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Abstract

An explanation of a machine learning model is considered “faithful” if it accurately
reflects the model’s decision-making process. However, explanations such as
feature attributions for deep learning are not guaranteed to be faithful, and can
produce potentially misleading interpretations. In this work, we develop Sum-
of-Parts (SOP), a class of models whose predictions come with grouped feature
attributions that are faithful-by-construction. This model decomposes a prediction
into an interpretable sum of scores, each of which is directly attributable to a sparse
group of features. We evaluate SOP on benchmarks with standard interpretability
metrics, and in a case study, we use the faithful explanations from SOP to help
astrophysicists discover new knowledge about galaxy formation.

1 Introduction

In many high-stakes domains like medicine, law, and automation, important decisions must be backed
by well-informed and well-reasoned arguments. However, many machine learning (ML) models are
not able to give explanations for their behaviors. One type of explanations for ML models is feature
attribution: the identification of input features that were relevant to the prediction [37].

For example, in medicine, ML models can assist physicians in diagnosing a variety of lung, heart,
and other chest conditions from X-ray images [40, 10, 63, 55]. However, physicians only trust the
decision of the model if an explanation identifies regions of the X-ray that make sense [41]. Such
explanations are increasingly requested as new biases are discovered in these models [19].

The field has proposed a variety of feature attribution methods to explain ML models. One category
consist of post-hoc attributions [42, 33, 39, 47, 53], which have the benefit of being able to apply
to any model. Another category of approaches instead build feature attributions directly into the
model [60, 23, 49, 46, 11], which promise more accurate attributions but require specially designed
architectures or training procedures.

However, feature attributions do not always accurately represent the model’s prediction process, a
property known as faithfulness. An explanation is said to be faithful if it correctly represents the
reasoning process of a model [34]. For a feature attribution method, this means that the highlighted
features should actually influence the model’s prediction. For instance, suppose a ML model for
X-rays uses the presence of a bone fragment to predict a fracture while ignoring a jagged line. A
faithful feature attribution should assign a positive score to the bone fragment while assigning a score
of zero to the jagged line. On the other hand, an unfaithful feature attribution whould assign a positive
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Figure 1: Visualization of grouped attributions. For a set of group attributions, scores are assigned to
groups of features instead of individual features. The score for each group represents how much each
group of features together contributes to the prediction. We can see that masks can be interpreted as
objects kept and objects removed. In this example, group 2, which includes the fish and the predator,
contributes 15% to predicting “tench”, while group G, which has the fish and dark lines removed,
contributes only 1% to predicting “tench”, but 21% to predicting “Rooster”.

score irrelevant regions. Unfortunately, studies have found that many post-hoc feature attributions do
not satisfy basic sanity checks for faithfulness [34]. See Appendix E for related works.

In this paper, we first identify a fundamental barrier for feature attributions arising from the curse
of dimensionality. Specifically, we prove that feature attributions incur exponentially large error
in faithfulness tests for simple settings. These theoretical examples motivate a different type of
attribution that scores groups of features to overcome this inherent obstacle. Motivated by these
challenges, we develop Sum-of-Parts models (SOP), a class of models that attributes predictions to
groups of features, which are illustrated in Figure 1. Our approach has three main advantages: SOP
models (1) provide grouped attributions that overcome theoretical limitations of feature attributions;
(2) are faithful by construction, avoiding pitfalls of post-hoc approaches; and (3) are compatible with
any backbone architecture. Our contributions are as follows:

1. We prove that feature attributions incur at least exponentially large error in tests of faithful-
ness in simple settings. We show that grouped attributions can overcome this limitation.

2. We develop Sum-of-Parts (SOP), a class of models with group-sparse feature attributions
that are faithful by construction and are compatible with any backbone architecture.

3. We evaluate our approach in standard image benchmarks with interpretability metrics.
4. In a case study, we use faithful attributions of SOP from weak lensing maps and uncover

novel insights about galaxy formation meaningful to cosmologists.

2 Inherent Barriers for Feature Attributions

Feature attributions are one of the most common forms of ML models explanations. However, many
studies find feature attributions failing basic sanity checks [1, 54] and interpretability tests [28, 8].
Perturbation tests are a widely-used technique for evaluating the faithfulness of an explanation
[39, 58, 14]. These tests insert or delete various subsets of features from the input and check if the
change in model prediction is in line with the scores from the feature attribution. We first formalize
the error of an insertion-style test for a feature attribution on a subset of features.
Definition 1. (Insertion error) The insertion error of an feature attribution α ∈ Rd for a model
f : Rd → R when inserting a subset of features S from an input x is

InsErr(α, S) =

∣∣∣∣∣f(xS)− f(0d)−
∑
i∈S

αi

∣∣∣∣∣ where (xS)j =

{
xj if j ∈ S

0 otherwise
(1)

The total insertion error is
∑

S∈P InsErr(α, S) where P is the powerset of {1, . . . , d}.

The insertion error measures how well the total attribution from features in S aligns with the change
in model prediction when adding the same features to the 0d vector. Intuitively, a faithful attribution
score of the ith feature should reflect the change in model prediction after the ith feature is added and
thus have low insertion error. A similar definition for deletion error is in Appendix A.
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Note that if an explanation is faithful, then it achieves low deletion and insertion error. For example,
a linear model f(x) = θTx is often described as an interpretable model because it admits a feature
attribution αi = θixi that achieves zero deletion and insertion error. Common sanity checks for
feature attributions often take the form of insertion and deletion on specific subsets of features [39].

2.1 Feature Attributions Incur a Minimum of Exponential Error

In this section, we provide a simple polynomial setting where any choice of feature attribution is
guaranteed to incur at least exponential deletion and insertion error across all possible subsets. The
key property of this multilinear monomials setting, or the product of d Boolean inputs, is the presence
of highly correlated features, which pose an insurmountable challenge for feature attributions.

Theorem 1 (Insertion Error for Binomials). Let p : {0, 1}d → {0, 1, 2} be a multilinear binomial
polynomial function of d variables. Furthermore suppose that the features can be partitioned into
(S1, S2, S3) of equal sizes where p(x) =

∏
i∈S1∪S2

xi +
∏

j∈S2∪S3
xj . Then, there exists an x such

that any feature attribution for p at x will incur exponential total insertion error.
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Figure 2: Minimum insertion error for binomials.
Fitted function: InsErr(d) = eλ2d+λ1 + λ0 where
(λ2, λ1, λ0) = (0.198, 1.332, 4.778).

In other words, Theorem 1 states that the total
insertion error of any feature attribution of a
binomial will grow exponentially with respect
to the dimension, and an example can be seen
in Figure 2. For high-dimensional problems,
this suggests that there does not exist a feature
attribution that satisfies all possible insertion
tests. We prove a similar result for deletion er-
ror: feature attributions cannot escape exponen-
tially large insertion error for simple monomial
functions. Proofs are deferred to Appendix A.

In combination, Theorems 1 and 2 imply that
even for simple problems (Boolean binomials
and monomials), the total insertion and deletion
error grows exponentially with respect to the
dimension.1 This is precisely the curse of di-
mensionality, but for feature attributions. These
results suggest that a fundamentally different at-
tribution is necessary in order to satisfy deletion
and insertion tests.

2.2 Grouped Attributions Overcome
Barriers for Feature Attributions

The inherent limitations of feature attributions stem from the highly correlated features. A standard
feature attribution is limited to assigning one number to each feature. This design is fundamentally
unable to accurately model interactions between multiple features, as seen in Theorems 2 and 1.

To explain these correlated effects, we explore a different type of attribution called grouped attribu-
tions. Grouped attributions assign scores to groups of features instead of individual features. In a
grouped attribution, a group only contributes its score if all of its features are present. This concept is
formalized in Definition 2.

Definition 2. Let x ∈ Rd be an example, and let S1, . . . , SG ∈ {0, 1}d designate G groups of
features where j ∈ Si if feature j is included in the ith group. Then, a grouped feature attribution is
a collection β = {(Si, ci)}Gi=1 where ci ∈ R is the attributed score for the ith group of features mi.

Grouped attributions have three main characteristics. First, unlike standard feature attributions, a
single feature can show up in multiple groups with different scores. Second, the standard feature
attribution is a special case where Si is the singleton set {i} for i = 1, . . . , G for G = d. Third, there

1The proof technique for Theorems 2 and 1 involves computing a verifiable certificate at each d. We were
able to computationally verify the result up to d ≤ 20, and hence the theorem statements are proven only for
d ≤ 20. We conjecture that a general result holds for d > 20 for both the insertion and deletion settings.
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Figure 3: Structure of a Sum-of-Parts Model. A group generator g first generates groups of features.
Each group of features Si ⊙ X is then passed through the black-box model to obtain the group
embedding zi. A group selector q then assigns a score ci to each group i’s representation. The partial
logits are then aggregated with a weighted sum to get the predicted logit y for a class.

exists grouped attributions that can succinctly describe the earlier settings from Theorems 2 and 1
with zero insertion and deletion error (Corollary 1 in Appendix A).

To summarize, grouped attributions are able to overcome exponentially growing insertion and deletion
errors when the features interact with each other. In contrast, traditional feature attributions lack this
property on even simple settings.

3 Sum-of-Parts Models

In this section, we develop the Sum-of-Parts (SOP) framework, a way to create faithful grouped
attributions. Our proposed grouped attributions consist of two parts: the subsets of features called
groups (S1, . . . , SG) ∈ [0, 1]d and the scores for each group (c1, . . . , cG). We divide our approach
into two main modules: GroupGen which generates the groups Si of features from an input, and
GroupSelect which assigns scores ci to select which groups to use for prediction, as in Figure 3.

Group Generator. The group generator GroupGen : Rd → [0, 1]G×d takes in an input X ∈ Rd

and outputs G masks, each of which corresponds to a group Si ∈ [0, 1]d. To generate these masks,
we use a self-attention mechanism [59] to parameterize a probability distributions over features. The
classic attention layer is Attention(X) = softmax

(
WqX(WkX)T√

dk

)
WvX , where Wk,Wq,Wv ∈ Rd

are learned parameters. However, the outputs of self attention are continuous and dense. Furthermore,
we only need the attention weights to generate groups and can ignore the value. To make groups
interpretable, we use a sparse variant using the sparsemax operator [35] without the value:

GroupGen(X) = sparsemax

(
WqX(WkX)T√

d

)
(2)

The SparseMax operator uses a simplex projection to make the attention weights sparse. In total, the
generator computes sparse attention weights and recombines the input features into groups Si.

Group Selector. After we acquire these groups, we use the backbone model f : Rd → Rh to obtain
each group’s encoding zi = f(Si ⊙X) with embedding dimension h, where ⊙ is Hadamard product.
The goal of the second module, GroupSelect, is to choose a sparse subset of the groups for prediction.
Sparsity ensures that a human interpreting the result is not overloaded with too many scores.

The group selector GroupSelect takes in the output of the backbone from all the groups z1, . . . , zG ∈
Rh and produces scores (c1, . . . , cG) ∈ [0, 1]G and logits (y1, . . . , yG) ∈ RG for all groups. To
assign a score to each group, we again use a modified sparse attention

GroupSelect(z1, . . . , zG) = sparsemax

(
Wq′C(Wk′z)T√

h

)
, CzT (3)
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LIME SHAP RISE Grad-
CAM

IntGrad FRESH SOP
(ours)

ImageNet

Perf ↑ 0.9160 0.9160 0.9160 0.9160 0.9160 0.8560 0.8880
Ins ↑ 0.5121 0.6130 0.5816 0.4545 0.3232 0.5979 0.6149
InsG ↑ 0.6121 0.6254 0.6180 0.6303 0.4909 0.6195 0.6396
Del ↓ 0.3798 0.3009 0.4066 0.4532 0.2357 0.4132 0.3929
DelG ↓ 0.3254 0.3008 0.3135 0.3104 0.5612 0.3302 0.2836

VOC 07

Perf. ↑ 0.9550 0.9550 0.9550 0.9550 0.9550 0.9300 0.9300
Ins ↑ 0.2617 0.3137 0.2769 0.2789 0.0915 0.2231 0.3742
InsG ↑ 0.4022 0.4043 0.3841 0.4050 0.1870 0.3661 0.4071
Del ↓ 0.0653 0.0377 0.0866 0.2280 0.0217 0.1590 0.0947
DelG ↓ 0.0825 0.0794 0.0883 0.1037 0.2609 0.0978 0.0765

Table 1: Results on ImageNet and VOC 07 on all baselines and SOP on accuracy, insertion, grouped
insertion, deletion, and grouped deletion. If a metric has ↑, it means higher numbers in the metric is
better, and vice versa. For accuracy, post-hoc methods show the accuracy of the original model.

where Wq′ ,Wk′ , C ∈ Rh. We use a projected class weight Wq′C to query projected group encodings
Wk′z. In practice, we can initialize the value weight C to the linear classifier of a pretrained model.
GroupSelect then simultaneously produces the scores assigned to all groups (c1, . . . , cG) and each
group’s partial prediction (y1, . . . , yG).

The final prediction is then made by y =
∑G

i=1 ciyi, and the corresponding group attribution is
(c1, S1), . . . , (cG, SG). Since we use a sparsemax operator, in practice there can be significantly
fewer than G groups active in the final prediction. This group attribution is faithful to the model since
the prediction uses exactly these groups Si, each of which is weighted precisely by the score ci.

4 Evaluating SOP Grouped Attributions

In this section, we perform a standard suite of evaluation metrics on ImageNet [45] and PASCAL
VOC 07 [16], using Vision Transformer [15] as our backbone. We compare with post-hoc [42, 33,
39, 47, 53] and built-in [23] attribution methods, and evaluate on accuracy, insertion and deletion,
and our proposed grouped insertion and deletion. A complete description of training and evaluation
can be found in Appendix C.2 and C.3. Here we highlight results on grouped insertion and deletion.

Grouped Insertion and Deletion A standard feature attribution method scores individual pixels,
and therefore classic tests check whether inserting and deleting pixels one at a time aligns with the
scores. In contrast, grouped attributions assign scores for groups of features, and thus a grouped
insertion and deletion test assesses whether deleting groups of features at a time aligns with the
scores. Table 1 shows that SOP outperforms all other baselines in both grouped insertion and grouped
deletion. This shows that SOP finds grouped attribution that are better at determining which groups
of features contribute more to the prediction. This is to be expected as it is faithful-by-construction.

5 Case Study: Cosmology

To validate the usability of our approach in real settings, we collaborated with domain experts and
used SOP to discover new cosmological knowledge about the expansion of the universe and the
growth of cosmic structure.

Weak lensing maps in cosmology calculate the spatial distribution of matter density in the universe
using precise measurements of the shapes of ∼100 million galaxies [18]. Cosmologists hope to use
weak lensing maps to predict two key parameters related to the initial state of the universe: Ωm and
σ8. Ωm captures the average energy density of all matter in the universe (such as radiation and dark
energy), while σ8 describes the fluctuation of this density. From these parameters, a cosmologist can
simulate how cosmological structures, such as galaxies, superclusters and voids, develop throughout
cosmic history. However, Ωm and σ8 are not directly measurable, and the inverse relation from
cosmological structures in the weak lensing map to Ωm and σ8 is unknown.
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Void ClusterWeak Lensing Map

Figure 4: A weak lensing map (left) contains large dark areas which are voids, and hot pixels which
are clusters. Example voids are shown in the middle, and clusters on the right. We find that voids are
used more in prediction in general. Clusters are used comparatively more for σ8.

One approach to inferring Ωm and σ8 from weak lensing maps, as demonstrated for example by Ribli
et al. [44], Matilla et al. [36], Fluri et al. [17], is to apply deep learning models that can compare
measurements to simulated weak lensing maps. Even though these models have high performance,
we do not fully understand how these models predict Ωm and σ8. As a result, the following remains
an open question in cosmology:

What structures from weak lensing maps can we use to infer the cosmology parameters Ωm and σ8?

In collaboration with expert cosmologists, we use convolutional networks trained on CosmoGridV1
[25] to predict Ωm and σ8 as the backbone of an SOP model to get accurate predictions with faithful
group attributions. Crucially, the guarantee of faithfulness in SOP provides confidence that the
attributions reflect how the model makes its prediction, opposing to possibly being a red herring.

Cosmological discoveries Our initial discoveries come from grouped attributions that correspond
to two known structures in the weak lensing maps (as identified by cosmologists): voids and clusters.
Figure 4 shows examples of voids (dark regions) and an example of clusters (bright hot pixels), both
of which are automatically learned as groups in the SOP model without supervision. We use standard
deviation σ away from the mean mass intensity for each map to define voids and clusters, where voids
are groups with mean intensity of ≤ 0 and clusters ≥ +3σ. Precise definitions are in Appendix D.

We summarize the discoveries that we made with cosmologists on how clusters and voids influence
the prediction of Ωm and σ8 as follows:

1. A new finding of our work that was surprising to cosmologists relates to the distinction
between the two qualitatively different parameters, Ωm and σ8. We find that voids have
especially higher weights for predicting Ωm. Clusters, especially high-significance ones,
have higher weights for predicting σ8. More details can be found in Appendix D.3.

2. Using a higher threshold of +2 or +3σ gives the clusters higher weight especially for σ8

than with a lower threshold of +1σ. This aligns with the cosmology concept that rarer
clusters with high standard deviation are more sensitive to σ8, the parameter for fluctuation.

3. In general, the voids have higher weights for prediction than the clusters. This is consistent
with previous work [36] that voids are the most important feature in prediction.

6 Conclusion

In this paper, we identify a fundamental barrier for feature attributions in satisfying faithfulness tests,
which can be overcome by grouped instead of individual features. We develop the SOP models
to generate group attributions and improve upon standard feature attributions on the majority of
insertion and deletion-based interpretability metrics. Most importantly, we used the faithful grouped
attributions from SOP to discover cosmological knowledge about expansion of the universe. Our
groups are semantically meaningful to cosmologists and revealed new properties in cosmological
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structures such as voids and clusters. We hope this work paves the way for further scientific discoveries
from faithful explanations of ML models that capture complex and unknown patterns.
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A Theorem Proofs for Section 2

A.1 Definition for Deletion Error

We can formalize an analogous error for deletion-style tests as follows:

Definition 3. (Deletion error) The deletion error of an feature attribution α ∈ Rd for a model
f : Rd → R when removing a subset of features S from an input x is

DelErr(α, S) =

∣∣∣∣∣f(x)− f(x¬S)−
∑
i∈S

αi

∣∣∣∣∣ where (x¬S)j =

{
xj if j ̸∈ S

0 otherwise
(4)

The total deletion error is
∑

S∈P DelErr(α, S) where P is the powerset of {1, . . . , d}.

The deletion error measures how well the total attribution from features in S aligns with the change
in model prediction when removing the same features from x.

A.2 Feature Attributions Incur a Minimum of Exponential Error

In this section, we provide two simple polynomial settings where any choice of feature attribution is
guaranteed to incur at least exponential deletion and insertion error across all possible subsets. The key
property in these examples is the presence of highly correlated features, which pose an insurmountable
challenge for feature attributions. We begin with the first setting: multilinear monomials, or the
product of d Boolean inputs.

Theorem 2 (Deletion Error for Monomials). Let p : {0, 1}d → {0, 1} be a multilinear monomial
function of d ≤ 20 variables, p(x) =

∏d
i=1 xi. Then, there exists an x such that any feature

attribution for p at x will incur an approximate lower bound of eγ1d+γ0 total deletion error, where
(γ1, γ0) = (0.664,−1.159).

Proof. Let p : {0, 1}d → {0, 1} be a multilinear monomial function of d ≤ 20 variables, p(x) =∏d
i=1 xi. Then, there exists an x such that any feature attribution for p at x will incur an approximate

lower bound of eγ1d+γ0 total deletion error, where (γ1, γ0) = (0.664,−1.159).

In other words, Theorem 2 states that the total deletion error of any feature attribution of a monomial
will grow exponentially with respect to the dimension. For high-dimensional problems, this suggests
that there does not exist a feature attribution that satisfies all possible deletion tests. On the other
hand, monomials can easily achieve low insertion error, as formalized in Lemma 1.

Lemma 1 (Insertion Error for Monomials). Let p : {0, 1}d → {0, 1} be a multilinear monomial
function of d variables, p(x) =

∏d
i=1 xi. Then, for all x, there exists a feature attribution for p at x

that incurs at most 1 total insertion error.

However, once we slightly increase the function complexity to binomials, we find that the total
insertion error of any feature attribution will grow exponentially with respect to d. The two terms in
the binomial must have some overlapping features or else the problem reduces to a monomial.

Theorem 1 (Insertion Error for Binomials). Let p : {0, 1}d → {0, 1, 2} be a multilinear binomial
polynomial function of d variables. Furthermore suppose that the features can be partitioned into
(S1, S2, S3) of equal sizes where p(x) =

∏
i∈S1∪S2

xi +
∏

j∈S2∪S3
xj . Then, there exists an x such

that any feature attribution for p at x will incur exponential total insertion error.

In combination, Theorems 2 and 1 imply that even for simple problems (Boolean monomials and
binomials), the total deletion and insertion error grows exponentially with respect to the dimension.2
This is precisely the curse of dimensionality, but for feature attributions. These results suggest that a
fundamentally different attribution is necessary in order to satisfy deletion and insertion tests.

2The proof technique for Theorems 2 and 1 involves computing a verifiable certificate at each d. We were
able to computationally verify the result up to d ≤ 20, and hence the theorem statements are proven only for
d ≤ 20. We conjecture that a general result holds for d > 20 for both the insertion and deletion settings.
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(a) Minimum insertion error for binomials. Fit-
ted function: InsErr(d) = eλ2d+λ1 + λ0 where
(λ2, λ1, λ0) = (0.198, 1.332, 4.778).
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(b) Minimum deletion error for monomials. Fitted
function: DelErr(d) = eγ1d+γ0 where (γ1, γ0) =
(0.664,−1.159).

Figure 5: The minimum (a) insertion errors of binomials of size d and (b) deletion error of monimials
of size d, where the minimum is over all possible feature attributions. These lower bounds suggest an
inherent fundamental limitation of feature attributions in faithfully explaining correlated features.

A.3 Proof for Feature Attributions Incur a Minimum of Exponential Error

Theorem 2 (Deletion Error for Monomials). Let p : {0, 1}d → {0, 1} be a multilinear monomial
function of d ≤ 20 variables, p(x) =

∏d
i=1 xi. Then, there exists an x such that any feature

attribution for p at x will incur an approximate lower bound of eγ1d+γ0 total deletion error, where
(γ1, γ0) = (0.664,−1.159).

Proof. Let x = 1d, and let α ∈ Rd be any feature attribution. Consider the set of all possible
perturbations to the input, or the power set of all features P , We can write the error of the attribution
under a given perturbation S ∈ P as

error(α, S) =

∣∣∣∣∣1−∑
i∈S

αi

∣∣∣∣∣ (5)

This captures the faithfulness notion that αi is faithful if it reflects a contribution of αi to the
prediction. Then, the feature attribution α∗ that achieves the lowest possible faithfulness error over
all possible subsets is

α∗ = argmin
α

∑
S∈P

error(α, S) (6)

This can be more compactly written as

α∗ = argmin
α

1⊤ |1−Mα| (7)

where Mij =

{
1 if j ∈ Si

0 otherwise
for an enumeration of all elements Si ∈ P . This is a convex

program that can be solved with linear programming solvers such as CVXPY. We solve for α∗ using
ECOS in the cvxpy library for d ∈ {2, . . . , 20}. To fit the exponential function, we fit a linear model
to the log transform of the output which has high degree of fit (with a relative absolute error of 0.008),
with the resulting exponential function shown in Figure 5b.

Lemma 1 (Insertion Error for Monomials). Let p : {0, 1}d → {0, 1} be a multilinear monomial
function of d variables, p(x) =

∏d
i=1 xi. Then, for all x, there exists a feature attribution for p at x

that incurs at most 1 total insertion error.

Proof. Consider α = 0d. If x ̸= 1d then this achieves 0 insertion error. Otherwise, suppose x = 1d.
Then, for all subsets S ̸= [d], p(xS) = 0 =

∑
i∈S αi so α incurs no insertion error for all but one
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subset. For the last subset S = [d], the insertion error is 1. Therefore, the total insertion error is at
most 1 for α = 0d.

Theorem 1 (Insertion Error for Binomials). Let p : {0, 1}d → {0, 1, 2} be a multilinear binomial
polynomial function of d variables. Furthermore suppose that the features can be partitioned into
(S1, S2, S3) of equal sizes where p(x) =

∏
i∈S1∪S2

xi +
∏

j∈S2∪S3
xj . Then, there exists an x such

that any feature attribution for p at x will incur exponential total insertion error.

Proof. Consider x = 1d. The addition error for a binomial function can be written as

error(α, S) =

∣∣∣∣∣∑
i∈S

αi − 1[S1 ∪ S2 ⊆ S]− 1[S2 ∪ S2 ⊆ S]

∣∣∣∣∣ = |M⊤
S α− cS | (8)

where (MS , cS) are defined as (MS)i =

{
1 if i ∈ S

0 otherwise,
and cS contains the remaining constant

terms. Then, the least possible insertion error that any attribution can achieve is

α∗ = argmin
α

∑
S∈P

error(α, S) = argmin
α

1⊤|c−Mα| (9)

where (M, c) are constructed by stacking (MS , cS) for some enumeration of S ∈ P . This is a
convex program that can be solved with linear programming solvers such as CVXPY. We solve for
α∗ using ECOS in the cvxpy library for d ∈ {2, . . . , 20}. To get the exponential function, we fit a
linear model to the log transform of the output, doing a grid search over the auxiliary bias term. The
resulting function has a high degree of fit (with a relative absolute error of 0.106), with the resulting
exponential function shown in Figure 2.

Insertion and Deletion Error for Grouped Attribution. We can define analogous notions of
insertion and deletion error when given a grouped attribution. It is similar to the original definition,
however a group only contributes its score to the attribution if all members of the group are present.
Definition 4. (Grouped deletion error) The grouped deletion error of an grouped attribution β =
{(Si, ci)}Gi=1 for a model f : Rd → R when deleting a subset of features S from an input x is

GroupDelErr(α, S) =

∣∣∣∣∣∣f(x)− f(x¬S)−
∑

i:S⊆Si

ci

∣∣∣∣∣∣ (10)

Definition 5. (Grouped insertion error) The grouped insertion error of an feature attribution β =
{(Si, ci)}Gi=1 for a model f : Rd → R when inserting a subset of features S from an input x is

GroupInsErr(α, S) =

∣∣∣∣∣∣f(xS)− f(0d)−
∑

i:S⊆Si

ci

∣∣∣∣∣∣ (11)

Corollary 1. Consider p1 and p2, the polynomials from Theorem 2 and Theorem 1. Then, there exists
a grouped attribution with zero deletion and insertion error for both polynomials.

Proof. Let [d] denote {1, . . . , d}. First let p1(x) =
∏

i xi and consider a grouped attribution with
one group, β = {([d], 1)}. Then, no matter what subset S is being tested, S ⊂ [d] is always true,
thus:

GroupDelErr(β, S) =

∣∣∣∣∣∣f(x)− f(x¬S)−
∑

i:S⊆mi

si

∣∣∣∣∣∣ = |1− 0− 1| = 0

Next let p2(x) =
∏

i∈S1∪S2
xi +

∏
j∈S2∪S3

xj and consider a grouped attribution with two groups,
β = {(S1 ∪ S2, 1), (S2 ∪ S3, 1)}. If S = [d], then

GroupInsErr(β, S) =

∣∣∣∣∣∣f(xS)− f(0)−
∑

i:S⊆Si

ci

∣∣∣∣∣∣ = 2− 0− (1 + 1) = 0
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Algorithm 1 Sum-of-Parts Models

Require: Group Generator GroupGen, Group Selector GroupSelect
Require: Input Features X, Prediction Model f

S1, S2 . . . , SG ← GroupGen(X) ▷ Group Generation

for j = 1 . . . G do
zi ← f(Si ⊙X) ▷ Embedding Grouped Input Features

end for

(c1, y1), . . . , (cG, yG)← GroupSelect(z1, . . . , zG) ▷ Group Evaluation

y ←
∑G

i ci · yi ▷ Sum-of-Parts

If S empty, then the insertion error is trivially 0. Otherwise suppose S is missing an element from
one of S1 or S3. WLOG suppose it is from S1 but not S2 or S3. Then,

GroupInsErr(β, S) =

∣∣∣∣∣∣f(xS)− f(0)−
∑

i:S⊆Si

ci

∣∣∣∣∣∣ = 2− 1− (1) = 0

Otherwise, suppose we are missing elements from both S1 and S3. Then,

GroupInsErr(β, S) =

∣∣∣∣∣∣f(xS)− f(0)−
∑

i:S⊆Si

ci

∣∣∣∣∣∣ = 2− 0− (1 + 1) = 0

Lastly, suppose we are missing elements from S2. Then,

GroupInsErr(β, S) =

∣∣∣∣∣∣f(xS)− f(0)−
∑

i:S⊆Si

ci

∣∣∣∣∣∣ = 0− 0 = 0

Thus by exhaustly checking all cases, p2 has zero grouped insertion error.

B Algorithm Details

Our algorithm is formalized in Table 1. For GroupGen, we are using weights from all the queries to
keys with multiple heads without reduction. Therefore we have d number of group per attention head,
and a total of d× da groups for da attention heads.

C Experiment Details for Evaluating SOP Grouped Attributions

In this section, we perform a standard evaluation with commonly-used metrics for measuring the
quality of a feature attribution. These metrics align with the insertion and deletion error analyzed
in Section 2. We find that our grouped attributions can improve upon the majority of metrics over
standard feature attributions, which is consistent with our theoretical results.

C.1 Experimental Setups

We evaluate SOP on ImageNet [45] for single-label and PASCAL VOC 07 [16] for multi-label
classification. We use Vision Transformer [15] as our backbone. More information about training
and datasets are in Appendix C.2.

We compare against different types of baselines:

1. Surrogate-model-based: LIME [42], SHAP [33]
2. Perturbation-based: RISE [39]
3. Gradient-based: GradCAM [47], IntGrad [53]
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4. Built-in explanation: FRESH [23]

To evaluate our approach, we use interpretability metrics that are standard practice in the literature
for feature attributions [39, 57, 23]. We summarize these metrics as follows and provide precise
descriptions in Appendix C.3:

1. Accuracy: We measure the standard accuracy of the model. For methods that build
explanations into the model such as SOP, it is desirable to maintain good performance.

2. Insertion and Deletion: We measure faithfulness of attributions on predictions with deletion
and insertion tests that are standard for feature attributions [39]. These tests insert and delete
features pixel by pixel.

3. Grouped Insertion and Deletion: Insertion and deletion tests were originally made for
standard feature attributions, which assign at most one score per feature. Grouped attri-
butions can have multiple scores per feature if a feature shows up in multiple groups. We
therefore generalize these tests to their natural group analogue, which inserts and deletes
features in groups.

C.2 Training and Datasets

ImageNet ImageNet [45] contains 1000 classes for common objects. We use a subset of the first
10 classes for our evaluation. We use a finetuned vision transformer model from HuggingFace 3 for
ImageNet, and our finetune of a pretrained model 4 for VOC.

PASCAL VOC 07 PASCAL VOC 07 [16] is an object detection dataset with 20 classes. We train
with multilabel classification training, but predict with single binary labels for target classes [62].

For both ImageNet and VOC datasets, we use a simple patch segmenter with patch size of 16× 16 to
segment the images, matching the size of ViT-base. For insertion and deletion evaluation, we evaluate
on a subset of 50 examples for ImageNet and 400 for VOC due to time constraint.

C.3 Metrics Details

C.3.1 Accuracy

We evaluate on accuracy to measure if the wrapped model has comparable performance with the
original model, following Jain et al. [23]. For post-hoc explanations, the performance shown will be
the performance of the original model, since they are not modifying the model.

C.3.2 Deletion and Insertion

Petsiuk et al. [39] proposes insertion and deletion for evaluating feature attributions for images.

Deletion Deletion deletes groups of pixels from the complete image at a time, also starting from the
most salient pixels from the attribution. If the top attribution scores relfect the most attributed features,
then the prediction consistency should drop down from the stsart and result in a lower deletion score.

Insertion Insertion adds groups of pixels to a blank or blurred image at a time, starting with the
pixels deemed most important by the attribution, and computes the AUC of probability difference
between predictions from the perturbed input and original input. If the top attribution scores faithfully
reflect the most attributed features, then the prediction consistency should go up from the start and
result in a higher insertion score.

Grouped Insertion and Deletion For a standard attribution, it orders the features, each feature
is a group, and thus we test by deleting or inserting in that order. For a grouped attribution, the
natural generalization is then to delete or insert each group at each time. Besides the regular version
of insertion and deletion, we also use a grouped version. For deletion, instead of removing a fixed
number of pixels every step, we delete a group of features. If the features to remove overlaps with
already deleted features, we only remove what has not been removed. The same is performed for
grouped insertion when adding features. To get the groups, we use groups generated from SOP.

3https://huggingface.co/google/vit-base-patch16-224
4https://huggingface.co/google/vit-base-patch16-224-in21k
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C.3.3 Sparsity

Having sparse explanations helps with interpretability for humans. We evaluate the sparsity of our
grouped attributions by count the number of input features in each group i, and then average the
count for all groups with non-zero group score ci.

# group nonzeros =

∑
i(|Si|1(ci ≥ 0))

|Xi|

The fewer number of nonzeros implies more sparsity, and thus better human interpretability. On both
ImageNet and VOC, we get around 60% nonzeros. This shows that SOP produces groups that are
sparse.

C.4 Results and Discussions

Accuracy. To evaluate the performance of built-in explanation models have, we evaluate on
accuracy. The intuition is that built-in attributions use a subset of features when they make the
prediction. Therefore, it is possible that they do not have the same performance as the original models.
A slight performance drop is an acceptable trade-off, while a large drop makes the model unusable.

We compare with FRESH which is also a model with built-in attributions that initially works for
language but we adapt for vision. Table 1 shows that SOP retains the most accuracy on ImageNet
and VOC and no less than FRESH. This shows that our built-in grouped attributions do not degrade
model performance while adding faithful attributions. The grouped attributions are potentially the
advantage of SOP over non-grouped attributions such as FRESH.

Insertion and Deletion. To evaluate how faithful the attributions are, we evaluate on insertion and
deletion tests. The intuition behind insertion is that, if the attribution scores are faithful, then adding
the highest scored features first from the blank image will give a higher AUC, and deleting them first
from the full image will give a low AUC. While Petsiuk et al. [39] perturb an image by blurring to
avoid adding spurious correlations to the classifier, this may not entirely remove a feature. Since
modern backbones (such as the Vision Transformer that we use) are known to not be as biased as
classic models when blacking out features [22], we simply replace features entirely with black pixels.

We compare against all the post-hoc and built-in baselines. Table 1 shows that SOP has the best
insertion AUC among all methods for both ImageNet and VOC. Having higher insertion scores shows
that the highest scored attributions from SOP are more sufficient than other methods in making the
prediction. While the deletion scores are lower, SOP does not promise that the attributions it selects
are comprehensive, and thus have the potential of lowering the deletion scores.

Grouped Insertion and Deletion. While we can still technically evaluate grouped attributions with
pixel-wise insertion and deletion tests, it does not quite match the semantics of a grouped attribution,
which score groups of features instead of individual features. A standard feature attribution method
scores individual pixels, and therefore classic tests check whether inserting and deleting pixels one at
a time aligns with the scores. In contrast, grouped attributions assign scores for groups of features,
and thus a grouped insertion and deletion test assesses whether deleting groups of features at a time
aligns with the scores.

Table 1 shows that SOP outperforms all other baselines in both grouped insertion and grouped
deletion. This shows that SOP finds grouped attribution that are better at determining which groups
of features contribute more to the prediction. This is to be expected as it is faithful-by-construction.

D Case Study: Cosmology

In our collaboration with cosmologists, we identified two cosmological structures learned in our
group attributions: voids and clusters. In this section, we describe how we extracted void and cluster
labels from the group attributions.

Let S be a group from SOP when making predictions for an input x. Previous work [36] defined a
cluster as a region with a mean intensity of greater than +3σ, where σ is the standard deviation of the
intensity for each weak lensing map. This provides a natural threshold for our groups: we can identify
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Figure 6: Voids (left two) are used more in prediction, weighing 100% in about half the cases.
Clusters (right two) are used more in predicting σ8 than Ωm.

groups containing clusters as those whose features have a mean intensity of +3σ. Specifically, we
calculate

Intensity(x, S) =
1

|S|
∑

i:Si>0

xi

Then, a group S is labeled as a cluster if Intensity(x, S) ≥ 3σ. Similarly, Matilla et al. [36] define
a void as a region with mean intensity less than 0. Then, a group S is labeled as a cluster if
Intensity(x, S) < 0.

D.1 Cosmogrid Dataset

CosmoGridV1 is a suite of cosmological N-body simulations, spanning different cosmological param-
eters (including the parameters Ωm and σ8 considered in this work). They have been produced using a
high performance N-body treecode for self-gravitating astrophysical simulations (PKDGRAV3). The
output of the simulations are a series of snapshots representing the distribution of matter particles as
a function of position on the sky; each snapshot represents the output of the simulation at a different
cosmic time (and, therefore, represents a snapshot of the Universe at a different distance from the
observer). The output of the simulations have been post-processed to produce weak lensing mass
maps, which are weighted and projected maps of the mass distribution and that can be estimated from
current weak lensing observations (e.g., [24]).

D.2 Preprocessing

For input features used in CosmoGridV1, we segment the weak lensing maps using a contour-based
segmentation method watershed [7] implemented in scikit-image. We use watershed instead of a
patch segmenter because watershed is able to segment out potential input features that can constitue
voids and clusters. In our preliminary experiments, we also experimented with patch, quickshift [21]
for segmentation. Only the model finetuned on watershed segments is able to obtain comparable
MSE loss as the original model.

D.3 Voids and Clusters Serve Purpose in Predicting Different Parameters

We find that voids have especially higher weights for predicting Ωm, with average of 55.4% weight
for Ωm over 54.0% weight for σ8. Clusters, especially high-significance ones, have higher weights
for predicting σ8, with average of 14.8% weight for σ8 over 8.8% weight for Ωm. With relaxed
thresholds of (≥ +2σ) for clusters (≤ 0) for voids, the whole distribution of weights can be seen
from the histograms in Figure 6.

E Related Works

Post-hoc Attributions. There have been a lot of previous work in attributing deep models post-hoc.
One way is to use gradients of machine learning models, including using gradients themselves
[47, 5, 50, 6], gradient × inputs [53, 13, 51] and through propagation methods [43, 52, 4, 48, 38].

Another type of attribution includes creating a surrogate model to approximate the original model
[42, 33, 29]. Other works use input perturbation including erasing partial inputs [39, 58, 27, 30, 26,
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43, 12] and counterfactual perturbation that can be manual [27] or automatic [9, 64, 3, 61]. While
the above methods focus on individual features, Tsang et al. [56] investigates feature interactions.
Multiple works have shown the failures of feature attributions [8, 54, 1, 28]

Built-in Attributions. For built-in feature attributions, one line of work first predict which input
features to use, and then predict using only the selected features, including FRESH [23] and [20].
FRESH [23] has a similar structure as our model, with a rationale extractor that extracts partial input
features, and another prediction model to predict only on the selected features. Another line of work
that learns different modules when using different input features, including CAM [31], GA2M [32],
and NAM [2]. The key difference of our work from the previous built-in attributions is that we use
grouped attributions while previous works attribute to input features individually.
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