Held-out Website Path to Cluster m Train. Website of Cluster . Path to Cluster . Train. Website of Cluster n
reuters.com 14 aljazeera.com 15 npr.org
ibtimes.co.uk 9 dailymail.co.uk 14 aljazeera.com
bbc.com 9 dailymail.co.uk 3 express.co.uk
tripadvisor.com 5 insiderpages.com 22 lonelyplanet.com
cnet.com 18 wired.com 17 androidheadlines.com
telegraph.co.uk 9 dailymail.co.uk 14 aljazeera.com
theatlantic.com 0 city-data.com 14 aljazeera.com
foxbusiness.com 11 prweb.com 15 npr.org
thesun.co.uk 9 dailymail.co.uk 3 express.co.uk
nydailynews.com 9 dailymail.co.uk 6 si.com
dailystar.co.uk 3 express.co.uk 9 dailymail.co.uk
fastcompany.com 1 entrepreneur.com 18 wired.com
nypost.com 9 dailymail.co.uk 6 si.com
businessinsider.com 1 entrepreneur.com 18 wired.com
deadline.com 8 librarything.com 9 dailymail.co.uk
breitbart.com 14 aljazeera.com 0 city-data.com
techcrunch.com 18 wired.com 1 entrepreneur.com
nme.com 8 librarything.com 9 dailymail.co.uk
fool.com 1 entrepreneur.com 15 npr.org
finance.yahoo.com 1 entrepreneur.com 15 npr.org
youtube.com 11 prweb.com 15 npr.org
ncbi.nlm.nih.gov 4 link.springer.com 19 frontiersin.org
scholars.duke.edu 4 link.springer.com 19 frontiersin.org
inquisitr.com 9 dailymail.co.uk 18 wired.com
simple.wikipedia.org 10 csmonitor.com 8 librarything.com
kickstarter.com 16 deviantart.com 18 wired.com
mashable.com 18 wired.com 9 dailymail.co.uk
booking.com 5 insiderpages.com 22 lonelyplanet.com
etsy.com 13 instructables.com 5 insiderpages.com
fineartamerica.com 16 deviantart.com 13 instructables.com
github.com 7 oreilly.com 2 answers.sap.com
journals.plos.org 4 link.springer.com 19 frontiersin.org
itunes.apple.com 20 gsmarena.com 8 librarything.com
agreatertown.com 22 lonelyplanet.com 5 insiderpages.com
premium.wpmudev.org 2 answers.sap.com 7 oreilly.com
homestars.com 5 insiderpages.com 13 instructables.com
reference.com 13 instructables.com 10 csmonitor.com
cnbc.com 15 npr.org 1 entrepreneur.com

Table 9: The two paths used for evaluation of the hierarchical adapter model on each held-out website.

15

