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Abstract

Neural Stochastic Differential Equations (NSDE)
have been trained as both Variational Autoencoders,
and as GANs. However, the resulting Stochastic
Differential Equations can be hard to interpret or
analyse due to the generic nature of the drift and
diffusion fields. By restricting our NSDE to be
of the form of Langevin dynamics and training it
as a VAE, we obtain NSDEs that lend themselves
to more elaborate analysis and to a wider range
of visualisation techniques than a generic NSDE.
More specifically, we obtain an energy landscape, the
minima of which are in one-to-one correspondence
with latent states underlying the used data. This
not only allows us to detect states underlying the
data dynamics in an unsupervised manner but also
to infer the distribution of time spent in each state
according to the learned SDE. In general, restricting
an NSDE to Langevin dynamics enables the use of
a large set of tools from computational molecular
dynamics for the analysis of the obtained results.

1 Introduction

In recent years there has been widespread interest
in Neural SDEs for generative modelling. Neural
SDEs (NSDEs) learn the parameters in stochastic
differential equations, which are natural extensions
of ordinary differential equations to situations where
uncertainty arises from many small and unobserved
interactions, such as stock prices and molecular dy-
namics [1, 2]. As such, Neural SDEs can be seen as
incorporating uncertainty in Neural Ordinary Dif-
ferential Equations.

NSDEs are said to combine the strengths of deep
learning and classical modelling [2, 3]. Deep learning
brings performance and capacity, whereas classical
modelling derives a lot of value from its interpretabil-
ity. However, although from some perspective the
dynamical system learned by an NSDE is itself a
classical model, it is still a very complicated ob-
ject, which makes it questionable whether NSDEs
actually provide interpretability.

Indeed it is often overlooked in Neural Differen-
tial Equation literature that finding the differential
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equation is only the start of the process. For inter-
pretation, one needs to analyse stability, find sta-
tionary solutions, and analyse asymptotic behaviour,
to name a few. In the particular case of NSDEs,
one would want to find basins of attraction — as
they could correspond to discrete states in the dy-
namics — and would like to extract how long the
system spends in each state and at what rates tran-
sitions occur. For general dynamical systems, these
tasks are prohibitively complicated, which severely
hampers interpretability.

To make NSDEs more interpretable, we introduce
Neural Langevin Dynamics (NLD), in which we re-
place the generic vector field, which serves as the
drift, by a gradient field, and let the system evolve
by Langevin dynamics. This has the following ad-
vantages.

There is a direct interpretation of “states” in the
original system as the basins of attraction around
local minima of the energy [4]. These local min-
ima can be found using the vast toolbox of scalar
optimisation methods [5–8]. Sub-level sets of the
energy function can then be used as approximations
of the basins of attraction. This is illustrated by
e.g. Figure 2(f), in which the contour lines clearly
define regions that belong to specific states.

Moreover, there exist many more tools for visu-
alising scalar functions than for visualising vector
fields, aiding in the understanding by users of these
models.

In this work, after introducing NLD in more detail,
we show its potential and validity by training it as
a Variational Autoencoder (VAE) with a learned
prior1 [1, 9] on an example problem. We show that
the local minima indeed coincide with the true states
underlying the data, and that information on the
relative occurrence of states can be extracted from
the learned energy landscape.

Our results indicate that NLD allows us to extract
interpretable information about the data dynamics,
and in such a way that it opens up the use of tools
from optimization and analysis, effectively provid-
ing a bridge between deep learning and classical
modelling.

1See Section 3 for further details.
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2 Related Work

The authors of [10, 11] view NSDEs as infinitely
deep neural networks but don’t use them as time
series models. In [2], NSDEs are trained as a GANs
instead of as VAEs, and the authors of [12, 13] train
an NSDE in a GAN-related way. The authors of
[1] introduce the training of an NSDE as a VAE on
sequential data. We use their training method to
train our NLD models. The authors of [3] also train
NSDEs as VAEs but focus mostly on the dimension-
ality of the data space. To address problems around
sample paths being far from observations during the
start of training, the authors of [14] devise a method
of training NSDEs using importance sampling which
could prove useful in the future to make the training
of NLD models more stable. Another work address-
ing the learning of NSDE in data-space is [15], where
snapshots are used instead of trajectories.

The authors of [1, 16] extend the so-called ad-
joint sensitivity method to NSDEs and provide
algorithms for storing Wiener processes. We do
not use the adjoint sensitivity method but do use
their algorithms for training NSDEs in the form
of the torchsde package —https://github.com/

google-research/torchsde.

NSDEs have found practical use, e.g. for modeling
turbulence [17] and for modeling quasar variability
[18].

NSDEs can be viewed in the wider context of
neural differential equations. The seminal paper in
this area was [19]. These were extended to models
for sequential data in, among others [20–22].

Moreover, NLD can be viewed in a line of physics-
inspired neural network models [23–26]. The focus in
the cited works however was more on performance
and theoretical generalisability whereas our work
focuses more on interpretability.

Langevin dynamics themselves have been exten-
sively researched since the start of the 20th century
and remain a topic of active research, more on this
topic can be found in e.g. [27–29]. Besides their rele-
vance for physical modelling, they play an important
role in MCMC sampling [4].

3 Method

3.1 Neural Stochastic Differential
Equations

When training Neural Stochastic Differential Equa-
tions as Variational Auto-Encoders on some data
X =

{
x(i) = {x(i)

t }Tt=0 | i = 1, . . . , N
}

with N,T ∈
N the number of data points and sequence length
respectively, as in [1], one has two stochastic differen-
tial equations parameterising the prior pθ(z | z0) and

approximate posterior qϕ,θ(z | x, z0) distributions:

pθ(z | z0) ∼ dzt (1)

= hθ(zt, t)dt+ gθ(zt, t)dWt (2)

(prior), (3)

qϕ,θ(z | x, z0) ∼ dzt (4)

= fϕ(zt, t, ct)dt+ gθ(zt, t)dWt (5)

(approximate posterior), (6)

with both differential equations starting in z0.

Here ct is a function of the data x obtained by
some encoder architecture, in this work a GRU

[30]. Throughout this work, c
(i)
t will only depend on

x
(i)
s s≤t so the models all operate in an online fashion.

The network being integrated against t, i.e. hθ in
the prior and fϕ in the approximate posterior, is
called the drift, and the network being integrated
against the Wiener Process Wt, i.e. gθ, is called the
diffusion.

As shown in [1], the Kullback-Leibler divergence
between the approximate posterior and the prior is
then given by

DKL (qϕ,θ(z | x, z0) || p(z | z0)) (7)

=
1

2

∫ T

0

|u(zt, t, ct)|2dt, (8)

gθ(zt, t)u(zt, t, ct) (9)

= fϕ(zt, t, ct)− hθ(zt, t), (10)

where T is the final time.

Additionally, one has a decoding distribution
pθ(xt | zt), a prior distribution over the initial latent
state pθ(z0), and an approximate prior distribution
over the initial latent state qϕ(z0 | x)2.
Then the evidence lower bound (ELBO) can be

written as

log pθ(x
(i)
0 . . . x

(i)
T ) ≥ Ez(i)∼qϕ(z|x(i))

[
(11)

T∑
t=0

pθ(x
(i)
t | z(i)t )− 1

2

∫ T

0

|u(zt, t, ct)|2dt
]

(12)

−DKL

(
qϕ(z0 | x(i)) || pθ(z0)

)
, (13)

where qϕ,θ(z | x) = qϕ,θ(z | x, z0)qϕ(z0 | x).
To find the optimal parameters θ, ϕ, we can ap-

proximate the ELBO for a batch of datapoints by
sampling from qϕ(z0 | x) using the reparameterisa-
tion trick [9], and sampling z using an SDE solver
such as the Euler-Maruyama method. To obtain
gradients for the stochastic integral term, we can
either back-propagate through the SDE solver or
use the adjoint method [1, 16]. We can then use
stochastic gradient ascent to optimise the ELBO.

2Again, in this work z0 only depends on x0, so that the
model can operate online.
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Note that pθ(z) is a learned distribution, param-
eterised by an NSDE, representing the latent dy-
namics of the dataset as a whole. It is learned
by trying to statistically match the encoded data
sampled from the approximate posterior qϕ,θ(z | x)
through the Kullback Leibler divergence. However,
it is not easy to extract useful information about
these latent dynamics from this representation of the
distribution due to the generality of Equation (2).

3.2 Neural Langevin Dynamics

We introduce Neural Langevin Dynamics as a more
interpretable alternative to NSDE. In NLD, we re-
place the drift hθ in Equation (2) by the scaled
gradient of an energy Eθ : Rd → R that is given
by a neural network3, and modify the evolution to
either overdamped or underdamped Langevin dy-
namics.

In the case of overdamped Langevin dynamics,
the prior and approximate posterior evolutions are
determined by

dzt = − γ−1∇zEθ(zt)dt+
√

2β−1γ−1dWt (14)

dzt = − γ−1∇zEθ(zt)dt (15)

+ fϕ(zt, t, ct)dt+
√
2β−1γ−1dWt (16)

whereas in the case of underdamped Langevin dy-
namics, they are determined by

dzqt = M−1zpt dt

dzpt =
[
−∇Eθ(z

q
t )− γM−1zpt

]
dt

+
√
2γβ−1dWt

(17)


dzqt = M−1zpt dt

dzpt = −
[
∇Eθ(z

q
t ) + γM−1zpt

]
dt

+fϕ(z
q
t , z

p
t , t, ct)dt+

√
2γβ−1dWt.

(18)

Here, M is a positive diagonal matrix representing
mass. The constants M , γ, and β can either be fixed
or can be learned while training the model.

In the underdamped case, zq plays the role of
location, and zp plays the role of momentum. Only
the location, zq, should be used for decoding. Note
that zq follows a second-order stochastic differential
equation.

One of the great advantages of using Langevin
dynamics is that this way, the SDE of the prior
distribution has a known stationary distribution of
the form

p∞(z) ∼ exp(−βEθ(z))∫
Rd exp(−βEθ(y))dy

(19)

3To ensure the existence of a stationary measure, we pa-
rameterize Eθ by the sum of a neural network and a quadratic
term: Eθ(z) = NNθ(z) + cθ∥z∥2.
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Figure 1. Graph of the Markov process underlying the
data.

in the overdamped case, and

p∞(zq, zp) ∼
exp(−βEθ(zq))∫

Rd exp(−βEθ(y))dy
⊗N (zp; 0,M

−1)

(20)

in the underdamped case. Due to ergodicity, the pro-
portion of time spent in a region of the latent space,
in the long run, corresponds to the mass attributed
to that region by the stationary distribution, which
only relies on the β and Eθ.

4 Experimental setup

We evaluate the capability of our method to develop
an interpretable representation of data dynamics by
training a model on data coming from a Markov
chain. We then analyse the energy landscape of this
model to recover the discrete states of the Markov
chain and infer the time spent in each state.

The data is generated as random walks on a graph
with three nodes. At each time step, a signal is
emitted as a random vector sampled from a 15-
dimensional multivariate normal distribution with
mean and covariance matrix specified by the node
the random walk is at.
The transition probability from any state to any

different state is 0.025 at each time step, resulting in
a stationary distribution (1/3, 1/3, 1/3), and an ex-
pected transition time of 20 time-steps. An overview
of this is shown in Figure 1.
Code and data for the training of the models,

as well as some trained models, are provided at
https://github.com/SimonKoop/NLD-public.

5 Visualisation advantages of
NLD

Visualisation is an important tool for obtaining hu-
man knowledge in general and can be useful for
extracting knowledge from a trained model. To vi-
sualise trained models, if we only have a drift field,
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(a) Quiver plot drift field. (b) Flow lines drift field.

(c) Quiverplot of 3d drift
field.

(d) Projection of flowlines
starting in a 2d plane onto
that same plane.

(e) A 3d plot of the en-
ergy landscape restricted to a
plane through the three min-
ima.

(f) A contour plot of the en-
ergy restricted to the plane
through the three minima.

(g) A 3d contour plot of the
energy landscape.

Figure 2. Visualisations the drift in the latent space of
an NSDE (a-b) respectively an NLD (c-g) trained as a
VAE.

as is the case for a general NSDE, all we can really
do is make a quiver plot of the drift field or plot the
flow lines of the drift. For the two-dimensional case,
this is shown in Figure 2(a) and Figure 2(b).

As shown in Figure 2(c), a quiver plot of a three-
dimensional vector field is already rather hard to
interpret. One can restrict these visualisation tech-
niques to a plane to make them more understandable,
as is shown for a flow-line plot in Figure 2(d).

If on the other hand, the drift field of the model is
a gradient field of an energy function, as is the case
with the NLD models, we can additionally visualise
the energy function, e.g. by plotting a graph or
making a contour plot. If the dimensionality of the
latent space is more than three, making it impossi-
ble to just plot the graph or the contours, we can
restrict ourselves to a two-dimensional plane within
the larger space, as is shown in Figure 2(e) and
Figure 2(f), or to a three-dimensional subspace, re-
sulting in a visualisation like the one in Figure 2(g).
These additional tools can aid a practitioner in

interpreting what the model has learned and trans-
lating the obtained results to either existing or new
knowledge about the data.

5.1 Visualisation procedure in our ex-
periments

For the visualisation of the energy landscapes ob-
tained in our experiments, we found the relevant
subspace using the following procedure. First, we
encoded part of the training data, say x(1), . . . , x(k)

to the latent space using the approximate pos-
terior qϕ(z | x), observing the latent code at
pre-determined times t1, . . . , tn to get k · n codes

z
(1)
t1 , . . . z

(1)
tn , . . . , z

(k)
t1 , . . . z

(k)
tn . Then we performed

gradient flow (or, really, gradient descent) starting
in these codes:

żi,j(t) = −∇Eθ(zi,j(t)), (21)

zi,j(0) = z
(i)
tj . (22)

Finally, we perform PCA on the set of resulting
vectors {zi,j(T ) | i = 1, . . . , k, j = 1, . . . , n} for some
large enough T . In our experiments, we parameterise
Eθ as Eθ(z) = c|z|2 +MLP(z), where c is a learned
parameter. As a rule of thumb for T , we take T
such that for ˙̃z(t) = −c · z̃ with z̃(0) = 3

√
1/c,

z̃(T ) = 0.1. We can view PCA as a projection onto
an affine plane, and this plane is the one we use
for visualising the energy landscape. Most of the
zi,j(T ) will be close to one of the three minima, so
most of the variation is from having multiple energy
wells. The plane obtained through this method will
therefore be approximately through the three energy
minima.

Finding the relevant subspace for visualisation be-
comes trickier when more energy minima are present,
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Figure 3. Results of unsupervised sequence segmenta-
tion of the first test sequence by both an underdamped
and an overdamped NLD model.

or when the wells have more complicated shapes.
Nonetheless, the first two steps above can be used
to find the locations of the wells, and based on
that, one can either choose multiple affine subspaces
to visualise, or pick one (or more) non-linear sur-
faces through the minima on which to visualise the
energy landscape. Alternatively, one could approxi-
mate minimum energy paths between the minima
through string methods, and plot the energy along
those paths.

6 Results

We evaluate whether the learned energy landscape
accurately represents the distribution of states un-
derlying the data.

The data-generating Markov chain has an invari-
ant distribution of (1/3, 1/3, 1/3), and we investigate
whether this distribution can be recovered from the
prior in the trained Neural Langevin Dynamics net-
work.

We identify the three states in the Markov chain
with the three wells in the energy landscape. To
evaluate whether the energy landscape accurately
represents the distribution of states underlying the
data, we estimate the distribution p = (p1, p2, p3)
over the three wells according to the learned prior
in three different ways and compare the results to
the invariant distribution of the Markov chain. The
three ways of estimating p are:

(a) by taking a thousand samples from the station-
ary distribution of the prior SDE, performing
gradient flow on them, and seeing what percent-
age of samples ends up in each well;

(b) by taking the zeroth order approximation pi ≈
exp(−βEθ(xi))/

∑
j exp(−βEθ(xj)) where xi is

the location of the local minimum in well i;

(c) by taking the second-order approximation:

pi ≈ α
exp(−βEθ(xi))

ρi
, (23)

α =
(∑

j

exp(−βEθ(xj))

ρj

)−1

, (24)

ρi(xi) = ((2π)d det(β−1d2Eθ(xi)
−1))−1/2,

(25)

where d2Eθ(xi) is the Hessian of the energy
function at xi, and d is the dimension of the
latent space. This second-order approximation
corresponds to approximating the three wells
by a mixture of three Gaussians.

We report the ℓ1-distance between p and
(1/3, 1/3, 1/3) for each approximation for the top five
best performing models ranked by second-order ap-
proximation performance for both the underdamped
and overdamped models in Table 1(a). For a more
easily interpretable representation of the results, we
also report the first coordinate of p in Table 1(b).

A second question is whether the discovered
“states”, i.e. the energy wells, in the trained prior dy-
namics coincide with the ground-truth latent states
in the data-generating Markov chain and whether
the trained encoder network successfully maps un-
seen incoming data to the latent states investigated
above. This is a measure of the degree to which
the training has managed to model the whole dy-
namics. We generated 500 test sequences from the
same three-state Markov chain and mapped them to
the latent space using the approximate posteriors,
qϕ,θ(z | x), of each of the models used for Table 1(a).
Then we followed the gradient flow from each time
step in each sequence of latent-space points to find
out which well they belong to; this leads to a se-
quence of labels (0, 1, 2). To compare these labels
to the ground truth, we selected the permutation
of state labels (0, 1, 2) for which the overlap is max-
imised. We then computed the mean and standard
deviation of the accuracy over the 500 sequences.
The results are shown in Table 1(c).

We provide an example of the segmentation in
Figure 3. Note that the models operate in an online
fashion resulting in the encoded latent state lagging
slightly behind the true latent state. Nonetheless,
these results clearly show that the wells in the energy
landscape coincide with the discrete states behind
the data. Moreover, the models were trained on
sequences of length 200, but are tested on sequences
of length 500, generalising to sequences 2.5 times
longer than seen during training.
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Table 1. Results on estimating states from the learned energy landscape for the overdamped model (O) and
underdamped model (U).

(a) ℓ1 distance between the estimated distribution of states and actual distribution of states.

Sampled (method (a)) 0th order (method (b)) 2nd order (method (c))
O 0.047± 0.037 0.051± 0.022 0.040± 0.013
U 0.072± 0.068 0.041± 0.029 0.021± 0.0044

(b) First coordinate of the various estimations of the distri-
bution of the state.

Sampled 0th order 2nd order
O 0.329± 0.013 0.322± 0.022 0.324± 0.017
U 0.335± 0.027 0.333± 0.011 0.336± 0.006

(c) Accuracy of unsupervised sequence segmentation for the
same models as in Table 1(a)

mean accuracy standard deviation
O 92.6%± 0.6% 1.6%± 0.2%
U 82.2%± 5.6% 3.6%± 1.4%

7 Limitations and future re-
search

There is an inherent limitation to the types of dynam-
ics our method can represent. Langevin dynamics
can not represent periodic behaviour. Filtering out
periodic signals may be a feature, but this method
is not a good match for cases where one wants to
analyse periodic behaviour in dynamics.

We had some trouble getting our NLD models
to train consistently: the loss would become NaNs
or jump several orders of magnitude. We encoun-
tered the same problems with NSDE models we
trained on the same data, which indicates how in-
volved the training of NSDEs is in general, when
using path-based methods like [1]. There are sev-
eral other methods of training NSDEs, such as [14],
[12], and [3], but there is no clear overview of which
method works best in what cases. A comparison of
the various training strategies for NSDEs would be
invaluable.

Moreover, neither the value of the loss on the
training or validation set nor the values of any of
the loss components were a clear indication of how
well the learned landscape or vector field represented
the dynamics underlying the data. This need not
be a problem if there is a downstream task, like
segmentation, that can be used to evaluate the qual-
ity of the learned dynamics. Nonetheless, this does
restrict the applicability of the method.

8 Conclusion

To provide a more interpretable alternative to Neu-
ral Stochastic Differential Equations, we introduce
Neural Langevin Dynamics, in which we replace the
general drift term by the gradient of a trainable en-
ergy function and let the system evolve by Langevin
dynamics. The gain in interpretability comes both
from the better options for visualisations of scalar
functions over general vectors fields, and the better
options for downstream processing in the form of
classical methods from optimisation and analysis.

With these methods, we can extract important prop-
erties such as stationary distributions and discrete
states. When we apply NLD to an example prob-
lem, it recovers the discrete states underlying the
data. These results show promise that NLD is able
to combine the performance of neural networks with
the interpretability of classical differential equation
based models.
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