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Abstract

The task of inductive link prediction in discrete attributed multigraphs (e.g., knowl-1

edge graphs, multilayer networks, heterogeneous networks, etc.) generally focuses2

on test predictions with solely new nodes but not both new nodes and new relation3

types. In this work, we formally define the task of predicting (completely) new4

nodes and new relation types in test as a doubly inductive link prediction task5

and introduce a theoretical framework for the solution. We start by defining the6

concept of double permutation-equivariant representations that are equivariant to7

permutations of both node identities and edge relation types. We then propose a8

general blueprint to design neural architectures that impose a structural representa-9

tion of relations that can inductively generalize from training nodes and relations10

to arbitrarily new test nodes and relations without the need for adaptation, side11

information, or retraining. We also introduce the concept of distributionally double12

equivariant positional embeddings designed to perform the same task. Finally,13

we empirically demonstrate the capability of the two proposed models on a set14

of novel real-world benchmarks, showcasing relative performance gains of up to15

41.40% on predicting new relations types compared to baselines.16

1 Introduction17

This work studies what we call a doubly inductive (node and relation) link prediction task to predict18

missing links in unseen discrete attributed multigraphs with completely new nodes and new relation19

types in test (i.e. none of them are seen in training). Discrete attributed multigraphs encompass20

knowledge graphs [5, 76, 63, 62, 19, 58], multilayer networks (multiple graph types sharing a21

common set of nodes, e.g., the power grid and the road network [16, 17]), and heterogenous networks22

with discrete link types (e.g., recommending products to users that have distinct ways to interact with23

an online store [9, 79, 71]). Our experiments primarily center around knowledge graphs; however,24

we note that the outlined tasks and methodology can be seamlessly adapted to both multilayer and25

heterogeneous network data.26

The main contribution of our work is a general theoretical framework for doubly inductive link27

prediction on discrete attributed multigraphs and a blueprint to create equivariant neural networks28

for this task (both from structural representations and from positional embeddings). We will introduce29

the concept of double equivariant graph models and distributionally equivariant positional graph30

embedding models, which are equivariant to the overgroup of permutations of nodes and permutations31

of relations (we review the necessary group theory concepts in Section 2). The majority of today’s link32

prediction works can be broadly divided into a few categories that are either incapable of inductive33

reasoning over new relations in test or require side information to do so. In Section 4 we explain how34

the doubly inductive link prediction is different from these existing tasks in more detail.35
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Figure 1: (a) Doubly inductive link prediction: In this task, the goal is to learn (on training graphs) to
inductively predict querying relation over test graphs with new nodes and new relation types. Sharing local
relational structure (bottom) enables predicting the same relative relation types w.r.t. the structure of the
training pair, as there is a common relational type structure (the colored links) in training that can be applied to
the new nodes and new relation in test. (b) Traditional inductive link prediction: This task aims to inductively
predict querying relation over test graph with only new nodes. Querying node pairs share the same local structure
(bottom) as a training pair. Thus, we can predict the same relation type as in training. Since relation types of the
local structure are assumed the same in training and test, this approach can only be applied over new nodes.

Contributions. In this work, we study the task of doubly inductive link prediction over both new36

nodes and new relation types, using only information obtained from the training graphs. Our work37

makes the following three contributions:38

1. We formally introduce the doubly inductive link prediction task and the concept of double equivari-39

ance and distributionally double equivariant positional embeddings for graph models, whose node40

and pairwise representations are equivariant to the action of the permutation overgroup composed41

by the permutation subgroups of node identities, and edge types (relations).42

2. We develop the first general double equivariant graph neural network (GNN) framework that is43

capable of performing doubly inductive link prediction, and introduce an approximately double44

equivariant representation built from distributionally double equivariant positional embeddings.45

3. We introduce two real-world benchmark datasets: PediaTypes and WikiTopics, for the newly46

proposed doubly inductive link prediction task, and empirically verify inductive link prediction47

capabilities of our models over both new nodes and new relation types on these benchmarks.48

2 Doubly (Node & Relation) Inductive Link Prediction49

In what follows, we introduce the doubly inductive link prediction task and compare it with the tradi-50

tional inductive link prediction task using two examples. We then proceed to theoretically describe51

the task in a general setting and propose our double equivariant modeling framework to handle doubly52

inductive link prediction task using structural representations and positional embeddings.53

2.1 Doubly inductive link prediction examples54

We now introduce doubly inductive link prediction over both new nodes and new relation types55

and explain the difference between the traditional inductive link prediction task in Figure 1. The56

traditional inductive link prediction task focuses solely on predicting new nodes in the test. To this57

end, standard graph neural networks (GNNs) [73, 41] force the neural network to learn structural58

node representations [54], which —if used appropriately— allows GNNs to perform inductive link59

prediction over new nodes [30, 60] as shown in Figure 1(b) but does not extrapolate over new60

relations.61

However, the equivariance in GNNs is not enough to perform the doubly inductive link prediction task62

in Figure 1(a). Specifically, to be able to inductively predict the Granny ∧Mother relation on the test63

graph by learning from the Grand ∧ Father relation on the training graph, the equivariance property64

needs to go beyond just node permutations. To be able to represent the structural properties of the65
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nodes and relations with respect to the structural properties of other nodes and relations, our work66

defines an equivariance also in relations. For instance, via double equivariance (we will define the67

concept in Section 2.3) it is possible to perform the task of predicting Granny ∧Mother using the node68

and relation structural pattern shown at the bottom of Figure 1(a), which can be formally described69

through the logical formula ∀v1, v2, v3, v4, v5 ∈ V te,∀r1, r2, r3 ∈ Rte, (v1, r1, v2) ∧ (v2, r1, v3) ∧70

(v4, r2, v3) ∧ (v3, r2, v5) ∧ (v4, r2, v5) ∧ (v4, r3, v5) =⇒ (v1, r1, v3) ∧ (v1, r3, v3), where V te and71

Rte are the (new) vertices and (new) relations observed in test. Additional examples and a more72

detailed analysis of the logical statements implied by double equivariance are in Appendices A and B.73

2.2 Formalizing the doubly inductive link prediction task74

We now introduce notations and definitions used throughout this paper. First, we formally define75

our inductive link prediction task for both new nodes and new relation types, i.e., doubly inductive76

link prediction, over discrete attributed multigraph. We denote [n] := {1, . . . , n} for any n ∈ N. Let77

G(tr) = (V(tr),R(tr),A(tr)) be the training discrete attributed multigraph, where V(tr) is the set of N (tr)78

training nodes,R(tr) is the set of R(tr) training relation types. We also define two associated bijective79

mappings v(tr)
· : [N (tr)]→ V(tr), r

(tr)
· : [R(tr)]→ R(tr) that enumerate the nodes and relation types in80

training. The tensor A(tr) ∈ {0, 1}N(tr)×R(tr)×N(tr)
defines the adjacency of the training graph such that81

∀(i, k, j) ∈ [N (tr)]× [R(tr)]× [N (tr)],A
(tr)
i,k,j = 1 indicates that the triplet (v(tr)

i , r
(tr)
k , v

(tr)
j ) is present82

in the data (we denote (i, k, i) as the k-th attribute of node i). To simplify notation, we further refer to83

the collection of all discrete attributed multigraph of any sizes as A := ∪∞N=1 ∪∞R=2 {0, 1}N×R×N .84

Definition 2.1 (Doubly inductive link prediction task). The task of doubly inductive link prediction85

learns a model on G(tr) and inductively apply it to predict missing links in a test graph G(te) =86

(V(te),R(te),A(te)) with completely new nodes and new relation types, i.e., V(te) ∩ V(tr) = ∅,R(te) ∩87

R(tr) = ∅, without extra context given to the model. Specifically, we aim to predict both missing88

relations for the given head and tail nodes (i, ?, j) and missing nodes for a given relation (i, k, ?).89

While some real-world tasks may have overlapping relation types between training and test, Defini-90

tion 2.1 forces the model to not rely on potential overlaps. In what follows, we use the superscript91

(∗) as a wildcard to describe both train and test data. For example, A(∗) is a wildcard variable for92

referring to either A(tr) or A(te). For brevity, we use discrete attributed multigraph and attributed93

multigraph interchangeably. And since there are bijections v
(∗)
· , r

(∗)
· between indices and nodes94

and relation types, we represent the triplet (v(∗)i , r
(∗)
k , v

(∗)
j ) ∈ V(∗) × R(∗) × V(∗) with indices95

(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)], and mainly use A(∗) to denote discrete attributed multigraph.96

Without additional context such as textural description embeddings for the new relations or graph97

ontology (thoroughly discussed in Section 4), it is essential for our model to differentiate nodes and98

relations based only on their structural relationships in A(∗), rather than their labels in V(∗),R(∗), in99

order to make accurate predictions in doubly inductive link prediction as discussed in Section 2.1.100

Thus, we develop the double equivariant representations for attributed multigraphs as follows.101

2.3 Double equivariant representations for attributed multigraphs102

In what follows, we provide definitions and theoretical statements of our proposed double equivariant103

attributed multigraph representations in the main paper while referring all proofs to Appendix C. The104

proposal starts with defining the permutation actions on discrete attributed multigraphs as:105

Definition 2.2 (Node and relation permutation actions on attributed multigraphs). For any attributed106

multigraph A(∗) ∈ A with number of nodes and relations N (∗), R(∗), a node permutation ϕ ∈ SN(∗)107

is an element of the symmetric group SN(∗) , a relation permutation τ ∈ SR(∗) is an element of the108

symmetric group SR(∗) , and the operation ϕ ◦ τ ◦A(∗) is the action of ϕ and τ on A(∗), defined as109

∀(i, k, j) ∈ [N (∗)]×[R(∗)]×[N (∗)], (ϕ◦τ◦A(∗))ϕ◦i,τ◦k,ϕ◦j = A
(∗)
i,k,j where ϕ◦i = ϕi and τ◦k = τk.110

The node and relation permutation actions on A(∗) are commutative, i.e., ϕ ◦ τ ◦A(∗) = τ ◦ϕ ◦A(∗).111

To learn structural representation for both nodes and relations, we first design triplet representations112

that are invariant to the two permutation actions on nodes and relations, as shown below.113

Definition 2.3 (Double invariant triplet representations). For any attributed multigraph A(∗) ∈ A114

with number of nodes and relations N (∗), R(∗), a double invariant triplet representation is a function115

Γtri : ∪∞N=1 ∪∞R=2 ([N ] × [R] × [N ]) × A → Rd, d ≥ 1, such that ∀(i, k, j) ∈ [N (∗)] × [R(∗)] ×116

[N (∗)],∀ϕ ∈ SN(∗) ,∀τ ∈ SR(∗) , Γtri((i, k, j),A
(∗)) = Γtri((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦A(∗)).117
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To understand the property of our double invariant triplet representations, we first introduce the notion118

of discrete attributed multigraph isomorphism and triplet double isomorphism.119

Definition 2.4 (Attributed multigraph isomorphism and Triplet isomorphism). We say two attributed120

multigraphs A(G),A(H) ∈ A with number of nodes and relations N (G), R(G) and N (H), R(H)121

respectively, are isomorphic (denoted as “A(G) ≃RL A(H)”) if and only if ∃ϕ ∈ SN(G) ,∃τ ∈122

SR(G) , such that ϕ ◦ τ ◦ A(G) = A(H). And we say two triplets
(
i(G), k(G), j(G)

)
∈ [N (G)] ×123

[R(G)]× [N (G)],
(
i(H), k(H), j(H)

)
∈ [N (H)]× [R(H)]× [N (H)] are isomorphic triplets (denoted124

as “
((
i(G), k(G), j(G)

)
,A(G)

)
≃TRI

((
i(H), k(H), j(H)

)
,A(H)

)
”) if and only if ∃ϕ ∈ SN(G) ,∃τ ∈125

SR(G) , such that ϕ ◦ τ ◦A(G) = A(H) and
(
i(H), k(H), j(H)

)
=

(
ϕ ◦ i(G), τ ◦ k(G), ϕ ◦ j(G)

)
.126

For example, in Figure 1(a), (Hans,Grand∧Father,Bob) in train and (Hanna,Granny∧Mother,Ellie)127

in test are isomorphic triplets by Definition 2.4 (where “Granny” can be any arbitrary typo in the data).128

It is clear that our double invariant triplet representations are able to output the same representations129

for these isomorphic triplets, enabling doubly inductive link prediction. The connection between130

Definition 2.3 and logical reasoning can be found in Appendix B. In what follows, we define the131

structure double equivariant representations for the whole attributed multigraph A(∗) (akin to how132

GNNs provide representations for a whole graph).133

Definition 2.5 (Double equivariant attributed multigraph representations). For any attributed134

multigraph A(∗) ∈ A with number of nodes and relations N (∗), R(∗), a function Γgra : A →135

∪∞N=1 ∪∞R=2 RN×R×N×d, d ≥ 1 is double equivariant w.r.t. arbitrary node ϕ ∈ SN(∗) and relation136

τ ∈ SR(∗) permutations, if Γgra(ϕ ◦ τ ◦A(∗)) = ϕ ◦ τ ◦ Γgra(A
(∗)). Moreover, valid mappings of137

Γgra must map a domain element to an image element with the same number of nodes and relations.138

Finally, we connect Definitions 2.3 and 2.5 by showing how to build double equivariant graph139

representations from double invariant triplet representations in Theorem 2.6, and vice-versa.140

Theorem 2.6. For all A(∗) ∈ A with number of nodes and relations N (∗), R(∗), given a double141

invariant triplet representation Γtri, we can construct a double equivariant graph representation as142 (
Γgra(A

(∗))
)
i,k,j

:= Γtri((i, k, j),A
(∗)), ∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)], and vice-versa.143

Next, we consider positional graph embeddings that are equivariant in distribution.144

2.4 Distributionally double equivariant positional graph embeddings145

To the best of our knowledge, InGram [35] is the first and only existing work capable of performing146

our doubly inductive link prediction task (Definition 2.1), but it does so with what we now define as147

distributionally double equivariant positional embeddings, which are permutation sensitive, as we148

will show in Section 3.2:149

Definition 2.7 (Distributionally double equivariant positional embeddings). For any attributed150

multigraph A(∗) ∈ A with number of nodes and relations N (∗), R(∗), the distributionally double151

equivariant positional embeddings of A(∗) are defined as joint samples of random variables Z|A(∗) ∼152

p(Z|A(∗)), where the tensor Z is defined as Zi,k,j ∈ Rd, d ≥ 1,∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)],153

where we say p(Z|A(∗)) is a double equivariant probability distribution on A(∗) defined as ∀ϕ ∈154

SN(∗) ,∀τ ∈ SR(∗) , p(Z|A(∗)) = p(ϕ ◦ τ ◦ Z|ϕ ◦ τ ◦A(∗)).155

Prior work on (standard) link prediction tasks has shown the advantages of equivariant representations156

over positional embeddings [84]. Moreover, Srinivasan & Ribeiro (2020) [54] establishes the157

equivalence between positional embeddings and structural representations for simple graphs by158

proving that representations based on an expectation of the positional embeddings are equivariant to159

node permutations. In what follows, we extend this result to the double equivariant setting:160

Theorem 2.8 (From distributional double equivariant positional embeddings to double equivariant161

representations). For any attributed multigraph A(∗) ∈ A, the average Ep(Z|A(∗))[Z|A(∗)] is a162

double equivariant attributed multigraph representation (Definition 2.5) for any distributional double163

equivariant positional embeddings Z|A(∗) (Definition 2.7).164

Later in Section 3.2, we use the result in Theorem 2.8 to introduce DEq-InGram, a double equivariant165

representation that builds upon InGram’s distributionally double equivariant positional embeddings166

(Definition 2.7) that is shown to significantly outperforms the original InGram in Section 5.167
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3 Double Equivariant Neural Architecture168

This section introduces two double equivariant neural architectures based on Sections 2.3 and 2.4.169

First, Section 3.1 introduces an Inductive Structural Double Equivariant Architecture (ISDEA), a170

model guaranteed to produce double equivariant representations (Definition 2.5). Then, Section 3.2171

introduces a Monte Carlo estimate of a double equivariant representation built from a distributionally172

double equivariant positional graph embedding [35].173

3.1 Inductive Structural Double Equivariant Architecture (ISDEA)174

Aggregate

+

Aggregate

+

Aggregate

+

Figure 2: Illustration of Equation (1): Attributed
multigraph input is split into a set of unattributed
graphs A(∗,k) corresponding to each relation k =
1, . . . , R(∗). For each relation k, the representation
of A(∗,k) and the set representation of all other
unattributed graphs are combined together to up-
date representation hi,k for arbitrary node i. Fi-
nally, updated representations of all relations are
concatenated together to generate the output hi.

We start revisiting Definition 2.4. Con-175

sider an arbitrary discrete attributed multigraph176

A(∗) ∈ A with number of nodes and relations177

N (∗), R(∗), and denote A(∗,k) as the adjacency178

matrix such that A(∗,k)
i,j := A

(∗)
i,k,j , ∀(i, k, j) ∈179

[N (∗)] × [R(∗)] × [N (∗)]. For each adjacency180

matrix A(∗,k), it will correspond to a graph with-181

out edge relation types, thus we can also con-182

sider A(∗,k) as an unattributed graph containing183

only edges with relation type r
(∗)
k . Then, the184

attributed multigraph A(∗) can be equivalently185

expressed as a collection of unattributed graphs186

A(∗) :=
{{
A(∗,1), . . . , A(∗,R(∗))

}}
. Since the187

actions of the two permutation groups SN(∗) and188

SR(∗) commute, the double equivariance of A(∗)189

(Definition 2.4) can be described as two (sin-190

gle) equivariances: A (graph) equivariance ϕ ∈191

SN(∗) over each graph A(∗,k), k = 1, . . . , R(∗),192

and a (set) equivariance τ ∈ SR(∗) (over the set193

of graphs). Hence, our double equivariance can194

make use of the general framework using DSS195

layers on learning sets of symmetric elements196

proposed by Maron et al. (2020) [39]. We first197

define a double equivariant layer composed by198

a Siamese layer [7] as follows, L : A→ ∪∞N=1 ∪∞R=2 RN×R×N×d, for each k = 1, ..., R(∗):199 (
L
(
A(∗)

))
:,k

= L1

(
A(∗,k)

)
+ L2

(
AGGR(∗)

k′ ̸=k

(
A(∗,k′)

))
, (1)

where d is the output dimension, L1, L2 : A→ ∪∞N=1RN×N×d can be any (node) equivariant layers200

that output pairwise representations [83, 87, 84], and the aggregation term AGGR(∗)

k′ ̸=k can be any set201

aggregators such as sum, mean, max, DeepSets [80], etc.. Note that the proposed layer is similar to202

the H-equivariant layer proposed by Bevilacqua et al. (2021) [4] for increasing the expressiveness of203

GNN using sets of subgraphs (a markedly different task than ours). An illustration of Equation (1) is204

provided in Figure 2. We create our double equivariant neural network by stacking double equivariant205

layers.206

3.1.1 Implementation Details207

We use GNN layers for constructing L1, L2. Since most-expressive pairwise representations are com-208

putationally expensive, we propose Inductive Structural Double Equivariant Architecture (ISDEA)209

and trade-off expressivity in the implementation of Equation (1) for speed and memory by using node210

representation GNN layers [73, 65, 41]. Specifically, for an attributed multigraph A(∗) with number211

of nodes and relations N (∗), R(∗), at each iteration t = 1, ..., T , all nodes i ∈ [N (∗)] are associated212

with a learned vector h(t)
i ∈ RR(∗)×dt , dt ≥ 1. If there are no node attributes, we initialize h

(0)
i = 1213

and d0 = 1. Then we recursively compute the update, ∀i ∈ [N (∗)],∀k ∈ [R(∗)],214

h
(t+1)
i,k =GNN(t)

1

(
h
(t)
i,k,

{{
h
(t)
j,k

∣∣j∈Nk(i)
}})

+GNN(t)
2

(
AGGR(∗)

k′ ̸=k

(
h
(t)

i,k′

)
,

{{
AGGR(∗)

k′ ̸=k

(
h
(t)

j,k′

)∣∣∣∣j∈ ⋃
k′ ̸=k

Nk′ (i)

}})
,
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where GNN(t)
1 and GNN(t)

2 denote two GNN layers and Nk(i) :=
{
j
∣∣∣A(∗)

j,k,i = 1
}

denotes the215

neighborhood set of node i with relation k in the unattributed graph A(∗,k). At the final layers, we216

use standard MLPs instead of GNNs to output a final prediction. We use mean as our aggregators.217

As shown by Srinivasan & Ribeiro (2020) [54] and You et al. (2019) [78], structural node representa-218

tions are not most expressive for link prediction in unattributed graphs. Hence, we concatenate i and219

j (double equivariant) node representations with the shortest distance between i and j in the observed220

graph as our triplet representations (appending distances is also adopted in the representations of221

prior work [60, 22]). Finally, we obtain the triplet representation,222

ΓISDEA((i, k, j),A
(∗)) =

(
h
(T )
i,k

∥∥∥h(T )
j,k

∥∥∥d(i, j)∥∥∥d(j, i)), ∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)], (2)

where we denote d(i, j) as the length of shortest path from i to j without considering (i, k, j), ∥ as223

the concatenation operation. Since our graph is directed, we concatenate them in both directions.224

Lemma 3.1. ΓISDEA in Equation (2) is a double invariant triplet representation as per Definition 2.3.225

As in Yang et al. (2015) [76]; Schlichtkrull et al. (2018) [53]; Zhu et al. (2021) [87], we use226

negative sampling in our training with the difference that we account for both predicting missing227

nodes and relation types (Definition 2.1). Specifically, for each positive training triplet (i, k, j)228

such that A(tr)
i,k,j = 1, we first randomly corrupt either the head or the tail nnd times to generate229

the negative (node) examples (i, k, j′). Additionally, we also want our model to learn the correct230

relation type (i, ?, j) between a pair of nodes. Thus, we corrupt relation nrl times to generate negative231

(relation) examples (i, k′, j). In our training, nnd = nrl = 2; while in evaluation, nnd = 50, nrl = 0232

for node evaluation, and nnd = 0, nrl = 50 for relation evaluation. Following Schlichtkrull et al.233

(2018) [53], we use cross-entropy loss to encourage the model to score positive examples higher than234

corresponding negative examples:235

L=−
∑

(i,k,j)∈S

(
log
(
Γtri((i, k, j),A

(tr))
)
− 1

nnd + nrl

nnd+nrl∑
p=1

log
(
1− Γtri

((
i′p, k

′
p, j

′
p

)
,A(tr)

)))
, (3)

where S =
{
(i, k, j)

∣∣∣A(tr)
i,k,j = 1

}
, and

(
i′p, k

′
p, j

′
p

)
are the p-th negative node or relation example236

corresponding to (i, k, j).237

3.2 Double Equivariant InGram (DEq-InGram)238

ISDEA directly obtains double equivariant representations for attributed multigraphs. Alternatively,239

one can build these double equivariant representations from distributionally double equivariant240

positional embeddings (Theorem 2.8). To this end, we investigate obtaining double equivariant241

representations from the positional embeddings of InGram [35], as discussed in Section 2.4.242

InGram [35] constructs a relation graph as a weighted graph consisting of relations and a heuristic to243

construct affinity weights between them. It then employs a GNN on the relation graph to generate244

relation embeddings, which are then fed into another GNN on the original attributed multigraph to245

generate node embeddings. Finally, InGram uses a variant of DistMult [76] to compute triplet scores246

from the node and relation embeddings. These embeddings, however, are permutation sensitive due247

to their reliances on Glorot initialization [28] in each training epoch and test-time inference.248

Lemma 3.2. The triplet representations generated by InGram [35] output distributionally double249

equivariant positional embeddings (Definition 2.7).250

Theorem 2.8 suggests that averaging InGram’s positional embeddings can be used to construct double251

equivariant attributed multigraph representations. Hence, we propose a Monte Carlo method to252

estimate these double equivariant graph representations and denote it as DEq-InGram. Specifically,253

given InGram’s triplet score function ZInGram((i, k, j),A
(te),V (0),R(0)) over a test attributed multi-254

graph A(te), the initial random node embeddings V (0) ∈ RN(te)×d, and the initial random relation255

embeddings R(0) ∈ RR(te)×d′
(where d and d′ are the dimension sizes), our DEq-InGram produces256

the following triplet scores:257

ΓDEq-InGram((i, k, j),A
(te)) =

1

M

M∑
m=1

ZInGram((i, k, j),A
(te),V (0)

m ,R(0)
m ) (4)
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where {V (0)
m }Mm=1 and {R(0)

m }Mm=1 are M i.i.d. samples drawn from the distribution of initial node258

and initial relation embeddings respectively (via Glorot initialization).259

4 Related Work260

A more comprehensive discussion of related work can be found in Appendix D.261

Transductive link prediction. In transductive link prediction task, missing links are predicted over262

a fixed set of nodes and relation types as in training [5, 76, 63]. These (positional) embeddings can263

be made inductive via Srinivasan & Ribeiro (2020) [54]’s theory but are not designed for predicting264

new relation types.265

Inductive link prediction over new nodes (but not new relations). Rule-induction methods [76,266

77, 40, 51] are inherently node-independent which aim to extract First-order Logical Horn clauses267

from the attributed multigraph. Recently, with the advancement of GNNs, various works [53, 60,268

22, 87, 14] have applied the idea of GNN in relational prediction to learn structural node/pairwise269

representation. Although all these methods can be used to perform inductive link prediction over270

solely new nodes, they can not handle new relation types in test.271

Inductive link prediction over both new nodes and new relations (with extra context). Existing272

methods for querying triplets involving both new nodes and new relations generally assume access273

to extra context, such as generating language embedding for textual descriptions of unseen relation274

types [46, 24, 81, 67], a shared background graph connecting seen and unseen relations (e.g., test275

graph has training relations [31, 10, 12]), or access to graph ontology [25]. Hence, these methods276

cannot be directly applied to test graphs that neither contain meaningful descriptive information of the277

unseen relation types (e.g., url links) nor connection with nodes and relation types seen in training.278

Inductive link prediction over both new nodes and new relations (no extra context). We focus279

on this most general doubly inductive link prediction task without additional context data (just the280

test graph structure is available during inference). To the best of our knowledge, InGram [35] is the281

first and only existing method capable of performing this task. The connection between InGram and282

our work has been described in Sections 2.4 and 3.2.283

5 Experimental Results284

In this section, we aim to answer two questions: Q1: Can double equivariant models (ISDEA and285

DEq-InGram) perform doubly inductive link prediction over attributed multigraphs more accurately286

than existing methods? Q2: Will ISDEA be more stable than DEq-InGram, and will DEq-InGram in287

turn be more stable than the original InGram [35]? It’s essential to remember that, as per our theory288

in Section 2, ISDEA is designed to directly produce double equivariant representations. In contrast,289

InGram yields positional embeddings that achieve double equivariance only in expectation.290

Datasets. To the best of our knowledge, there are no existing real-world benchmarks that are specially291

designed to test a model’s extrapolation capability for doubly inductive link prediction task with292

training and test graphs coming from distinct domains with distinct characteristics. Existing datasets293

such as NL-100, WK-100, and FB-100 from Lee et al. (2023) [35] are typically created by randomly294

splitting a larger graph (e.g., NELL-995 [72], Wikidata68K [26], FB15K237 [61]) into disjoint node295

and relation sets, implying that the test and training graphs still come from the same distribution. In296

contrast, we purposefully create two doubly inductive link prediction benchmark datasets: PediaTypes297

and WikiTopics, sampled respectively from the OpenEA library [57] and WikiData-5M [68], where298

by design, the test and training graphs are either from different domains or different topic groups, and299

are likely to possess different characteristics to fully test model’s capability for doubly inductive link300

prediction.301

Baselines. To the best of our knowledge, InGram [35] is the first and only work capable of performing302

doubly inductive link prediction without needing significant modification to the model. We also run303

RMPI [25], which is capable of reasoning over new nodes and new relations but requires extra context304

at test time (test graphs either contain training relations or ontology about unseen relations). In305

addition, we consider the state-of-the-art link prediction model NBFNet [87] capable of generalizing306

to new nodes but not new relations and modify its architecture to work with new relations at test time307
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Table 1: Relation & Node Hits@10 performance on Doubly Inductive Link Prediction over
PediaTypes. We report standard deviations over 5 runs. A higher value means better doubly inductive
link prediction performance. The dataset name “X-Y ” means training on graph X and testing on
graph Y . The best values are shown in bold font, while the second-best values are underlined. The
highest standard deviation within each task is highlighted in red color. “Rand” column contains
unbiased estimations of the performance from a random predictor. Both ISDEA and DEq-InGram
consistently achieve better results than the baselines with generally smaller standard deviations.
N/A*: Not available due to constant crashes.

(a) Relation prediction (i, ?, j) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00

GAT 18.58±00.52 18.93±00.33 19.40±00.28 18.87±00.19 18.78±00.28 18.76±00.33 19.78±01.39 19.15±00.35

GIN 19.34±00.32 19.34±00.29 18.98±00.27 18.88±00.47 19.30±00.52 18.86±00.35 18.69±00.75 18.92±00.68

GraphConv 19.18±00.27 19.02±00.64 19.19±00.24 18.93±00.60 19.46±00.38 19.13±00.54 19.13±01.24 18.89±00.57

NBFNet 21.93±02.53 22.20±02.92 18.98±02.75 7.01±01.43 23.51±07.06 23.05±03.55 31.50±04.82 35.17±05.13

RMPI 27.91±06.48 28.62±03.75 27.51±06.48 25.59±06.48 N/A* 16.76±04.03 39.03±20.28 11.77±07.07

InGram 78.74±07.48 62.11±13.60 48.72±08.94 65.60±14.42 77.75±06.60 63.32±02.78 67.98±25.45 64.98±26.69

DEq-InGram (Ours) 87.94±05.68 80.47±09.90 68.89±05.45 80.79±10.51 91.47±01.53 77.03±04.09 77.72±21.92 89.30±05.53

ISDEA (Ours) 84.94±05.00 84.75±02.51 95.26±00.63 94.23±00.71 82.22±02.44 88.87±02.94 91.42±01.79 85.34±01.49

(b) Node prediction (i, k, ?) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00 19.60±00.00

GAT 89.77±00.41 86.83±00.41 66.24±02.81 69.08±00.66 31.08±01.07 77.05±00.36 53.51±00.29 64.13±00.31

GIN 90.10±00.61 85.32±01.18 73.32±03.35 75.66±04.85 34.87±09.12 78.67±02.46 56.87±00.44 65.27±01.14

GraphConv 92.97±00.11 90.56±00.04 83.58±00.68 82.64±00.65 40.59±01.72 79.28±01.29 68.91±00.51 76.50±00.14

NBFNet 87.64±01.81 89.77±00.80 85.56±02.07 59.78±03.73 63.23±03.65 78.24±00.90 49.97±01.44 66.36±02.64

RMPI 89.59±06.61 81.79±02.17 82.93±03.56 81.38±06.19 N/A* 65.76±07.45 55.67±06.61 71.03±02.12

InGram 92.32±01.00 83.71±03.53 90.82±01.84 92.15±00.90 61.44±09.84 87.60±01.21 54.79±08.81 67.84±06.38

DEq-InGram (Ours) 94.47±00.60 88.90±02.06 93.85±00.36 94.02±00.74 71.94±07.37 91.47±00.62 71.53±04.78 80.53±07.96

ISDEA (Ours) 76.28±00.05 77.51±01.46 82.24±00.94 81.80±00.68 66.69±01.01 75.19±03.12 72.87±01.03 76.41±01.52

(following Lee et al. (2023) [35]’s approach). We also compare our models with message-passing308

GNNs, including GAT [64], GIN [73], GraphConv [41], which treats the graph as a homogeneous309

graph by ignoring the relation types. For fair comparisons, we add distance features as in Equation (2)310

to increase the expressiveness of these GNNs. Additional baseline details are in Appendix E.311

Relation and Node Prediction Tasks. We report the Hits@10 performances over 5 runs of different312

random seeds for all models on both the relation prediction task of (i, ?, j) and the more traditional313

node prediction task of (i, k, ?). For each task, we sample 50 negative triplets for each ground-truth314

positive target triplet during test evaluation by corrupting the relation type or the tail node respectively.315

Further experiment details on synthetic tasks, additional datasets from Lee et al. (2023) [35], baseline316

implementations, ablation studies, and other metrics (e.g., MRR, Hits@1) can be found in Appendix E.317

5.1 Doubly Inductive Link Prediction over PediaTypes Dataset318

The OpenEA library [57] contains multiple attributed multigraphs of relational databases (i.e.,319

knowledge graphs) from different domains on similar topics, such as DBPedia [36] in different320

languages (English, French and German), YAGO [48] and Wikidata [66]. We create a new dataset321

PediaTypes (details in Appendix E.1.2) by sampling from the OpenEA library [57], including pairs of322

attributed multigraphs such as English-to-French DBPedia (denoted as EN-FR), DBPedia-to-YAGO323

(denoted as DB-YG), etc.. In each graph, triplets are randomly divided into 80% training, 10%324

validation, and 10% test. We then train and validate the model on one of the graphs (e.g., EN) and325

directly apply it to another graph (e.g., DE), which has completely new nodes and new relation types.326

Table 1a shows the results on the relation prediction task, and Table 1b shows the node prediction327

task on PediaTypes. Across all scenarios on both tasks, our models, ISDEA and DEq-InGram, obtain328

significantly better average performance, achieving up to 41.40% relative improvement in relation329

prediction and up to 13.78% relative improvement in node prediction compared to the best-performing330

baseline. Furthermore, ISDEA tends to have smaller standard deviations than DEq-InGram, and both331

demonstrate much smaller standard deviations than InGram in almost all scenarios, corroborating our332

theoretical predictions in Section 2 that a model directly producing double equivariant representations333

will be more stable than positional embeddings, which are only double equivariant in expectation.334
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(a) ISDEA (b) DEq-InGram (c) Original InGram

Figure 3: Relation Hits@10 performance over WikiTopics for ISDEA, DEq-InGram, and In-
Gram [35]. Each row corresponds to a training graph, and each column corresponds to a test graph.
A darker color means better performance. Both ISDEA and DEq-InGram consistently show better
performance than the baseline InGram. In addition, ISDEA exhibits more consistent results
across different train-test scenarios than DEq-InGram.

Interestingly, we observe that in the node prediction task, the message-passing GNNs (GAT, GIN,335

and GraphConv) achieve quite excellent performances, even though they completely disregard the336

information carried by different relation types and treat the attributed multigraph as a homogeneous337

graph. This observation corroborates with the conclusions of Jambor et al. (2021) [32]. Indeed, only338

4 out of 8 scenarios did InGram outperform the message-passing GNNs on this task, suggesting the339

node prediction task might be too easy because a homogeneous link prediction model can do decently340

well.341

5.2 Doubly Inductive Link Prediction over WikiTopics Dataset342

WikiData-5M [68] is a large knowledge graph dataset containing over 4M entities, 20M triplets,343

and 822 relation types from the Wikipedia website. The vast number of relation types span a wide344

range of topics, such as arts and media, education and academics, sports and gaming, etc.. Hence, an345

interesting question arises: can a model learn on the subgraph corresponding to only one topic, e.g.,346

arts, and be directly applicable to reasoning on the subgraph of another topic, e.g., education? To347

this end, we create another new dataset WikiTopics containing a collection of 11 different attributed348

multigraphs, each containing relation types specific to only a particular topic. These graphs are349

created by first breaking all relation types of WikiData-5M [68] into 11 non-overlapping topic groups350

and then selecting triplets within each topic group (details and statistics in Appendix E.1.3). We train351

the models on each of the 11 graphs for 5 random seeds, and for each trained model checkpoint, we352

cross-test it on all the other 10 graphs, resulting in a total of 550 statistics. We report the mean results353

across random seeds in heatmaps.354

Figure 3 shows the results of ISDEA, DEq-InGram, and InGram on WikiTopics for the relation355

prediction task. The results on the relatively easier task of node prediction are relegated to Ap-356

pendix E.1.3. In general, we observe that both ISDEA and DEq-InGram showcase darker colors than357

the baseline InGram on the heatmaps, indicating more accurate predictions. In addition, the results358

of ISDEA are more consistent than DEq-InGram across different train-test scenarios. For example,359

whereas the worst performance of DEq-InGram is 24.9% Hits@10 on LOCATION-ORGANIZATION,360

ISDEA’s worst performance is 64.0% Hits@10 on PEOPLE-TAXONOMY. This further corroborates361

that a model directly modeling double equivariant representations will be more stable than positional362

methods, not only across different random seeds, but also across different training and test scenarios.363

6 Conclusion364

This work formally introduced the doubly inductive link prediction task defined over both new nodes365

and new relation types in the test data. It also defined double equivariant models and distributionally366

double equivariant positional embedding models for this task. We showed that, similar to how node367

equivariances impose learning structural node representations in unattributed graphs, double (node368

and relation) equivariances impose relational structure learning for attributed multigraphs. We then369

introduced a blueprint for double equivariant neural network architectures that enables inductive link370

prediction over new nodes and relations without the need for additional data or test-time adaptations.371

Finally, we proposed two real-world doubly inductive link prediction benchmarks, and empirically372

verified the ability of our proposed approaches to extrapolate to both new nodes and relation types.373
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A Additional example for doubly inductive link prediction631

?

Training:

Test: .000
Predict 

Probability

Figure 4: Alien discrete attributed multigraph: The
task is to predict the missing relation “?” in red. Train-
ing only tells us that relations do not repeat in a path.

This example depicts an even harder sce-632

nario than the example in Figure 1, ob-633

tained from a fictional alien civilization.634

Knowing nothing about alien languages,635

we note that in training, all adjacent rela-636

tions are different. Minimally, we could637

predict the missing relation in red in test638

data is not “≮”. By introducing equivari-639

ance in relations, it is possible for a model640

to predict relation types uniformly over the641

set of other (R−1) relations except for the existing relation “≮”, which is all we know about the642

aliens.643

B Connection to Double Equivariant Logical Reasoning644

In what follows, we follow the literature and connect link prediction in discrete attributed multigraph645

to logical induction [60, 86, 47]. Existing logical induction requires all involved relations to be646

observed at least once, thus, such logical reasoning can not generalize to new relation types. We647

propose the Universally Quantified Entity and Relation (UQER) Horn clause, a double equivariant648

extension of conventional logical reasoning, which is capable of generalizing to new relation types,649

and show that the double invariant triplet representation in Definition 2.4 is capable of encoding such650

set of UQER Horn Clauses.651

Definition B.1 (Universally Quantified Entity and Relation (UQER) Horn clause). An UQER Horn652

clause involving M nodes and K relations is defined by an indicator tensor B ∈ {0, 1}M×K×M :653

∀E1 ∈ V(∗),
(
∀Eu ∈ V(∗) \ {E1, . . . , Eu−1}

)M
u=2

, ∀C1 ∈ R(∗),
(
∀Cc ∈ R(∗) \ {C1, . . . , Cc−1}

)K
c=2

,∧
u,u′=1,...,M,c=1,...,K,

Bu,c,u′=1

(Eu, Cc, Eu′) =⇒ (E1, C1, Eh),

(5)
for any node set V(∗) and relation set R(∗) with number of nodes and relations N (∗), R(∗) s.t.654

N (∗) ≥ M,R(∗) ≥ K, h ∈ {1, 2} (where h = 1 indicates a self-loop relation or a relational node655

attribute), where if M > h, ∀u ∈ {h + 1, . . . ,M},
∑M

u′=1

∑K
c=1 Bu,c,u′ + Bu′,c,u ≥ 1, and if656

K ≥ 2, ∀c ∈ {2, . . . ,K},
∑M

u=1

∑M
u′=1 Bu,c,u′ +Bu′,c,u ≥ 1 (every variable should appear at least657

once in the formula).658

Note that our definition of UQER Horn clauses (Definition B.1) is a generalization of the First Order659

Logic (FOL) clauses in [77, 40, 51, 60] such that the relations in the Horn clauses are also universally660

quantified rather than predefined constants. UQER can be used to predict new relations in the test661

attributed multigraph with pattern matching, i.e., if the left-hand-side (condition) of a UQER can662

be satisfied in the test attributed multigraph, then the right-hand-side (implication) triplet should be663

present. In Figure 5, we illustrate two examples using UQER to predict new relations at test time.664

We now connect our double equivariant representations (Definition 2.3) with the UQER Horn clauses.665

666 Theorem B.2. For any UQER Horn clause defined by B ∈ {0, 1}M×K×M (Definition B.1),667

there exists a double invariant triplet predictor Γtri : ∪∞N=1 ∪∞R=2 ([N ] × [R] × [N ]) ×668

A → {0, 1} (Definition 2.3), such that for any set of truth statements S ⊆ V(∗) ×669

R(∗) × V(∗) and their equivalent tensor representation A(∗) ∈ A (where A
(∗)
i,k,j =670

1 iff (v(∗)i , r
(∗)
k , v

(∗)
j ) ∈ S), it satisfies Γtri((i, k, j),A

(∗)) = 1 iff (i, k, j) ∈ S ′, where671

S ′ =
{
(i, k, j)

∣∣∀ (i, k, j) , such that (E1, C1, E2) =
(
v
(∗)
i , r

(∗)
k , v

(∗)
j

)
∈ V(∗) × R(∗) ×672

V(∗), ∃M−2E3, ..., EM ∈ V(∗) \ {E1, E2} ,∃K−1C2, ..., CK ∈ R(∗) \ {C1} , where ∀(u, c, u′) ∈673

[M ]× [K]× [M ],Bu,c,u′ = 1⇒ (Eu, Cc, Eu′) ∈ S
}

is the set of true statements induced by modus674

ponens by the truth statements S and the UQER Horn clause, where the existential quantifier ∃k675

means exists at least k distinct values.676
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UQER:

Coup
le_O

f Lives_In

Lives_In

Training

Colle
ague

_Of Works_In

Test

Clas
smat

e_Of Studies_In

Studies_In?

Colleague_Of

(a) A Simple UQER Application

UQER:

Fath
er_O

f Brother_Of

Uncle_Of

Fath
er_O

f Brother_Of

Uncle_Of

Training
Moth

er_O
f Sister_Of

Test

Aunt_Of

Moth
er_O

f Sister_Of

Aunt_Of?

(b) A Complex UQER Application

Figure 5: (a) The UQER (bottom) learned from training can be used to predict missing new relation
“Studies_In” in red since an assignment of left-hand-side of the UQER (E1,Classmate_Of, E3) ∧
(E3,Studies_In, E2) is satisfied in test. (b) UQER can contain disconnected components, giving
more freedom to its application. For example, the UQER (bottom) can be learned from training to
repeat arbitrary logical chain, which makes it possible to deal with new female relations at test time
and will predict “Aunt_Of” in test just as “Uncle_Of” (red) in training.

The full proof is in Appendix C, showing how the universal quantification in Definition B.1 is a677

double invariant predictor.678

C Proofs679

Theorem 2.6. For all A(∗) ∈ A with number of nodes and relations N (∗), R(∗), given a double680

invariant triplet representation Γtri, we can construct a double equivariant graph representation as681 (
Γgra(A

(∗))
)
i,k,j

:= Γtri((i, k, j),A
(∗)), ∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)], and vice-versa.682

Proof. (⇒) For any discrete attributed multigraph A(∗) ∈ A with number of nodes and rela-683

tions N (∗), R(∗), Γtri : ∪∞N=1 ∪∞R=2 ([N ] × [R] × [N ]) × A → Rd, d ≥ 1 is a double in-684

variant triplet representation as in Definition 2.3. Using the double invariant triplet represen-685

tation, we can define a function Γgra : A → ∪∞N=1 ∪∞R=2 RN×R×N×d such that ∀(i, k, j) ∈686

[N (∗)] × [R(∗)] × [N (∗)], (Γgra(A
(∗)))i,k,j,: = Γtri((i, k, j),A

(∗)). Then ∀ϕ ∈ SN(∗) ,∀τ ∈687

SR(∗) , (Γgra(ϕ ◦ τ ◦ A(∗)))ϕ◦i,τ◦k,ϕ◦j,: = Γtri((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦ A(∗)). We know688

Γtri((i, k, j),A) = Γtri((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦ A(∗)). Thus we conclude, ∀ϕ ∈ SN(∗) ,∀τ ∈689

SR(∗) ,∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)], (ϕ ◦ τ ◦Γgra(A
(∗)))ϕ◦i,τ◦k,ϕ◦j,: = (Γgra(A

(∗)))i,k,j,: =690

Γtri((i, k, j),A
(∗)) = Γtri((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦A(∗)) = (Γgra(ϕ ◦ τ ◦A(∗)))ϕ◦i,τ◦k,ϕ◦j,:. In691

conclusion, we show that ϕ ◦ τ ◦ Γgra(A
(∗)) = Γgra(ϕ ◦ τ ◦A(∗)), which proves the constructed Γgra692

is a double equivariant representation as in Definition 2.5.693

(⇐) For any discrete attributed multigraph A(∗) ∈ A with number of nodes and relations N (∗), R(∗),694

assume Γgra : A→ ∪∞N=1 ∪∞R=2 RN×R×N×d is a double equivariant representation as Definition 2.5.695

Since Γgra(ϕ ◦ τ ◦A(∗)) = ϕ ◦ τ ◦ Γgra(A
(∗)), then ∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)], (Γgra(ϕ ◦696

τ ◦ A(∗)))ϕ◦i,τ◦k,ϕ◦j = (ϕ ◦ τ ◦ Γgra(A
(∗)))ϕ◦i,τ◦k,ϕ◦j = (Γgra(A))i,k,j . Then we can define697

Γtri : ∪∞N=1∪∞R=2 ([N ]× [R]× [N ])×A→ Rd, d ≥ 1, such that ∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)],698

Γtri((i, k, j),A
(∗)) = (Γgra(A

(∗)))i,k,j . It is clear that Γtri((i, k, j),A
(∗)) = (Γgra(A

(∗)))i,k,j =699

(Γgra(ϕ ◦ τ ◦ A(∗)))ϕ◦i,τ◦k,ϕ◦j = Γtri((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦ A(∗)). Thus, we show Γtri is a700

double invariant triplet representation as in Definition 2.3.701

Theorem 2.8 (From distributional double equivariant positional embeddings to double equivariant702

representations). For any attributed multigraph A(∗) ∈ A, the average Ep(Z|A(∗))[Z|A(∗)] is a703

double equivariant attributed multigraph representation (Definition 2.5) for any distributional double704

equivariant positional embeddings Z|A(∗) (Definition 2.7).705

Proof. Based on Definition 2.7, for any attributed multigraph A(∗) ∈ A with number of nodes706

and relations N (∗), R(∗), the distributionally double equivariant positional embeddings of A(∗) are707
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defined as joint samples of random variables Z|A(∗) ∼ p(Z|A(∗)), where the tensor Z is defined708

as Zi,k,j ∈ Rd, d ≥ 1,∀(i, k, j) ∈ [N (∗)] × [R(∗)] × [N (∗)], where we say p(Z|A(∗)) is a double709

equivariant probability distribution on A(∗) defined as ∀ϕ ∈ SN(∗) ,∀τ ∈ SR(∗) , p(Z|A(∗)) =710

p(ϕ ◦ τ ◦ Z|ϕ ◦ τ ◦A(∗)).711

The tensor Z is defined as Zi,k,j ∈ Rd,∀(i, k, j) ∈ [N (∗)] × [R(∗)] × [N (∗)], thus Z ∈712

RN(∗)×R(∗)×N(∗)×d. So we can consider Ep(Z|A(∗))[Z|A(∗)] as a function on A(∗), and output a repre-713

sentation in RN(∗)×R(∗)×N(∗)×d. Since ∀ϕ ∈ SN(∗) ,∀τ ∈ SR(∗) , p(Z|A(∗)) = p(ϕ◦τ◦Z|ϕ◦τ◦A(∗)),714

it is clear to have ∀ϕ ∈ SN(∗) ,∀τ ∈ SR(∗) , ϕ◦τ◦Ep(Z|A(∗))[Z|A(∗)] = ϕ◦τ◦
∫
zp(Z = z|A(∗))dz =715 ∫

ϕ ◦ τ ◦ zp(Z = z|A(∗))dz =
∫
ϕ ◦ τ ◦ zp(ϕ ◦ τ ◦ Z = ϕ ◦ τ ◦ z|ϕ ◦ τ ◦A(∗))d(ϕ ◦ τ ◦ z) =716

Ep(ϕ◦τ◦Z|ϕ◦τ◦A(∗))[ϕ ◦ τ ◦ Z|ϕ ◦ τ ◦A(∗)]. Since the permutation ϕ, τ only changes the ordering of717

the output representation element-wise, we can interchange the permutations with the integral.718

Finally, for any attributed multigraph A(∗) ∈ A with number of nodes and relations N (∗), R(∗),719

we can define Γgra(A
(∗)) : A → ∪∞N=1 ∪∞R=2 RN×R×N×d, d ≥ 1 such that Γgra(A

(∗)) :=720

Ep(Z|A(∗))[Z|A(∗)]. And we can derive ϕ ◦ τ ◦ Γgra(A
(∗)) = ϕ ◦ τ ◦ Ep(Z|A(∗))[Z|A(∗)] =721

Ep(ϕ◦τ◦Z|ϕ◦τ◦A(∗))[ϕ◦τ◦Z|ϕ◦τ◦A(∗)] = Γgra(ϕ◦τ◦A(∗)). Thus, Γgra(A
(∗)) := Ep(Z|A(∗))[Z|A(∗)]722

is a double equivariant attributed multigraph representation as per Definition 2.5.723

Lemma 3.1. ΓISDEA in Equation (2) is a double invariant triplet representation as per Definition 2.3.724

Proof. From our model architecture (Equation (2)), ΓISDEA((i, k, j),A
(∗)) = (h

(T )
i,k ∥ h

(T )
j,k ∥ d(i, j) ∥725

d(j, i)). Using DSS layers, we can guarantee the node representations h
(T )
i,k we learn are double726

invariant under the node and relation permutations, where h
(T )
i,k in A(∗) is equal to h

(T )
ϕ◦i,τ◦k in727

ϕ ◦ τ ◦ A(∗). It is also clear that the distance function is invariant to node and relation permu-728

tations, i.e. ∀i, j ∈ [N (∗)], d(i, j) in A(∗) is the same as d(ϕ ◦ i, ϕ ◦ j) in ϕ ◦ τ ◦ A(∗). Thus729

ΓISDEA((i, k, j),A
(∗)) = ΓISDEA((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦ A(∗)) is a double invariant triplet730

representation as in Definition 2.5.731

Lemma 3.2. The triplet representations generated by InGram [35] output distributionally double732

equivariant positional embeddings (Definition 2.7).733

Proof. To solve doubly inductive link prediction, InGram [35] first constructs a relation graph, in734

which the relation types are treated as nodes, and the edges between them are weighted by the affinity735

scores, a measure of co-occurrence between relation types in the original attributed multigraph.736

It then employs a variant of the GATv2 [65, 6] on the relation graph to propagate and generate737

embeddings for the relation types. These relation embeddings, together with another GATv2, are738

applied to the original attributed multigraph to generate embeddings for the nodes. Finally, a variant739

of DistMult [76] is used to compute the scores for individual triplets from the embeddings of the740

head and tail nodes and the embedding of the relation.741

If the input node and relation embeddings to the InGram model were to be the same across all nodes742

and across all relation types respectively (such as vectors of all ones), then InGram would have743

produced double structural representations for the triplets (definition 2.3). Simply put, this is because744

the relation graphs proposed byLee et al. (2023) [35] encode only the structural features of the745

relation types (their mutual structural affinity), which is double equivariant to the permutation of746

relation type and node indices. Since the same initial embeddings for all nodes and relations are747

naively double equivariant, and the GATv2 [65, 6] is a message-passing neural network [27] that748

also produces equivariant representations, the final relation embeddings would be double equivariant.749

Same analysis will also show the final node embeddings are double equivariant.750

However, to improve the expressivity of the model, Lee et al. (2023) [35] chose to randomly751

re-initialize the input embeddings for all node and relation types using Glorot initialization [28]752

for each epoch during training, a technique inspired by recent studies on the expressive power753

of GNNs [1, 52, 42]. Unfortunately, random initial features break the double equivariance of the754

generated representations, making them sensitive to the permutation of node and relation type indices.755

However, since the initial node V (0) and relation embeddings R(0) are randomly initialized, and by756

17



design of InGram architecture, we have ∀(i, k, j) ∈ [N (∗)] × [R(∗)] × [N (∗)],∀ϕ ∈ SN(∗) , τ ∈757

SR(∗) ,ZInGram((i, k, j),A
(∗),V (0),R(0)) = ZInGram((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ A(∗),V (0),R(0))758

for any random samples of node and relation embeddings v(0), r(0). We define ZInGram|A(∗) =759

[ZInGram((i, k, j),A
(∗),V (0),R(0)))](i,k,j)∈[N(∗)]×[R(∗)]×[N(∗)], and ϕ ◦ τ ◦ ZInGram|ϕ ◦ τ ◦A(∗) =760

[ZInGram((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦ A(∗),V (0),R(0)))](ϕ◦i,τ◦k,ϕ◦j)∈[N(∗)]×[R(∗)]×[N(∗)]. Since761

V (0),R(0) random variables that do not change with permutations, we can easily derive p(ϕ ◦ τ ◦762

ZInGram|ϕ ◦ τ ◦ A(∗)) = p(ZInGram|A(∗)). Thus, InGram is a distributionally double equivariant763

positional graph embedding of A(∗) as per Definition 2.7.764

Theorem B.2. For any UQER Horn clause defined by B ∈ {0, 1}M×K×M (Definition B.1),765

there exists a double invariant triplet predictor Γtri : ∪∞N=1 ∪∞R=2 ([N ] × [R] × [N ]) ×766

A → {0, 1} (Definition 2.3), such that for any set of truth statements S ⊆ V(∗) ×767

R(∗) × V(∗) and their equivalent tensor representation A(∗) ∈ A (where A
(∗)
i,k,j =768

1 iff (v(∗)i , r
(∗)
k , v

(∗)
j ) ∈ S), it satisfies Γtri((i, k, j),A

(∗)) = 1 iff (i, k, j) ∈ S ′, where769

S ′ =
{
(i, k, j)

∣∣∀ (i, k, j) , such that (E1, C1, E2) =
(
v
(∗)
i , r

(∗)
k , v

(∗)
j

)
∈ V(∗) × R(∗) ×770

V(∗), ∃M−2E3, ..., EM ∈ V(∗) \ {E1, E2} ,∃K−1C2, ..., CK ∈ R(∗) \ {C1} , where ∀(u, c, u′) ∈771

[M ]× [K]× [M ],Bu,c,u′ = 1⇒ (Eu, Cc, Eu′) ∈ S
}

is the set of true statements induced by modus772

ponens by the truth statements S and the UQER Horn clause, where the existential quantifier ∃k773

means exists at least k distinct values.774

Proof. Recall that we have two different cases h = 1 and h = 2 for Equation (5) in Definition B.1 of775

UQER. For the ease of proof, we will focus on the case where h = 2 in the following content, and776

for the case h = 1, the proof will be the same.777

Given h = 2, any UQER is defined by B ∈ {0, 1}M×K×M as778

∀E1 ∈ V(∗),
(
∀Eu ∈ V(∗) \ {E1, . . . , Eu−1}

)M
u=2

, ∀C1 ∈ R(∗),
(
∀Cc ∈ R(∗) \ {C1, . . . , Cc−1}

)K
c=2

,∧
u,u′=1,...,M,c=1,...,K,

Bu,c,u′=1

(Eu, Cc, Eu′) =⇒ (E1, C1, Eh),

(6)
for any node set V(∗) and relation set R(∗) with number of nodes and relations N (∗), R(∗) s.t.779

N (∗) ≥ M,R(∗) ≥ K, where if M > 2, ∀u ∈ {3, . . . ,M},
∑M

u′=1

∑K
c=1 Bu,c,u′ + Bu′,c,u ≥ 1,780

and if K ≥ 2, ∀c ∈ {2, . . . ,K},
∑M

u=1

∑M
u′=1 Bu,c,u′ + Bu′,c,u ≥ 1 (every variable should appear781

at least once in the formula).782

For all sets of truth statements ∀S ⊆ ∪∞N=1 ∪∞R=2 V(∗) ×R(∗) × V(∗), it has an equivalent tensor783

representation A(∗) ∈ {0, 1}N(∗)×R(∗)×N(∗)
such that Ai,k,j = 1 ⇐⇒ (v

(∗)
i , r

(∗)
k , v

(∗)
j ) ∈ S. We784

can then define a triplet representation Γtri based on the given UQER as, ∀(i, k, j) ∈ [N (∗)]× [R(∗)]×785

[N (∗)],786

Γtri((i, k, j),A
(∗)) =

{
1 if (i, k, j) ∈ S ′
0 otherwise,

(7)

where we define S ′ =
{
(i, k, j)

∣∣∀ (i, k, j) ∈ [N (∗)] × [R(∗)] × [N (∗)], such that (E1, C1, E2) =787 (
v
(∗)
i , r

(∗)
k , v

(∗)
j

)
∈ V(∗) ×R(∗) × V(∗), ∃M−2E3, ..., EM ∈ V(∗) \ {E1, E2} ,∃K−1C2, ..., CK ∈788

R(∗) \ {C1} , where ∀(u, c, u′) ∈ [M ]× [K]× [M ],Bu,c,u′ = 1⇒ (Eu, Cc, Eu′) ∈ S
}

is the set789

of true statements induced by modus ponens from the truth statements S and the UQER Horn Clause,790

where the existential quantifier ∃k means exists at least k distinct values.791

All we need to show is that Equation (7) is a double invariant triplet representation. For any792

node permutation ϕ ∈ SN(∗) and relation permutation τ ∈ SR(∗) of A(∗), we define ϕ ◦ τ ◦ S =793

{(v(∗)ϕ◦i, r
(∗)
τ◦k, v

(∗)
ϕ◦i)|(v

(∗)
i , r

(∗)
k , v

(∗)
j ) ∈ S} which corresponds to their equivalent tensor represen-794

tation ϕ ◦ τ ◦ A(∗), where (ϕ ◦ τ ◦ A(∗))ϕ◦i,τ◦k,ϕ◦j = 1 ⇐⇒ (v
(∗)
i , r

(∗)
k , v

(∗)
j ) ∈ S other-795

wise 0. Similarly, we have ϕ ◦ τ ◦ S ′ =
{
(ϕ ◦ i, τ ◦ k, ϕ ◦ j)

∣∣∀ (i, k, j) ∈ [N (∗)] × [R(∗)] ×796

18



[N (∗)], such that (E1, C1, E2) =
(
v
(∗)
ϕ◦i, r

(∗)
τ◦k, v

(∗)
ϕ◦j

)
∈ V(∗) × R(∗) × V(∗), ∃M−2E3, ..., EM ∈797

V(∗) \{E1, E2} ,∃K−1C2, ..., CK ∈ R(∗) \{C1} , where ∀(u, c, u′) ∈ [M ]× [K]× [M ],Bu,c,u′ =798

1⇒ (ϕ ◦ Eu, τ ◦ Cc, ϕ ◦ Eu′) ∈ ϕ ◦ τ ◦ S
}

.799

By definition, we have that for any (i, k, j) ∈ S ′,

Γtri((ϕ ◦ i, τ ◦ k, ϕ ◦ j), ϕ ◦ τ ◦A(∗)) =

{
1 if (ϕ ◦ i, τ ◦ k, ϕ ◦ j) ∈ ϕ ◦ τ ◦ S ′
0 otherwise,

.

Now we show that (i, k, j) ∈ S ′ if and only if (ϕ ◦ i, τ ◦ k, ϕ ◦ j) ∈ ϕ ◦ τ ◦ S ′. If (i, k, j) ∈ S ′,800

then E1 = v
(∗)
i , E2 = v

(∗)
j , C1 = r

(∗)
k ,∃M−2E3, ..., EM ∈ V(∗) \ {E1, E2},∃K−1C2, ..., CK ∈801

R(∗) \ {C1}, such that Bu,c,u′ = 1 =⇒ (Eu, Cc, Eu′) ∈ S . Since (Eu, Cc, Eu′) ∈ S if and only802

if (ϕ ◦ Eu, τ ◦ Cc, ϕ ◦ Eu′) ∈ ϕ ◦ τ ◦ S by definition, we have (ϕ ◦ i, τ ◦ k, ϕ ◦ j) ∈ ϕ ◦ τ ◦ S ′.803

Similarly we can prove if (ϕ ◦ i, τ ◦ k, ϕ ◦ j) ∈ ϕ ◦ τ ◦S ′, then (i, k, j) ∈ S ′ with the same reasoning.804

In conclusion, for any A(∗) ∈ A with number of nodes and relations N (∗), R(∗), since (i, k, j) ∈ S ′805

if and only if (ϕ◦ i, τ ◦k, ϕ◦j) ∈ ϕ◦τ ◦S ′, then by definition Γtri((ϕ◦ i, τ ◦k, ϕ◦j), ϕ◦τ ◦A(∗)) =806

Γtri((i, k, j),A
(∗)) holds ∀(i, k, j) ∈ [N (∗)]× [R(∗)]× [N (∗)], which proves Γtri is a double invariant807

triplet representation (Definition 2.3).808

809

D Additional Related Work810

Link prediction in discrete attributed multigraphs, which are commonly used to represent relational811

data in a structured way by indicating different types of relations between pairs of nodes in the graph,812

involves predicting not only the existence of missing edges but also the associated relation types.813

Transductive link prediction. In transductive link prediction, missing links are predicted over a814

fixed set of nodes and relation types as in training. Traditionally, factorization-based methods [59, 45,815

5, 69, 76, 63, 44, 62, 19, 58] have been proposed to obtain latent embedding of nodes and relation816

types to capture their relative information in the graph. These models try to score all combinations of817

nodes and relations with embeddings as factors, similar to tensor factorization. Although excellence818

in transductive tasks, these positional embeddings [54] (a.k.a. permutation-sensitive embeddings)819

require extensive retraining to perform inductive tasks over new nodes or relations [60]. However, in820

real-world applications, relational data is often evolving, requiring link prediction over new nodes821

and new relation types, or even entirely new graphs.822

Inductive link prediction over new nodes (but not new relations) with GNN-based model. In823

recent years, with the advancement of graph neural networks (GNNs) [18, 33, 30, 64, 8, 43], in824

graph machine learning fields, various works has applied the idea of GNN in relational prediction825

to ensure the inductive capability of the model, including RGCN [53], GraIL [60], NodePiece [22],826

NBFNet [87], ReFactorGNNs [14] etc.. As GNNs are node permutation equivariant [73, 54], these827

models learn structural node/pairwise representation, which can be used to perform inductive link828

prediction over solely new nodes, while most of the GNN performance are worse than FM-based829

methods [50, 14]. Specifically, Teru et al. (2020) [60] extends the idea from [83] to use local830

subgraph representations for discrete attributed multigraph link prediction. Chen et al. (2022b) [14]831

aims to build the connection between FM and GNNs, where they propose an architecture to cast832

FMs as GNNs. Galkin et al. (2021) [22] uses anchor-nodes for parameter-efficient architecture for833

discrete attributed multigraph completion. Zhu et al. (2021) [87] extends the Bellman-Ford algorithm,834

which learns pairwise representations by all the path representations between nodes. [2] analyzes835

discrete attributed multigraph-GNNs expressiveness by connecting it with the Weisfeiler-Leman test836

in discrete attributed multigraph.837

Inductive link prediction over new nodes (but not new relations) with logical induction. The838

relation prediction problem in relational data represented by discrete attributed multigraph can also839

be considered as the problem of learning first-order logical Horn clauses [76, 77, 51, 60] from840

the relational data, where one aims to extract logical rules on binary predicates. These methods841
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are inherently node-independent and are able to perform inductive link prediction over solely new842

nodes. Barceló et al. (2020) [3] discusses the connection between the expressiveness of GNNs and843

first-order logical induction, but only on node GNN representation and logical node classifier. Qiu844

et al. (2023) [47] further analyzes the logical expressiveness of GNNs for attributed multigraph by845

showing GNNs are able to capture logical rules from graded modal logic and provides a logical846

explanation of why pairwise GNNs [84, 87] can achieve SOTA results. In our paper, we try to build847

the connection between triplet representation and logical Horn clauses. Traditionally, logical rules are848

learned through statistically enumerating patterns observed in discrete attributed multigraph [34, 21].849

Neural LP [77] and DRUM [51] learn logical rules in an end-to-end differentiable manner using850

the set of logic paths between two nodes with sequence models. Cheng et al. (2022) [15] follows a851

similar manner, which breaks a big sequential model into small atomic models in a recursive way.852

Galkin et al. (2022) [23] aims to inductively extract logical rules by devising NodePiece [22] and853

NBFNet [87]. However, all these methods are not able to deal with new relation types in test.854

Inductive link prediction over both new nodes and new relations (with extra context) Few-shot855

and zero-shot relational reasoning [72, 38, 46, 85, 24, 67, 31, 11, 25] aim to query triplets involving856

unseen relation types with access to few or zero support triplets of these unseen relation types at857

test time. Recent methods [46, 85, 31, 25] can even query over unseen nodes. Yet, they often need858

extra context in the test graph, such as textual descriptions and/or ontological information of the859

unseen relation types or a shared background graph between the training and test graph, i.e., the test860

nodes and relation types are connected to the training ones. For instance, zero-shot link prediction861

methods such as Qin et al. (2020) [46] employ a generative adversarial network [29] to utilize862

the additional textual information to bridge the semantic gap between seen and unseen relations.863

Later, Geng et al. (2021) [24] presented an ontology-enhanced zero-shot learning approach that864

incorporates both ontology structural and textural information. Similarly, TACT [10] aims to model865

the topological correlations between the target relations and their adjacent relations (assumes there866

are relations that are seen in train) using a relational correlation network to learn more expressive867

representations of the target relations. A recent work is RMPI [25] that extracts enclosing subgraphs868

around the target triplet, which are assumed to contain triplets of some relation types seen in training869

and uses graph ontology to bridge the unseen relation types to the seen ones. Zhao et al. (2020) [85]870

uses attention-based GNNs and convolutional transition for link prediction over new nodes and new871

relations assuming a shared background graph between training and test (i.e., new relations in test872

are connected with existing nodes and relations in training). MaKEr [12] also uses the local graph873

structure to handle new nodes and new relation types using a meta-learning framework, assuming874

the test graph has overlapping relations and entities with the training graph. On the other hand,875

few-shot relational reasoning methods learn representations of the unseen relation types from the876

few support triplets, which are generally assumed to connect to existing nodes and relations seen in877

training [72, 13, 82]. For example, Xiong et al. (2018) [72] was the first to solve the one-shot task by878

proposing to compute matching scores between the new relation types observed in the support set to879

those training relation types. Later, Zhang et al. (2020) [82] extends Xiong et al. (2018) [72] by using880

an attention-based aggregation to take advantage of information from all support triplets. Recently,881

Huang et al. (2020) [31] proposed a hypothesis testing method that matches the new relation types to882

the training ones by learning to compare the similarity between the connection subgraph patterns883

surrounding the target triplets. Another line of research is to solve few-shot relational reasoning via884

meta-learning. For instance, Chen et al. (2019) [13] updates a meta representation over the relation885

types, and Lv et al. (2019) [38] adopts MAML [20] to learn meta parameters for frequently occurring886

relations, which can then be adapted to few-shot relations. All of these few-shot learning methods,887

however, require that the few-shot triplets are connected to a background graph observed during888

training in order to learn about the relationship between new relation types and existing ones. Hence,889

all these methods cannot be directly applied to test graphs that neither contain textual descriptions of890

the unseen relation types nor triplets involving those relation types seen in training.891

Inductive link prediction over both new nodes and new relations (no extra context) In this892

paper, we focus on the most general task, i.e., inductive link prediction over both new nodes and new893

relations on entirely new test graphs without textual descriptions, which we call doubly inductive link894

prediction. To the best of our knowledge, InGram [35] is the first and only existing method capable895

of performing this task. In contrast to Lee et al. (2023) [35] that designed a specific architecture, i.e.,896

InGram, our work proposes a general theoretical framework for designing an entire class of models897
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capable of solving the doubly inductive link prediction task, which encompasses InGram as a specific898

instantiation. Modeling details of InGram have been substantially discussed in the main paper.899

Knowledge graph alignment. Knowledge graph alignment tasks [55, 56, 75, 57] are very common900

in heterogeneous, cross-lingual, and domain-specific relational data, where the task aims to align901

nodes among different domains. For example, matching nodes with their counterparts in different902

languages [70, 74]. It is intrinsically different than our task, where we aim to inductively apply on903

completely new nodes and relations, possibly with no clear alignments between them.904

E Experiments905

Our code is available at https://anonymous.4open.science/r/ISDEA-Fix-B3D7.906

E.1 Doubly inductive link prediction task over both new nodes and new relation types907

In this section, we provide more detailed experiment results and analysis for our method on inductively908

doubly inductive link prediction on both new nodes and new relation types.909

Datasets. To the best of our knowledge, there are no existing real-world benchmarks that are specially910

designed to test a model’s extrapolation capability for doubly inductive link prediction task by training911

the model on one graph and testing it on another completely new graph coming from different domains912

and distributions. Existing datasets such as NL-100, WK-100, and FB-100 from Lee et al. (2023) [35]913

are typically created by randomly splitting a larger graph (e.g. NELL-995 [72], Wikidata68K [26],914

FB15K237 [61]) into disjoint node and relation sets, implying that the test and training graphs still915

come from the same distribution. In contrast, we purposefully create two doubly inductive link916

prediction benchmark datasets: PediaTypes and WikiTopics, sampled respectively from the OpenEA917

library [57] and WikiData-5M [68], where by design the test and training graphs are either from918

different domains or different topic groups and are likely to possess different characteristics to fully919

test model’s capability for doubly inductive link prediction. We also propose another task with920

modifications of the NL-k, WK-k, and FB-k datasets from InGram [35] and one synthetic task FD2921

to study the expressive power of ISDEA.922

E.1.1 Experiment Setup923

Baselines. To the best of our knowledge, InGram [35] is the first and only work capable of924

performing doubly inductive link prediction without needing significant modification to the model.925

Hence, we chose InGram as one baseline. We also run RMPI [25], which is capable of reasoning926

over new nodes and new relations but requires extra context at test time (test graphs either contain927

training relations or ontological information of unseen relations). We simply provide randomized928

embeddings of unseen relations at test time following Lee et al. (2023) [35]. In addition, we consider929

the state-of-the-art link prediction model NBFNet [87] capable of generalizing over to new nodes but930

not new relations and modifying its architecture to work with new relations at test time by providing931

randomized embeddings of unseen relations at test time following Lee et al. (2023) [35]. We also932

compare our models with message-passing GNNs including GAT [64], GIN [73], GraphConv [41]933

which treats the graph as a homogeneous graph by ignoring the relation types. For fair comparisons,934

we add distance features as in Equation (2) to increase the expressiveness of these GNNs. For training935

of each single run, we augment each triplet (i, k, j) by its inversion (i, k−1, j), and sample 2 negative936

(node) triplets (i′, k, j′) and 2 negative (relation) triplets (i, k′, j) per positive in training as Sun et937

al. (2018) [58] and Zhu et al. (2021) [87]. Training was performed on NVidia A100s, L4s, GeForce938

RTX 2080 Ti, and TITAN V GPUs.939

Evaluation Metrics. We sample 50 negative triplets for each test positive triplet during test940

evaluation by corrupting either nodes or relation types (Equation (3)), and use Nodes Hits@k and941

Relation Hits@k separately which counts the ratio of positive triplets ranked at or above the k-th942

place against the 50 negative samples as evaluation metric over 5 runs. Specifically, for Node943

prediction evaluation, we sample without replacement 50 negative tail (or head) nodes, and for944

Relation prediction evaluation, we sample with replacement 50 negative relation types (can also945

handle cases where the number of test relations is less than 50). We also report other widely used946

metrics such as MRR.947
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Hyperparameters and Implementation Details. For homogeneous GNN methods, NBFNet and948

ISDEA, We follow the same configuration as Teru et al. (2020) [60] such that the hidden layers have949

32 neurons. We use Adam optimizer with grid search over learning rate α ∈ {0.01, 0.001, 0.0001},950

and over weight decay β ∈ {0.0005, 0}. For all datasets, we train these models for 10 epochs with a951

mini-batch size of 16. For the GNN kernel (e.g., GraphConv, GIN, GAT) of ISDEA, we choose the952

best-performing model in validation. For these models, the number of hops and number of layers are953

2 on FD-2, and 3 on all other datasets to ensure fair comparison.954

Since NBFNet is designed to only perform inductive link prediction with solely new nodes and955

utilizes trained relation embeddings, we use randomly initialized embeddings for the unseen relation956

types at test time to enable it for performing doubly inductive link prediction.957

To run InGram [35] on PediaTypes and WikiTopics, we conduct hyperparameter search over the958

configurations of ranking loss margin γ ∈ {1.0, 2.0}, learning rate α ∈ {0.0005, 0.001}, number of959

entity layers L ∈ {2, 3, 4}, and number of entity layers L̂ ∈ {2, 3, 4}. For other hyperparameters,960

we use the suggested values from Lee et al. (2023) [35] and their codebase, such as the number of961

bins B = 10 and the number of attention heads K = 8. We then use the overall best-performing962

hyperparameters on PediaTypes and the best-performing hyperparameters on WikiTopics to run963

InGram on all tasks in PediaTypes and all tasks in WikiTopics respectively. For running on the964

(modified) NL-k, WK-k, and FB-k datasets from Lee et al. (2023) [35], we use the provided965

hyperparameters for each task from the authors.966

To run DEq-InGram, we use the same trained checkpoints of InGram. The difference is at inference967

time, where instead of a single forward pass with one sample of randomly initialized entity and968

relation embeddings for InGram, we draw 10 samples of initial entity and relation embeddings and969

run 10 forward passes. This yields 10 Monte Carlo samples of the triplet scores, which we then use970

to compute the DEq-InGram triplet scores according to Equation (4).971

For RMPI [25], we use the provided hyperparameters from the codebase and run the RMPI-NE972

version of the model with a concatenation-based fusion function, which generally has the best973

performance reported in Geng et al. (2023) [25]. We note that, since our attributed multigraph does974

not contain ontological information over the unseen relation types of the test graphs, we instead975

provide the model with randomly initialized embeddings for the unseen relation types to perform976

doubly inductive link prediction.977

E.1.2 Doubly inductive link prediction over PediaTypes978

As discussed in Section 5, we create our own doubly inductive link prediction benchmark dataset979

PediaTypes. Each graph in PediaTypes is sampled from a graph in the OpenEA library [57] (under980

GPL-3.0 license). OpenEA [57] library provides multiple pairs of attributed multigraph, each pair981

of which is a database containing similar topics. Each node of a graph corresponds to the Universal982

Resource Identifier (URI) of an entity in the database, e.g., “http://dbpedia.org/resource/E399772”983

from English DBPedia. Each relation type of a graph corresponds to the URI of a relation in984

the database, e.g., “http://dbpedia.org/ontology/award” from English DBPedia. Moreover, since985

each pair of graphs describes similar topics, most entities and relations are highly related, e.g.,986

“http://dbpedia.org/resource/E678522” from English and “http://fr.dbpedia.org/resource/E415873”987

from French are indeed the same thing, except that the labeling is different. Thus, we would expect a988

powerful model that is insensitive to node and relation type labelings to be able to learn on one graph989

of the pair and perform well on the other graph of the same pair.990

To control the size under a feasible limitation, we use the same subgraph sampling algorithm as991

GraIL [60], which proposes link prediction benchmarks over solely new nodes. Details are provided992

in Algorithm 1. For each pair of graphs from the OpenEA library, e.g., English-to-French DBPedia,993

we first apply the sampling algorithm as in Algorithm 1 on each graph to reduce the size of each994

graph. Then we randomly split querying triplets given by the Algorithm 1 into 80% training, 10%995

validation, and 10% test for each graph. Finally, to construct the task where we learn on English996

DBPedia but test on French DBPedia (denoted as EN-FR), we pick training and validation triplets997

from the English graph for model tuning, and only use test triplets from the French graph for model998

evaluation; Similarly, for task from French to English (FR-EN), we pick training and validation999

triplets from French graph for model tuning, and only use test triplets from English graph for model1000

evaluation. The dataset statistics for PediaTypes are summarized in Figure 6.1001
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DBPedia Wikidata
#Nodes 4906 4948
#Relations 144 102
#Triplets (Obv.) 17593 23888
#Triplets (Qry.) 1666 2456
#Avg. Deg. 7.85 10.65
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DBPedia YAGO
#Nodes 4795 4751
#Relations 64 17
#Triplets (Obv.) 13248 11327
#Triplets (Qry.) 1177 973
#Avg. Deg. 6.02 5.18
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English French
#Nodes 4962 4933
#Relations 122 101
#Triplets (Obv.) 30876 24165
#Triplets (Qry.) 3326 2485
#Avg. Deg. 13.79 10.81
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(c) EN←→FR

English German
#Nodes 4890 4915
#Relations 121 67
#Triplets (Obv.) 25177 29011
#Triplets (Qry.) 2626 3100
#Avg. Deg. 11.37 13.07
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Figure 6: Statistics of PediaTypes: We report graph statistics including the number of nodes, number
of relations, observed (obv.) triplets, querying (qry.) triplets, and average degree for each graph
pair, e.g., (a) corresponds to DBPedia-and-Wikidata pair, and will be used to construct DB2WD and
WD2DB tasks. We also report (in & out) degree distribution on each graph at the bottom. We omit
tail distribution larger than 25 since they are too small and almost flat.

Algorithm 1 Sampling Algorithm for PediaTypes. This is a subgraph sampling code for a single
graph (either training or test). It will reduce the large original graph into a connected graph of the
required size.

Require: Raw graph triplets S raw, Raw graph node set V raw, Raw graph relation setRraw, Maximum
number of nodes N , Maximum number of edges M , Maximum node degree D.

Ensure: Subgraph triplets Ssub

1: Ssub ← ∅
2: V sub ← ∅
3: Rsub ← ∅
4: Create an empty queue Q.
5: Get the node v0 with the highest degree in the raw graph.
6: Q.add(v0)
7: V sub ← V sub ∪ {v0}
8: while |Q| > 0 do
9: u← Q.pop()

10: if |V sub| ≥ N or |V sub| ≥M then
11: continue
12: end if
13: B = {(v, r, u)|(r, v) ∈ Rraw × V raw} ∪ {(u, r, v)|(r, v) ∈ Rraw × V raw}
14: if |B| > D then
15: Uniformly select D triplets from B as B′
16: else
17: B′ ← B
18: end if
19: for (i, r, j) ∈ B′ do
20: if i = u then
21: Q.add(j)
22: V sub ← V sub ∪ {j}
23: else
24: Q.add(i)
25: V sub ← V sub ∪ {i}
26: end if
27: Ssub ← Ssub ∪ {(i, r, j)}
28: end for
29: end while

23



Table 2: Relation & Node MRR performance on Doubly Inductive Link Prediction over Pedi-
aTypes. We report standard deviations over 5 runs. A higher value means better doubly inductive
link prediction performance. “Rand” column contains unbiased estimations of the performance from
a random predictor. Both ISDEA and DEq-InGram consistently achieve better results than the
baselines. N/A*: Not available due to constant crashes.

(a) Relation prediction (i, ?, j) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00

GAT 8.04±00.25 7.93±00.04 8.17±00.08 8.12±00.09 8.06±00.15 7.90±00.12 8.12±00.21 8.17±00.16

GIN 8.07±00.09 8.09±00.05 8.07±00.13 8.07±00.11 8.03±00.20 7.97±00.30 7.82±00.27 7.84±00.14

GraphConv 7.92±00.16 7.97±00.12 8.07±00.15 8.03±00.05 8.14±00.04 7.98±00.18 8.04±00.24 7.84±00.13

NBFNet 10.25±01.24 9.53±00.85 8.15±01.21 4.32±00.26 10.33±02.45 8.97±01.24 9.29±01.38 14.54±04.76

RMPI 12.45±01.90 12.10±02.71 11.69±04.37 10.28±01.28 N/A* 8.54±02.70 17.89±12.22 6.53±02.16

InGram 50.03±05.32 26.31±08.27 21.32±07.84 29.81±14.21 48.70±10.06 38.81±03.10 29.94±13.28 32.26±13.97

DEq-InGram (Ours) 73.38±05.77 41.61±10.12 46.86±09.11 40.56±14.80 80.74±04.47 66.06±02.91 39.51±16.76 49.10±05.43

ISDEA (Ours) 70.06±02.01 69.01±00.57 78.38±04.04 88.82±00.28 65.89±04.71 72.57±00.73 75.88±01.58 74.04±00.47

(b) Node prediction (i, k, ?) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00 8.86±00.00

GAT 51.43±00.25 49.48±01.51 26.22±00.44 25.45±01.23 16.87±00.59 34.66±00.33 37.22±00.29 45.96±00.29

GIN 53.72±03.45 52.03±03.38 34.60±07.43 37.27±09.42 20.75±07.22 40.37±08.20 35.80±01.36 44.77±00.92

GraphConv 63.72±01.76 57.77±01.09 48.18±00.96 45.18±00.15 22.49±00.76 50.30±02.80 38.71±00.55 50.54±00.42

NBFNet 69.22±02.44 74.01±01.41 63.49±02.44 38.86±02.55 41.26±02.58 64.02±01.25 38.13±01.11 52.30±02.09

RMPI 63.02±02.94 43.72±05.65 44.82±02.93 46.84±05.36 N/A* 46.33±08.76 43.00±03.70 53.72±01.84

InGram 71.23±01.73 55.67±05.65 55.94±02.76 61.15±01.42 34.50±08.47 57.05±03.73 26.36±04.73 56.23±01.56

DEq-InGram (Ours) 78.45±00.89 68.59±04.30 66.13±01.48 70.32±01.58 44.71±08.98 69.23±02.53 35.67±03.92 48.07±08.76

ISDEA (Ours) 53.92±00.26 57.68±00.68 50.30±02.08 51.33±00.40 45.75±00.66 51.64±00.60 41.72±01.64 48.21±01.06

Additional Results We present the Node & Relation Hits@10 performance in the main paper.1002

We provide more results including MRR, Hits@1, Hits@5 in Tables 2 to 4. We can see that our1003

proposed ISDEA and DEq-InGram perform consistently and significantly better than the baselines in1004

the much harder relation prediction task, showing their power to generalize to both new nodes and1005

new relations. The structural double equivariant model ISDEA performs worse on node prediction1006

over some datasets, which might be due to the node GNN implementation of ISDEA. These tasks1007

do not care much about the actual relation type as we can see from the superior performance of1008

homogeneous GNNs on node prediction. So the additional equivariance over relations and the1009

training loss over both negative nodes and negative relations might cause the model to focus more1010

on the relation prediction task, while the double equivariant structural representation might hurt the1011

performance of missing node prediction [54].1012

But it is important to note that the structural double equivariant ISDEA model excels on relation1013

prediction and achieves much better results on Hits@1 and Hits@5 as shown in Tables 3 and 4.1014

The performance of baseline models that is lower than random is probably because the knowledge1015

they learn from one dataset is not able to correctly transform to another dataset, while our double1016

equivariant model architecture is able to perform this hard doubly inductive link prediction over both1017

new nodes and new relation types. We also note that in the Hits@1 and Hits@5 Tables 3 and 4, there1018

are cases where DEq-InGram has higher variances than the original InGram while achieving much1019

better average performance. This is because due to the random initialization, InGram performs poorly1020

on the much harder Hits@1 and Hits@5 performance compared to Hits@10. In some seeds of the1021

runs, DEq-InGram successfully improves the performance of InGram, but there are still seeds of runs1022

that DEq-InGram still performs similar to InGram. Thus, it results in DEq-InGram having much1023

better average results while also with higher standard deviations.1024

E.1.3 Doubly inductive link prediction over WikiTopics1025

As discussed in Section 5.2, the WikiTopics dataset is created from the WikiData-5M [68] (under1026

CC0 1.0 license). Each node in the graphs of this dataset represents an entity described by an existing1027

Wikipedia page, and each relation type corresponds to a particular relation between the entities,1028

such as “director of” or “designed by”. The node and relation type indices are codenames that start1029
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Table 3: Relation & Node Hits@1 performance on Doubly Inductive Link Prediction over
PediaTypes. We report standard deviations over 5 runs. A higher value means better doubly inductive
link prediction performance. “Rand” column contains unbiased estimations of the performance from
a random predictor. Both ISDEA and DEq-InGram consistently achieve better results than the
baselines. N/A*: Not available due to constant crashes.

(a) Relation prediction (i, ?, j) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00

GAT 1.07±00.14 1.01±00.01 1.03±00.03 1.11±00.09 1.07±00.14 0.99±00.21 0.96±00.16 1.09±00.25

GIN 1.01±00.03 0.95±00.08 1.03±00.06 1.10±00.06 0.96±00.15 1.00±00.15 0.92±00.15 0.83±00.17

GraphConv 0.91±00.03 0.97±00.06 1.05±00.14 1.01±00.03 1.09±00.07 0.91±00.04 0.94±00.22 0.88±00.20

NBFNet 4.43±01.24 3.62±01.01 2.49±01.23 0.51±00.18 4.18±02.17 2.80±00.83 1.63±00.89 7.30±05.01

RMPI 3.92±02.08 4.04±01.83 3.37±02.20 2.13±00.79 N/A* 2.39±02.35 7.36±09.03 0.91±00.92

InGram 35.19±07.73 12.40±07.55 8.45±06.57 16.46±16.33 33.66±12.09 25.69±03.88 14.24±12.00 15.83±12.59

DEq-InGram (Ours) 65.26±10.23 26.90±12.97 36.80±11.16 25.34±18.48 75.00±06.42 60.35±02.56 24.28±14.29 30.82±10.43

ISDEA (Ours) 61.46±00.79 58.18±00.14 68.00±06.41 84.83±00.29 57.51±05.40 62.72±01.24 69.12±02.40 66.68±00.81

(b) Node prediction (i, k, ?) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00 1.96±00.00

GAT 31.80±00.64 30.19±02.30 10.23±00.96 8.68±01.69 7.98±00.89 16.26±00.34 26.09±00.47 33.06±00.29

GIN 34.59±04.64 34.57±05.26 17.69±07.91 20.74±10.01 12.42±06.59 23.10±09.67 23.72±01.62 32.26±01.89

GraphConv 47.48±02.60 40.37±01.52 31.96±01.02 28.46±00.13 12.53±00.34 35.82±03.54 24.12±00.80 37.05±00.51

NBFNet 64.17±02.68 69.68±01.63 57.50±02.66 32.26±02.81 34.56±02.54 59.70±01.38 33.32±01.11 47.47±02.08

RMPI 48.27±03.74 26.92±04.87 27.38±03.09 29.60±04.77 N/A* 34.81±08.97 33.29±03.20 42.14±02.87

InGram 60.00±02.06 41.59±06.37 39.05±02.99 45.44±01.69 22.06±08.10 42.54±04.50 13.47±03.50 20.09±04.96

DEq-InGram (Ours) 69.46±01.12 57.65±05.54 51.93±01.88 57.06±01.96 32.12±09.51 57.84±03.28 20.49±03.35 33.01±08.87

ISDEA (Ours) 43.03±00.25 47.38±00.28 35.41±02.25 37.12±00.31 35.59±00.73 40.56±01.72 27.70±01.95 35.29±01.67

with the prefix “Q” and “P” respectively, which are devoid of semantic meaning. Nevertheless,1030

WikiData-5M [68] provides aliases for all nodes and relation types that map their indices to textual1031

descriptions, and we use these textual descriptions to group the relation types into 11 different topics1032

(we do not however provide these textual descriptions to the models per the specification of the1033

doubly inductive link prediction task). In total, WikiData-5M [68] contains 822 relation types. We1034

create WikiTopics datasets from all 822 relation types, which comprise graphs with as many as 661035

relation types. Each graph has a disjoint set of relation types from all other graphs. Below is a list of1036

all 11 topics:1037

• T1: Art and Media Representation1038

• T2: Award Nomination and Achievement1039

• T3: Education and Academia1040

• T4: Health, Medicine, and Genetics1041

• T5: Infrastructure and Transportation1042

• T6: Location and Administrative Entity1043

• T7: Organization and Membership1044

• T8: People and Social Relationship1045

• T9: Science, Technology, and Language,1046

• T10: Sport, and Game Competition1047

• T11: Taxonomy and Biology1048

To control the overall size of the graphs in WikiTopics, we downsample 10, 000 nodes for each topic1049

from the subgraph consisting of only the triplets with the relation types belonging to that topic. We1050

adopt the Forest Fire sampling procedure with burning probability p = 0.8 [37] implemented in1051

the Little Ball of Fur Python package [49]. We then split the downsampled topic graph into 90%1052

observable triplets and 10% querying triplets to be predicted by the models. When splitting, we1053

ensure that the set of nodes in the querying triplets is a subset of those in the observable triplets. This1054
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Table 4: Relation & Node Hits@5 performance on Doubly Inductive Link Prediction over
PediaTypes. We report standard deviations over 5 runs. A higher value means better doubly inductive
link prediction performance. “Rand” column contains unbiased estimations of the performance from
a random predictor. Both ISDEA and DEq-InGram consistently achieve better results than the
baselines. N/A*: Not available due to constant crashes.

(a) Relation prediction (i, ?, j) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00

GAT 9.08±00.39 8.63±00.25 9.47±00.18 9.20±00.24 8.95±00.36 8.63±00.29 9.58±00.50 9.16±00.23

GIN 9.09±00.16 9.31±00.15 9.18±00.28 9.23±00.34 9.12±00.12 8.85±00.56 8.53±00.66 8.61±00.34

GraphConv 8.97±00.66 8.74±00.26 9.23±00.11 8.82±00.10 9.17±00.29 9.11±00.50 9.01±00.72 8.73±00.15

NBFNet 12.94±01.77 12.46±01.40 8.56±01.67 2.68±00.72 13.44±04.02 11.74±03.02 11.95±03.78 20.37±05.90

RMPI 16.39±04.15 15.76±04.58 15.86±08.05 12.56±02.70 N/A* 8.91±03.51 24.25±19.24 4.98±03.08

InGram 67.15±05.04 37.86±14.41 30.99±11.82 40.00±13.02 65.80±09.59 51.66±03.57 43.27±19.30 51.54±26.09

DEq-InGram (Ours) 83.23±05.64 59.83±11.57 54.30±08.25 57.65±15.74 87.08±02.55 70.79±03.80 51.45±29.14 75.85±07.26

ISDEA (Ours) 82.11±04.01 83.19±01.73 92.39±00.83 93.59±00.53 75.95±03.89 86.10±01.26 85.80±01.23 83.36±01.55

(b) Node prediction (i, k, ?) performance in %. Higher ↑ is better.

Models EN-FR FR-EN EN-DE DE-EN DB-WD WD-DB DB-YG YG-DB

Rand 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00 9.80±00.00

GAT 78.49±00.44 74.70±00.68 42.17±00.91 42.39±00.52 20.96±00.65 57.26±00.89 46.92±00.37 59.20±00.41

GIN 79.96±01.88 74.33±01.16 53.97±07.61 55.89±10.06 25.05±09.23 61.94±06.71 46.56±01.37 57.48±00.35

GraphConv 85.21±00.63 80.67±00.30 67.76±01.19 64.97±00.43 28.37±01.41 67.36±02.37 53.79±00.72 64.13±00.23

NBFNet 81.48±02.24 85.15±01.06 77.62±02.41 48.73±02.59 51.52±03.21 72.18±00.90 44.01±01.40 60.34±02.28

RMPI 82.47±02.25 64.88±07.62 67.24±04.38 69.47±06.60 N/A* 60.11±08.77 51.57±05.03 66.67±01.28

InGram 85.15±01.74 72.32±05.31 78.84±02.86 81.01±00.97 45.96±11.09 74.88±03.09 37.49±06.84 50.66±06.76

DEq-InGram (Ours) 89.62±00.63 81.54±02.82 84.57±00.95 87.16±01.04 57.44±09.14 83.14±01.64 51.77±05.14 65.33±09.57

ISDEA (Ours) 64.45±00.24 67.24±01.32 68.80±01.90 68.20±00.53 54.83±00.90 62.60±02.55 55.21±01.07 61.87±01.30

way, the model is not tasked with the impossible task of predicting relation types between orphaned1055

nodes previously unseen in the observable part of the graph. This is implemented via an iterative1056

procedure, where we first sample a batch of missing triplets from the downsampled topic graph,1057

then discard those that contain unseen nodes in the rest of the triplets, and repeat this process until1058

the number of sampled triplets reaches 10% of total triplets. Figure 7 shows the data statistics of1059

WikiTopics dataset.1060

Additional experiment results on WikiTopics. In Section 5.2, we only provide heatmaps of1061

Relation Hits@10 Performance WikiTopics due to space limit. We present more detailed results1062

(heatmaps with values) of Node and Relation Hits@10, Hits@1, and MRR for WikiTopics in Figures 81063

and 9. Due to the large number of runs (11 × 10 = 110 different train-test scenarios, each with 51064

random seeds, resulting in a total of 550 runs) and the time constraints to run all baseline models,1065

we perform the evaluation over only the three models (ISDEA, DEq-InGram, and InGram) that are1066

designed for our doubly inductive link prediction task. Figure 8 shows that for the task of predicting1067

missing relation types (i, ?, j), ISDEA and DEq-InGram are consistently better than InGram across1068

all different metrics. Especially, the structural double equivariant ISDEA model exhibits more1069

consistent results across different train-test scenarios than both DEq-InGram and InGram, and1070

achieves significantly better results in Hits@1 and MRR, showcasing its ability for doubly inductive1071

link prediction in a much harder evaluation scenario. For the task of prediction missing nodes (i, k, ?)1072

as shown in Figure 9, ISDEA, DEq-InGram, and InGram showcase comparable performance, whereas1073

ISDEA exhibits more consistent results across different train-test scenarios than both DEq-InGram1074

and InGram. We also note that similar to the relation prediction task, ISDEA also exhibits the best1075

performance in the Hits@1 metric for the node prediction task.1076

E.1.4 Doubly Inductive Link Prediction over datasets from InGram (Lee et al., 2023)1077

Lee et al. (2023) [35] proposed the NL-k, WK-k, and FB-k benchmarks originally used to evaluate1078

InGram’s performance of reasoning over new nodes and new relation types at test time, where1079

k ∈ {25, 50, 75, 100} means that, in the test graphs, approximately k% of triplets have unseen1080

relations. For example, the test graph of WK-100 does not contain any training relations and thus1081

induces a doubly inductive link prediction task. Hence, we run our models (ISDEA and DEq-InGram)1082
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#Nodes # Relations #Triplets (Obv.) #Triplets (Qry.) Avg. Deg.
Art 10000 45 28023 3113 6.23
Award 10000 10 25056 2783 5.57
Education 10000 15 14193 1575 3.15
Health 10000 20 15337 1703 3.41
Infrastructure 10000 27 21646 2405 4.81
Location 10000 35 80269 8918 17.84
Organization 10000 18 30214 3357 6.71
People 10000 25 58530 6503 13.01
Science 10000 42 12516 1388 2.78
Sport 10000 20 46717 5190 10.38
Taxonomy 10000 31 19416 2157 4.32
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Figure 7: Statistics of WikiTopics: We report graph statistics including the number of nodes, number
of relations, observed (obv.) triplets, querying (qry.) triplets, and average degree for each graph. We
also report (in & out) degree distribution on each graph at the bottom. We omit tail distribution larger
than 35 since they are fairly small and almost flat.

against InGram on these benchmarks with results shown in Table 5. We note that, however, due1083

to the different experimental settings (as we discuss next), our results reported in Table 5 are not1084

directly comparable to those reported in Lee et al. (2023) [35], even though they are experimented on1085

essentially the same datasets.1086

Difference to the original data split and evaluation in InGram [35]: Different from Lee et al.1087

(2023) [35], which uses part of the test graph as the validation set to conduct model hyperparameter1088

search, our experiments consider a harder setting where the relations in test are not observed in the1089

validation data. Hence, to modify the NL-k, WK-k, and FB-k datasets to our setting, we discard1090

the original validation set and instead split the original training set into a new set of training and1091

validation triplets with a ratio of 9:1. During training, the models perform self-supervised masking1092

over the training set of triplets to create the training-time observable triplets and training-time target1093

triplets. During validation, the entire set of the new training triplets is taken as the validation-time1094

observable triplets, and the new validation triplets are the target triplets to predict. In addition, Lee et1095

al. (2023) [35] evaluate their model’s node prediction performance against all nodes in the graph. For1096

efficiency reasons, we evaluate the model performance by sampling without replacement 50 negative1097

nodes for the node prediction task and sampling with replacement 50 negative relation types for the1098

relation prediction task.1099

Table 5 shows the results, where we can see that ISDEA outperforms InGram on most datasets on the1100

relation prediction task and has smaller standard deviation in general, and DEq-InGram consistently1101

outperforms InGram on all datasets for both relation prediction and node prediction tasks. Importantly,1102

in the dataset FB-100 which follows our doubly inductive link prediction setting with completely1103

new nodes and new relation types in the test with the largest number of training and test relations1104
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(a) ISDEA Hits@10 (b) DEq-InGram Hits@10 (c) Original InGram Hits@10

(d) ISDEA Hits@1 (e) DEq-InGram Hits@1 (f) Original InGram Hits@1

(g) ISDEA MRR (h) DEq-InGram MRR (i) Original InGram MRR
Figure 8: Relation prediction (i, ?, j) performance over WikiTopics for ISDEA, DEq-InGram,
and InGram [35]. Each row within each heatmap corresponds to a training graph, and each column
within each heatmap corresponds to a test graph. A darker color means better performance. Both
ISDEA, DEq-InGram perform significantly better than InGram, especially for Hits@1 and
MRR, whereas ISDEA exhibits more consistent results across different train-test scenarios than
both DEq-InGram and InGram.

(134 in train and 77 in test) [35], ISDEA achieves significant better results in the relation perdiction1105

task, showcasing its ability for doubly inductive link prediction.1106

E.1.5 A Synthetic Case Study for ISDEA1107

To further understand the expressive power and limitations of our proposed sturctural double equiv-1108

ariant model ISDEA, we create FD-2 to empirically justify the expressivity of our proposal on tasks1109

over both new nodes and new relation types. On FD-2, training has 127 nodes and 2 relations, while1110

test has 254 nodes and 4 relations (more nodes and more relations).1111

FD-2 is constructed by only a single rule, (E1, R1, E3) ∧ (E3, R2, E2) ⇒ (E1, R1, E3) where1112

E1, E2, E3 and R1, R2 are all variables. As illustrated in Figure 10, The training data has only two1113

relation types {r1, r2}, while test data has four relation types {r3, r4, r5, r6} which are all different1114

from training relations. For all relation types, only r1, r3, r4 can be used for R1 assignments, and1115

only r2, r5, r6 can be use for R2 assignments. Besides, training and test also have distinct node sets.1116

Each graph (training or test) is consisted by one or more tree-like structures as left side of Figure 10.1117

In each tree-like structure, all solid edges are used as observations, and will form a complete binary1118
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(a) ISDEA Hits@10 (b) DEq-InGram Hits@10 (c) Original InGram Hits@10

(d) ISDEA Hits@1 (e) DEq-InGram Hits@1 (f) Original InGram Hits@1

(g) ISDEA MRR (h) DEq-InGram MRR (i) Original InGram MRR
Figure 9: Node prediction (i, k, ?) performance over WikiTopics for ISDEA, DEq-InGram, and
InGram [35]. Each row within each heatmap corresponds to a training graph, and each column
within each heatmap corresponds to a test graph. A darker color means better performance. ISDEA,
DEq-InGram, and InGram showcase comparable performance in general, and ISDEA exhibits
the best performance on Hits@1 in particular.

tree; while all dashed edges are used as training, validation or test samples which are built by applying1119

the only rule over all observed edges. In training, we have only one tree-like structure; while in test,1120

we have two disconnected tree-like structures. A more detailed generation algorithm for a graph1121

given depths of all tree-like structures is provided in Algorithm 2.1122

Since the structure of FD-2 does not satisfy the requirement of the spanning tree algorithm used in1123

InGram [35], we are not able to apply InGram and DEq-InGram on FD-2. So we provide the results1124

on FD-2 in Table 6 with all remaining baselines and ISDEA. We can see that ISDEA clearly perform1125

better than other baselines, especially in the relation prediction task, and shows capability to perform1126

accurately on the doubly inductive link prediction over both new nodes and new relation types, while1127

methods like NBFNet and RMPI are not able to correctly perdict this task, even for node prediction.1128

E.1.6 Expressivity Limitation Case Study with FD-2 for ISDEA1129

We now provide a FD-2 variant where we show that double equivariant representation is not expressive1130

enough to solve a specific task. It is a simple 2-depth tree structure as shown in Figure 11. We denote1131

node representations given by arbitrary double equivariant representation as Hv,r where v ∈ [1, 7] and1132
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Table 5: Relation & Node Hits@10 performance on Doubly Inductive Link Prediction over
NL-k, WK-k, and FB-k of Lee et al. (2023) [35]. We report standard deviations over 5 runs. A
higher value means better doubly inductive link prediction performance. The best values are shown
in bold font, while the second-best values are underlined. ISDEA outperforms InGram on most
datasets on the relation prediction task, and DEq-InGram consistently outperforms InGram on
all datasets for both relation prediction and node prediction tasks.

(a) Performance in % on NL-k datasets. Higher ↑ is better.

Relation prediction (i, ?, j) Node prediction (i, k, ?)

Models NL-25 NL-50 NL-75 NL-100 NL-25 NL-50 NL-75 NL-100

InGram 64.54±16.86 64.54±12.56 80.16±04.43 70.84±08.52 89.95±02.01 92.74±00.52 95.40±01.38 88.20±01.92

DEq-InGram (Ours) 83.58±17.57 91.32±05.60 96.01±01.23 87.52±10.39 95.03±00.32 96.02±00.34 97.94±00.34 93.80±01.38

ISDEA (Ours) 69.49±05.71 76.23±06.92 76.03±03.31 80.84±07.35 73.74±03.35 75.76±03.52 77.27±03.80 72.81±04.41

(b) Performance in % on WK-k datasets. Higher ↑ is better.

Relation prediction (i, ?, j) Node prediction (i, k, ?)

Models WK-25 WK-50 WK-75 WK-100 WK-25 WK-50 WK-75 WK-100

InGram 58.76±13.91 84.01±03.30 80.19±04.19 58.20±11.13 76.99±07.72 70.93±02.38 78.85±04.65 66.29±03.70

DEq-InGram (Ours) 81.06±22.31 94.85±00.85 95.84±01.54 81.83±10.10 87.91±05.68 82.58±01.70 89.10±02.15 79.69±03.07

ISDEA (Ours) 79.49±06.88 81.25±07.02 84.92±06.86 79.70±07.68 58.28±23.68 73.24±00.57 76.19±01.04 71.76±01.85

(c) Performance in % on FB-k datasets. Higher ↑ is better.

Relation prediction (i, ?, j) Node prediction (i, k, ?)

Models FB-25 FB-50 FB-75 FB-100 FB-25 FB-50 FB-75 FB-100

InGram 68.26±08.27 50.41±08.79 79.51±02.69 40.46±12.21 86.79±00.70 73.32±06.64 86.57±00.69 71.72±06.93

DEq-InGram (Ours) 82.89±03.58 76.65±04.05 89.70±01.14 46.88±15.76 92.39±00.30 81.08±06.98 92.14±00.43 77.54±06.36

ISDEA (Ours) 83.63±05.66 78.70±05.90 81.27±07.24 85.41±04.43 75.93±00.49 69.90±00.81 73.45±01.17 79.70±00.81

Figure 10: Synthetic Example of FD-2: Training and test has their own node and relation type sets:
V(tr) ∩ V(te) = ∅ andR(tr) ∩R(te) = ∅.

r ∈ [1, 4]. We can easily notice that e4 and e7 are symmetric, e5 and e6 are symmetric (simply flipping1133

blue and orange colors), thus we will expect H4,1 = H7,2, H4,2 = H7,1, H5,1 = H6,2, H5,2 = H6,1.1134

Since there is no r3 and r4 in observation, they are freely exchangeable with each other, thus we will1135

also expect1136

H1,3 = H1,4,

H4,3 = H4,4 = H7,4 = H7,3,

H5,3 = H5,4 = H6,4 = H6,3.
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Table 6: Relation & Node performance on Doubly Inductive Link Prediction over FD2. We
report standard deviations over 5 runs. A higher value means better doubly inductive link prediction
performance. The best values are shown in bold font, while the second-best values are underlined.
ISDEA consistently achieve better results than the baselines, especially in the Relation perdiction
task. NA* due to the fact that FD2 does not satisfy the spanning tree algorithm used in InGram [35].

Relation prediction (i, ?, j) Node prediction (i, k, ?)

Models MRR Hits@1 Hits@2 Hits@4 MRR Hits@1 Hits@2 Hits@4

GAT 7.61±00.71 0.77±00.39 2.78±00.80 5.85±00.95 84.62±02.64 71.61±04.94 93.51±01.03 99.72±00.27

GIN 8.44±00.40 1.29±00.37 3.51±00.58 7.18±01.01 73.99±09.60 65.73±06.58 76.69±12.44 81.45±15.80

GraphConv 7.88±00.45 0.81±00.29 2.62±00.61 6.98±01.09 85.95±00.77 74.52±01.81 92.66±01.02 99.84±00.15

RMPI 9.09±03.18 1.94±01.88 3.95±04.43 7.10±05.58 21.16±05.85 9.84±05.04 16.74±06.50 27.98±09.96

NBFNet 6.39±02.19 1.50±02.49 1.79±02.39 2.91±02.22 21.95±04.14 14.44±04.34 18.61±04.29 26.47±04.24

InGram N/A* N/A* N/A* N/A* N/A* N/A* N/A* N/A*

DEq-InGram (Ours) N/A* N/A* N/A* N/A* N/A* N/A* N/A* N/A*
ISDEA (Ours) 44.39±12.17 32.82±12.69 38.71±13.60 50.73±14.04 90.98±03.55 83.59±06.22 95.69±02.34 99.72±00.27

Algorithm 2 Synthesis Algorithm for FD-2. This is triplet generation code for a single graph (either
training and test). It will provide observation and query triplets. For training, query triplets are further
divided into training and validation triplets; For test, query triplets directly become test triplets.

Require: Tree depth {D1, . . . , DM}, Node Labeling “Namesnd”, Relation Type Labeling “Namesrl”.
Ensure: Observation triplets S, Query triplets Q

1: S = ∅
2: Q = ∅
3: n← 0
4: for m← 1, . . . ,M do
5: for d← 1, . . . , Dm do
6: for v ← 2d − 1, . . . , 2d+1 − 2 do
7: u1 ← ⌈(v − 2)/2⌉
8: u2 ← ⌈(u1 − 2)/2⌉
9: if v mod 2 = 0 then ▷ For relation type variable R2.

10: if u1 ≥ 0 then
11: S.add

(
(Namesnd[n+ v],Namesrl[2m− 1],Namesnd[n+ u1])

)
12: end if
13: if u2 ≥ 0 then
14: Q.add

(
(Namesnd[n+ v],Namesrl[2m− 1],Namesnd[n+ u2])

)
15: end if
16: else ▷ For relation type variable R1.
17: if u1 ≥ 0 then
18: S.add

(
(Namesnd[n+ v],Namesrl[2m− 2],Namesnd[n+ u1])

)
19: end if
20: if u2 ≥ 0 then
21: Q.add

(
(Namesnd[n+ v],Namesrl[2m− 2],Namesnd[n+ u2])

)
22: end if
23: end if
24: end for
25: n← n+ 2d

26: end for
27: end for

After getting all those representations, we can now focus on querying triplet representations (dashed1137

green and red) by concatenating head and tail node representations w.r.t. relation types:1138

Γtri ((e1, r4, e4) ,A) = H1,4 ∥H4,4,

Γtri ((e1, r3, e5) ,A) = H1,3 ∥H5,3,

Γtri ((e1, r3, e6) ,A) = H1,3 ∥H6,3,

Γtri ((e1, r4, e7) ,A) = H1,4 ∥H7,4.
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Figure 11: Expressivity Limitation: Relation r1 and r2 are always observed, while r3 and r4 are
always querying. r3 implies that relation types on the path are same, while r4 implies that relation
types on the path are different..

We can notice that1139

Γtri((e1,r4,e4),A)︷ ︸︸ ︷
H1,4 ∥H4,4 =

Γtri((e1,r4,e7),A)︷ ︸︸ ︷
H1,4 ∥H7,4 =

Γtri((e1,r3,e7),A)︷ ︸︸ ︷
H1,3 ∥H7,3 =

Γtri((e1,r3,e4),A)︷ ︸︸ ︷
H1,3 ∥H4,3 ,

Γtri((e1,r4,e5),A)︷ ︸︸ ︷
H1,4 ∥H5,4 =

Γtri((e1,r4,e6),A)︷ ︸︸ ︷
H1,4 ∥H6,4 =

Γtri((e1,r3,e6),A)︷ ︸︸ ︷
H1,3 ∥H6,3 =

Γtri((e1,r3,e5),A)︷ ︸︸ ︷
H1,3 ∥H5,3 .

Suppose the score of (eu, rc, ev) utilizing such representation is su,c,v , we will have1140

s4,4,1 = s7,4,1 = s7,3,1 = s4,3,1,

s5,4,1 = s6,4,1 = s6,3,1 = s5,3,1.

If a model can distinguish r3 and r4, it should at least rank node e7 higher than e6 given head node e11141

and relation r3 since this is a positive triplet in training. Then, we will have s7,3,1 > s6,3,1, since we1142

already knew that s7,3,1 = s7,4,1, s6,3,1 = s6,4,1, we will also have s7,4,1 > s6,4,1. This means that1143

we rank node e7 higher than node e6 given head node e1 and relation r4, however, this is incorrect1144

since (e7, r4, e1)) is negative while (e6, r4, e1) is positive. In summary, if we use double equivariant1145

representation for triplet scoring in this specific example, there is no way for it to correctly rank r31146

and r4 in the same time. This shows that double equivariant representation (even the most expressive)1147

can face challenges for doubly inductive link prediction on discrete attributed multigraph.1148

E.2 Complexity Analysis for ISDEA1149

For each layer of our method ISDEA, it can be treated as running 2 unattributed GNN |R| times on the1150

attributed multigraph, thus time cost is roughly 2|R| times of adopted GNN. In our experiment, we1151

use node representation GNNs (e.g., GIN [73], GAT [65], GraphConv [41]) as our GNN architecture,1152

thus the complexity is O(|R||S|d3) where d is the maximum size of hidden layers, |R| is number of1153

relations in the attributed multigraph, and |S| is number of fact triplets (number of edges) in attributed1154

multigraph.1155

Besides, for both positive and negative samples (i, k, j), our method requires the shortest distance1156

between any two nodes without considering (i, k, j). Pay attention that this can not be simply1157

achieved from the Dijkstra or Floyd algorithm since the graph changes on computing each node pair,1158

indeed computing such distance needs to traverse the enclosed graph [83, 60] between each node pair1159

once.1160

E.3 Ablation study for ISDEA1161

Since a part of negative samplings is drawn by uniformly corrupting objects (without loss of general-1162

ity), it is very likely that corrupted objects are far way from the subject while the true object is close to1163

the subject. Then, the distance feature can help predict in such cases. However, the shortest distance1164

feature will not provide any additional information if we corrupt the relation type. Under such a1165

scenario, shortest distance itself may provide some features to achieve good ranking performance in1166

inductive link prediction on attributed multigraph, thus we want to know if shortest distance feature1167

augmentation contributes to the performance gain. We perform an ablation study for ISDEA with or1168

without distance on doubly inductive link prediction over PediaTypes.1169
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Table 7: Relation & Node performance on Doubly Inductive Link Prediction over PediaTypes for
ISDEA with/without Shortest Distances. We report standard deviations over 5 runs. A higher value
means better doubly inductive link prediction performance. Even without the shortest distance as
an augmented feature, our proposal still achieves comparable results, especially in the relation
prediction task.

(a) Relation prediction (i, ?, j) performance in %. Higher ↑ is better.

Dataset MRR Hits@1 Hits@5 Hits@10

EN-FR ISDEA w/ Distance 70.06±02.01 61.46±00.79 82.11±04.01 84.94±05.00

ISDEA w/o Distance 68.65±00.41 60.34±00.53 80.17±00.99 82.80±01.73

FR-EN ISDEA w/ Distance 69.01±00.57 58.18±00.14 83.19±01.73 84.75±02.51

ISDEA w/o Distance 67.74±01.15 56.35±01.53 83.07±00.75 86.23±00.56

EN-DE ISDEA w/ Distance 78.38±04.04 68.00±06.41 92.39±00.83 95.26±00.63

ISDEA w/o Distance 76.52±01.32 67.66±02.37 87.49±00.87 88.47±00.64

DE-EN ISDEA w/ Distance 88.82±00.28 84.83±00.29 93.59±00.53 94.23±00.71

ISDEA w/o Distance 88.94±00.92 84.76±00.49 93.98±01.74 94.73±01.98

DB-WD ISDEA w/ Distance 65.89±04.71 57.51±05.40 75.95±03.89 82.22±02.44

ISDEA w/o Distance 70.66±07.05 63.36±05.30 79.87±10.19 82.96±11.89

WD-DB ISDEA w/ Distance 72.57±00.73 62.72±01.24 86.10±01.26 88.87±02.94

ISDEA w/o Distance 67.98±02.14 60.83±01.55 76.65±03.14 77.90±03.09

DB-YG ISDEA w/ Distance 75.88±01.58 69.12±02.40 85.80±01.23 91.42±01.79

ISDEA w/o Distance 75.42±00.35 69.17±01.13 84.86±01.58 88.78±02.36

YG-DB ISDEA w/ Distance 74.04±00.47 66.68±00.81 83.36±01.55 85.34±01.49

ISDEA w/o Distance 74.22±01.56 66.97±01.63 83.62±01.85 85.73±02.66

(b) Node prediction (i, k, ?) performance in %. Higher ↑ is better.

Dataset MRR Hits@1 Hits@5 Hits@10

EN-FR ISDEA w/ Distance 53.92±00.26 43.03±00.25 64.45±00.24 76.28±00.50

ISDEA w/o Distance 45.12±00.41 34.04±00.36 56.61±00.48 63.46±00.76

FR-EN ISDEA w/ Distance 57.68±00.68 47.38±00.28 67.24±01.32 77.51±01.46

ISDEA w/o Distance 42.52±00.91 30.41±01.17 54.94±00.22 65.29±00.20

EN-DE ISDEA w/ Distance 50.30±02.08 35.41±02.25 68.80±01.90 82.24±00.94

ISDEA w/o Distance 45.16±00.76 30.26±00.76 62.59±00.57 76.98±00.63

DE-EN ISDEA w/ Distance 51.33±00.40 37.12±00.31 68.20±00.53 81.80±00.68

ISDEA w/o Distance 43.67±00.32 28.97±00.25 60.36±00.54 74.95±00.51

DB-WD ISDEA w/ Distance 45.75±00.66 35.59±00.73 54.83±00.90 66.69±01.01

ISDEA w/o Distance 40.26±03.77 30.59±03.89 48.15±03.68 59.43±03.76

WD-DB ISDEA w/ Distance 51.64±00.60 40.56±01.72 62.60±02.55 75.19±03.12

ISDEA w/o Distance 45.94±00.14 35.17±00.30 56.89±00.33 66.46±00.55

DB-YG ISDEA w/ Distance 41.72±01.64 27.70±01.95 55.21±01.07 72.87±01.03

ISDEA w/o Distance 32.71±00.60 17.69±00.39 47.82±00.60 66.92±01.90

YG-DB ISDEA w/ Distance 48.21±01.06 35.29±01.67 61.87±01.30 76.41±01.52

ISDEA w/o Distance 37.52±00.79 23.10±00.76 53.34±00.88 68.43±01.62

As shown in Table 7, even if the shortest distance is excluded from our model, our model still1170

performs quite well and is better than most other baselines in the doubly inductive link prediction on1171

PediaTypes. Especially, as we anticipate, the distance feature is more helpful in the node prediction1172

task than the relation prediction task. Thus, we can say that double equivariant node representation1173

itself is enough to provide good performance on doubly inductive link prediction.1174

E.4 Limitations and Impacts for ISDEA1175

ISDEA excels both in synthetic and real-world benchmarks. However, the simplification from1176

pairwise to node embeddings in ISDEA limits its expressivity. In Appendix E.1.5, we give a synthetic1177

counterexample how this could be an issue in some attributed multigraphs. Moreover, ISDEA has the1178

same pre-processing scalability as GraIL. We also do not envision a direct negative social impact of1179

our work.1180
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F Future Work1181

As addressed in the main paper, our implemented architecture ISDEA has a few limitations, which1182

could be addressed in future work. First, ISDEA has high pre-processing cost. This high time cost1183

is introduced by using shortest distances whose computation is of the same complexity as enclosed1184

subgraph. However, our ablation studies show that shortest distances is not a dominant factor in1185

our model for real-world tasks, thus it is possible that shortest distances can be replaced by other1186

heuristics that can be efficiently extracted.1187

Second, our specific implementation ISDEA happens to have high training and inference costs, since1188

it relies on repeating GNNs for each relation. Thus, complexity ISDEA of scales linearly w.r.t. number1189

of relations, which is often a large number in real-world knowledge base, e.g., Wikipedia. However,1190

fully equivariance over all relations can be too strong, and we may only want partial equivariance1191

which may reduce the cost.1192

Third, ISDEA has expressivity limitation. This limitation is related to former two cost issues since it1193

is caused by compromising most-expressive pairwise representation to node-wise representation due1194

to time cost. Thus if we can reduce the cost, we may be able to use more expressive graph encoder.1195

Finally, although we show ISDEA representations can capture UQER Horn clauses, there is no1196

algorithm to create UQER Horn clauses from ISDEA representations. This topic is known as1197

explainability which is important in graph machine learning community. We leave such an algorithm1198

as another future work other than optimization.1199
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