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Abstract

Current end-to-end retrieval-based dialogue001
systems are mainly based on Recurrent Neural002
Networks or Transformers with attention mech-003
anisms. Although promising results have been004
achieved, these models often suffer from slow005
inference or huge number of parameters. In this006
paper, we propose a novel lightweight fully con-007
volutional architecture, called DialogConv, for008
response selection. DialogConv is exclusively009
built on top of convolution to extract matching010
features of context and response. Dialogues011
are modeled in 3D views, where DialogConv012
performs convolution operations on embedding013
view, word view and utterance view to capture014
richer semantic information from multiple con-015
textual views. On the four benchmark datasets,016
compared with state-of-the-art baselines, Di-017
alogConv is on average about 8.5× smaller in018
size, and 79.39× and 10.64× faster on CPU019
and GPU devices, respectively. At the same020
time, DialogConv achieves the competitive ef-021
fectiveness of response selection.022

1 Introduction023

An important challenge in building intelligent di-024

alogue systems is the response selection problem,025

which aims to select an appropriate response from026

a set of candidates given a dialogue context. Such027

retrieval-based dialogue systems have attracted028

great attention from academia and industry due to029

the advantages of informative and fluent responses030

produced (Tao et al., 2021).031

The existing retrieval-based dialogue systems032

can be divided into three patterns according to the033

way of input handling (Zhang and Zhao, 2021):034

(i) Separate Pattern (Wu et al., 2017; Zhang et al.,035

2018; Zhou et al., 2018; Gu et al., 2019); (ii) Con-036

catenated Pattern (Tan et al., 2015; Zhou et al.,037

2016); (iii) PrLM (Pretrained Language Model)038

Pattern (Cui et al., 2020; Gu et al., 2020; Liu et al.,039

2021). Separate Pattern (i.e., Figure 1 (a)) encodes040

utterances individually, while Concatenated Pat-041
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Figure 1: Flat modeling. (a) is separate pattern, (b) is
concatenated pattern and (c) is PrLM pattern. Grey bars
in (c) are embedded representations of special symbols.

tern (i.e., Figure 1 (b)) concatenates all utterances 042

into a continuous word sequence. Methods based 043

on these two patterns usually have Recurrent Neu- 044

ral Networks (RNNs) (Hochreiter and Schmidhu- 045

ber, 1997; Cho et al., 2014) and attention mech- 046

anism (Bahdanau et al., 2015) as the backbone. 047

Although promising results have been achieved, 048

these methods are generally slow in training and 049

inference due to their recurrent nature. 050

The PrLM Pattern (i.e., Figure 1 (c)) uses special 051

symbols to connect all utterances into a continuous 052

sequence, similar to Concatenated Pattern. While 053

PrLM Pattern has obtained state-of-the-art perfor- 054

mance in response selection (Cui et al., 2020; Gu 055

et al., 2020; Liu et al., 2021), this method having 056

Transformer (Vaswani et al., 2017) as the de facto 057

standard architecture suffer from a large number 058

of parameters and heavy computational cost. Very 059

large models not only lead to increased training 060

costs, but also prevent researchers from iterating 061

quickly. At the same time, slow inference hinders 062

development and deployment of dialogue systems 063

in real-world scenarios. 064

Furthermore, these three patterns treat dialogue 065

contexts as flat structures (Li et al., 2021). Meth- 066

ods based on such flat structures usually capture 067

the sequential features of text by considering each 068

word as a unit. However, previous work (Lu et al., 069

2019) revealed that given a multi-turn dialogue 070

(e.g., Figure 2 (a)), the context of the dialogue can 071

exhibit a composition of 3D stereo structures as 072
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Figure 2: Stereo view modeling. (a) An example of multi-turn dialogue; (b) Features from different views; (c) A
schematic diagram of stereo view; (d) Convolution on different views ((1) is convolution in embedding view; (2) is
convolution in word view; and (3) is convolution in utterance view)

we view utterances in each dimension (shown as073

Figure 2 (b) and (c))). As shown in Figure 2 (b),074

the embedding view can represent features of each075

individual word, the word view can represent the076

features from the whole conversation and a sin-077

gle utterance, and the utterance view can capture078

the dependencies between different localities com-079

posed of adjacent utterances. Existing methods (Gu080

et al., 2019; Zhou et al., 2016; Gu et al., 2020) only081

extract features based on the flat structures, but can-082

not simultaneously capture complex features from083

such stereoscopic views.084

In this paper, we propose a lightweight fully1085

convolutional network model, called DialogConv,086

without any RNN and attention module for multi-087

view response selection. Different from previous088

studies (Zhou et al., 2016; Gu et al., 2019, 2020;089

Li et al., 2021) which model the dialogue in a flat090

view, DialogConv models the dialogue context and091

response together in the 3D space of the stereo092

views, i.e., embedding view, word view, and ut-093

terance view (as shown in Figure 2 (d)). In the094

embedding view, the word-level features will be re-095

fined through convolution operations on the plane096

formed by the word sequence dimension and the097

utterance dimension. In the word view, the global098

conversation features will be captured by concate-099

nating all words into a continuous sequence, and100

the features of each utterance will be refined by101

performing convolution on each utterance. In the102

utterance view, the dependency features between103

different local contexts will be distilled by perform-104

ing convolution across different utterances. In gen-105

eral, DialogConv can simultaneously extract fea-106

tures with different granularities from the stereo107

structure.108

DialogConv is completely based on CNN, which109

uses much fewer parameters and computing re-110

sources. DialogueConv has an average number111

1Here ‘fully’ means DialogConv is built exclusively on
CNNs.

of parameters of 12.4 million, which is on average 112

about 8.5× smaller than other models. The infer- 113

ence speed of DialogConv can be on average about 114

79.39× faster on CPU device and 10.64× faster 115

on GPU device than existing models. Moreover, 116

DialogConv achieves competitive results on four 117

benchmarks and performs even better when pre- 118

trained with contrastive learning. In summary, we 119

make the following contributions: 120

• We propose an efficient convolutional response 121

selection model, DialogConv, which, to our best 122

knowledge, is the first response selection model 123

built entirely on multiple convolutional layers 124

without any RNN or attention module. 125

• We model dialogue from stereo views, where 126

2D and 1D convolution operations are performed 127

on embedding, word and utterance views, and 128

thus DialogConv can capture features from stereo 129

views simultaneously. 130

• Extensive experiments on four benchmark 131

datasets show that DialogConv with fewer pa- 132

rameters can achieve competitive performance 133

with faster speed and less computing resources. 134

2 Related Work 135

2.1 Retrieval-based Dialogue System 136

Most existing retrieval-based dialogue systems (Wu 137

et al., 2017; Gu et al., 2019; Liu et al., 2021) fo- 138

cus on matching between dialogue context and re- 139

sponse. These methods attempt to mine deep se- 140

mantic features through sequence modeling, e.g., 141

using attention-based pairwise matching mecha- 142

nisms to capture interaction features between di- 143

alogue context and candidate response. However, 144

previous research (Sankar et al., 2019; Li et al., 145

2021) shows that these methods fail to fully exploit 146

the conversation history information. In addition, 147

methods based on recurrent neural network suffer 148

from slow inference speed due to the nature of re- 149

current structures. Although Transformer-based 150
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methods (Vaswani et al., 2017) get rid of the weak-151

ness of recurrent structure, they are usually plagued152

by a large number of parameters (Wu et al., 2019),153

making the training and inference of Transformer-154

based models require a lot of computational cost.155

In this paper, we propose a multi-view approach156

to model dialogue context based on a fully convo-157

lutional structure and a lightweight model that is158

smaller and faster than most existing methods.159

2.2 Convolutional Neural Networks (CNN)160

For the past few years, CNNs have been the go-161

to model in computer vision. The main reason162

is that CNN enjoys the advantage of parameter163

sharing and is better at modeling local structures.164

A large number of excellent architectures based165

on CNN have been proposed (Krizhevsky et al.,166

2012; He et al., 2016; Dai et al., 2021). For text167

processing, convolutional structures are good at168

capturing local dependencies of text and are faster169

than RNNs (Hochreiter and Schmidhuber, 1997).170

Therefore, some studies (Wu et al., 2016; Lu et al.,171

2019; Yuan et al., 2019) employ convolutional172

structures to aggregate the matching features be-173

tween dialogue contexts and responses. However,174

these works usually require combining attention175

mechanisms or the skeleton structure of RNN with176

CNNs. Furthermore, these studies treat dialogue177

context as a flat structure. In this paper, we propose178

a novel fully convolutional architecture to extract179

matching features from stereo views, which can180

simultaneously extract the features with different181

granularities from different views.182

3 Methodology183

3.1 Problem Formulation184

In this paper, an instance in the dialogue185

dataset can be represented as (C, y), where186

C=(u1,u2, . . . ,ut−1, r) represents the set of di-187

alogue contexts (u1,u2, . . . ,ut−1) and the re-188

sponse r, ui is the i-th utterance, and y ∈ {0, 1} is189

the class label of C. As the core of retrieval-based190

dialogue system, the purpose of response selection191

is to build a discriminator g(C) on (C, y) to mea-192

sure the matching between the dialogue context193

and response.194

3.2 Fully Convolutional Matching195

We propose a fully convolutional encoder for multi-196

view response selection. Multiple views include197

embedding view, word view, and utterance view.198

In the embedding view, the convolution operations 199

are performed on the plane formed by the word se- 200

quence dimension and the utterance dimension, and 201

word-level features can be extracted through nonlin- 202

ear transformations between different embeddings. 203

In the word view, global dialogue context features 204

will be captured by convolution of a contiguous se- 205

quence connecting all words, and features of each 206

utterance will be obtained by performing convo- 207

lution on each utterance. In the utterance view, 208

DialogConv is responsible for capturing the de- 209

pendency features between different local contexts 210

composed of adjacent utterances. Figure 3 shows 211

an overview of our proposed DialogConv, which 212

consists of six layers: (i) embedding layer; (ii) local 213

matching layer; (iii) context matching layer; (iv) 214

discourse matching layer; (v) aggregation layer; 215

(vi) prediction Layer. 216

Symbol Definition: The embedding layer uses 217

a pretrained word embedding model to map each 218

word in C to a vector space. We stack C chrono- 219

logically into a 3D tensor G ∈ Rt×ℓ×d, where d 220

represents the dimension of word embedding, ℓ 221

represents the length of the utterance and t is the 222

number of utterances including the response. G 223

is the input to DialogConv. We use Conv2Dv
k×s 224

and Conv1Dv
w to denote the convolution operations, 225

where Conv2Dv
k×s denotes a two-dimensional con- 226

volution with a convolution kernel size of k × s, 227

Conv1Dv
w represents a one-dimensional convolu- 228

tion with a convolution kernel size of w, and v 229

represents a specific view. We will describe the 230

details of the remaining layers in the following 231

subsections. 232

3.2.1 Local Matching Layer 233

The local matching layer is responsible for extract- 234

ing features of each utterance. The local matching 235

stage contains features from the embedding and 236

word views. Firstly, we employ 1× 1 convolutions 237

in the embedding view and the word view, respec- 238

tively. The process can be formally described as: 239

G1 = Conv2Dembedding
1×1 (σ(G)) (1) 240

G2 = Conv2Dword
1×1 (G1) +G (2) 241

where σ(·) stands for GELUs activation func- 242

tion (Hendrycks and Gimpel, 2016). The 1 × 1 243

convolution pays attention to the information of 244

the current element itself and does not consider the 245

influence of local context. The features of individ- 246

ual words will be extracted from the embedding 247
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Figure 3: Overview of our DialogConv. The conv@i symbol represents the i-th convolution operation.

and word views by 1× 1 convolution. Multi-scale248

convolution (Szegedy et al., 2015; Gao et al., 2019)249

has been shown to be effective in extracting local250

features. Therefore, we use a k1×s1 convolution251

in the word view and a 1 × 1 convolution in the252

embedding view to capture the matching features253

of each utterance. The formal description is given254

as follows:255

G3 = Conv2Dword
k1×s1(σ(G2)) (3)256

G4 = Conv2Dembedding
1×1 (G3) +G2 (4)257

Note that we focus on the features of a single utter-258

ance in the local matching layer.259

3.2.2 Context Matching Layer260

The context matching layer is responsible for261

extracting matching features of the global dia-262

logue context. Firstly, we flatten G4 into a two-263

dimensional tensor G5 ∈ R(t×ℓ)×d. This is equiva-264

lent to concatenating all utterances in chronological265

order into one continuous sequence of words. Then,266

we use convolution across words sequence with ker-267

nel size of w1 in the embedding view, and kernel268

size of w2 in the word view. Details are as follows:269

G6 = Conv1Dembedding
w1

(σ(G5)) (5)270

G7 = freshape(Conv1Dword
w2

(G6)) +G5(6)271

where freshape is a function that reshapes the out-272

put of the convolution to the same shape as G5 and273

G7 ∈ Rt×ℓ×d. The features of the global dialogue274

context can be aggregated by a nonlinear trans-275

formation between different words concatenating276

all utterances. The features of the global context277

are basis for extracting the dependency features278

between different local contexts.279

3.2.3 Discourse Matching Layer280

The discourse matching layer is responsible for281

capturing the dependencies between different local282

contexts composed of adjacent utterances. Model- 283

ing dependency features is beneficial for capturing 284

changes in implicit topics, intentions, etc. in the 285

dialogue context, which is important for choos- 286

ing the correct response. We employ orthogonal 287

convolution to extract dynamic dialogue flow fea- 288

tures across utterances to capture discourse-level 289

changes. The specific process is formulated as fol- 290

lows: 291

G8 = Conv2Dutterance
1×s2 (σ(G7)) (7) 292

G9 = Conv2Dutterance
s2×1 (G8) (8) 293

G10 = Conv2Dutterance
1×1 (G9) +G7 (9) 294

where the 1 × s2 convolution and s2 × 1 convo- 295

lution are called orthogonal convolutions because 296

the direction of their convolution kernels is vertical. 297

The 1× s2 convolution is responsible for forming 298

semantic flow based on the context-level features 299

of a single utterance, and the s2 × 1 convolution 300

extracts discourse structural features according to 301

the depth of dialogue. Finally, we integrate features 302

of utterances through the 1× 1 convolution. 303

3.2.4 Aggregation Layer 304

The aggregation layer is responsible for obtaining 305

high-level semantic information by integrating the 306

matching features from previous layers. First, we 307

use max-pooling to obtain the sentence represen- 308

tation G11 ∈ Rt×d. Then, we employ two layers 309

of convolution to extract matching features along 310

the embedding dimension in the embedding view 311

and the depth of dialogue in the utterance view, 312

respectively. The formulation is as follows: 313

G12 = Conv1Dembedding
w3

(G11) (10) 314

G13 = Conv1Dutterance
w4

(G12) +G11 (11) 315

where w3 and w4 are the convolution kernel sizes. 316

We again use a max-pooling operation based on 317

G13 to obtain the final context representation O. 318
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3.3 Self-supervised Pre-training319

As a lightweight neural structure, the performance320

of DialogConv can be further improved by a pre-321

training strategy using a small corpus. While322

the masked language model pretraining (Devlin323

et al., 2019; Lan et al., 2020) usually requires large-324

scale corpora, self-supervised contrastive learning325

can generally learn representations with a rela-326

tively small-scale corpus. Therefore, we employ327

contrastive learning to learn effective representa-328

tions by pulling semantically close neighbors to-329

gether and pushing apart non-neighbors (Hadsell330

et al., 2006). Given a set of paired examples331

D = (xi, x
+
i ), where xi is the dialogue context332

c and x+i is the correct response. We adopt the pre-333

vious contrastive learning framework (Liu and Liu,334

2021) and employ a cross-entropy objective, where335

the negatives x−i include responses with y = 0 and336

in-batch negatives (Chen et al., 2017). The training337

objective is:338

L = log
esim(xi,x

+
i )/τ∑|x−

i |
j=1 e

sim(xi,x
−
ij)/τ + esim(xi,x

+
i )/τ

(12)339

where τ is a temperature hyperparameter, x−ij rep-340

resents the j-th negative example of xi, x+i repre-341

sents the positive example of xi, and sim(·, ·) is342

the cosine similarity.343

4 Experiments and Results344

The baselines are described in the Appendix A.1.345

4.1 Datasets346

We conduct extensive experiments on four pub-347

lic datasets: (i) Ubuntu Dialogue (Ubuntu) (Lowe348

et al., 2015); (ii) Multi-Turn Dialogue Reasoning349

(MuTual) (Cui et al., 2020); (iii) Douban Conver-350

sation Corpus (Douban) (Wu et al., 2016); (iv) E-351

commerce Dialogue Corpus (ECD) (Zhang et al.,352

2018). Ubuntu consists of 1 million context-353

response pairs for training, 0.5 million pairs for val-354

idation, and 0.5 million pairs for testing. The ratio355

of the positive and the negative is 1:1 for training,356

and 1:9 for validation and testing. Douban consists357

of 1 million context-response pairs for training, 50k358

pairs for validation, and 10k pairs for testing. Re-359

sponse candidates are retrieved from Sina Weibo360

and labeled by human judges. ECD contains 1 mil-361

lion context-response pairs for training, 10k pairs362

for validation, and 10k pairs for testing and consists363

of five different types of conversations (e.g., com- 364

modity consultation, logistics express, recommen- 365

dation, negotiation and chitchat) based on over 20 366

commodities. MuTual is the first human-labeled 367

reasoning-based dataset for multi-turn dialogue, 368

which contains 7,088 context-response pairs for 369

training, 886 pairs for validation, and 886 pairs for 370

testing. The ratio of the positive and the negative 371

is 1:3 in the training, validation and test sets. 372

4.2 Evaluation Metrics 373

We follow previous research (Zhang and Zhao, 374

2021) using evaluation metric Rn@k to mea- 375

sure model performance on the datasets Ubuntu, 376

Douban and ECD, which calculates the propor- 377

tion of truly positive responses among the top-k 378

responses selected from a list of n available can- 379

didates for a context. In addition, the traditional 380

metrics MAP (Mean Average Precision) (Baeza- 381

Yates and Ribeiro-Neto, 1999) and MRR (Mean 382

Reciprocal Rank) (Voorhees et al., 1999) are em- 383

ployed on Douban. We use recall at position 1 384

of 4 candidates (R@1), recall at position 2 of 4 385

candidates (R@2) and MRR on MuTual dataset, 386

following previous study (Liu et al., 2021). The 387

Ubuntu, Douban and ECD test sets provide ten 388

candidate responses, while the MuTual provides 389

four candidate responses, leading them to adopt 390

different evaluation metrics. 391

4.3 Implementation Details 392

Model Details: We implement DialogConv using 393

Tensorflow 2 and train DialogConv on a server with 394

an Intel(R) Core(TM) i7-10700 CPU 2.90HZ and 395

a single GeForce RTX 2070 SUPER GPU (8G). 396

In experiments, we consider up to 10 turns and 50 397

words for the Ubuntu, Douban and ECD datasets, 398

and up to 8 turns and 50 words for the MuTual 399

dataset. The dimension of word embeddings is 400

set to 200. We set the convolution filter sizes 401

k1 = 1, w1 = 1, w2 = 5, w3 = 3, w4 = 1, s1 = 402

3 and s2 = 3. Layers 1, 2, 3, 4, 8, 9 and 10 use 403

2D convolutions, and layers 6, 7, 12 and 13 use 1D 404

convolutions. We set the stride of all convolutional 405

layers to [1, 1] or 1. The filter size of convolution 406

layers 1, 2, 4, 5, 9 and 11 is set to [1, 1]. The filter 407

sizes of the convolution layers 3, 6, 7, 8 and 10 are 408

set to [1, 3], 5, [1, 3], [3, 1] and 3, respectively. 409

Self-supervised Pre-training: We conduct 410

small-scale pretraining on the training set of down- 411

stream tasks through contrastive learning, such as 412

Ubuntu and Douban. Negative instances include 413
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Ubuntu (English) Douban (Chinese)

Method R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

MV-LSTM 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710
MH-LSTM 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720

DUA 0.757 0.868 0.962 0.551 0.599 0.421 0.243 0.421 0.780
DAM 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757
MRFN 0.786 0.886 0.976 0.571 0.617 0.448 0.276 0.435 0.783
IMN 0.794 0.889 0.974 0.570 0.615 0.433 0.262 0.452 0.789
IoI 0.796 0.894 0.974 0.573 0.621 0.444 0.269 0.451 0.786
MSN 0.800 0.899 0.978 0.587 0.632 0.470 0.295 0.452 0.788

BERT-2-128 0.647 0.767 0.911 - - - - - -
BERT-4-256 0.706 0.809 0.932 - - - - - -
BERT-4-512 0.757 0.869 0.966 - - - - - -
BERT-8-512 0.788 0.888 0.978 - - - - - -
BERT-12-768 0.808 0.897 0.975 0.591 0.633 0.454 0.280 0.470 0.828
DBERT-6-768 0.783 0.879 0.968 0.542 0.592 0.418 0.249 0.407 0.765
TBERT-4-312 0.638 0.766 0.922 0.532 0.567 0.378 0.235 0.397 0.742
TBERT-6-768 0.729 0.835 0.954 0.559 0.597 0.413 0.257 0.417 0.796

DialogConv 0.788 0.883 0.979 0.571 0.624 0.432 0.272 0.453 0.785
DialogConv* 0.801 0.904 0.976 0.572 0.634 0.457 0.282 0.452 0.825

Table 1: Results on Ubuntu and Douban datasets. The first, second and third groups of models belong to the
Concatenated Pattern, Separate Pattern and PrLM-based Pattern, respectively. DialogConv* represents the per-
formance when pretraining with contrastive learning. Bold indicates the best result, and underline indicates the
second best result. X represents the number of layers and Y represents the hidden size of the model in BERT-X-Y ,
DBERT-X-Y and TBERT-X-Y . TBERT stands for TinyBERT, and DBERT stands for DistilBERT. The ‘-’ indicates
no corresponding BERT version is available.

ECD (Chinese) MuTual (English)

Method R10@1 R10@2 R10@5 R@1 R@2 MRR

MV-LSTM 0.412 0.591 0.857 - - -
QANET 0.455 0.662 0.920 0.247 0.517 0.522
BIDAF 0.491 0.708 0.933 0.357 0.589 0.589
MH-LSTM 0.410 0.590 0.858 - - -

DL2R 0.399 0.571 0.842 - - -
DUA 0.501 0.700 0.921 0.437 0.698 0.658
DAM 0.526 0.727 0.933 0.458 0.718 0.673
IMN 0.621 0.797 0.964 0.404 0.622 0.638
IoI 0.563 0.768 0.950 0.421 0.686 0.647
MSN 0.606 0.770 0.937 0.420 0.677 0.646

BERT-2-128 - - - 0.520 0.765 0.715
BERT-4-256 - - - 0.558 0.800 0.742
BERT-4-512 - - - 0.607 0.837 0.772
BERT-8-512 - - - 0.619 0.816 0.774
BERT-12-768 0.610 0.814 0.973 0.648 0.847 0.795
DBERT-6-768 0.517 0.695 0.885 0.602 0.836 0.769
TBERT-4-312 0.449 0.583 0.854 0.534 0.778 0.724
TBERT-6-768 0.587 0.794 0.953 0.615 0.833 0.785

DialogConv 0.827 0.889 0.962 0.602 0.834 0.769
DialogConv* 0.844 0.891 0.963 0.622 0.854 0.782

Table 2: Results on ECD and MuTual datasets. The ‘-’
indicates no corresponding BERT version is available.

not only negative examples provided by the dataset,414

but also candidate responses from other instances415

in the same batch. We use the Stochastic Gradi-416

ent Descent (SGD) optimizer (Bottou, 2012) in the417

self-supervised pretraining phase. We set the batch418

size to 128, the learning rates to 0.001, and the419

temperature τ to 0.007.420

Fine-tuning: During the fine-tuning phase, we 421

train DialogConv and other models using the Adam 422

optimizer (Kingma and Ba, 2015). The learning 423

rates are initialized to 1e-3, 5e-4, 1e-4, 5e-5 and 424

1e-5 via a multi-step strategy. The batch size is set 425

to 32 for the MuTual dataset and 64 for the other 426

datasets. The values of the above hyperparameters 427

are all fixed using the validation set. 428

4.4 Results of Effectiveness 429

Tables 1 and 2 report the test results of Dialog- 430

Conv and all compared models on the four datasets. 431

While DialogConv does not achieve the best per- 432

formance, the model attains near-optimal results in 433

most cases. Furthermore, we calculate the confi- 434

dence level (p < 0.05) of DialogConv compared to 435

BERTbase (i.e., BERT-12-768), which shows that 436

the results of DialogConv are credible. 437

As shown in Table 1, DialogConv outperforms 438

most classic models such as DUA and DAM, 439

and achieves comparable performance to MRFN 440

on the Ubuntu dataset. DialogConv also outper- 441

forms other lightweight variants of BERT such 442

as DBETR-6-768 (i.e., DistilBERT-6-768) and 443

TBERT-6-768 (i.e., TinyBETR-6-768). When pre- 444

trained with contrastive learning, DialogConv per- 445

forms close to BERT-12-768 and even outperforms 446
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Model
Inference Time (CPU/GPU) Parameters (M)

Ubuntu (m) Douban (s) ECD (s) MuTual (s) Ubuntu Douban ECD MuTual

DAM 177/45 227/68 227/66 91/38 95 67 13 8
DUA 143/49 176/64 175/64 64/26 96 70 16 15

IOI 347/39 421/49 429/47 157/22 96 69 15 10
MSN 105/13 128/17 126/14 45/7 89 62 11 13

BERT-2-128 54/14 - - 24/9 4 - - 4
BERT-4-256 352/37 - - 81/12 11 - - 11
BERT-4-512 1372/53 - - 339/24 29 - - 29
BERT-8-512 3174/82 - - 667/42 41 - - 41

BERT-12-768 8991/219 4922/240 4681/239 1694/98 110 102 102 110
DBERT-6-768 1339/83 1591/92 1612/87 595/33 67 54 54 67
TBERT-4-312 376/34 450/35 445/30 165/13 14 11 11 14
TBERT-6-768 1476/88 1903/98 1772/92 623/35 67 60 60 67

DialogConv 13/5 18/7 16/7 7/3 23 13 9 4

Table 3: Comparison of model inference time and the scale of parameters. "m" ("s") stands for minutes (seconds).
The number of parameters of Chinese and English BERT is different because their vocabularies differ. The ‘-’
indicates no corresponding BERT version is available.

BERT-12-768 on R10@2. On the Douban dataset,447

the performance of DialogConv is 2.3% lower than448

the best result on R10@1. However, the perfor-449

mance of pretrained DialogConv can achieve near-450

optimal results.451

In Table 2, compared to BERT-12-768, Dialog-452

Conv has a huge advantage of 21.7% on R10@1453

and 7.5% higher on R10@2, is much better than454

other variants of BERT. We will discuss this phe-455

nomenon in Section 4.7. DialogConv outperforms456

some classic retrieval-based dialogue models2 such457

as DAM and MSN, and is close to some lightweight458

BERT variants such as DBERT-6-768 and BERT-459

4-512. Compared to BERT-12-768, DialogConv is460

2.6% lower on R10@1 on the MuTual. We believe461

that the lower performance of DialogConv on Mu-462

Tual is caused by a limitation of DialogConv itself,463

which we will discuss in detail in Section 4.7.464

4.5 Model Efficiency465

To measure the complexity of our base model, we466

analyze the actual inference time of the model on467

CPU and GPU, as well as the number of parame-468

ters, as shown in Table 3. DialogConv a huge speed469

advantage over other models, no matter on CPU or470

GPU. For example, on the Ubuntu dataset, Dialog-471

Conv 4.19× to 115.67× faster on CPU and 2.39×472

to 11.64× faster on GPU, and the average inference473

speed is 115.67× faster on CPU and 11.64× faster474

on GPU than other models. On all four bench-475

mark datasets, the inference speed of DialogConv476

is on average 79.39× faster on CPU and 10.64×477

2https://nealcly.github.io/
MuTual-leaderboard/

faster on GPU compared to other models. Overall, 478

the gain of inference speed ranges from 1.97× to 479

40.61× on GPU and from 3.47× to 697.00× on 480

CPU. The CPU and GPU devices are described in 481

the Implementation Details 4.3 subsection above. 482

The average number of parameters of Dialog- 483

Conv on the four benchmark datasets is 12.4 mil- 484

lion, which is 2.8× larger than BERT-2-128, 1.1× 485

than BERT-4-256, and comparable to TBERT-4- 486

312. However, DialogConv has clear advantages 487

in performance and inference time over these mod- 488

els. Compared to TBERT-6-768 and DBERT-7- 489

768, the average number of parameters of Dialog- 490

Conv is 4.9× and 5.1× smaller, respectively. Com- 491

pared with BERT-12-768, the average number of 492

parameters of DialogConv on four datasets is 8.5× 493

smaller. As compared to the classic models DUA, 494

DAM, IOI and MSN, DialogConv needs approxi- 495

mately 3.5× less parameters. Overall, DialogConv 496

achieves promising results in both performance 497

and inference time, but relies on generally less pa- 498

rameters. The main reason is that convolutional 499

structure enjoys the advantage of shared parame- 500

ters, which make DialogConv have fewer param- 501

eters compared to other models based on RNN or 502

attention mechanism. 503

4.6 Ablation Study 504

Table 4 reports the result of module ablation. 1) - 505

LocM removes the local matching layer; 2) -ConM 506

removes the context matching layer; 3) -DisM re- 507

moves the discourse matching layer; 4) -Agg re- 508

places the aggregation layer with max-pooling. 509

We can observe that each submodule plays a 510
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MuTual (English) ECD (Chinese)

Setting R@1 R@2 MRR R10@1 R10@2 R10@5

DialogConv 0.614 0.825 0.778 0.833 0.901 0.988
-LocM 0.580 0.786 0.754 0.813 0.881 0.958
-ConM 0.577 0.801 0.759 0.806 0.823 0.919
-DisM 0.578 0.785 0.753 0.810 0.845 0.910

-Agg 0.573 0.783 0.750 0.804 0.824 0.870

Table 4: Ablation results on validation set.

vital role in DialogConv. Specifically, the local511

matching layer captures the features of each utter-512

ance by mixing the features from the embedding513

and word views. The context matching layer up-514

dates the matching features based on the entire dia-515

logue context and response. The discourse match-516

ing layer extracts the dependencies between differ-517

ent local contexts composed of adjacent utterances.518

Comparatively, it seems that the local matching519

layer has a little less impact on the model perfor-520

mance than the other layers. We conjecture that521

the layer can only extract local features to some522

extent since convolution is better at capturing local523

features.524

4.7 Result Analysis and Discussion525

BERT-12-768 is a representative BERT base ver-526

sion among other BERT variants. Therefore, we527

use it as the basic comparison model. In Table 2,528

DialogConv has an absolute advantage of 21.7%529

on R10@1 and 7.5% on R10@2 compared with530

BERT-12-768 on ECD. We believe that there are531

three main reasons for this phenomenon. First, Di-532

alogConv focuses on matching, which can extract533

matching features from stereoscopic views. We534

visualize the convolution results of each layer of di-535

alogConv as a heatmap (Figure 4 in Appendix A.2).536

According to the heatmap, DialogConv can capture537

key matching features between dialogue context538

and response. The local matching layer mainly539

focuses on the features between words. This is540

because we use 1× 1 convolution in the conv@1541

and conv@2 layers while matching features ap-542

pear between several overlapping words in the two543

layers. When we use larger convolution kernels,544

DialogConv starts to focus on matching features545

between phrases. A similar phenomenon can be546

observed in the context matching layer. We can see547

that after the local and global features are extracted548

by the discourse matching layer, some important549

features are clearly captured. Second, for ECD,550

the average overlap of keywords between response551

and context reaches about 40%, which is benefi-552

cial for DialogConv to extract matching features 553

from multi-view stereos. Third, ECD is a dataset in 554

the domain of e-commerce. The domain-specific 555

performance of BERT-12-768 may be mediocre 556

because the pre-training corpora of BERT-12-768 557

is domain-agnostic. 558

In Table 2, DialogConv achieves relatively in- 559

sufficient performance on MuTual. We believe 560

the main reason is that Mutual is a human-labeled 561

reasoning dataset for multi-turn dialogues. How- 562

ever, DialogConv focuses on matching between 563

dialogue context and response, and lacks reason- 564

ing ability. Therefore, DialogConv cannot make a 565

correct predictions on reasoning-oriented examples 566

in MuTual. Figure 5 (in Appendix A.2) demon- 567

strates the convolutional heatmap visualization of 568

DialogConv on MuTual. According to the heatmap, 569

DialogConv erroneously focuses on the features of 570

"and", "their" and "in" in the dialogue context, and 571

dose not consider "5" and "7" as key features. 572

DialogConv can effectively exploit the depen- 573

dencies between different local contexts composed 574

of adjacent utterances. To reveal its capabilities 575

in this regard, we perturb the dialogue structure 576

by randomly perturbing the dialogue context and 577

report the results in Table 6 and Table 7 (in Ap- 578

pendix). We can see that the performance of Di- 579

alogConv degrades to varying degrees on the four 580

benchmark datasets. Specifically, the performance 581

drops by 12.9% R10@1 on Ubuntu, 12% R10@1 582

on Douban, 17.7% R10@1 on ECD, and 7.4% 583

R@1 on MuTual. We speculate that the dialogue 584

structure contains the dependencies between differ- 585

ent local contexts, which is important for multi-turn 586

response selection. When perturbing the dialog 587

strecture, the dependencies between local contexts 588

will be severely broken, resulting in performance 589

degradation of DialogConv. 590

5 Conclusion 591

In this paper, we propose DialogConv, a multi-view 592

lightweight architecture based exclusively on CNN. 593

DialogConv conducts convolutions on embedding, 594

word, and utterance views to capture matching fea- 595

tures. Experiment results show that DialogConv 596

has fewer parameters, is faster, and requires less 597

computing resources to achieve competitive results 598

on four benchmark datasets. DialogConv provides 599

a valuable reference for the dialogue system being 600

deployed in real-world scenarios. 601
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6 Limitations602

Although our work can achieve competitive results603

with less computing resources, we acknowledge604

some limitations of our study. Firstly, DialogConv605

focuses on matching, resulting in insufficient rea-606

soning ability. Therefore, DialogConv has a lot of607

room for improvement in the performance of dia-608

logue reasoning (on the MuTual dataset). Secondly,609

we did not explore the performance of deep Dialog-610

Conv. Our study mainly focuses on designing a611

lightweight model, ignoring the potential heavy-612

duty DialogConv under the blessing of large-scale613

training corpora. We will explore the performance614

potential of deep DialogConv in future work.615
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A Appendix855

A.1 Baselines856

MV-LSTM (Wan et al., 2016) is a semantic match-857

ing method based on LSTM. QANET (Yu et al.,858

2018) is a machine reading comprehension method859

based on CNN. MH-LSTM (Wang and Jiang,860

2016) is an extractive machine reading compre-861

hension model based on LSTM. BIDAF (Seo et al.,862

2017) is a machine reading comprehension model863

based on bi-directional attention flow. Multi-864

View (Zhou et al., 2016) is a multi-turn dialogue865

retrieval-based method based on token view and866

utterance view. DL2R (Yan et al., 2016) is a multi-867

turn retrieval-based dialogue model based on sen-868

tence pair matching. DUA (Zhang et al., 2018) is a869

hierarchical interaction model based on attention870

mechanism. DAM (Zhou et al., 2018) is a deep871

interaction method based on attention. IMN (Gu872

et al., 2019) is a retrieval-based dialogue model873

with bi-directional matching. MRFN (Tao et al.,874

2019) is a retrieval-based dialogue model with mul-875

tiple types of representations. IoI (Tao et al., 2019)876

is a retrieval-based dialogue model based on mul-877

tiple interactions. MSN (Yuan et al., 2019) is a878

retrieval-based dialogue model with multi-hop se-879

lector mechanism.880

BERT (Devlin et al., 2019) is an autoencoding881

language model based on transformer. Here we882

employ multiple BERT versions including BERT-2-883

128 (two layers with hidden size 128), BERT-4-256884

(four layers with hidden size 256), BERT-4-512,885

BERT-8-512 and BERT-12-768. TinyBERT (Jiao886

et al., 2020) is compressed BERT through a two-887

stage distillation technique. TinyBERT includes888

the officially releases TinyBERT-3-312 (short for889

TBERT-3-312) and TinyBERT-6-768 (short for890

TBERT-6-768) in Chinese and English. Distil-891

BERT (Sanh et al., 2019) is a distilled version892

of BERT. DistilBERT includes the officially re-893

leases DistilBERT-6-768 (short for DBERT-6-768)894

in Chinese and English. Notationwise, we use X895

to represent the number of layers and Y represent896

the hidden size in BERT-X-Y , DBERT-X-Y and897

TBERT-X-Y .898

A.2 Heatmap Visualization899

Figure 4 and Figure 5 demonstrate example con-900

volutional heatmap visualizations for each layer901

of DialogConv from datasets Mutual and ECD, re-902

spectively. Table 5 demonstrates the comparison903

between Chinese and English of an example of904

Ecomm. We obtain the heatmaps in Figure 5 and 905

4 through visualizing the similarity matrix between 906

response and dialogue context. The larger the value 907

of the similarity matrix, the brighter the correspond- 908

ing visualization result, and the more important the 909

corresponding word is. According to Figure 4, Di- 910

alogConv can capture the key features in dialogue 911

context and response such as "not" (不是 or非 ), 912

"quality" (质量), "problem" (问题). We can con- 913

clude that DialogConv makes decision based on the 914

matching features between dialogue context and 915

responses. According to Figure 5, DialogConv mis- 916

takenly considers "their", "them", "see", and "i" as 917

important features and ignores the key features "5" 918

and "7" in the dialogue context. 919
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Chinese English

context
我提前问你了吧 I asked you in advance.
这不是质量问题哦 It’s not a quality problem.
我要小的又不能用而且这么多包 I want small and unusable, and so many bags.

response
非质量问题退回的 For non-quality problems returned
运费亲自理 the freight will be handled by yourself

Table 5: An example of a Chinese-English aligned of ECD dataset.

Figure 4: An example of visualization heatmap from ECD. The conv@i represents the i-th convolution operation in
Figure 3. The horizontal axis represents the dialogue history, and the vertical axis represents the response. The
English translation refers to Table 5.

Ubuntu (English) Douban (Chinese)

Types R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

Norm 0.788 0.883 0.979 0.571 0.624 0.432 0.272 0.453 0.785
Rand 0.659 0.781 0.948 0.422 0.458 0.267 0.152 0.270 0.630

Table 6: Performance of DialogConv with normal/perturbed dialogue structure on Ubuntu and Douban. Norm
represents the normal dialogue structure. Rand represents the perturbing dialogue structure by shuffling the dialogue
context randomly.

ECD (Chinese) MuTual (English)

Types R10@1 R10@2 R10@5 R@1 R@2 MRR

Norm 0.827 0.889 0.962 0.602 0.834 0.769
Rand 0.650 0.780 0.946 0.528 0.761 0.686

Table 7: Performance of DialogConv with normal/perturbed dialogue structure on ECD and MuTual. Norm
represents the normal dialogue structure. Rand represents the perturbing dialogue structure by shuffling the dialogue
context randomly.
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Figure 5: An example of visualization heatmap from Mutual. The conv@i represents the i-th convolution operation
in Figure 3. The horizontal axis represents the dialogue history, and the vertical axis represents the response.
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