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ABSTRACT

Neural scaling laws describe how the performance of deep neural networks scales
with key factors such as training data size, model complexity, and training time, of-
ten following power-law behaviors over multiple orders of magnitude. Despite their
empirical observation, the theoretical understanding of these scaling laws remains
limited. In this work, we employ techniques from statistical mechanics to analyze
one-pass stochastic gradient descent within a student-teacher framework, where
both the student and teacher are two-layer neural networks. Our study primarily
focuses on the generalization error and its behavior in response to data covariance
matrices that exhibit power-law spectra. For linear activation functions, we derive
analytical expressions for the generalization error, exploring different learning
regimes and identifying conditions under which power-law scaling emerges. Ad-
ditionally, we extend our analysis to non-linear activation functions in the feature
learning regime, investigating how power-law spectra in the data covariance matrix
impact learning dynamics. Importantly, we find that the length of the symmetric
plateau depends on the number of distinct eigenvalues of the data covariance matrix
and the number of hidden units, demonstrating how these plateaus behave under
various configurations. In addition, our results reveal a transition from exponen-
tial to power-law convergence in the specialized phase when the data covariance
matrix possesses a power-law spectrum. This work contributes to the theoretical
understanding of neural scaling laws and provides insights into optimizing learning
performance in practical scenarios involving complex data structures.

1 INTRODUCTION

Recent empirical studies have revealed that the performance of state-of-the-art deep neural
networks, trained on large-scale real-world data, can be predicted by simple phenomenological
functions Hestness et al. (2017); Maloney et al. (2022); Hoffmann et al. (2022); Porian et al. (2024).
Specifically, the network’s error decreases in a power-law fashion with respect to the number of
training examples, model size, or training time, spanning many orders of magnitude. This observed
phenomenon is encapsulated by neural scaling laws, which describe how model performance
varies as key scaling factors change. Interestingly, the performance improvement due to one
scaling factor is often limited by another, suggesting the presence of bottleneck effects Kaplan et al.
(2020). Understanding these scaling laws theoretically is crucial for practical applications such as
optimizing architectural design and selecting appropriate hyperparameters. However, the fundamental
reasons behind the emergence of neural scaling laws have mainly been explored for linear Lin et al.
(2024) and random feature models Bahri et al. (2024), and a more comprehensive theory is still absent.

Scope of Study. In this work, we employ techniques from statistical mechanics to analyze one-pass
stochastic gradient descent within a student-teacher framework. Both networks are two-layer neural
networks: the student has K hidden neurons, the teacher has M , and we train only the student’s
input-to-hidden weights, realizing a so-called committee machine Biehl & Schwarze (1995). We
begin our analysis with linear activation functions for both networks and then extend it to non-linear
activation functions, focusing on the feature learning regime where the student weights undergo
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Figure 1: Generalization error ϵg as a function of α for K = M = 2, η = 0.1, β = 1, σJ = 0.01,
and N = 1024, with varying numbers of distinct eigenvalues L. As L increases, the plateau length
decreases until it disappears. Additionally, with increasing L, the convergence of the asymptotic
generalization error slows down, transitioning from exponential to power-law scaling in the early
asymptotic phase.

significant changes during training. Our primary focus is on analyzing the generalization error ϵg by
introducing order parameters that elucidate the relationships between the student and teacher weights.
Despite the diversity of datasets across various learning domains, a critical commonality is that their
feature-feature covariance matrices often exhibit power-law spectra Maloney et al. (2022). To model
realistic data, we therefore utilize Gaussian-distributed inputs with covariance matrices that display
power-law spectra.

White Noise vs. Power-Law Spectra. The student-teacher setup with isotropic input data has been
extensively studied and is well-understood in the literature Saad & Solla (1995). In the realizable
scenario where K = M , the generalization error typically undergoes three distinct phases: a rapid
learning phase, a plateau phase, and an exponentially decaying phase with time α. Introducing a
power-law spectrum in the covariance matrix leads to observable changes in the plateau’s height and
duration, along with a slowdown in the convergence towards zero generalization error. Notably, as
the number of distinct eigenvalues L in the data covariance spectrum increases, the plateau shortens,
and the convergence to perfect learning becomes progressively slower, as depicted in Figure 1.
This observation indicates a potential transition from exponential decay to power-law scaling in the
generalization error over time. Identifying and understanding this transition is a critical focus of our
investigation. Our main contributions are:

• For linear activation functions, we derive an exact analytical expression for the generalization
error as a function of training time α and the power-law exponent β of the covariance matrix.
We characterize different learning regimes for the generalization error and analyze the
conditions under which power-law scaling emerges.

• In addition, for linear activation functions, we demonstrate a scaling law in the number of
trainable student parameters, effectively reducing the input dimension of the network. This
power-law is different from the power-law characterizing the training time dependence.

• We derive an analytical formula for the dependence of the plateau length on the number of
distinct eigenvalues and the power-law exponent β of the covariance matrix, illustrating how
these plateaus behave under different configurations.

• We investigate the asymptotic learning regime for non-linear activation functions and find
that, in the realizable case with M = K, the convergence to perfect learning shifts from
an exponential to a power-law regime when the data covariance matrix has a power-law
spectrum.

2 RELATED WORK

Theory of Neural Scaling Laws for Linear Activation Functions. Previous studies on neural
scaling laws have primarily focused on random feature models or linear (ridge) regression with
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power-law features Wei et al. (2022). In particular, Maloney et al. (2022); Paquette et al. (2024)
and Atanasov et al. (2024) analyzed random feature models for linear features and ridge regression,
employing techniques from random matrix theory. Bahri et al. (2024) examined random feature
models for kernel ridge regression within a student-teacher framework using techniques from
statistical mechanics. In their analysis, either the number of parameters or the training dataset
size was considered infinite, leading to scaling laws in the test loss with respect to the remaining
finite quantity. Bordelon et al. (2024b) studied random feature models with randomly projected
features and momentum, trained using gradient flow. Using a dynamical mean field theory
approach, they derived a "bottleneck scaling" where only one of time, dataset size, or model size
is finite while the other two quantities approach infinity. Additionally, Hutter (2021) investigated
a binary toy model and found non-trivial scaling laws with respect to the number of training examples.

Bordelon & Pehlevan (2022) studied one-pass stochastic gradient descent for random feature models,
deriving a scaling law for the test error over time in the small learning rate regime. Similarly, Lin
et al. (2024) investigated infinite-dimensional linear regression under one-pass stochastic gradient
descent, providing insights through a statistical learning theory framework. They derived upper and
lower bounds for the test error, demonstrating scaling laws with respect to the number of parameters
and dataset size under different scaling exponents.

Building upon the work of Lin et al. (2024) and Bordelon & Pehlevan (2022), we also consider
one-pass stochastic gradient descent. However, our study extends to both linear and non-linear neural
networks where we train the weights used in the pre-activations (i.e., feature learning), and use fixed
hidden-to-output connections. Unlike Bordelon & Pehlevan (2022), we extend the analysis for linear
activation functions to general learning rates and varying numbers of input neurons. Additionally,
we derive upper and lower bounds for the time interval over which the generalization error exhibits
power-law behavior. A significant difference from previous works is our focus on feature learning,
where all pre-activation weights are trainable. In this regime, certain groups of student weights,
organized by student vectors, begin to imitate teacher vectors during the late training phase, leading
to specialization.

Other theoretical studies have explored different aspects of scaling laws. Some have focused on
learnable network skills or abilities that drive the decay of the loss Arora & Goyal (2023); Michaud
et al. (2023); Caballero et al. (2023); Nam et al. (2024). Others have compared the influence of
synthetic data with real data Jain et al. (2024) or investigated model collapse phenomena Dohmatob
et al. (2024b;a). Further works studying correlated and realistic input data are Goldt et al. (2020);
Loureiro et al. (2021); Cagnetta et al. (2024); Cagnetta & Wyart (2024).

Statistical Mechanics Approach. Analytical studies using the statistical mechanics framework for
online learning have traditionally focused on uncorrelated input data or white noise. Saad & Solla
(1995) first introduced differential equations for two-layer neural networks trained via stochastic
gradient descent on such data. Building upon this, Yoshida & Okada (2019) recently expanded
these models to include Gaussian-correlated input patterns, deriving a set of closed-form differential
equations. Their research primarily involved numerically solving these equations for covariance
matrices with up to two distinct eigenvalues, exploring how the magnitudes of the eigenvalues affect
the plateau’s length and height. In our study, we extend this hierarchy of differential equations to
investigate the dynamics of order parameters for data covariance matrices with power-law spectra,
considering L distinct eigenvalues.

3 SETUP

Dataset. We consider a student network trained on outputs generated by a teacher network, using p
input examples ξµ ∈ RN , where µ = 1, . . . , p. Each input ξµ is drawn from a correlated Gaussian
distribution N (0,Σ), with covariance matrix Σ ∈ RN×N . Although the covariance matrix generally
has N eigenvalues, we assume it has only L distinct eigenvalues, each occurring with multiplicity
N/L, where 1 ≤ L ≤ N and N/L is an integer. The eigenvalues follow a power-law distribution:

λl =
λ+

l1+β
(1)
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where β > 0 is the power-law exponent of the covariance matrix, λ+ = λ1 is the largest eigenvalue,
and l ∈ {1, . . . , L}. We choose λ+ such that the total variance satisfies

∑L
l=1

(
N
L λl

)
= N , ensuring

that the pre-activations of the hidden neurons remain of order one in our setup.

Student-Teacher Setup. The student is a soft committee machine – a two-layer neural network
with an input layer of N neurons, a hidden layer of K neurons, and an output layer with a single
neuron. In the statistical mechanics framework, we represent the weights between the input layer
and the hidden layer as vectors. Specifically, the connection between the input layer and the i-th
hidden neuron is represented by the student vector Ji ∈ RN . Thus, we have K student vectors Ji,
each representing the weights connecting the entire input layer to one of the hidden neurons. The
pre-activation received by the i-th hidden neuron is defined as xi =

1√
N
ξµ · Ji. The overall output

of the student is given by

σ(J , ξ) =

√
M

K

K∑
i=1

g (xi) , (2)

where g(xi) is the activation function, and the output weights are set to
√
M/K. In this setup,

we train the student vectors Ji and keep the hidden-to-output weights fixed. The teacher network
has the same architecture but with M hidden neurons, and its weights are characterized by the
teacher vectors Bn ∈ RN . The pre-activations for the teacher are yn = 1√

N
ξµ · Bn, and its

overall output is ζ(B, ξ) =
∑M

n=1 g (yn). We initialize the student and teacher vectors from normal
distributions: Jia ∼ N (0, σ2

J) and Bna ∼ N (0, 1), where σ2
J is the variance of the student weights

and a ∈ {1, . . . , N}. To quantify the discrepancy between the student’s output and the teacher’s
output, we use the squared loss function ϵ = 1

2 [ζ − σ]2. Our main focus is the generalization error
ϵg = ⟨ϵ(ξ)⟩ξ, which measures the typical error of the student on new inputs. Throughout this work,

we consider the error function as our non-linear activation function g(x) = erf
(

x√
2

)
.

Transition from Microscopic to Macroscopic Formalism. Rather than computing expectation
values directly over the input distribution, we consider higher-order pre-activations defined as
x
(l)
i = ξµ (Σ)

l
Ji/

√
N and y

(l)
n = ξµ (Σ)

l
Bn/

√
N , as suggested in Yoshida & Okada (2019). Here,

(Σ)
l denotes the l-th power of the covariance matrix, and we define (Σ)

0
= I . In the thermodynamic

limit N → ∞, these higher-order pre-activations become Gaussian random variables with zero mean
and covariances given by: ⟨x(k)

i x
(l)
j ⟩ =

Ji(Σ)pJj

N := Q
(p)
ij , ⟨x(k)

i y
(l)
n ⟩ = Ji(Σ)pBn

N := R
(p)
in , and

⟨y(k)n y
(l)
m ⟩ = Bn(Σ)pBm

N := T
(p)
nm, where p = k + l + 1. The higher-order order parameters Q

(l)
ij ,

R
(l)
in , and T

(l)
nm capture the relationships between the student and teacher weights at different levels.

By expressing the generalization error as a function of these order parameters, we transition from a
microscopic view – focused on individual weight components – to a macroscopic perspective centered
on the relationships between student and teacher vectors without detailing their exact components.

Dynamical Equations. During the learning process, we update the student vectors Ji using
stochastic gradient descent after each presentation of an input example:

Jµ+1
i − Jµ

i = −η∇Jiϵ (J
µ
i , ξ

µ) , (3)

where η is the learning rate. In the thermodynamic limit, as p,N → ∞ while maintaining a finite ratio
α = p/N , Yoshida & Okada (2019) derived a set of hierarchical differential equations describing the
dynamics of the order parameters under stochastic gradient descent. Applying these findings to our
specific setup, we obtain the following differential equations:

dR(l)

dα
=

η

K
F1

(
R(1),Q(1),R(l+1),Q(l+1)

)
dQ(l)

dα
=

η

K
F2

(
R(1),Q(1),R(l+1),Q(l+1)

)
+

η2

K2
νl+1F3

(
R(1),Q(1)

)
, (4)

where νl =
1
N

∑N
k=1 λ

l
k. The functions F1, F2, and F3 are defined in Appendix A. The transition

from Eq. (3) to Eq. (4) represents a shift from discrete-time updates indexed by µ to a continuous-time
framework where α serves as a continuous time variable.

At this stage, the differential equations are not closed because the left-hand sides of Eqs. (4) involve
derivatives of the l-th order parameters, while the right-hand sides depend on the next higher-order
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parameters R(l+1) and Q(l+1). To close the system of equations, we employ the Cayley–Hamilton
theorem, which states that every square matrix satisfies its own characteristic equation. Specifically,
for the covariance matrix Σ, the minimal polynomial is given by P (Σ) :=

∏L
k=1 (Σ− λkI) =∑L

k=0 ckΣ
k = 0, where ck are the coefficients of the polynomial, and λk are the distinct eigenvalues

of Σ. Consequently, we can express the highest-order order parameters in terms of lower-order ones:
R(L) = −

∑L−1
l=0 clR

(l), Q(L) = −
∑L−1

l=0 clQ
(l), and T (L) = −

∑L−1
l=0 clT

(l). By substituting
these expressions back into the differential equations, we close the system, resulting in (KM+K2)×
L coupled differential equations. Further details on the derivation of these differential equations are
provided in Appendix A.

4 LINEAR ACTIVATION FUNCTION

4.1 SOLUTION OF ORDER PARAMETERS

For the linear activation function, a significant simplification occurs: the generalization error becomes
independent of the sizes of the student and teacher networks. Specifically, we can replace the student
and teacher vectors with their weighted sums, effectively acting as single resultant vectors. By defining
B̃ = 1√

M

∑M
n Bn, the student effectively learns this combined teacher vector. Consequently, we

focus on the case where K = M = 1. In this scenario, the generalization error simplifies to
ϵg = 1

2

(
Q(1) − 2R(1) + T (1)

)
, which depends only on the first-order order parameters. Therefore,

our main interest lies in solving the dynamics of these first-order parameters. Since we have
only one student and one teacher vector, we represent the order parameters in vector form R =(
R(0), R(1), ..., R(L−1)

)⊤
, Q =

(
Q(0), Q(1), ..., Q(L−1)

)⊤
and T =

(
T (0), T (1), ..., T (L−1)

)⊤
.

Using this setup and notation, along with Eq. (4), we derive the following dynamical equation:

d

dα

(
R
Q

)
= η

(
A1 0L×L

−2A1 − 2ηU 2A1 + ηU

)(
R
Q

)
+ η

(
u
ηu

)
, (5)

where u =
(
T (1), T (2), . . . , T (L)

)⊤
, U = ue⊤2 , and e2 = (0, 1, 0, . . . , 0)

⊤. The matrix A1 ∈
RL×L is defined in Appendix B.1. From Eq. (5), we observe that the differential equations governing
the higher-order student-teacher order parameters R can be solved independently of the student-
student parameters Q. Therefore, to understand the dynamical behavior of R(α), we need to
determine the eigenvalues of A1, and for the asymptotic solution, we require its inverse. Additionally,
the solution for the student-student order parameters Q(α) depends on R(α) and the spectrum of
A1 + ηU . In Appendix B.1, we derive an expression for the generalization error averaged over the
teacher and initial student entries Ba and J0

a :

⟨ϵg⟩J0
a,Ba

=

(
1 + σ2

J

)
2L

L∑
k=1

bkλ̃k exp(−2ηλ̃kα) , (6)

where λ̃k are the eigenvalues of A1 + ηU , bk =
∑L

l=1

(
W−1

)
kl
T (l), and W contains the eigenvec-

tors of A1 + ηU . This equation generally requires numerical evaluation. However, in the regime of
small learning rates η, where we retain terms up to O(η) in Eq. (5), we can determine the spectra of
all involved matrices analytically and solve the differential equations. The solutions for the first-order
order parameters are then given by

⟨R(1)⟩J0
a,Ba

= 1− 1

L

L∑
k

λk exp (−ηλkα) ,

⟨Q(1)⟩J0
a,Ba

= 1 +
1 + σ2

J

L

L∑
k

λk exp (−2ηλkα)−
2

L

L∑
k

λk exp (−ηλkα) , (7)

and the generalization error becomes

⟨ϵg⟩J0
a,Ba

=
η→0

1 + σ2
J

2L

L∑
k=1

λk exp(−2ηλkα) . (8)
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Figure 2: Generatlization error ϵg for linear activation function. Left: ϵg evaluated using Eq. (8)
(blue) and Eq. (6) (orange) for N = 128, K = M = 1, σ2

J = 1, β = 1, and η = 1. Right: ϵg
evaluated using Eq. (9) (dashed orange) compared to simulations experiments averaged over 15
random initializations (solid blue), with N = L = 1024, β = 0.75, η = 0.01, and σJ = 0.01. The
dashed vertical lines indicate the time window where the generalization error scales as ϵg ∝ α

−β
1+β .

Here, λk are the distinct eigenvalues of the data covariance matrix as defined in Eq. (1). Figure 2
compares the generalization error obtained from the exact solution in Eq. (6) with the small learning
rate approximation in Eq. (8). We observe that the generalization error without approximations
consistently lies above the small learning rate solution. This discrepancy arises from the fluctuations
in the stochastic gradient descent trajectory, which become more pronounced at larger learning rates.

4.2 SCALING WITH TIME

To evaluate the sum on the right-hand side of Eq. (8), we employ the Euler-Maclaurin approximation,
which allows us to approximate the sum by an integral. In Appendix B.2, we derive the following
approximation for the generalization error:

⟨ϵg(α)⟩J0
a,Ba

≈
η→0

λ+
1 + σ2

J

2L

(2ηλ+α)
− β

1+β

1 + β

[
Γ

(
β

1 + β
,
2ηλ+α

Lβ+1

)
− Γ

(
β

1 + β
, 2ηλ+α

)]
, (9)

where Γ(s, x) is the incomplete gamma function. This expression reveals that the generalization error

exhibits a power-law scaling within the time window 1
2ηλ+

< α < L1+β

2ηλ+

(
β

10(1+β)Γ
(

β
1+β

)) 1+β
β

. In

this regime, the generalization error scales as ϵg(α) ∝ α− β
1+β , aligning with the results of Bordelon

& Pehlevan (2022) and Lin et al. (2024) for the random feature model. The right panel of Figure 2
illustrates our analytical prediction from Eq. (9), alongside the generalization error observed in
a student neural network trained on Gaussian input data with a power-law spectrum. Additional
numerical analyses are provided in Appendix B.2.

4.3 FEATURE SCALING

Students typically learn directions associated with the largest eigenvalues of the data covariance
matrix more rapidly Advani et al. (2020). To model this behavior, we assume the student can learn at
most Nl ≤ L = N distinct eigenvalues of the data covariance matrix. Consequently, only the first Nl

entries of the student vector are trainable, while the remaining N −Nl entries remain fixed at their
initial random values. Our objective is to examine how the generalization error scales as the student
explores more eigendirections of the data covariance matrix. We first consider a diagonal covariance
matrix Σ, where each student vector entry Jk independently converges to the corresponding teacher
entry Bk at a rate proportional to an eigenvalue λk. (see Appendix B.3).
Figure 3 displays the generalization error as a function of α for various values of Nl. We observe that
the generalization error approaches a limiting asymptotic value ϵg,asymp. In Appendix B.3, we derive
the following expression for the expected generalization error in this model:

⟨ϵg⟩J0
k ,Bk

=
η→0

1 + σ2
J

2L

[
Nl∑
k=1

λk exp (−2ηλkα) +

L∑
k=Nl+1

λk

]
. (10)
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Figure 3: Generalization error ϵg for different trainable input dimensions Nl of the student network.
Left: ϵg as a function of α for various Nl, with L = N = 256, K = M = 1, σJ = 0.01, η = 0.05,
and β = 1. The student network is trained on synthetic data and the teacher’s outputs. Right: ϵg as a
function of α, with L = N = 1024, K = M = 1, σJ = 0.01, and η = 0.05. The student network is
trained on the CIFAR-5m dataset Nakkiran et al. (2021) using the teacher’s outputs. We estimate the
scaling exponent β ≈ 0.3 for this dataset. For the theoretical predictions, the empirical data spectrum
is used to evaluate Eq. (11). Both plots compare the simulation results (solid curves) to the theoretical
prediction from Eq. (11) (black dashed lines). For both plots, the generalization error is averaged
over 50 random initializations of the student and teacher vectors.

Using the Euler-Maclaurin formula, we approximate the sums by integrals and find:

⟨ϵg (Nl, α)⟩J0
a,Ba

≈
η→0

1 + σ2

2

λ+

βL

(
1

Nβ
l

− 1

Lβ

)
+ ⟨ϵg(α)⟩J0

a,Ba
. (11)

From this, we derive the asymptotic generalization error as ϵg,asymp ≈ 1+σ2

2
λ+

βL

(
1

Nβ
l

− 1
Lβ

)
. Thus,

when Lβ > Nβ
l , we find a power-law scaling of the asymptotic generalization error with respect

to the number of learned features: ϵg,asymp ∼ 1

Nβ
l

. A similar scaling result for feature scaling is

presented in Maloney et al. (2022) for random feature models. However, our scaling exponent for the
dataset size (parameterized by α) differs from that for the number of features. In Appendix B.3, we
analyze the student network trained with a non-diagonal data covariance matrix. In this setting, we
find the same power-law exponent ϵg,asymp ∼ 1

Nβ
l

.

5 NON-LINEAR ACTIVATION FUNCTION

5.1 PLATEAU

As discussed in the introduction and illustrated in Fig. 1, both the length and height of the plateau are
influenced by the number of distinct eigenvalues in the data covariance matrix. Specifically, as the
number of distinct eigenvalues increases, the plateau becomes shorter and can eventually disappear.
In this section, we present our findings that explain the underlying causes of this behavior for the
case where K = M . Biehl et al. (1996) derived a formula to estimate the plateau length αP for a soft
committee machine trained via stochastic gradient descent with randomly initialized student vectors.
We adopt their heuristically derived formula for our setup, which takes the form

αP − α0 = τesc

(
D − 1

2
ln
(
σ2
J

)
+

1

2
ln (N)

)
, (12)

where D is a constant of order O(1) that depends on the variances at initialization and during the
plateau phase, α0 is an arbitrary starting point on the plateau, and τesc represents the escape time
from the plateau. Our goal is to show how the escape time τesc is modified when the dataset has a
power-law spectrum. However, there is not a single plateau or plateau length. As shown numerically
by Biehl et al. (1996), multiple plateaus can exist, and their number depends on factors such as the
network sizes K and M , as well as hyperparameters like the learning rate η. To investigate how the
plateau lengths depend on the number of distinct eigenvalues, we focus on the differential equations
for the error function activation up to order O (η). This corresponds to the small learning rate regime,
although the associated plateau behavior can occur for intermediate learning rates as well.
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Figure 4: Symmetric plateau for a non-linear activation function. Left and center: Plateau behavior
of the order parameters for L = 10, N = 7000, σJ = 0.01, η = 0.1, and M = K = 4, using
one random initialization of the student and teacher vectors. We solve the differential equations
in the small learning rate regime, retaining terms up to O(η). The insets display the higher-order
order parameters at the plateau. For the student-teacher order parameters, we observe M distinct
plateau heights, while the student-student order parameters exhibit a single plateau height with minor
statistical deviations in the matrix entries Q(l)

ij . The dashed horizontal lines in the insets correspond to
the plateau heights predicted by Eq. (13). Right: Corresponding generalization error ϵg for the same
setup. The vertical dashed lines indicate the estimated plateau length based on Eqs. (12) and (15).

5.1.1 PLATEAU HEIGHT

In contrast to isotropic input correlations, the higher-order order parameters in our setup are no
longer self-averaging, resulting in more complex learning dynamics. For the teacher-teacher order
parameters, we find the expectation value

〈
T

(l)
nm

〉
= δnm

1
N Tr

(
Σl
)

and the variance Var
(
T

(l)
nm

)
=

(δnm+1)
N2

∑N
k=1 λ

2l
k . In Appendix C.2 we show that the teacher-teacher order parameters T (l)

nn with
l > 0 are only self-averaging when L/N → 0 in the thermodynamic limit N → ∞, while for a finite
ratio L/N their variance does not decrease with increasing input dimension N . Consequently, in the
latter case, the plateau height and length can fluctuate between different initializations, even in the
thermodynamic limit. Figure 4 displays the first-order order parameters as functions of α. For the
student-teacher order parameters, we observe M distinct plateau heights, while the student-student
order parameters exhibit a single plateau height. In Appendix C.3, we discuss that these unique
plateau heights are determined by the sum of off-diagonal elements d(l)n =

∑M−1
m,m ̸=n T

(l)
nm for each

row n of the teacher-teacher matrix. To simplify the analysis, we assume that all diagonal elements
are equal to T (l), and all off-diagonal elements are given by T

(l)
nm = 1

M−1D
(l), where D(l) represents

the average sum of off-diagonal entries. This approximation captures the general behavior of the
plateaus. By considering the stationary solutions to Eqs. (4), we find the fixed points for l = 1

R∗(1)

=
1√

M
T (1)+D(1)

(
MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1
) , Q∗(1)

=
1

MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1

. (13)

Expressions for the fixed points of higher-order order parameters are provided in Appendix C.3.

5.1.2 ESCAPE FROM THE PLATEAU

To escape from the plateau, the symmetry in each order l of the order parameters must be broken. To
model this symmetry breaking, we introduce parameters S(l) and C(l), which indicate the onset of
specialization for the student-teacher and student-student order parameters, respectively. Specifically,
we use the parametrization R

(l)
im = R(l)δim + S(l)(1 − δim) and Q

(l)
ij = Q(l)δij + C(l)(1 − δij).

To study the onset of specialization, we introduce small perturbation parameters r(l), s(l), q(l),
and c(l) to represent deviations from the plateau values: R(l) = R∗(l)

+ r(l), S(l) = S∗(l)

+ s(l),
Q(l) = Q∗(l)

+ q(l), and C(l) = C∗(l)

+ c(l), where S∗(l)

= R∗(l)

and C∗(l)

= Q∗(l)

. Therefore,
instead of analyzing the dynamics of the order parameters directly, we focus on the dynamics of these
perturbative parameters and linearize the differential equations given in Eq. (4).

In Appendix C.4, we demonstrate that, due to the structure of the leading eigenvectors of the dynamical
system, we can set c(l) = q(l) = 2T (l)

T (1)+D(1)R
∗(l) (

r(l) + (M − 1)s(l)
)

and s(l) = −1
(M−1)r

(l). This
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Figure 5: Plateau behavior of the generalization error ϵg from simulations for a random initialization
of student and teacher vectors. Left: ϵg for various student-teacher sizes for L = 4, N = 1024,
η = 0.1, σJ = 0.01, β = 1. The inset shows the plateau length vs. M2, averaged over 15
initializations. Right: ϵg for different L with K = M = 6, N = 500, η = 0.01, σJ = 10−6,
β = 0.25. The inset shows the plateau length vs. 1/L, averaged over 10 initializations. The vertical
lines represent measured plateau lengths.

allows us to obtain a reduced dynamical differential equation of the form

dr

dα
= ηArr, (14)

where r = [r(1), r(2), . . . , r(L)]⊤, and Ar ∈ RL×L is defined in Appendix C.4. After solving these
differential equations, we find that the escape from the plateau follows ϵ∗g − ϵg ∝ e

α
τesc , where the

escape time τesc is given by

τesc =
π

2η

√
(M − 1)T (1) −D(1) +M

(
D(1) + (M + 1)T (1) +M

) 3
2(

T (2) − D(2)

M−1

) (
D(1) + T (1)

) . (15)

For large L, one can show that T (2) ∝ L. Therefore, for large M and L, the escape time scales as
τesc ∼ M2

ηL . This behavior is illustrated in Figure 5, where we train a student network with synthetic
input data. Additional numerical results for the plateau length are provided in Appendix C.5.

5.2 ASYMPTOTIC SOLUTION

In this subsection, we investigate how the generalization error converges to its asymptotic value. To
this end, we consider the typical teacher configuration where ⟨T (l)

nm⟩ = δnmT (l), as this configuration
effectively captures the scaling behavior of the generalization error. For the asymptotic fixed points
of the order parameters, we find R∗(l)

im = T (l)δim and Q∗(l)

ij = T (l)δij . To model the convergence
towards the asymptotic solution, we again distinguish between diagonal and off-diagonal entries,
parametrizing the order parameters as R(l)

im = R(l)δim+S(l)(1−δim) and Q
(l)
ij = Q(l)δij+C(l)(1−

δij), similar to the plateau case. We then linearize the dynamical equations for small perturbations
around the fixed points, setting R(l) = T (l) + r(l), S(l) = T (l) + s(l), Q(l) = T (l) + q(l), and
C(l) = T (l) + c(l), and retain terms up to O (η). This yields the following linearized equation

dx

dα
= aAasym x (16)

where xi =
(
r(i−1), q(i−1), s(i−1), c(i−1)

)⊤
, a = 2

√
3

3πM , and Aasym ∈ R4L×4L is defined in Ap-
pendix C.6. After solving Eq. (16), we find for the generalization error

ϵg =
1

6π

L∑
k=1

g
(1)
k e−a(2+

√
3)λkα

(
2
√
3v

(1)
k,2L+2 − 4

√
3v

(1)
k,2 + 3 (M − 1) v

(1)
k,3L+2 − 6 (M − 1) v

(1)
k,L+2

)
+ g

(2)
k e−a(2−

√
3)λkα

(
2
√
3v

(2)
k,2L+2 − 4

√
3v

(2)
k,2 + 3 (M − 1) v

(2)
k,3L+2 − 6 (M − 1) v

(2)
k,L+2

)
,

(17)
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Figure 6: Scaling behavior of the generalization error ϵg in the asymptotic regime for a non-linear
activation function. Left: ϵg as a function of α for K = M = 40, η = 0.01, σJ = 10−6 and
L = N = 512 for simulations averaged over 10 different initializations. Right: ϵg obtained from
equation Eq. (17) (orange) in comparison to the solution of differential equations of O(η) (blue) for
K = M = 2, η = 0.25, β = 1 and L = 9.

where λk are the eigenvalues of the data covariance matrix, v(1)k and v
(2)
k are two groups of eigenvec-

tors corresponding to the eigenvalues
(
2 +

√
3
)
λk and

(
2−

√
3
)
λk, and the coefficients g(1)k and

g
(2)
k depend on the initial conditions, as detailed in Appendix C.6. The weighted sum of exponentials

results in a slowdown of the convergence of the generalization error, similar to the linear activation
function case. Figure 6 illustrates the generalization error during the late phase of training for different
β. In Appendices D and E, we investigate the scaling law through numerical analyses and simulation
experiments for the over-parameterized regime K > M and the ReLU activation function, as well
as experiments on additional activations. In all configurations, we observe the previously derived
scaling ϵg ∝ α− β

1+β , consistent with the linear activation function.

6 CONCLUSION

We have provided a theoretical analysis of neural scaling laws within a student-teacher framework
using statistical mechanics. By deriving analytical expressions for the generalization error, we
demonstrated how power-law spectra in the data covariance matrix influence learning dynamics
across different regimes. For linear activation functions, we have established the conditions under
which power-law scaling for the generalization error with α emerges and computed the power-law
exponent for the scaling of the generalization error with the number of student parameters. For
non-linear activations, we presented an analytical formula for the plateau length, revealing its
dependence on the number of distinct eigenvalues and the covariance matrix’s power-law exponent.
In addition, we found that the convergence to perfect learning transitions from exponential decay
to power-law scaling when the data covariance matrix exhibits a power-law spectrum. This high-
lights the significant impact of data correlations on learning dynamics and generalization performance.

Limitations. In Appendix F, we extended our analysis to include trainable second-layer weights.
We found that for the error function activation, the scaling exponent did not change, whereas for
the ReLU activation, there was an improvement in the scaling exponent. Numerical investigations
of the differential equations reveal that with the error function activation, the weights converge to
the configuration of the soft committee machine. In contrast, with the ReLU activation, the weights
reach a distinct fixed point leading to improved scaling. This finding provides a foundation for future
theoretical investigations into how architectural choices influence scaling laws.

Note added: After completion of this work, we became aware of the preprint Bordelon et al. (2024a),
which also studies neural scaling laws in the feature learning regime.
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A DIFFERENTIAL EQUATIONS

From the stochastic gradient descent given in Eq. (3), Yoshida & Okada (2019) derived the following
differential equations, generalization error, and covariance matrices in the thermodynamic limit
N → ∞. Following their work for our setup, one finds

dQ
(l)
ij

dα
=

η

K

[
M∑

m=1

I3(xi, x
(l)
j , ym)− M

K

K∑
k=1

I3(xi, x
(l)
j , xk) +

M∑
m=1

I3(xj , x
(l)
i , ym)− M

K

K∑
k=1

I3(xj , x
(l)
i , xk)

]

+
η2

K2
νl+1

[
M

K2

K,K∑
k,l=1

I4(xi, xj , xk, xl) +

M,M∑
n,m=1

I4(xi, xj , yn, ym)− 2

K

K,M∑
k,n=1

I4(xi, xj , xk, yn)

]

dR
(l)
in

dα
= η

 M∑
m=1

I3(xi, y
(l+1)
n , ym)−

K∑
j=1

I3(xi, y
(l+1)
n , xj)

 , (18)

with νl = 1
N

∑N
k λl

k, I3(z1, z2, z3) = ⟨g′(z1)z2g(z3)⟩ and I4(z1, z2, z3, z4) =
⟨g′(z1)g′(z2)g(z3)g(z4)⟩. In this setting, the generalization error becomes

ϵg =
1

2

 M∑
m,n=1

I2(y
(1)
n , y(1)m ) +

K∑
i,j=1

I2(x
(1)
j , x

(1)
i )− 2

K∑
i=1

M∑
n=1

I2(x
(1)
i , y(1)n )

 . (19)

where I2(z1, z2) := ⟨g(z1)g(z2)⟩. Thereby, the I2, I3 and I4 are integrals over the generalized
pre-activations x(l)

i and y
(l)
n . Thereby, zi are normally distributed variables and stand for either x(l)

i

or y(l)n . Therefore, the integrals I2, I3, and I4, are multivariate Gaussian expectation values that are
determined by the expectation values and covariance matrix of the generalized pre-activations. I2
is a two-dimensional Gaussian integral. For example, for I2(x

(1)
j , x

(1)
j ), on obtains the following

covariance matrix

C (i, j) =

(
Q

(1)
ii Q

(1)
ij

Q
(1)
ij Q

(1)
jj

)
. (20)

The resulting elements of the covariance matrices depend on the higher-order order parameters. I3 is
a three-dimensional Gaussian integral, and an example of the covariance matrix is

C(l) (i, j, n) =

 Q
(1)
ii Q

(1)
ij R

(1)
in

Q
(l+1)
ij Q

(2l+1)
jj R

(l+1)
jn

R
(1)
in R

(l+1)
jn T

(1)
nn

 , (21)

for I3(x
(1)
j , x

(l)
j , y

(1)
n ). Note that I3 depends on higher-order l as compared to I2 and I4, which only

depend on the first-order. Furthermore, I4 is a four-dimensional Gaussian integral and depends, for
example, on the following covariance matrix for I4(x

(1)
j , x

(1)
j , y

(1)
n , y

(1)
m )

C (i, j, n,m) =


Q

(1)
ii Q

(1)
ij R

(1)
in R

(1)
im

Q
(1)
ij Q

(1)
jj R

(1)
jn R

(1)
jm

R
(1)
in R

(1)
jn T

(1)
nn T

(1)
nm

R
(1)
im R

(1)
jm T

(1)
nm T

(1)
mm

 . (22)

The specific differential equations for the linear and error function activation are provided in their
corresponding subsections.
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B LINEAR ACTIVATION

B.1 SOLUTION OF ORDER PARAMETERS

The linear activation function leads to the following teacher output ζ(B, ξ) = 1√
M

∑M
n=1

ξBn√
N

. This

makes it possible to rewrite the output as ζ(B, ξ) = 1√
M

∑M
n=1

ξBn√
N

= ξ√
N

1√
M

∑M
n=1 Bn = ξB̃√

N
,

where we have defined a new teacher vector B̃ = 1√
M

∑M
n=1 Bn. Since B̃ has the same statistical

properties as one random teacher vector Bn it makes no difference whether we consider the case
M > 1 and define B̃ or M = 1. The same argument also applies to the linear student network.
Therefore, in the following, we analyze the case K = M = 1.
For K = M = 1, the generalization error becomes

ϵg =
1

2

(
Q(1) − 2R(1) + T (1)

)
. (23)

The differential equations for the order parameters are

dR(l)

dα
= η

[
T (l+1) −R(l+1)

]
,

dQ(l)

dα
= 2η

[
R(l+1) −Q(l+1)

]
+ η2T (l+1)

[
T (1) +Q(1) − 2R(1)

]
(24)

with 0 ≤ l ≤ L− 2 and for the last component

dR(L−1)

dα
= η

[
L−1∑
k

ck

(
T (k) −R(k)

)]
,

dQ(L−1)

dα
= 2η

[
L−1∑
k

ck

(
R(k) −Q(k)

)]
+ η2T (L)

[
T (1) +Q(1) − 2R(1)

]
. (25)

Thereby, we have exploited the minimal polynomial for the order parameters for the L-th order, e.g.
R(L) = −

∑L−1
k=0 ckR

(k), with the coefficients of the minimal polynomial ck. The set of coupled
linear differential equations given by Eqs. (24) and (25) can be written in the following form

d

dα

(
R
Q

)
= η

(
A1 0L×L

−2A1 − 2ηU 2A1 + ηU

)(
R
Q

)
+ η

(
u
ηu

)
, (26)

where u =
(
T (1), T (2), ..., T (L)

)⊤
, U = ue⊤2 with e2 = (0, 1, 0, ..., 0)

⊤ and

A1 =



0 −1 0 · · · 0 0

0 0 −1
. . .

...
...

0 0 0
. . . 0 0

...
...

. . . . . . −1 0
0 0 · · · 0 0 −1
c0 c1 c2 · · · cL−2 cL−1


, U = ue⊤2 . (27)

Therefore, the differential equations for the order parameters are

dR

dα
= ηA1R+ ηu (28)

dQ

dα
= ηA3R+ ηA4Q+ η2u (29)
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with A3 = −2A1 − 2ηU , A4 = 2A1 + ηU .
Thus, we can solve differential equations for the student-teacher order parameters independent from
the student-student and find

R (α) = eηA1αR0 + eηA1αA−1
1 u−A−1

1 u, (30)
where R0 are the student-teacher order parameters at initialization and we set R0 = 0 which is
achieved on average. Before inserting this result into the differential equation for the student-student
order parameters, we evaluate Eq. (30). For this, we need to find the eigenvalues of the matrix A1

and evaluate A−1
1 u.

First, we start with the eigenvalues. In order to find the determinant of A1 − λIL, we apply the
Laplace expansion with respect to the last row of A1 − λI2L and evaluate the determinants of
L different L − 1 × L − 1 smaller matrices. The resulting sub-matrices are triangular, and their
determinant is, therefore, simply given by the product of the diagonal entries. After applying the
Laplace expansion, we find

det (A1 − λIL) =

L−2∑
i=0

ci(−1)L+1+i(−1)L−1−i(−λ)i + (cL−1 − λ)(−1)2L(−λ)L−1

=

L∑
i=0

ci(−λ)i = 0 (31)

with cL = 1. Since c0, ..., cL are the coefficients of the minimal polynomial for the distinct eigenval-
ues of the data covariance matrix, we now know the roots of Eq. (31). Therefore, the eigenvalues of
A1 are given by the negative eigenvalues of the distinct eigenvalues of the data covariance matrix
λA1,l = −λl for 1 ≤ l ≤ L. By applying the matrix A1 on a potential eigenvector A1vk = λkvk,
we find the following conditions for the eigenvector entries

vk,i = (−1)i−1λi−1
k vk,1, (32)

obtained by a recursive method. Furthermore, we can choose vk,1 = 1 for all eigenvectors. The
eigenvector matrix V , for which an eigenvector gives each column, is given by the transpose of the
Vandermonde matrix

V =


1 1 · · · 1
λ1 λ2 · · · λL

λ2
1 λ2

2 · · · λ2
L

...
...

. . .
...

λL−1
1 λL−1

2 · · · λL−1
L

 . (33)

Second, we evaluate all matrix products given in Eq. (30). Since all eigenvalues are strictly negative,
the student-teacher order parameters converge to limα→∞ R (α) = −A−1

1 u that we are going to
evaluate using the eigenvector matrix. We insert the eigendecomposition A−1

1 = V Λ2V
−1 into

the asymptotic solution with Λ2,kj = −δkj
1
λk

and find for the entries of the student-teacher order
parameters

lim
α→∞

⟨ Ri⟩Ja,0,Ba
= −

L∑
j

Vij

L∑
k

Λ2,jk

L∑
l

(
V −1

)
kl
⟨ul⟩Ja,0,Ba

= −
L∑
j

VijΛ2,jj

L∑
l

(
V −1

)
jl
⟨ul⟩Ja,0,Ba

= −
L∑
j

λ
(i−1)
j

1

−λj

L∑
l

(
V −1

)
jl
⟨ul⟩Ja,0,Ba

=

L∑
j

λ
(i−2)
j

L∑
l

(
V −1

)
jl
⟨ul⟩Ja,0,Ba

(34)
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and further, evaluate

L∑
l

(
V −1

)
jl
⟨ul⟩Ja,0,Ba

=

L∑
l=1

(
V −1

)
jl
⟨T (l)⟩Ja,0,Ba

=

L∑
l=1

(
V −1

)
jl

1

L

L∑
a

λl
a

=
1

L

L∑
a

λa

L∑
l=1

(
V −1

)
jl
λl−1
a

=
1

L

L∑
a

λa

L∑
l=1

(
V −1

)
jl
Vl,a

=
1

L
λj

(35)

where we have used
∑L

l=1

(
V −1

)
jl
Vl,a = δj,a obtained by the definition of the product between a

matrix with its inverse. Thus, we find

lim
α→∞

⟨Ri⟩Ja,0,Ba
=

1

L

L∑
j

λ
(i−1)
j = ⟨T (i−1)⟩Ja,0,Ba

. (36)

Note that Ri = R(i−1) and therefore limα→∞⟨R(i)⟩Ja,0,Ba = ⟨T (i)⟩Ja,0,Ba .
Next, we want to evaluate eA1αA−1

1 u and define

Fi =

L∑
j

Vij

L∑
k

exp (−ηλjα) δjk

L∑
l

Λkl

L∑
m

(
V −1

)
lm

⟨um⟩Ja,0,Ba

=

L∑
j

Vij exp (−ηλjα)
1

−λj

L∑
m

(
V −1

)
lm

⟨um⟩Ja,0,Ba

= − 1

L

L∑
j

λi−2
j exp (−ηλjα)λj

= − 1

L

L∑
j

exp (−ηλjα)λ
i−1
j

(37)

which leads to ⟨R (α)⟩Ja,0,Ba = F −A−1
1 ⟨u⟩ = T + F . Thus, we obtain for the expectation value

of R(1)

⟨R(1)⟩Ja,0,Ba
= ⟨R2⟩Ja,0,Ba

= 1− 1

L

L∑
a

exp (−ηλaα)λa. (38)

As a next step, we insert the result given by Eq. (30) for ⟨R0⟩ = 0 into the differential equations for
the student-student order parameters given by Eq. (29), in order to obtain a new expression

dQ

dα
= ηA3

(
eηA1αA−1

1 u−A−1
1 u

)
+ ηA4Q+ η2u (39)

In order to simplify the differential equation, we evaluate A3A
−1
1 T . The inverse of A1 can be

obtained analytically, where we find
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A−1
1 =



c1
c0

c2
c0

c3
c0

· · · cL−1

c0
1
c0

−1 0 0
. . .

...
...

0 −1 0
. . . 0 0

...
...

. . . . . . 0 0
0 0 · · · −1 0 0
0 0 0 · · · −1 0


(40)

and obtain for the matrix-vector product −A3A
−1
1 u = 2 (η − 1)u. We can further simplify

ηu−A3A
−1
1 u = (η − 2)u and insert this result in Eq. (39) in order to obtain

dQ

dα
= ηA3e

A1αA−1
1 u+ η(2− η)u+ ηA4Q. (41)

The solution of this differential equation is given by

Q (α) = eηA4αQ0 + eηA4α(A1 −A4)
−1
(
e(ηA1−ηA4)α − I

)
A3A

−1
1 u (42)

+ (2− η)eηA4αA−1
4

(
I − e−ηA4α

)
u (43)

with Q0 are the student-student order parameters at initialization. Note that the initial value Q0

does not vanish in the thermodynamic limit and is also not zero on average in contrast to R0. By
the definition of the matrices, we find A1 −A4 = 1

2A3 making it straightforward to evaluate their
relations (A1−A4)

−1A3 = 2IL. Furthermore, in order to estimate (2− η)A−1
4 u, we need to know

the inverse of A4 for which we find

A−1
4 =



c1
2c0

− η
2−η

c2
2c0

c3
2c0

· · · cL−1

2c0
1

2c0

1
η−2 0 0

. . .
...

...

ηT (2)

2(η−2) − 1
2 0

. . . 0 0
...

...
. . . . . . 0 0

ηT (L−2)

2(η−2) 0 · · · − 1
2 0 0

ηT (L−1)

2(η−2) 0 0 · · · − 1
2 0


. (44)

Thus, we obtain for the product (2− η)A−1
4 u = −T . Therefore, we can simplify Eq. (43) to

Q (α) = T + eηA4αQ0 +
(
eηA4α − 2eηA1α

)
T (45)

Using Eq. (23) and taking the expectation value over initial student and teacher entries Ba and J0
a ,

we obtain for the generalization error

⟨ϵg⟩J0
a,Ba

=

(
1 + σ2

J

)
2L

L∑
k=1

bkλ̃k exp(−2ηλ̃kα) , (46)

where λ̃k are the eigenvalues of A1 + ηU , bk =
∑L

l=1

(
W−1

)
kl
T (l), and W contains the eigenvec-

tors of A1 + ηU . Although U is a rank-1 matrix, standard perturbation methods are not applicable to
find the eigenvalues of the shifted matrix A1 + ηU because U may have a large eigenvalue, making
it unsuitable as a small perturbation.
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B.1.1 SMALL LEARNING RATES

For small learning rates, we can approximate A4 ≈ 2A1 and immediately find for the first order
student-student order parameters

⟨Q(1)⟩Ja,0,Ba
= ⟨Q2⟩Ja,0,Ba

= 1 +
(
1 + σ2

J

) 1

L

L∑
a

exp (−2ηλaα)λa − 2
1

L

L∑
a

exp (−ηλaα)λa, (47)

where we have exploit that ⟨Q0⟩Ja,0,Ba
= σ2

J⟨T ⟩Ja,0,Ba
. After inserting Eqs. (38) and (47) into Eq.

(23), we obtain for the generalization error

⟨ϵg⟩Ja,0,Ba
=
(
1 + σ2

J

) 1

2L

L∑
a=1

λa exp(−2ηλaα), (48)

leading to Eq. (8) in the main text.

B.2 SCALING WITH TIME

In order to evaluate the sum for the generalization error given in Eq. (48), we consider the Euler-
Maclaurin approximation. The formula for the approximation is given by (cf. Apostol (1999))

n∑
i=m

f(i) =

∫ n

m

f(x) dx+
f(n) + f(m)

2
+

⌊ p
2 ⌋∑

k=1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(m)

)
, (49)

where B2k is the kth Bernoulli number. For the difference of the sum from the integral, one can find
n∑

i=m

f(i)−
∫ n

m

f(x) dx =
f(m) + f(n)

2
+

∫ n

m

f ′(x)P1(x) dx

=
f(m) + f(n)

2
+

1

6

f ′(n)− f ′(m)

2!
+

∫ n

m

f ′′′(x)
P3(x)

3!
dx,

(50)

where Pk(x) are the periodized Bernoulli polynomials of order k. These are defined as:

Pk(x) = Bk(x− ⌊x⌋),
where Bk(x) are the Bernoulli polynomials and ⌊x⌋ denotes the floor function. In our case, the
function and its derivative are

f(k, α, β) =

(
1 + σ2

J

)
L

λ+

kβ+1
exp

(
−2ηλ+α

kβ+1

)
f ′(k) =

(
1 + σ2

J

)
λ+

L
exp

(
−2ηλ+α

kβ+1

)(
2ηλ+α(β + 1)

k2β+3
− β + 1

kβ+2

)
.

We want to approximate the sum by an integral and, therefore, estimate their maximal difference.
Due to the exponential pre-factor in all functions, the maximal deviation of the integral from the sum
is obtained at initialization α = 0 or for η → 0. Therefore, we make the following ansatz for limη→0

n∑
i=m

f(i)−
∫ n

m

f(x) dx <
f(m) + f(n)

2
+

∫ n

m

f ′(x)P1(x) dx. (51)

Our goal is to express the term
∫ n

m
f ′(x)P1(x) dx for η → 0. To do this, we consider the integral

over the interval [k, k + 1), where k is an integer. This allows us to handle the floor function more
easily, as it is constant over each interval. Within each interval, one can simplify the expression for∫ k+1

k
f ′(x)P1(x) dx, which can be written as:

∆k =
L

(1 + σ2
J)λ+

lim
η→0

∫ k+1

k

f ′(x)P1(x) dx.
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Figure 7: Generalization error evaluated by Eq. (48) (full blue) and Eq. (49) including different
order of function derivatives (dashed) for N = 128 , K = M = 1, σ2

J = 1 and β = 0.5. The
integral without corrections (orange) is given by Eq. (54). Left: For η = 1

2λ+
≈ 0.001, the difference

between the sum and its integral representation is well represented by Eq. (50) including corrections
up to 0th order in the derivative of f . Right: For η = 10−6 and α < 1

2ηλ+
≈ 103, the difference

between the sum and its integral representation is quantified by the upper bound given in Eq. (52)
(red dashed). However, for α > 1

2ηλ+
, including derivatives up to 0th order in Eq. (50) are sufficient

to quantify the deviation of the sum from its integral representation.

Substituting the expression for f ′(x) and taking the limit as η → 0, ∆k becomes:

∆k =
1

2(k + 1)β+1
+

1

2kβ+1
+

1

β(k + 1)β
− 1

βkβ
.

To estimate the total correction across the entire interval from 1 to L, we sum this expression from
k = 1 to L− 1 for large L. For the first term, we obtain

1

2

L−1∑
k=1

1

(k + 1)β+1
=

1

2
ζ(β + 1)− 1

2
,

where ζ(β + 1) is the Riemann zeta function. The second term is straightforward and sums to:

1

2

L−1∑
k=1

1

kβ+1
=

1

2
ζ(β + 1).

For the difference between the third and fourth terms, we find

L−1∑
k=1

1

β(k + 1)β
− 1

βkβ
= − 1

β

Combining all these results, the sum of the integral correction term over all intervals from 1 to L− 1
is:

L−1∑
k=1

∆k = ζ(β + 1)− 1

2
− 1

β
.

After inserting the start and end point of the sum into the function f (m = 1) and f (n = L) for
η → 0, we obtain an upper bound for the error

n∑
i=m

f(i)−
∫ n

m

f(x) dx <

(
1 + σ2

J

)
λ+

2L

[
1

Lβ+1
+ ζ(β + 1)− 1

β

]
. (52)

This "worst case" upper bound works excellent for moderate input sizes N ∼ O
(
101
)

as well.
The difference between the sum and its integral representation beyond the small learning rate limit
can be estimated as well. If we consider a learning rate larger than η > 1

2λ+α , then the difference
between the sum and its integral representation is well quantified by including derivatives of f up to
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Figure 8: Generalization error evaluated by Eq. (48) (full blue), Eq. (54) (dashed orange) and (55)
(dashed green) for N = 128 , K = M = 1, σ2

J = 1 and η = 0.01. Left: For β = 1. Right: For
β = 0.01.

0th order on the right-hand side of Eq. (50). Especially f(m = 1) plays the most important role, and
we find

n∑
i=m

f(i)−
∫ n

m

f(x) dx <
1

2
f(1) =

(
1 + σ2

J

)
λ+

2L
exp (−2ηλ+α) . (53)

Since we consider η > 1
2λ+α , the difference decreases exponentially in time. For smaller learning

rates η < 1
2λ+α higher order must be included up to the "worst case" bound given in Eq. (52).

However, for the condition η < 1
2λ+α or equivalently α < 1

2ηλ+
no meaningful learning has

occurred.
In the right panel of Figure 7, we have chosen η = 10−6 < 1

2λ+
≈ 10−2 in order to test our

approximation of the sum. We find an excellent agreement. However, such a learning rate is very
untypical since no learning would occur over many time orders. Typically, the learning rates that
we use in our simulations are larger of order O

(
10−3

)
to O (1). Therefore, including 0th order

derivatives of f in order to estimate the difference between the sum and its integral representation is
enough to consider.

Since the corrections, including 0th order derivatives of f , decrease exponentially with α, we use the
integral in order to approximate the generalization error ϵg(L;α) ≈

∫ n

m
f(x) dx for m = 1 to n = L.

This integral can be solved analytically, and we obtain

ϵg(L;α) ≈
(
1 + σ2

J

)
λ+

2L

(2ηλ+α)
− β

1+β

1 + β

[
Γ

(
β

1 + β
,
2ηλ+α

Lβ+1

)
− Γ

(
β

1 + β
, 2ηλ+α

)]
(54)

where Γ (s, x) is the incomplete gamma function.
Next, we aim to clarify under which conditions the generalization error scales as a power-law in
α. For the second gamma function within the brackets in Eq. (54), we notice that its argument
is L1+β larger than for the first gamma function. Thus, we can introduce a scaled time variable
by α̃ = 2ηλ+α and insert this into the second gamma function Γ

(
β

1+β , 2ηλ+α
)
= Γ

(
β

1+β , α̃
)

decreasing exponentially fast with α̃. Therefore, we can neglect the second gamma function compared
to the first one since both operate on different time scales, as presented in Figure 8. Thus, we further
simplify

ϵg(L;α) ≈
(
1 + σ2

J

)
λ+

2L

(2ηλ+α)
− β

1+β

1 + β
Γ

(
β

1 + β
,
2ηλ+α

Lβ+1

)
(55)

valid for 1
2ηλ+

< α. Furthermore, from the previous discussion based on empirical observations, we
know that no meaningful learning happens for α < 1

2ηλ+
. The incomplete gamma function given in

Eq. (55) can further be approximated by

Γ(s, z) ≈ Γ(s)− zs

s
(56)
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Figure 9: Generalization error as a function of α obtained by simulation experiments for the linear
activation function for K = M = 1. We test our time window given in Eq. (58) (vertical lines) and
power-law exponent ϵg ∝ α

−β
1+β (black dashed descending line) for and σJ = 0.01. Left: A setup

configuration for N = L = 256, β = 0.75 and η = 0.001, where we obtain 3.8 < α < 12850. Right:
A setup configuration for N = L = 1024, β = 1 and η = 0.01, where we obtain 0.2 < α < 17740.
Note that we have placed the lower bound at α = 1 in the right panel.

for z ≪ 1, s = β
β+1 and z = 2ηλ+α

L1+β . As a last approximation, we use Γ(s, z) ≈ Γ(s) valid for
Γ(s) ≫ zs

s , in order to find for the generalization error

ϵg(L;α) ≈
(
1 + σ2

J

)
λ+

2L

(2ηλ+α)
− β

1+β

1 + β
Γ

(
β

1 + β

)
. (57)

From Eq. (57), we obtain a power-law scaling for the generalization error ϵg ∝ α
−β
1+β .

For which range of α can this scaling law be observed? Clearly, the lower bound for α is 1
2ηλ+

< α

as already discussed. The upper bound can be estimated from the approximation Γ(s, z) ≈ Γ(s),
which is valid for the condition zs

s ≪ Γ(s). In order to quantify the notation "much less than",
we demand that zs

s is at least one order of magnitude smaller than Γ(s), i.e. zs

s < 1
10Γ(s). Using

this inequality together with the definition of z and s, we obtain the following time condition

α < L1+β

2ηλ+

(
β

10(1+β)Γ
(

β
1+β

)) 1+β
β

. Thus, we estimate the following time window for which we
expect a power-law of the ϵg in α

1

2ηλ+
< α <

L1+β

2ηλ+

(
β

10 (1 + β)
Γ

(
β

1 + β

)) 1+β
β

(58)

We observe that the power-law range is extended with an increasing number of distinct eigenvalues L
and covariance matrix power-law exponent β. In Figure 9, we test our upper and lower bound for
simulation experiments and find very good agreement.

B.2.1 GENERAL LEARNING RATE

Here, we reconsider Eq. (45) and want to evaluate the student-student order parameters not in the
small learning rate limit. For this, we have to understand how the eigenvectors of A4 influence T .
We call the eigenvector matrix of A4 simply V4 which contains all eigenvectors as its columns and
introduce the eigendecomposition eA4α = V4e

ηΛ4αV −1
4 with Λ4 containing the eigenvalues of A4

on its diagonal. To find the eigenvalues of A4 either analytically or numerically is no longer easy.
However, we can pretend to know the eigenvalues of A4 and call them λ4,k for 1 ≤ k ≤ L. This
makes it possible to find the structure of the eigenvector matrix.
Here, we present a more general solution for the matrix B = aA1 + ϵU and call the eigenvalues
of B simply λB,k and define the eigenvectors BvB,k = λB,kvB,k for k ∈ {1, ..., L}. Note that for
a = 2 and ϵ = η, we can reproduce B (a = 2, ϵ = η) = A4. For each λB,k, the corresponding k-th
eigenvector has the following structure

vB,1k = 1, vB,2k =
λB,k

ϵ− a
, vB,3k =

1

a

1

ϵ− a
(ϵT 2 − λB,k),
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Figure 10: Coefficients bk defined by Eq. (62) multiplied with λB,k for η = 1.0. Left: β = 0.1.
Right: β = 1.0.

vB,ik = − 1

aL−2(ϵ− a)

(
−λL−1

B,k + ϵ

L−2∑
i=1

(−1)iaL−2−iλi
B,kT

L−i

)
.

The eigenvectors have an interesting property. Like for the companion matrix A1 and its Vandermonde
eigenvector matrix V1, the first l − 1 entries of the eigenvalue equation BvB,k = λB,kvB,k give a
zero by construction (BvB,k − λB,kvB,k)l = 0 for l = 1, ..., L− 1. Only the last entry l = L of the
eigenvalue equation provides information about the eigenvalues of B

(BvB,k − λB,kvB,k)L =

L∑
j=1

cB,jλ
j
B,k.

This is exactly the minimal polynomial for B where we have identified

cB,0 = ac0, cB,L =
(−1)L+1

aL−2

1

ϵ− a
(59)

cB,j =
1

aj−1

(−1)j+1

ϵ− a

(
acj + ϵ

L−1−i∑
l=0

cL−lT
(L+1−j−l)

)
(60)

as the shifted coefficients of B compared the coefficients cj of A1 for j = 1, ..., L − 1. Since we
have assumed that λB,k is an eigenvalue of B, the right-hand side of Eq. has to be zero, and the cB,k

are indeed the new coefficients. Since we know the shifted coefficients, we can numerically calculate
the corresponding eigenvalues as the roots of the new minimal polynomial.

Most important is the second entry of the eigenvector matrix V4 since this will have an influence on
the generalization error. Next, we evaluate V −1

4 T

⟨ϵg⟩Ja,0,Ba
=
(
1 + σ2

J

) 1

2L

L∑
k=1

bkλB,k exp(−2ηλB,kα), (61)

with bk =
∑L

l

(
V −1
B

)
kl
T (l) and λB,k are the eigenvalues of B for a = 2 and ϵ = η. Thus, in

order to calculate the generalization error, we have to find an expression for V −1
B . We know that B

shows some properties of a companion matrix. Therefore, we perform a similarity transformation
B = SB2S

−1. Thereby, B2 has again a companion matrix structure similar to A1, but it has cB,i

for its last row entry for i = 0, ..., L − 1 given by Eq. (60). For the transformation matrix S, we
obtain

S =
1

(a− η)



a− η 0 0 0 · · · 0
0 −1 0 0 · · · 0
0 −T 2 η

a
1
a 0 · · · 0

0 −T 3 η
a T 2 η

a2 − 1
a2

. . . 0
...

...
...

...
. . .

...
0 −TL−1 η

a TL−2 η
a2 −TL−3 η

a3 · · · (−1)L−1 1
aL−1


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Figure 11: Coefficients bk defined by Eq. (62) multiplied with λB,k and L for L = 40 (solid) and
eigenvalues of the data covariance matrix (dashed). Upper left: η = 0.1. Upper right: η = 0.5.
Center: η = 1.0.
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24



Published as a conference paper at ICLR 2025

100 101 102

10 2

10 1

g

small  limit
no approximation

100 101

10 2

g

small  limit
no approximation

100 101 102

10 3

10 2

g
small  limit
no approximation

Figure 13: Generalization error evaluated by Eq. (8) (blue) and Eq. (6) (orange) for N = 128 ,
K = M = 1, σ2

J = 0 and β = 1. Upper left: η = 0.1. Upper Right: η = 0.5. Bottom: η = 1.0.

having a triangular structure. The entries of the inverse of a triangular matrix can be calculated by
this simple relation

S−1
ii =

1

Sii

S−1
ij = − 1

Sii

j−1∑
k=i

SikS
−1
kj , for i > j

Note that the eigenvector matrix VB2 is again a Vandermonde matrix, meaning that we know the
entries and their inverse. Therefore, we obtain

bk =

L∑
l

(
(SVB2)

−1
)
kl
T (l). (62)

In practice, we no longer have to directly invert any matrix, which allows us to consider higher values
of L and more different covariance matrix power-law exponents β. Calculating the inverse of VB is
numerically very unstable and just possible for small numbers of distinct eigenvalues L.
Figure 10 compares bk multiplied with λB,k with the eigenvalues of the data covariance matrix λk

for various L. For small learning rates, the differences in the spectra are very small and increase
with increasing learning rates until the trend of power-law decay is destroyed. Note that bk = 1

L
and λB,k = −aλk if we just consider the differential equations up to order O(η). Figure 11 shows
the same behavior but for different β. The smaller β becomes, the larger the divination from a
consistent power-law scaling. Figure 12 shows the spectrum of λB,k and its difference from λk. We
also observe in the spectra that the pure power-law behavior is perturbed. However, this effect seems
to just increase the generalization error without changing its scaling, as shown in Figure 13.

B.3 FEATURE SCALING

Instead of considering the statistical mechanics approach, we study directly the stochastic gradient
descent here

Jµ+1 − Jµ = −η∇Jϵ (J
µ, ξµ) . (63)
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From this difference equation, one can derive a Langevin equation for the weight dynamics in the
thermodynamic limit N → ∞ (see Rotskoff & Vanden-Eijnden (2022); Worschech & Rosenow
(2024)). For the continuous equation describing the trajectories of the weights, we obtain

dJ

dα
= −η∇Jϵg +

η√
N

γ (64)

where γ is a random vector describing the path fluctuations with ⟨γ⟩ = 0 and ⟨γi (α) γj (α′)⟩ =
Cijδ (α− α′).
For small learning rates or a proper scaling of the learning rate with the network size, we can neglect
path fluctuations and approximate the stochastic process by its mean path. This leads to the following
differential equation

dJ

dα
≈

η→0
−η∇Jϵg

= −ηΣ (J −B) . (65)

For a diagonal a covariance matrix Σkl = δklλkl, the solution of Equation (65) is

Jk = exp (−ηλkα)
(
J0
k −Bk

)
+Bk (66)

for k ∈ {1, ..., L} and initial weight component J0
k . Thus, the individual weights are learned

exponentially fast, and each component Jk converges thereby to the component of the teacher. For
the first-order order parameters, we find

R(1) =

N∑
k=1

JkλkBk

N
=

1

N

N∑
k=1

(
exp(−ηλkα)

(
J0
k −Bk

)
+Bk

)
λkBk (67)

Q(1) =

N∑
k=1

JkλkJk
N

=
1

N

N∑
k=1

(
exp(−ηλkα)

(
J0
k −Bk

)
+Bk

)2
λk (68)

and for their corresponding expectation value

⟨R(1)⟩J0
k ,Bk

= 1− 1

N

N∑
k=1

λk exp(−ηλkα) (69)

⟨Q(1)⟩J0
k ,Bk

= 1 +
1 + σ2

J

N

N∑
k=1

λk exp(−2ηλkα)−
2

N

N∑
k=1

λk exp(−ηλkα) (70)

For the expectation value of the generalization error, we obtain

⟨ϵg⟩J0
k ,Bk

=
1 + σ2

J

2N

N∑
k=1

λk exp(−2ηλkα) (71)

=
1 + σ2

J

2L

L∑
k=1

λk exp(−2ηλkα) (72)

where we have exploit that N
L ∈ N as assumed for our setup (see Section 3). Note that Equation

(72) that we derived from the approximated Langevin equation, is the same as the generalization
error derived from the statistical mechanics approach in the small learning rate limit η → 0 given by
Equation (8). Therefore, neglecting the higher order of the learning rate in the differential equations
is equivalent to neglecting path fluctuations of the stochastic gradient descent.
Next, in order to model how the generalization error scales as more and more feature directions
are explored, we assume that Nl components of the student are already learned. Thereby, the other
N −Nl components are kept fixed and random. Here, we want to investigate the generalization error
as a function of Nl. For this, we make the ansatz:

Jk =

{
Bk for k = 1, . . . , Nl

J0
k else

(73)
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Therefore, we obtain two different parts for the order parameters

R(1) =
1

N

N∑
k=1

λkJkBk =
1

N

(
Nl∑
k=1

λkB
2
k +

N∑
k=Nl+1

λkJ
0
kBk

)

Q(1) =
1

N

N∑
k=1

λkJkJk =
1

N

(
Nl∑
k=1

λkB
2
k +

N∑
k=Nl+1

λkJ
0
kJ

0
k

)
(74)

and their expectation values become

⟨R(1)⟩Jk,0,Bk
=

1

N

Nl∑
a=1

λa,

⟨Q(1)⟩Jk,0,Bk
=

1

N

Nl∑
k=1

λk +
σ2
J

N

N∑
k=Nl+1

λk (75)

Next, we insert Equation (75) into the expression of the generalization error and obtain

⟨ϵg⟩Jk,0,Bk
=

1 + σ2
J

2

(
1− 1

L

Nl∑
k=1

λk

)

=
1 + σ2

J

2

1

L

L∑
k=Nl

λk, (76)

where we have exploit that
∑N

k λk = N and N
L ∈ N. Next, we use the definition of the eigenvalues

λi = λ+

(
1
i

)1+β
and define the partial sum S(Nl) =

λ+

L

∑L
k=Nl

(
1
i

)1+β
which leads to

ϵg =
1 + σ2

J

2
S(Nl) (77)

In order to approximate the sum, we use the Euler-Maclaurin formula defined in Equation (49) and
replace the sum with an integral. For β > 0, we find

S(Nl) ≈
λ+

L

∫ L

Nl

1

iβ+1
di

=
λ+

Nβ

(
1

Nβ
l

− 1

Lβ

)
(78)

Thus, we obtain

⟨ϵg,asymp⟩ ≈
1 + σ2

J

2

λ+

Lβ

(
1

Nβ
l

− 1

Lβ

)
. (79)

The zeroth-order error of this approximation, which we consider as the worst-case, is δϵg =
1+σ2

J

4
λ+

L

(
1

N1+β
l

+ 1
L1+β

)
.

If we do not assume that Nl eigenvalues are already converged, then we can make the ansatz

J̃k =

{
Jk for k = 1, . . . , Nl

J0
k else

(80)
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where Jk are given in Equation (66). Therefore, we again obtain two different parts for the order
parameters

R(1) =
1

N

N∑
k=1

λkJ̃kBk

=
1

N

(
Nl∑
k=1

λkJk +

N∑
k=Nl+1

λkJ
0
kBk

)

=
1

N

N∑
k=1

λk

[
exp (−ηλkα)

(
J0
k −Bk

)
+Bk

]
Bk +

1

N

N∑
k=Nl+1

λkJ
0
kBk

Q(1) =
1

N

N∑
k=1

λkJ̃kJ̃k

=
1

N

(
Nl∑
k=1

λkJ
2
k +

N∑
k=Nl+1

λkJ
0
kJ

0
k

)

=
1

N

(
Nl∑
k=1

λk

[
exp (−ηλkα)

(
J0
k −Bk

)
+Bk

]2
+

N∑
k=Nl+1

λkJ
0
kJ

0
k

)
(81)

and their expectation values become

⟨R(1)⟩J0
k ,Bk

=
1

N

Nl∑
k=1

λk − 1

N

Nl∑
k=1

λk exp (−ηλkα) ,

⟨Q(1)⟩J0
k ,Bk

=
1 + σ2

J

N

Nl∑
k=1

λk exp (−2ηλkα)−
2

N

Nl∑
k=1

λk exp (−ηλkα)

+
1

N

Nl∑
k=1

λk +
σ2
J

N

N∑
k=Nl+1

λk (82)

Note that Equation (82 reduces to Equation (75) for α → ∞. Next, we insert Equation (82) into the
expression of the generalization error and obtain

⟨ϵg⟩J0
k ,Bk

=
1 + σ2

J

2L

[
Nl∑
k=1

λk exp (−2ηλkα) +

L∑
k=Nl

λk

]
(83)

Note that Equation (83) is basically a combination of Equation (76) and Equation (72). If we set
Nl = N in Equation (83), then we can reproduce Equation (72), and if we let α → ∞ in Equation
(83), then we reach the asymptotic generalization error given by Equation (76). Therefore, we can
repeat the analysis of this and the previous subsection separately and finally obtain the generalization
error for small learning rates

ϵg (Nl, α) ≈
η→0

1 + σ2

2

λ+

L

[
1

β

(
1

Nβ
l

− 1

Lβ

)

+
(2ηλ+α)

− β
1+β

1 + β

[
Γ

(
β

1 + β
,
2ηλ+α

Lβ+1

)
− Γ

(
β

1 + β
, 2ηλ+α

)]]
. (84)

Next, we consider a general Σ, which is no longer diagonal. The solution of the Langevin equation is
J̃ = exp(−ηDα)(J̃(0) − B̃) + B̃, (85)

where we have introduced the eigendecomposition Σ = WDW⊤ and expressed the weights in the
eigenbasis J̃ = W⊤J, B̃ = W⊤B. Therefore, we obtain for the order parameters

Q(1) =
J⊤ΣJ

N
=

J⊤WDW⊤J

N
=

J̃⊤DJ̃

N

R(1) =
J⊤ΣB

N
=

J⊤WDW⊤B

N
=

J̃⊤DB̃

N
(86)
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Figure 14: Left: Spectra of the feature-feature covariance matrix of CIFAR-5m data set vs. Eq. (1)
for β = 0.3 and N = L = 1024.

Note that the expectation values for the order parameters and, therefore, for the generalization error
are still the same.
We use the parametrization from Eq. (85) to obtain the results shown in the right panel of Figure
3. Thereby, we test our prediction for the generalization error from Eq. (84) to a student network
trained on CIFAR-5M images using approximately 106 (see Nakkiran et al. (2021) for details on
the dataset). We use only the first channel of the images resulting in a total input dimension of
N = 1024 after flattening. To approximate the true covariance matrix Σ, we numerically estimate
the feature-feature covariance matrix based on the input examples from the training dataset. During
training, we update only the first entries of J̃ , while resetting the remaining entries to their initial
values after each iteration. Based on the spectra of the feature-feature covariance matrix depicted in
Figure 14, we estimate β ≈ 0.3 and use this spectrum to evaluate Eq. (85).

B.3.1 DEPENDENCE ON STUDENT SIZE FOR GENERAL COVARIANCE EIGENBASIS

In this Subsection, we consider the generalization error evaluated for a student with Nl trainable
weights and N −Nl random weights. Thereby, we no longer train the weights of the student in the
eigenbasis of the data-covariance matrix. In order to distinguish between trainable and untrainable
components, we decompose the student vector J in two parts: the trainable components J̃ and the
non-trainable components Ĵ . For the covariance matrix Σ, we identify the following structure in
block matrix form

Σ =

(
Σ̃ Σcross

Σ⊤
cross Σ̂

)
, (87)

where

• Σ̃ ∈ RNl×Nl represents the submatrix of the covariance matrix, acting exclusively on the
subspace spanned by the first Nl components of the vector J , denoted as J̃ .

• Σ̂ ∈ R(N−Nl)×(N−Nl) refers to the submatrix corresponding to the subspace of the remain-
ing N −Nl components of J , denoted as Ĵ .

• Σcross ∈ RNl×(N−Nl) represents the cross-covariance matrix part, describing the interac-
tions between the subspace of the first Nl components and the complementary subspace of
the last N −Nl components

The evolution of the student vector J is governed by the differential equation for small learning rates

dJi

dα
≈

η→0
η

N∑
k=1

Σik(Bk − Jk). (88)

The solution for the trainable components J̃(α) at time α is given by

J̃(α) = e−ηΣ̃αJ̃0 + B̃
(
1− e−ηΣ̃α

)
+ Σ̃−1Σcross

(
B̂ − Ĵ

)(
1− e−ηΣ̃α

)
, (89)
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Figure 15: ϵg as a function of α for different trainable input dimensions Nl of the student vector with
L = N = 256, K = M = 1, σJ = 0.01, η = 0.05, and β = 1. Here, we train the student outside
the eigenbasis of the data covariance matrix. We compare results based on simulations (solid curves)
to the theoretical prediction from Eq. (93) (black dashed lines). The student network is trained on
synthetic data, where we average over 300 different initializations of student and teacher vectors.

where J̃0 is the initial condition for the trainable components, and the non-trainable components are
kept at their random initial values. Moreover, B̃ and B̂ are the components of the teacher vector
equivalent to the trainable and non-trainable parts of the student vector, respectively. At stationarity
(α → ∞), the trainable components become

J̃ = B̃ + Σ̃−1Σcross

(
B̂ − Ĵ

)
. (90)

For the first-order order parameters, we find

R(1) =
1

N
J⊤ΣB

=
1

N

(
J̃⊤Σ̃B̃ + J̃⊤ΣcrossB̂ + Ĵ⊤Σ⊤

crossB̃ + Ĵ⊤Σ̂B̂
)

Q(1) =
1

N
J⊤ΣJ

=
1

N

(
J̃⊤Σ̃J̃ + 2J̃⊤ΣcrossĴ + Ĵ⊤Σ̂Ĵ

)
. (91)

Taking the expectation over B and Ĵ yields

⟨R(1)⟩Bi,Ĵi
=

1

N

(
Tr(Σ̃) + Tr

(
Σ⊤

crossΣ̃
−1Σcross

))
⟨Q(1)⟩Bi,Ĵi

=
1

N

(
Tr(Σ̃) + (1 + σ2

J)Tr
(
Σ⊤

crossΣ̃
−1Σcross

)
+ σ2

JTr(Σ̂)− 2σ2
JTr

(
Σ⊤

crossΣ̃
−1Σcross

))
.

(92)

Finally, we obtain for the generalization error

⟨ϵg,asymp⟩Bi,Ĵi
=

1

2

[
1− 1

N
Tr(Σ̃) +

1

N
σ2
JTr(Σ̂)− 1 + σ2

J

N
Tr
(
Σ⊤

crossΣ̃
−1Σcross

)]
. (93)

Note that for diagonal covariance matrices Σij = δijλi, Eq. (93) reduces to Eq. (10) for α → ∞.
Figure 15 presents the generalization error obtained from simulations for various Nl as a function
of α. In this comparison, the asymptotic solution derived from Eq. (93) aligns closely with the
simulation results, demonstrating excellent agreement.
Next, we compare the numerical solution of Eq. (93) with our theoretical prediction for training the
student vector in the eigenbasis of the data covariance matrix, as given by Eq. (79). The results are
presented in Figure 16. For a fixed number of trainable parameters, Nl, the generalization error is
consistently lower when the student is trained in the eigenbasis of the data covariance matrix. This
is expected, as training in the eigenbasis aligns with the directions of the largest Nl eigenvalues,
leading to a more efficient learning process. Consequently, the overall generalization error is reduced
compared to training outside the eigenbasis. Under the condition Nβ ≫ Nβ

l , we observe the same
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Figure 16: ϵg,asymp as a function of Nl for different β and N = L = 1024. The student is trained
with synthetic data. We compare the numerical solution of Eq. (93) (dashed) with our theoretical
prediction for training the student vector in the eigenbasis of the data covariance matrix, as given by
Eq. (79) (solid). The numerical solution is averaged over 100 different covariance matrices.

power-law scaling for the generalization error, ϵg,asymp ∝ N−β
l , in both scenarios. Additionally, for

more general configurations, we find that the scaling behavior of the generalization error remains
consistent across both setups. The data covariance matrices are generated by Σ = WΛW⊤, where
Λij = δijλi with eigenvalues defined by Eq. (1) and W is a random orthogonal matrix with zero
mean and variance which scales as ⟨W 2

ij⟩ ∼ 1
N .

C NON-LINEAR ACTIVATION

C.1 DIFFERENTIAL EQUATIONS

Throughout this work, we consider the error function as our non-linear activation function g (x) =

erf
(

x√
2

)
. For this activation function, one can solve the integrals I2, I3 and I4 given in Section A

analytically. Following Saad & Solla (1995); Yoshida & Okada (2019), one finds

I2(C) =
2

π
arcsin

(
C12√

(1 + C11)(1 + C22)

)
, (94)

I3(C) =
2

π

1√
(1 + C11)(1 + C33)− C2

13

(
C23(1 + C11)− C12C13

1 + C11

)
, (95)

I4(C) =
4

π2

1√
A4

arcsin

(
A0√

A1

√
A2

)
(96)

where

A4 = (1 + C11)(1 + C22)− C2
12,

and

A0 = A4C34 + C23C24(1 + C11) + C13C14(1 + C22) + C2
12C

2
13C

2
24,

A1 = A4(1 + C33) + C23(1 + C11)− C13(1 + C22) + 2C12C13C23,

A2 = A4(1 + C44)− C24(1 + C11)− C14(1 + C22) + 2C12C14C24,

depending on the precise covariance matrix and its entries Cij as discussed in Section A. After
evaluating all necessary covariance matrices, we obtain for K = M
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dR
(l)
in

dα
=

2η

Mπ

1

1 +Qii

[
M∑
m

T
(l+1)
nm (1 +Qii)−R

(l+1)
in Rim√

(1 +Qii) (1 + Tmm)−R2
im

−
M∑
j

R
(l+1)
jn (1 +Qii)−R

(l+1)
in Qij√

(1 +Qii) (1 +Qjj)−Q2
ij

]
,

(97)

dQ
(l)
ik

dα
=

2η

Mπ

[
1

1 +Qii

 M∑
m

R
(l+1)
km (1 +Qii)−Q

(l+1)
ik Rim√

(1 +Qii) (1 + Tmm)−R2
im

−
M∑
j

Q
(l+1)
kj (1 +Qii)−Q

(l+1)
ik Qij√

(1 +Qii) (1 +Qjj)−Q2
ij


+

1

1 +Qkk

 M∑
m

R
(l+1)
im (1 +Qkk)−Q

(l+1)
ik Rkm√

(1 +Qkk) (1 + Tmm)−R2
km

−
M∑
j

Q
(l+1)
ij (1 +Qkk)−Q

(l+1)
ik Qkj√

(1 +Qkk) (1 +Qjj)−Q2
kj

]

+O
(
η2
)
, (98)

where we have omitted higher-order terms in η for notational simplicity. Similarly, we have also
omitted the superscripts for the first-order parameters, meaning that all instances of Rin, Tnm, and
Qij without superscripts correspond to their first-order forms: R(1)

in , T (1)
nm, and Q

(1)
ij . Note that the

differential equations are not closed given in Equation 98. For the last component L− 1 one has to
apply the Cayley-Hamilton theorem for the order parameters as discussed in Section 3. In the same
notation, the generalization error becomes

ϵg =
1

Mπ

[∑
i,k

arcsin

 Q
(1)
ik√

1 +Q
(1)
ii

√
1 +Q

(1)
kk

+
∑
n,m

arcsin

 T
(1)
nm√

1 + T
(1)
nn

√
1 + T

(1)
mm



− 2
∑
i,n

arcsin

 R
(1)
in√

1 +Q
(1)
ii

√
1 + T

(1)
nn

],
(99)

which just depends on the first-order order parameters. This system is gonna be analyzed in the
following.

C.2 FLUCTUATIONS IN ORDER PARAMETERS

For isotropic input data, the order parameters are self-averaging, i.e., as N increases, the fluctuations
of the order parameters decrease, and in the thermodynamic limit N → ∞, one can replace these
order parameters by their expectation values (Saad & Solla, 1995). However, for structured input
data, fluctuations in the order parameters can still be present. In order to show this, we calculate the
relative variance of the teacher-teacher order parameters as a measure for fluctuations.
For the expectation value and variance of the teacher-teacher order parameters T (l)

nm = 1
NBn(Σ)lBm,

we obtain 〈
T (l)
nm

〉
Bn,Bm

=
δnm
N

N∑
k

λl
k

〈(
T (l)
nm − ⟨T (l)

nm⟩Bn,Bm

)2 〉
Bn,Bm

=
(1 + δnm)

N2

N∑
k

λ2l
k , (100)

where we have exploit that Bn and Bm are independently distributed random vectors with Bn,k ∼
N (0, 1) for each entry of the vector Bn. Note that the variance for n = m is twice as large as for
n ̸= m. After substituting Eq. (1) into Eq. (100), we find

⟨T (l)
nm⟩Bn,Bm

= δnm
λl
+

L

L∑
k=1

1

kl(1+β)
,

〈(
T (l)
nm − ⟨T (l)

nm⟩Bn,Bm

)2 〉
Bn,Bm

= (1 + δnm)
λ2l
+

NL

L∑
k=1

1

k2l(1+β)
. (101)
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Next, we discuss the dependence of λ+ on L and N . Due to the normalization condition
1
N

∑N
k=1 λk = 1, we can infer 1

N

∑N
k=1 λk = λ+

L

∑L
k=1

1
k(1+β) and thus λ+ = L∑L

k=1
1

k(1+β)

=

O (L) since
∑L

k
1

k(1+β) is a convergent sum. Thus, we find

λl
+

L

L∑
k=1

1

kl(1+β)
= O(Ll−1),

λ2l
+

NL

L∑
k=1

1

k2l(1+β)
= O

(
L2l−1

N

)
. (102)

Therefore, for the relative variance for n = m, we obtain〈(
T

(l)
nn − ⟨T (l)

nn⟩Bn

)2 〉
Bn〈

T
(l)
nn

〉2
Bn

= O
(
L

N

)
. (103)

This result indicates that we need to distinguish two different scenarios when taking the ther-
modynamic limit N → ∞: i) when L

N → 0, the relative variance vanishes, and the order
parameters become self-averaging quantities, and ii) the case where L

N = O (1) stays finite, and the
teacher-teacher overlaps are not self-averaging. We note that the case of isotropic inputs is recovered
for L = 1, where the relative variance vanishes with 1/N .

For the case l = 0, we find
∑L

k=1
1

kl(1+β) =
∑L

k=1 1 = L which is no longer converging. Therefore,
we obtain 〈(

T
(0)
nn − ⟨T (0)

nn ⟩Bn

)2 〉
Bn

⟨T (0)
nn ⟩2Bn,Bn

= O

(
1

N

)
, (104)

which decreases with 1/N .

C.3 PLATEAU HEIGHT

Here, we consider the differential equations given in Eq. (98) for the higher-order order parameters
up to the first order in the learning rate O (η). As already mentioned in the main text, the order
parameters are no longer self-averaging, i.e. we cannot replace the random variables T (l)

nm by their
expectation value in the thermodynamic limit N → ∞. However, without any assumptions on the
teacher-teacher order parameters, we find approximately the following fixed point for l = 1

R∗(1)

in ≈ 1√
M

T
(1)
nn +d

(1)
n

(
MT

(1)
nn

T
(1)
nn +d

(1)
n

(
1 + 1

T
(1)
nn

)
− 1
) , Q∗(1)

≈ 1

M

M∑
n

1

MT
(1)
nn

T
(1)
nn +d

(1)
n

(
1 + 1

T
(1)
nn

)
− 1

(105)

and for l ̸= 1

R∗(l)

in ≈ T
(l)
nn√

M

T
(1)
nn +d

(1)
n

(
MT

(1)
nn

T
(1)
nn +d

(1)
n

(
1 + 1

T
(1)
nn

)
− 1
) , Q∗(l)

≈ 1

M

M∑
n

T
(l)
nn

MT
(1)
nn

T
(1)
nn +d

(1)
n

(
1 + 1

T
(1)
nn

)
− 1

,

(106)

with d
(1)
n =

∑M−1
m,m ̸=n T

(1)
nm. Thus, for the student-teacher order parameters, we obtain M different

plateau heights for each order l depending on the sum over the off-diagonal entries of the higher-order
teacher-teacher order parameters d(1)n and T

(1)
nn . This approximation is exact if all T (l)

nm = D(l) for
n ̸= m and Tnn = T (l) and all plateau heights are the same R∗(l)

in = R∗(l)

. In Figure 17, we compare
the numerically found generalization error by evaluating the differential equations given in Eq. (98)
up to O (η) with the generalization error based on the approximately found fixed points given in Eq.
(105). For small L, we find very good agreement between the true plateau and the approximation.
In order to proceed, we make the ansatz for the off-diagonal entries T (l)

nm = D(l) = 1
M

∑M
n d

(l)
n
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Figure 17: Comparison of the generalization error plateau evaluated by numerical solutions of the
differential equations given in Eq. (98) (solid) and approximated fixed point given by Eq. (105)
(dashed) for N = 7000, K = M = 4, σJ = 0.01, β = 0.25 and η = 0.1. We solve the differential
equations up to O (η).

for n ̸= m. This approach preserves the statistical properties of the sum represented by a single
parameter D(l). Moreover, for l = 0, the teacher-teacher order parameters are still self-averaging in
the thermodynamic limit, and we can assume T

(0)
nn = 1 and T

(0)
nm = 0 for large N . Thus in summary,

we assume T
(0)
nm = δnm and T

(l)
nm = δnmT (l) + (1− δnm)D(l) for l ̸= 0. After these assumptions,

we find new stationary points for our differential equations for l = 1

R∗(1)

=
1√

M
T (1)+D(1)

(
MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1
) , Q∗(1)

=
1

MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1

, (107)

and l ̸= 1

R∗(0)

=
1

T (1) +D(1)

1√
M

T (1)+D(1)

(
MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1
) ,

Q∗(0)

=
1

T (1) +D(1)

1
MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1

R∗(l)

=
T (l)

T (1)

1√
M

T (1)+D(1)

(
MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1
) ,

Q∗(l)

=
T (l)

T (1)

1
MT (1)

T (1)+D(1)

(
1 + 1

T (1)

)
− 1

. (108)

As one can see in Eqs. (107), and (108), we end up in one plateau height for the order parameters
Q

(l)
ij = Q∗(l)

and R
(l)
im = R∗(l)

. In addition to Figure 4 given in the main text, we provide the plateau
behavior for higher order-order parameters in Figure 18 and compare our newly obtained stationary
solutions given in Eq. (108) with the solutions of the differential equations given in Eq. (98) up
to O (η). We observe that the student-teacher order parameters defined in given in Eq. (108) yield
an approximation for the mean value of the M groups of order parameters. For the student-student
order parameters, we observe a small systematic error which appears to be small compared to the
magnitude of Q∗(l)

.
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Figure 18: Plateau behavior of the order parameters with L = 10, N = 7000, σJ = 0.01, η = 0.1
and M = K = 4 for one random initialization of student and teacher vectors. We solve the
differential equations for the small learning rate case where we consider terms up to O (η). The inset
shows the higher-order order parameters at the plateau. For the student-teacher order parameters, we
obtain M different plateau heights. For the student-student order parameters, we observe one plateau
height with small statistical deviations for the particular matrix entry Q

(l)
ij . The dashed horizontal

lines in the insets show the plateau heights according to Eq. (108).

Next, we insert Eq. (107) into the expression of the generalization error and obtain

ϵ∗g =
1

π

(
M arcsin

(
D(1) + T (1)

MT (1) +M

)
+ (M − 1) arcsin

(
D(1)

T (1) + 1

)

− 2M arcsin

 1
√
T (1) + 1

√
−(D(1)M−M2−(M2−M)T (1))
(D(1))2+2D(1)T (1)+(T (1))2

√
MT (1)+M

(M−1)T (1)−D(1)+M


+ arcsin

(
T (1)

T (1) + 1

))
(109)

for the plateau height. The right panel in Figure 4 shows an example for the estimated plateau height
given by Equation (109) against the numerical solution of the differential equations.

C.4 PLATEAU ESCAPE

In this subsection, we want to present the escape from the plateau. The found stationary equations
given by Eqs. (107) and (108) are unstable such that after a certain time on the plateau, the
generalization error will eventually escape from it. In order to escape from the plateau, the unique
solution of the fixed points must be broken for each l at a certain time. We want to study the dynamics
in the vicinity of the fixed point and clarify how the generalization error leaves it. For this, introduce
parameters S(l) and C(l) indicating the onset of specialization for the student vectors towards one
teacher vector. Therefore, parameterized the order parameters by R

(l)
im = R(l)δim + S(l)(1− δim),

Q
(l)
ij = Q(l)δij + C(l)(1− δij). Moreover, to study the escape from the plateau, we introduce small

perturbation parameters r(l), s(l), q(l) and c(l) modeling the repelling characteristic of the unstable
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fixed point. Thus we parametrized the order parameters by their stationary solution and a small
perturbation R(l) = R∗(l)

+ r(l), S(l) = S∗(l)

+ s(l),Q(l) = Q∗(l)

+ q(l) and C(l) = C∗(l)

+ c(l) with
S∗(l)

= R∗(l)

and C∗(l)

= Q∗(l)

. Next, we insert this parametrization into the differential equations
given by Eq. (98) up to O (η). In order to study the dynamics in the vicinity of the fixed point, we
linearized the dynamical equations in

(
r(l), s(l), q(l), c(l)

)⊤
around zero.

In the following, we present the differential equations, eigenvalues, and eigenvectors for the specific
case where D(l) = 0 and T (1) = 1 for notational simplicity. The full system is too large to display in
its entirety. However, we provide insights throughout on how these results generalize. After reducing
the system of differential equations, we conclude by presenting the full solution for the general case.
After a first-order Taylor expansion in

(
r(l), s(l), q(l), c(l)

)⊤
, we find the following linearized equation

d

dα

r
s
q
c

 =
2

πM

√
2M − 1

2M + 1
Ap

r
s
q
c

 (110)

with ri = r(i−1), si = s(i−1), qi = q(i−1), ci = c(i−1) and Ap = A + B with Ap ∈ R4L×4L.
The individual matrices can be written as Kronecker products A = G⊗A1, B = H ⊗U with
U = ue⊤2 and

G =


1 M − 1 0 0
1 M − 1 0 0

−2
√

M
2M−1 −2

√
M

2M−1 (M − 1) 2 2 (M − 1)

−2
√

M
2M−1 −2

√
M

2M−1 (M − 1) 2 2 (M − 1)

 , (111)

H =


−M

(2M+1)(2M−1)
−2M(M−1)

(2M+1)(2M−1)
1
2

2M2+3M−2√
M(2M+1)

√
2M−1

(M−1)
√
2M−1√

M(2M+1)

−2M
(2M+1)(2M−1)

−M(2M−3)
(2M+1)(2M−1)

1
2

2M2+3M−2√
M(2M+1)

√
2M−1

(M−1)
√
2M−1√

M(2M+1)

−2
√
M

(2M+1)
√
2M−1

−2(M−1)
√
M

(2M+1)
√
2M−1

M+2
2M+1

2(M−1)
2M+1

−2
√
M

(2M+1)
√
2M−1

−2(M−1)
√
M

(2M+1)
√
2M−1

M+2
2M+1

2(M−1)
2M+1 .

 (112)

We obtain the following eigenvalues and eigenvectors for G

λG,1 = M, vG,1 =

(
1, 1,

2
√
M√

2M − 1
,

2
√
M√

2M − 1

)⊤

, (113)

λG,2 = 2M, vG,2 = (0, 0, 1, 1)
⊤
, (114)

λG,3 = 0, vG,3 =

(
1,− 1

M − 1
, 0, 0

)⊤

, vG,4 =

(
0, 0, 1,− 1

M − 1

)⊤

, (115)

and for H

λH,1 =
M

4M2 − 1
, vH,1 =

(
1,− 1

M − 1
, 0, 0

)⊤

, (116)

λH,2 =
2M

2M + 1
, vH,2 =

(
1, 1,

2
√
M√

2M − 1
,

2
√
M√

2M − 1

)⊤

, (117)

λH,3 = 0, vH,3 =

(
1, 1, 0,

M3/2
√
2M − 1

2M2 − 3M + 1

)
,vH,4 =

(
0, 0, 1,−1

2

2M2 + 3M − 2

2M2 − 3M + 1

)⊤

.

(118)
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Since A is of block matrix structure expressed by a Kronecker product, we obtain for its spectrum
λA = λGλA1

and corresponding eigenvectors vA = vG ⊗ vA1
for which we multiply each

eigenvalue of A1 with each of G. The same also applies for the eigenvalues and -vectors of B:
λB = λGλA1

and corresponding eigenvectors vB = vG ⊗ vA1
. The eigenvalues of A1 were already

studied in Subsection B.1 and are the negative eigenvalues of the data covariance matrix −λk with
eigenvectors vk summarized by the matrix V (cf. Eq. (33)). Since A1 possesses L eigenvalues
and -vectors, we obtain multiple groups of different eigenvalues and -vectors for A and B. The
eigenvalues and -vectors of U are also already known. We have one eigenvector u with eigenvalue
λu = T (2) and L − 1 eigenvectors el with zero eigenvalue for l = 1, 3, 4..., L. Thereby el is the
lth unit vector. In the following, the superscript for the eigenvalues and -vectors indicates the
corresponding group.

For A, the first two groups of eigenvalue combinations λ
(1)
A,k = −Mλk with eigenvector

v
(1)
A,k =

(
vk,vk, 2vk

√
M√

2M−1
, 2vk

√
M√

2M−1

)⊤
and λ

(2)
A,k = −2Mλk with v

(2)
A,k = (0, 0,vk,vk)

⊤ are
plateau attractive. Their corresponding eigenvalues are negative and their directions are against
the breaking of order parameter symmetry. The latter fact can be seen that the first two entries of
the eigenvectors and the last two are the same. This would drive the dynamics in the direction
corresponding to r(l) = s(l) and q(l) = c(l) which is exactly the plateau condition. The third

group of eigenvalue combinations λ(3)
A,k = 0 with eigenvectors v(3)

A,k =
(
vk,−vk

1
M−1 , 0, 0

)⊤
and

v
(4)
A,k =

(
0, 0,vk,−vk

1
M−1

)⊤
are neither attractive nor repelling. However, their directions indicate

a symmetry breaking in the order parameters, at least for one group r(l) ̸= s(l) or q(l) ̸= c(l).

For the matrix B, we observe that λ(1)
B,1 = 0, with a total of 4L− 2 distinct eigenvectors. However,

the more significant impact comes from the directions associated with non-zero eigenvalues. These
eigenvalues play a crucial role in influencing the spectrum of A, particularly when B is viewed as a
non-negligible perturbation of A. The second eigenvalue of B is λB,2 = MT (2)

4M2−1 with eigenvector

vB,2 =
(
u,−u 1

M−1 , 0, 0
)⊤

. For the third one, we obtain λB,3 = 2MT (2)

2M+1 with eigenvector

vB,3 =
(
u,u, 2

√
M√

2M−1
u, 2

√
M√

2M−1
u
)⊤

.

In summary, we obtain two important directions for the escape of the plateau. The first one corre-
sponds to the eigenvectors v(3)

A,k and vB,2 and the second one is in the direction of vB,3 and v
(1)
A,k.

Note that these directions are also present for the sum of A + B resulting in Ap. Therefore, we
make as a first ansatz q(l) = c(l) since this condition is fulfilled for all important eigendirections.
Moreover, we can make the following second ansatz q(l) = c(l) = 2R∗(l) (

r(l) + (M − 1)s(l)
)
. The

second ansatz is fulfilled by both eigendirections as well. For D(l) ̸= 0 and general T (l), we find
with similar steps the relation q(l) = c(l) = 2T (l)

T (1)+D(1)R
∗(l) (

r(l) + (M − 1)s(l)
)
.

Next, we re-parametrize the dynamical equations under the condition q(l) = c(l) =

2R∗(l) (
r(l) + (M − 1)s(l)

)
and find

d

dα

(
r
s

)
=

2

πM

√
2M − 1

2M + 1
Ars

(
r
s

)
, (119)

with Ars = A+B and Ars ∈ R2L×2L. The matrices A and B are re-defined as follows:

A = G⊗A1, B = H ⊗U (120)

with re-defined G and H

H =
1

(2M + 1) (2M − 1)

[
5M − 3 4M2 − 7M + 3

4M2−7M+3
M−1 4M2 − 6M + 3

]
, G =

[
1 (M − 1)
1 (M − 1)

]
(121)
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Figure 19: Plateau behavior of the generalization error ϵg from simulations with a single random
initialization of student and teacher vectors. Parameters: K = M , η = 0.01, σJ = 10−6, and
β = 0.25. The results are shown for varying student-teacher sizes with L = N = 512.

For A, the eigenvectors vA are given by vA = vG ⊗ vA1 , where λA1,k = −λk and vA1,k = vk for
k ∈ (1, . . . , L). The corresponding groups of eigenvalues are λ

(1)
A,k = −Mλk, with eigenvectors

v
(1)
A,k = (vk,vk)

⊤. The second group is given by λ
(2)
A = 0 and the corresponding eigenvectors are

v
(2)
A,k =

(
vk,

−vk

M−1

)⊤
.

For B, the first eigenvalue is λB,1 = MT (2)

(2M−1)(2M+1) , with the corresponding eigenvector

vB,1 =
(
u, −u

M−1

)⊤
. The second eigenvalue is λB,2 = 2MT (2)

2M+1 , with eigenvector vB,2 = (u,u)
⊤.

Furthermore, we have multiple eigenvectors for the eigenvalue zero. For m ∈ (1, 3, 4, . . . , L),
we have λB,m = 0, with corresponding eigenvectors vB,m =

(
em, −em

M−1

)⊤
. Similarly, for

n ∈ (1, 3, 4, . . . , L), λB,n = 0, with eigenvectors vB,n = (en, en)
⊤.

Note that all eigenvalues were already encountered for the larger system verifying our analytical
ansatz. Moreover, the new eigenvectors are the first two entries of the eigenvectors of the large
original system.
Due to the special structure of A, the eigenvector vB,1 are also eigenvectors of A, both associated
with the eigenvalue 0, meaning AvB,m = 0 and AvB,1 = 0. Among the eigenvalues of Ars, 2L− 2

of them are zero. The first non-zero eigenvalue is λArs,1 = MT (2)

(2M−1)(2M+1) which is larger than

zero indicating a repelling character for direction vB,1 and v
(2)
A,k. For the eigenvector vB,2, we

have AvB,2 = M (A1u,A1u)
⊤. Therefore, vB,2 is an eigenvector of A, provided that u is an

eigenvector of A1. For the product, we find A1u = −u+, with u+ =
(
T (2), T (3), ..., T (L+1)

)⊤
.

A
(
v
(1)
A,k + vB,2

)
= −λk (vk,vk)

⊤ − M (u+,u+)
⊤ and this group of eigenvalues is therefore

negative.
Finally, we obtain one important eigendirection showing an eigenvalue larger than zero. This
direction corresponds to vB,1 and v

(2)
A,k. Therefore, we make the following last ansatz s(l) = − r(l)

M−1
in order to reduce the system for a second time. Note that the exact same relation also holds for
D(l) ̸= 0 and general T (1).

For the final form of the differential equations, we return to the case where D(l) ̸= 0 and T (1) ̸= 1,
as the expressions are now more manageable to display and no longer excessively large. The final
re-definition of the dynamical system yields

dr

dα
= ηgrŨr, (122)

with gr = 2
π

(D(1)+T (1))√
(M−1)T (1)−D(1)+M(D(1)+(M+1)T (1)+M)

3
2

, Ũ = ũe⊤2 and ũ =(
T (1) − D(1)

M−1 , T
(2) − D(2)

M−1 , ..., T
(L) − D(L)

M−1

)⊤
. Note that we define Ar = grŨ for the main
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text. Since Ũ is a rank-1 matrix, we obtain L− 1 zero eigenvalues and one eigenvalue

λr = T (2) − D(2)

M − 1
(123)

larger than zero. Thus, λr drives the escape from the plateau. We can solve the differential equation
directly and find for the first-order perturbation parameter

r(1) = eηgrα r
(1)
0 , (124)

where r
(1)
0 = r(1)(α0) and α0 denotes an arbitrary time at the plateau. For the escape of the

generalization error within our re-defined dynamical system, we find

ϵ∗g − ϵg =

(
(M − 1)T (1) +M −D(1)

) (
D(1) + T (1)

)
8πM (M − 1)

(
T (1) − (D(1)+T (1))

2

4M2

) 3
2

e
α

τesc r
(1)2

0 (125)

where we have introduced the escape time

τesc =
1

ηgrλr

=
π

2η

√
(M − 1)T (1) −D(1) +M

(
D(1) + (M + 1)T (1) +M

) 3
2(

T (2) − D(2)

M−1

) (
D(1) + T (1)

) . (126)

Furthermore, we can approximate T (2) = 1
L Tr(Σ2) =

λ2
+

L

∑L
i

1
i2(1+β) ≈ λ2

+

L ∝ L for large L. The
same applies to D(2). For large M and L, we find τesc ∝ M2

ηL .
Figure 5 presents the plateau scaling observed in simulation experiments, confirming the predicted
relationship for the escape time τesc ∝ M2

ηL . In addition, Figure 19 highlights the plateau dependence
under a different configuration.

C.5 NUMERICALLY ESTIMATED PLATEAU LENGTH

In this subsection, we demonstrate how to combine the analytically derived formula from Eq. (12)
with our calculated escape time (Eq. (15)) to estimate the plateau length. The plateau escape is
described by the equation

αP − α0 = τesc

(
D − 1

2
ln
(
σ2
J

)
+

1

2
ln (N)

)
, (127)

where D is a constant of order O(1), dependent on the variance at initialization and the plateau; α0 is
an arbitrary starting point on the plateau; and τesc is the escape time from the plateau. To estimate the
constant D, we interpret the results of Biehl et al. (1996) and find D = ln

(
B
c

)
, where B represents

the deviation of the order parameter responsible for the plateau escape at αP from its value at α0.
Thereby, c is a proportionality constant between the fluctuations at the plateau and at initialization. In
our case, the order parameter that drives the plateau escape is the first-order student-teacher order
parameter (cf. Subsection C.4). Thus, we define B = |R(1)(α0) − R(1)(αP )|. Additionally, to
estimate αP − α0, we set R(1)(αP ) = eR∗(1), following the definition of the escape time for the
generalization error. Next, we estimate σP = cσJ , where the plateau variance σP is derived from
numerical simulations of R∗(1) at the plateau.
For the example shown in Figure 4, we set α0 = 300 and find σP ≈ 0.000279, with c ≈ 0.0279
(since σJ = 0.01 is given), B ≈ 0.33, and D ≈ 2.47. For the escape time, we find τesc ≈ 239 by
averaging the diagonal terms of T (1)

nm to obtain T (1) and using the averaged sum of the off-diagonal
entries in order to estimate D(1) and D(2). Finally, we obtain αP − α0 ≈ 2751.
This procedure provides valuable insight into how the plateau length behaves with respect to various
parameters. Figure 20 shows the generalization error based on the solution of the differential equations
and presents additional examples for the plateau length estimation.
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Figure 20: Plateau phase of the generalization error evaluated by numerical solutions of the differential
equations for one random initialization (solid) and plateau length estimations given by Eq. (127)
(verticle lines) for N = 7000, K = M = 4, σJ = 0.01, β = 0.25 and η = 0.1. The black verticle
line indicates the arbitrarily chosen plateau start α0 = 500, and the colored verticle lines show αP

for different L. We retain terms up to O(η) for the differential equations.

C.6 ASYMPTOTIC SOLUTION

Here, we want to investigate how the generalization error converges to its asymptotic value in
more detail. For this, we consider the typical teacher configuration ⟨T (l)

nm⟩ = δnmT (l) since this
configuration already captures the scaling behavior of the generalization error. For the asymptotic
fixed points of the order parameters, we find R

(l)
im = T

(l)
imδin and Q

(l)
ij = T

(l)
ij δij . Here, we distinguish

again between diagonal and off-diagonal entries for R(l)
im = R(l)δim + S(l)(1 − δim) and Q

(l)
ij =

Q(l)δij + C(l)(1− δij) as for the plateau case. Furthermore, we linearized the dynamical equations
for small perturbation around its fixed point R(l) = T (l)+ r(l), S(l) = T (l)+ s(l), Q(l) = T (l)+ q(l),
and C(l) = T (l) + c(l).
We find the following dynamic equations

d

dα

r
s
q
c

 =
2
√
3

3πM
Aa

r
s
q
c

 (128)

with ri = r(i−1), si = s(i−1), qi = q(i−1), ci = c(i−1) and Aa = Ã + B̃ + g̃C̃ and g̃ =

η
2
√
3(

√
45+5(M−1))
15πM . The individual matrices can be written as Kronecker products Ã = G ⊗

A1, B̃ = H ⊗U , C̃ = F ⊗U with

G =


1

√
3
2 0 0√

3
2 1 0 0

−2 −
√
3 2

√
3

−
√
3 −2

√
3 2

 , H =


− 1

3 −
√
3
4

1
2

√
3
4

0 0
√
3
8 0

− 2
3 −

√
3
2 1

√
3
2

0 0
√
3
4 0

 , (129)

F =



0 0 0 0

0 0 0 0

−2 −f1 f3√
3

1
f1 f3

2
√
3

−f1 f4√
3

−f5 f6
2

f1 f4

2
√
3

f5 f6
4


(130)

where f1 =
√
6 + M − 2, f2 =

√
45 + 5(M − 1), f3 =

15(M − 1)

b
, f4 =

15

b
, f5 =

4(M − 2)
√
6 + 3M2 − 15M + 26, f6 =

5

b
. Thereby, A1 and U1 are the same matrices as for the
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linear activation function case. Therefore, the linearized version of the dynamical equation for the
non-linear activation function resembles the dynamical equation for the linear activation. However,
we encounter an additional "perturbation" by B̃, whereas C̃ describes the influence of higher-order
terms in the learning learning rate. Moreover, compared to the linear case, the differential equation
has more variables due to correlations between different student and teacher vectors. In order to
analyze the behavior of the dynamical system, we need to determine the eigenvalues and eigenvectors
of all sub-matrices. Here, we analyze the system for first order in the learning rate O (η) neglecting
the contribution by g̃C̃.

The eigenvalues of G are λG,1 = 2−
√
3 with eigenvector vG,1 = (0, 0, 1,−1)⊤, λG,2 = 2 +

√
3

with eigenvector vG,2 = (0, 0, 1, 1)⊤, λG,3 = 1 − 1
2

√
3 with eigenvector vG,3 = (1,−1, 2,−2)⊤,

λG,4 = 1+ 1
2

√
3 with eigenvector vG,4 = (1, 1, 2, 2)⊤. The eigenvalues of A1 were already studied

in Subsection B.1 and are the negative eigenvalues of the data covariance matrix −λk with eigenvec-
tors vk summarized by the matrix V (cf. Eq. (33)). Since Ã is of block matrix structure expressed
by a Kronecker product, we obtain for its spectrum λÃ = λGλA1

and corresponding eigenvectors
vÃ = vG ⊗ vA1

for which we multiply each eigenvalue of A1 with each of G. Thus, we obtain four
different groups of eigenvalues for Ã and in total 4L eigenvalues. The first group is obtained by
multiplying the first eigenvalue of G with all eigenvalues of A1 leading to λ

(1)

Ã,k
= −

(
2−

√
3
)
λk

with eigenvector v
(1)

Ã,k
= (0, 0,vk,−vk)

⊤. With the same procedure, we obtain for the other

groups λ
(2)

Ã,k
= −

(
2 +

√
3
)
λk with eigenvector v(2)

Ã,k
= (0, 0,vk,vk)

⊤, λ(3)

Ã,k
=
(
1− 1

2

√
3
)
λk

with eigenvector v(3)

Ã,k
= (vk,−vk, 2vk,−2vk)

⊤, and λ
(4)

Ã,k
= −

(
1 + 1

2

√
3
)
λk with eigenvector

v
(4)

Ã,k
= (vk,vk, 2vk, 2vk)

⊤. The upper index for the eigenvalues and -vectors indicates the
corresponding group.

The eigenvalues of H are λH,1 = 1
3 −

√
43
12 with eigenvector vH,1 =(

1,−
√
3
9

(√
43 + 4

)
, 2,− 2

√
3

9

(√
43 + 4

))⊤
, λH,2 = 1

3 +
√
43
12 with eigenvector vH,2 =(

1,
√
3
9

(√
43 + 4

)
, 2, 2

√
3

9

(√
43 + 4

))⊤
, and λH,3 = 0 with eigenvectors vH,3 =

(
1, 0, 0, 2

√
3

9

)⊤
and vH,4 = (0, 1, 0, 1)

⊤. For the matrix U , we have just one eigenvalue distinct from zero
λU,1 = T (2) with eigenvector u since U has rank one. The remaining eigenvectors are given by
vU,l = el for l ∈ (1, 3, 4, ..., L) and especially l ̸= 2. Thus, we obtain two different eigenvalues
distinct from zero and 4L − 2 zero eigenvalues for B̃. The eigenvalues distinct from zero are

λB̃,1 =
(

1
3 −

√
43
12

)
T (2) and vB̃,1 =

(
u,−

√
3
9

(√
43 + 4

)
u, 2u,− 2

√
3

9

(√
43 + 4

)
u
)⊤

and

λB̃,2 =
(

1
3 +

√
43
12

)
T (2) and vB̃,2 =

(
u,

√
3
9

(√
43 + 4

)
u, 2u, 2

√
3

9

(√
43 + 4

)
u
)⊤

. Then, we

have two eigenvectors with zero eigenvalue vB̃,3 =
(
u, 0, 0, 2

√
3

9 u
)⊤

and vB̃,4 = (0,u, 0,u)
⊤.

Further eigenvectors have the structure el ⊗ vH,1, el ⊗ vH,2, el ⊗ vH,3 and el ⊗ vH,4.
Strictly speaking, none of the eigenvectors of Ã and B̃ are the same and we cannot calculate the

spectrum of their sum directly. However, we notice that B̃ has just two eigenvalues distinct from
zero and that its corresponding eigenvectors vB̃,1 and vB̃,2 are of the same structure as the last two

groups of Ã namely v
(3)

Ã
and v

(4)

Ã
. For each of the vectors, the third and the fourth components are

twice as large as the first and the second one. Therefore, only the eigenvalues of the last two groups
of Ã are influenced by adding the matrix B̃ leading to the eigenvectors of Aa with the structure

v
(3)
Aa,k

=
(
z
(3)
k ,w

(3)
k , 2zk, 2w

(3)
k

)⊤
and v

(4)
Aa,k

=
(
z
(4)
k ,w

(4)
k , 2z

(4)
k , 2w

(4)
k

)⊤
with vectors z

(3)
k ,

w
(3)
k , z(4)

k and w
(4)
k that has to be determined. Moreover, since the other eigenvalues of B̃ are

zero, the eigenvalues of the first and second group λ
(1)

Ã,k
and λ

(2)

Ã,k
remain the same for Aa as for Ã.

However, the corresponding eigenvectors are no longer analytically determinable and we have to rely
on numerical solutions. All these claims for the spectra and eigenvectors are in excellent agreement
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Figure 21: Left: Generalization error as a function of α obtained via the solution of differential
equations of the order parameters up to O(η) and K = M = 2, η = 0.25, σJ = 0.01, N = 9000
and β = 1. Center and Right: Comparison of the first-order Taylor expansion of the generalization
error based on Eq. (131) for numerically obtained r(1), s(1), q(1) and c(1) (Simulation) with Eq. (132)
(Theory) where the initial conditions r(1)(α0), s

(1)(α0), q
(1)(α0) and c(1)(α0) are obtained from

simulations. Thereby, we choose α0 = 1000 and parameterize α̃ = α− α0. Center: L = 3. Right:
L = 9.

with numerical experiments.
Next, we Taylor expand the generalization error up to first order in the small perturbation parameters
r(1), s(1), q(1) and c(1). We find

ϵg =
1

6π

(
2
√
3q(1) − 4

√
3r(1) + 3 (M − 1) c(1) − 6 (M − 1) s(1)

)
. (131)

From this expansion, we observe that the eigen-directions v(3)
Aa,k

and v
(4)
Aa,k

do not contribute to the
generalization error in first-order since their components cancel out. After inserting the expressions
for the first and second groups of eigenvectors, we obtain

ϵg =
1

6π

N∑
k=1

g
(1)
k e−a(2−

√
3)λkα

(
2
√
3v

(1)
k,2L+2 − 4

√
3v

(1)
k,2 + 3 (M − 1) v

(1)
k,3L+2 − 6 (M − 1) v

(1)
k,L+2

)
+ g

(2)
k e−a(2+

√
3)λkα

(
2
√
3v

(2)
k,2L+2 − 4

√
3v

(2)
k,2 + 3 (M − 1) v

(2)
k,3L+2 − 6 (M − 1) v

(2)
k,L+2

)
,

(132)

where v
(1)
k ,v

(2)
k ∈ R4L are the eigenvectors of Aa to the eigenvalues −

(
2−

√
3
)
λk

and −
(
2 +

√
3
)
λk, respectively. Thereby, g

(1)
k =

∑4L
l

((
V (1)

)−1
)
kl
xl, g

(2)
k =∑4L

l

((
V (2)

)−1
)
kl
xl where V (1) and V (2) containing the first and second group of eigenvec-

tors v(1)
k and v

(2)
k , respectively and x = (r(α0), s(α0), q(α0), c(α0))

⊤ ∈ R4L is some reference
point at arbitrary chosen α0 in the asymptotic phase. The asymptotic convergence is governed by the
smaller group of eigenvalues

(
2−

√
3
)
λk.

Figure 21 compares the generalization error derived from the first-order Taylor expansion in Eq. (131)
where we obtain the parameters r, q, s, c by solutions of the differential equations and our theoretical
results based on Eq. (132). For both, we use the same initial conditions, with α0 = 1000 as in the
numerical solutions. The comparison shows excellent agreement. The small discrepancies between
the graphs arise from the arbitrariness of α0 and the chosen initial conditions. Similar to linear
activation functions, we observe a slowdown in convergence towards perfect generalization as L
increases, which eventually leads to a transition from exponential convergence to power-law scaling.
We solve Eq. (132) using the Julia programming language; however, we encounter limitations in
increasing L due to constraints in numerical precision (see Section G).
Rather than solving the differential equations for the order parameters, we next solve the differential

equations for the student weight vectors directly. As for the linear activation function, we approximate
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Figure 22: Generalization error as a function of α obtained via the solution of differential equations
given in Eq. (133) for K = M = 2, K = N = 1024, η = 0.001, and σJ = 1. We find the same
scaling exponent as experiments and for the linear activation function α

−β
1+β . We average over 50

seeds of student and teacher initializations.

dJi

dα ≈ −η∇Jϵg and obtain

dJi

dα
=

2ηΣ

Mπ
(
1 +Q

(1)
ii

)[ M∑
m=1

Bm

(
1 +Q

(1)
ii

)
− JiR

(1)
im√(

(1 +Q
(1)
ii

)(
1 + T

(1)
mm

)
−
(
R

(1)
im

)2

−
M∑
j=1

Jj

(
1 +Q

(1)
ii

)
− JiQ

(1)
ij√(

1 +Q
(1)
ii

)(
1 +Q

(1)
jj

)
−
(
Q

(1)
ij

)2
]
. (133)

The results for the solution of Eq. (133) are given in Figure 22. We find a scaling exponent of
ϵg ∝ α

−β
1+β consistent results obtained from simulations.

D OVER-PARAMETRIZED SCENARIO K > M

Here we present numerical results for the over-parametrized scenario K > M .
The left panel of Figure 23 shows the scaling of the plateau length of T (2). As for the realizable
scenario, we find a linear dependency on the inverse of T (2) as predicted by Eq. (15). Note that
T (2) ∝ L for large L.
The right panel of Figure 23 shows simulation results for a student-teacher setup for K > M ,
where we train a student network based on the outputs of a teacher and synthetic input data with a
power-law covariance matrix. We obtain that the scaling law in the asymptotic phase is not altered by
over-parametrization. Moreover, increasing the learning rate with the student size K for a fixed M
leads to curve collapse, as shown in the inset. Thereby, we use the same initial student and teacher
weights as before and choose the learning rate such that the ratio η

K is constant. For this example, we
choose ηK=2 = 0.005, ηK=4 = 0.01 and ηK=8 = 0.02.
The phenomenon of curve collapse can be understood as follows: for a constant teacher size M , an

increase in the student size K results in a scaling of the student output, which is proportional to
√
M
K

(cf Eq. (2)). Given that the output weights remain constant, this scaling reduces the overall learning
rate.
For the over-parametrized scenario, (Richert et al., 2022) demonstrated that the asymptotic gen-
eralization error obeys a power-law scaling ϵg ∝ α−2 even for isotropic input data. This can be
characterized as an "intrinsic" power-law since it depends on the architectural configuration. We
find that the asymptotic power-law α− β

β+1 is independent of K ≥ M , meaning that the power-law
determined by the data covariance matrix is not altered by the intrinsic power-law α−2. This likely
occurs because the power law exponent is consistently smaller than the intrinsic power law exponent
β

β+1 < 2.
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Figure 23: Left: Generalization error as a function of α for the over-parametrized case obtained via
the solution of differential equations of the order parameters up to O(η) for K = 4, M = 2, η = 0.1,
σJ = 0.01, N = 104 and β = 1. The inset shows the measured scaling of the plateau length with the
inverse of T (2) for this single initialization, where we find a linear dependency. Right: Generalization
error as a function of α for the over-parametrized case obtained for the training of a student-teacher
setup for η = 0.01, σJ = 0.01, N = L = 1024 and β = 1.5. The inset shows the curve collapse
for the scaling of the learning rate with K. We choose the learning rate such that the ratio η

K is
constant. For this example, we choose ηK=2 = 0.005, ηK=4 = 0.01 and ηK=8 = 0.02. We average
the generalization error over ten random seeds.

E RELU ACTIVATION FUNCTION

For the ReLU activation function, (Straat & Biehl, 2019) derived an expression for the generalization
error analytically and analyzed the learning dynamics for isotropic input samples. The analytical
expression for the generalization error for correlated inputs becomes
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again for the soft committee machine in the realizable case K = M . In the following, we solve the
differential equations for the student weights rather than for the order parameters numerically. As for
the error function and linear activation function, we approximate dJi

dα ≈ −η∇Jϵg,ReLU and find
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and solve this equation numerically. The top left panel of Figure 24 shows the generalization error for
the ReLU activation function for different L. As for the error function, the plateau length decreases
as the number of distinct eigenvalues L and the plateau length is inversely proportional to T (2) ∝ L.
However, a formal proof has to be provided.
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Figure 24: Generalization error as a function of α for the ReLU activation function obtained via the
solution of differential equations given in Eq. (135) (top) and experiments (bottom) for K = M = 2.
Top Left: Plateau behavior for η = 0.01, σJ = 10−6, N = 104 and β = 1. Top Right: Asymptotic
behavior of ϵg for K = N = 1024, η = 0.001, and σJ = 1. We find the same scaling exponent as for
the error function α− β

1+β . We average over 25 seeds of student and teacher initializations. Bottom:
We train a student based on the outputs of a teacher network and synthetic input data for η = 0.01,
σJ = 10−2, N = L = 2048. We obtain the same scaling exponent as for the error function α− β

1+β .

Moreover, we observe a slow-down in the convergence of the asymptotic generalization error. The
top right panel of Figure 24 shows the solution of the differential equations for L = N . We find
the same scaling exponent as for the error function α− β

1+β . These numerical findings are supported
by simulations. The bottom panel of Figure 24 illustrates the results for training a student network
by a teacher and synthetic correlated input data with a covariance matrix possessing a power-law
spectra. For numerical simplicity, we solve the differential equations for diagonal covariance matrices.
Figure 27 presents simulation experiments where a student is trained on the outputs of a teacher using
synthetic input data for various activation functions, with K = M = 2. For all setups, we obtain the
same scaling exponent for the asymptotic phase as for the error function α− β

1+β . However, the time
window for which the scaling law is achieved varies across different activation functions.

F GENERALIZED PERCEPTRON

In this section, we aim to investigate the numerical implications of training both layers of the student
model on the scaling of the asymptotic generalization error. To this end, we examine a fully trained
two-layer student model, where K = 1, which we refer to as the generalized perceptron. The teacher
model in this scenario is a single-layer perceptron. Our analysis will concentrate on the error function
and ReLU activation.
We now redefine the student output to

σ(J , ξ) = cg (x) , ζ(B, ξ) = g (y) , (136)
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Figure 25: Generalization error as a function of α for the generalized perceptron for K = N = 1024,
η = 0.001, and σJ = 0.1. We average over 50 seeds of student and teacher initializations. Left:
Solution for the error function activation obtained via Eq. (137). We choose the initial output weight
from the normal distribution c0 ∼ N (0, 0.1). We find the same scaling exponent as for the soft
committee machine α− β

1+β . Right: Solution for the ReLU activation function obtained via Eq. (138).
We initialize the output weight by c0 = 0.5. The scaling exponent differs from that of the soft
committee machine.

where c is now an additional trainable parameter. Next, we approximate the dynamics of the weights
by dJ

dα ≈ −η∇Jϵg and dc
dα ≈ −η∇cϵg and obtain for the error function
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and ReLU activation function
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(138)

Note that the hidden-to-output weight c operates on a different time scale compared to the student
vector, primarily due to the additional factor N . Figure 25 illustrates the solutions to the ordinary
differential equations (ODEs) under consideration. Our analysis reveals that, for the error function
activation, there is no significant deviation from the predicted scaling law. Conversely, for the ReLU
activation function, we observe an improvement in the scaling law when training the second layer
weights.

One potential reason for the improved scaling could be the shifting of fixed points for ReLU
activation, which is missing in the error function case. From Equation (137), we identify the
following fixed point for the error function:

J∗ = B and c∗ = 1, (139)

which corresponds to the same weight configuration as that of a perceptron student. Furthermore, in
more complex architectures where K = M > 1, the fixed point equation continues to yield the soft
committee machine with c∗i = 1 and J∗

i = Bi for K = M and i = 1, ..,K when the teacher output
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Figure 26: Output weight and first-order order parameters as a function of α for both error function
and ReLu activation based on the solution of Eq. (137) and Eq. (138), respectively. We show the
solution for one random initialization for η = 1, N = L = 1024 and β = 1. Left: Output weight
c with initial value c0 = 0.5. Right: Rescaled first-order order parameters based on initial student
vector coming from the normal distribution with standard deviation σJ = 0.1.

weights are set to one. However, for the ReLU activation, the fixed point that corresponds to the soft
committee machine is no longer applicable and becomes shifted as shown in Figure 26. The precise
value of this shifted fixed point necessitates numerical evaluation of the implicit equations

J∗ =
B

c∗
and c∗ =

(
R(1)

)∗(
Q(1)

)∗ , (140)

with c∗ ̸= 1 in general. As a result, the student network can establish a new weight configuration for
the ReLU activation function more rapidly than it retrieves the "old" weight configuration for the
error function that corresponds to the soft committee machine.

G REMARKS ON NUMERICAL SOLUTIONS

Evaluating a large number of distinct eigenvalues becomes computationally challenging as L increases.
The expectation value of the teacher-teacher order parameters is given by

〈
T

(l)
nm

〉
= δnm

1
N Tr(Σl).

In this context, the highest order trace term in the differential equations is L − 1, and for large L,
we can approximate Tr(Σl) as λL−1

+

∑L
i=1

1
i(1+β)(L−1) ≈ (λ+)

L−1. Since λ+ scales with L for large
values of L, the expectation values increase in a ’super-exponential’ manner with L. This growth
also applies to the standard deviation of the off-diagonal entries of T (L−1)

nm , further complicating
numerical evaluations as L grows.
As a result, numerical investigations are restricted to small values of L. This limitation applies to
solving the differential equations, evaluating fixed points, and analyzing the generalization error in
the asymptotic phase. For instance, to evaluate Eq. (17) and generate Figures 10 through 13, we
utilized Julia, a high-level scripting language, with arbitrary precision arithmetic.
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Figure 27: Generalization error as a function of α for different acitvation functions based on
simulations for K = M = 2. We train a student based on the outputs of a teacher network and
synthetic input data for η = 0.01, σJ = 10−2, N = L. For all setups, we obtain the same
scaling exponent as for the error function α− β

1+β . We average over ten different student and teacher
initializations. Upper left: elu activation with N = L = 1024. Upper right: tanh activation
N = L = 1024. Bottom left: gelu activation with N = L = 2048. Bottom right: swish activation
with N = L = 2048.
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