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ABSTRACT

Various pruning methods have been introduced for over-parameterized recurrent
neural networks to improve efficiency in terms of power and storage. With the
advance in pruning methods and their variety, a new problem of ‘hyperpruning’ is
becoming apparent: finding a suitable pruning method with optimal hyperparameter
configuration for a particular task and network. Such search is different from the
standard hyperparameter search, where the accuracy of the optimal configuration is
unknown. In the context of network pruning, the accuracy of the non-pruned (dense)
model sets the target for the accuracy of the pruned model. Thereby, the goal of
hyperpruning is to reach or even surpass this target. It is critical to develop efficient
strategies for hyperpruning since direct search through pruned variants would
require time-consuming training without guarantees for improved performance. To
address this problem, we introduce a novel distance based on Lyapunov Spectrum
(LS) which provides means to compare pruned variants with the dense model and
early in training to estimate the accuracy that pruned variants will achieve after
extensive training. The ability to predict performance allows us to incorporate the
LS-based distance with Bayesian hyperparameter optimization methods and to
propose an efficient and first-of-its-kind hyperpruning approach called LS-based
Hyperpruning (LSH) which can optimize the search time by an order of magnitude
compared to standard full training search with the loss (or perplexity) being the
accuracy metric. Our experiments on stacked LSTM and RHN language models
trained with the Penn Treebank dataset show that with a given budget of training
epochs and desired pruning ratio, LSH obtains more optimal variants than standard
loss-based hyperparameter optimization methods. Furthermore, as a result of the
search, LSH identifies pruned variants that outperform state-of-the-art pruning
methods and surpass the accuracy of the dense model.

1 INTRODUCTION

Over the last decade, the performance of sequence models, i.e. Recurrent Neural Networks (RNN),
has been significantly enhanced in various applications such as action recognition (Su et al., 2020),
video summarization (Zhao et al., 2018) and voice conversion (Huang et al., 2021). In particular,
RNN variants such as LSTM (Hochreiter & Schmidhuber, 1997; Zaremba et al., 2014; Malhotra
et al., 2015) and RHN (Zilly et al., 2017) excel in various NLP application ranging from machine
translation (Wu et al., 2016) to language modeling (Irie et al., 2019). However, the architectural
inherent computational demands of RNN, being linear to input sequence length and quadratic to model
size, lead to a slowdown in training and inference. This hinders these models from being deployed on
resource-limited devices such as mobile devices. Multiple methods have been proposed to alleviate
this problem, including network quantization (Hernández et al., 2020; Han et al., 2015a) and weight
sharing (Ullrich et al., 2017). Among these approaches, network pruning is advantageous since aims
to achieve a sparse model which would require fewer computational resources. A particularly notable
pruning approach is dense-to-sparse, where the network is gradually being pruned starting from a
non-pruned (dense) model (Han et al., 2015b; Guo et al., 2016). While the inference time of the
pruned network will eventually decrease, the training time remains similar to or even longer than the
time of training a dense model. Such training time typically extends to multiple days or weeks and
poses challenges in achieving pruned models efficiently.
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Figure 1: (A) Lyapunov Spectrum curves of dense (black), and two pruned variants (green and red) at
pre-training, Epoch 1, 3, and 5 (left to right). (B) L2 distance of two variants to the dense reference
in LS space over training. (C) Perplexity curves for two pruned variants over training.

The Dynamic Sparse Training (DST) approach was introduced recently to meet the rising demand
of optimizing computational costs for achieving pruned variants (Bellec et al., 2017). In contrast
to dense-to-sparse approaches, DST is a sparse-to-sparse pruning method that starts with a sparse
model and maintains the number of non-zero parameters over the entire training to improve not
only the training speed along with the inference speed. DST involves three main procedural steps of
pruning: weight removal, weight growth, and weight redistribution. For each step, salience (controls)
such as magnitude- or gradient-based could be applied to decide how it is conducted. There are
no universal controls applicable to all tasks and networks, as each has its intended scenario. This
unique mapping between a scenario and a control in DST prevents generalizing a standard rule over
all scenarios. Therefore, for a certain scenario, the controls which characterize the pruning method
become additional key hyperparameters that need to be set such that pruning is executed in the most
optimal way. We term this type of hyperparameter search as ’Hyperpruning’. Hyperpruning concerns
with selecting both the pruning methodology with its controls along with other hyperparameters
(related to training) for a particular scenario. Specifically, hyperpruning requires searching over
methodological and non-methodological hyperparameters. Methodological hyperparameters define
the pruning method, and non-methodological hyperparameters are independent of the pruning method
and are applicable across them.

A unique feature of hyperpruning that does not typically hold for other hyperparameter optimization
problems is the existence of estimated target accuracy since the optimal accuracy of its non-pruned
(dense) counterpart is available and can serve as a loose upper bound for the pruned network to guide
the hyperpruning process. However, even with this knowledge, searching through all pruning methods
and their hyperparameters is a time-consuming task since each variant requires extensive training.
Furthermore, there is no guarantee for achieving a more accurate configuration after investigating
multiple unsuccessful configurations. Hyperparameter Optimization algorithms accelerate the search
process by implementing a distance that could be optimal to either efficiently evaluate configuration
variants or effectively generate reliable variants (Snoek et al., 2012; Hutter et al., 2011; Bergstra
et al., 2011). In particular, such a distance will aim to provide early estimation of the accuracy of a
considered configuration without proceeding with full training. This distance also targets to improve
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the reliability of configurations by adaptively generating them according to the history of visited
configurations and their corresponding distances. A commonly used distance for hyperparameter
search is the loss curve from early training episodes, however, in many scenarios this distance is not
effective since it is rarely guaranteed that models that perform well in the beginning of training will
reach the desired accuracy at the end, as illustrated in Fig. 1-C. Therefore, finding an efficient and
reliable distance is essential to hyperpruning.

Some previous work has shown that sequence models (RNNs and their variations) can be treated as
dynamical systems, and their dynamic flow can be analyzed using Lyapunov Spectrum (LS), which
measures the contraction/expansion ratio of the hidden states over time. It was also proposed that
LS could be a potential indicator of the trainability of the network and the accuracy that it could
reach (Vogt et al., 2022a). Based on these results, a recent work suggested that an AutoEncoder
learned from the LS of slightly trained-RNN samples with random hyperparameter configurations
can provide a low-dimensional embedding space in which RNN variants are organized according to
the accuracy they achieve after training (Vogt et al., 2022b). Such organization appears to persist in
the pruning setup establishing the embedding directly from LS, as demonstrated in Fig. 1-A. The
example compares two pruned variants (green and red) with the dense model (black). Pruned 1
variant (green) eventually after full training achieves more optimal/lower perplexity than Pruned 2
variant (red) although its perplexity is higher for more than 60 epochs, see Fig. 1-C. While early
perplexity is not indicative of the estimated accuracy, LS-based distance appears to be consistent and
indicates that Pruned 1 variant is closer to the dense network for all epochs, as shown in Fig. 1-B.

The consistency of distance between the dense and pruned variants over training leads us to introduce
a novel distance based on LS and its embedding (LS Space) to guide hyperpruning. Along with
LS distance we propose a novel and efficient algorithm, called LS-based Hyperpruning (LSH),
which utilizes the distance in LS space (LS-based distance) and adaptive generation to identify
optimal pruning variants at a fraction of the cost required for training them. We summarize the main
contributions of our work below:

1. We propose a novel distance for hyperpruning. The distance is based on Lyapunov Spectrum (LS)
and is capable of estimating the similarity between candidate pruned variants and the dense model.

2. We propose a novel algorithm called LSH that utilizes the LS-based distance as an early estimation
criterion and allows sifting through and replenishing pruned variants with an order of magnitude
smaller number of training epochs than loss-based full training search.

3. Our experiments on two extensive RNN language model benchmarks including stacked LSTM
and RHN language models trained with Penn Treebank Dataset, show that LSH achieves more
accurate pruned models than loss-based hyperparameter searches, pruning methods that achieved
state-of-the-art accuracy on benchmarks, and even more accurate than the dense network.

2 RELATED WORK

Network Pruning The desire of reducing networks complexity and running time fuels the investigation
of network pruning. In early applications, pruning was proposed to improve the inference speed
of pretrained dense networks by iteratively pruning and fine-tuning them until reaching the target
sparsity (Janowsky, 1989; Mozer & Smolensky, 1989; 1988; LeCun et al., 1989; Hassibi & Stork,
1992). Such pipelines are called dense-to-sparse and were applied in various applications and in many
achieved only a marginal drop in accuracy when compared to the dense models, e.g. magnitude-based
pruning applied to convolutional networks (Han et al., 2015b; Guo et al., 2016).

The requirement of a pre-trained model was mediated by Gradual Magnitude Pruning (GMP) methods
which gradually train and prune the model over time and have been implemented on for broad range of
network architectures (Narang et al., 2017; Zhu & Gupta, 2017; Gale et al., 2019). Recent approaches
further proposed to generalize the pruning process such that the weights and the pruning mask are
jointly learned through a unified optimization or differential reparameterization function (Liu et al.,
2020; Kusupati et al., 2020; Lin et al., 2020). In addition to direct pruning on weights, indirect
pruning methods have been proposed employing L0 (Louizos et al., 2017), L1 regularization (Wen
et al., 2017), and Variational Dropout (Molchanov et al., 2017). However, for large-scale learning
tasks these methods do not reach the accuracy of magnitude-based pruning (Gale et al., 2019).
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Magnitude-based pruning turned out to be effective in several aspects. While pruned networks
optimize the inference time and save computational resources the pruning process, as being a
generalized iterative regularization, could also achieve more optimal accuracy than the dense model,
as already observed in Lottery Ticket Hypothesis (Frankle & Carbin, 2018). In some cases the “lottery
ticket” can be identified early in training and potentially save training cost (You et al., 2019). While
GMP succeeds in achieving faster inference time, their training time is similar to or even longer than
training a dense network. To improve the training efficiency and avoid complex pruning schedules, it
has been proposed to prune at initialization according to particular salience (controls) and maintain
the pruning mask throughout training (Lee et al., 2018; 2019; Wang et al., 2020; Tanaka et al., 2020).
These methods are advantageous but fail to match the performance of dense-to-sparse methods (Wang
et al., 2020) and typically do not perform well in extreme sparsity cases (Lee et al., 2019).

To address above challenges in expanding training demands, recent approaches proposed a novel type
of pruning, Dynamic Sparse Training (DST). It is a sparse-to-sparse pruning concept which aims
to optimize for both inference and training efficiency without sacrifice to accuracy. To keep being
efficient, DST maintains the total number of non-zero weights during training and alters the position
of non-zeros through a prune-regrow process to make the model more flexible. This idea was first
introduced in Deep-R (Bellec et al., 2017), which rewires the network from a posterior. Later, inspired
by biological neural networks, SET (Mocanu et al., 2018) simplified this process by replacing it
with magnitude-based pruning and random weight growing to maintain the sparsity during training.
Starting from a sparse seed network, NeST (Dai et al., 2019) prunes and grows both neurons and
weights according to magnitudes and gradients, respectively. Consequently, DSR (Mostafa & Wang,
2019) introduced a non-uniform sparsity for different layers instead of uniform sparsity in SET. While
showing promise, these sparse-to-sparse methods could not be on-par with dense-to-sparse methods.
For further enhancement, SNFS (Dettmers & Zettlemoyer, 2019) proposed to use momentum for
weight growing which achieves better accuracy than random growth and matches or even outperforms
dense-to-sparse methods but at the price of computational efficiency (Dettmers & Zettlemoyer, 2019).
To tackle the inefficiency, RigL (Evci et al., 2020) proposed to adapt “lazy gradient” calculation
into magnitude-based pruning, and Top-KAST (Jayakumar et al., 2020) further optimized it by not
requiring to calculate the dense gradients. Recently, a DST pruning method called Selfish-RNN has
been proposed specifically for RNN. It showed a significant improvement over the performance of
sparse RNN via non-uniform weight redistribution across gates and SNT-ASGD (Liu et al., 2021).
The method addresses parameter allocation among different layer types, which was also observed as
key in other works (Kusupati et al., 2020; Frankle et al., 2020). Additional comprehensive survey on
network pruning is available in (Hoefler et al., 2021; Wang et al., 2021) and references therein.

Hyperparameter Search Multiple Hyperparameter Optimization (HPO) algorithms have been pro-
posed to find the optimal hyperparameter configurations for a specific scenario. Many HPO algorithms
propose configurations in an iterative fashion and then evaluate their performance. Therefore, HPO
can be categorized the way they propose new configurations and how they evaluate configurations.

For configurations proposal, grid search and manual search are the most intuitive HPO, however
are also inefficient. Instead, random search finds comparable or better models within a limited
time (Bergstra & Bengio, 2012). In contrast to these memory-less approaches, more advanced HPO
algorithms include a memory of proposed configurations and their accuracy in an archive. They then
decide between exploitation and exploration, i.e., exploiting the current best configuration (local
search) or exploring a new random configuration (random search). Bayesian Optimization, such
as TPE, uses the archive to fit a surrogate model and then adaptively finds configurations (Snoek
et al., 2012; Hutter et al., 2011; Bergstra et al., 2011). Given this extra information from the
archive, Bayesian Optimization empirically outperforms a plain random search (Thornton et al., 2013;
Eggensperger et al., 2013; Snoek et al., 2015).

Another variation of HPO is multifidelity search which focuses on accelerating configuration evalua-
tion, i.e., fast evaluation is used to infer the configuration performance (Bischl et al., 2021). This
approach aims to find promising candidates and allocate more resources to them. Typically, there is
a trade-off between computational cost and evaluation accuracy, i.e., the more computation spent
on evaluating a configuration, the more accurate the evaluation is. Therefore, one common practice
is to remove less promising candidates. This approach can be incorporated into random search or
other HPO to explore a more expansive searching space within the same resource budget (Li et al.,
2017). Searching over a larger space is necessary for complex architectures, such as sparse stacked
LSTM and RHN, due to many possible hyperparameter configurations. Therefore, a fast and effective
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configuration evaluation method becomes essential. Here we show that Lyapunov Spectrum (LS) is a
candidate for such method since able to effectively perform early estimation in training.

Lyapunov Spectrum Treating sequence models, such as RNN as dynamical systems and predicting
their long-term performance is an emerging topic in deep learning research (Chang et al., 2019; Zheng
& Shlizerman, 2020; Vogt et al., 2022a; Ribeiro et al., 2020). Lyapunov Spectrum (LS), formed by
Lyapunov Exponents, is targeted to identify nonlinear dynamical systems characteristics (Ruelle,
1979; Oseledets, 2008). LS was initially used to provide insight into autonomous neural network
models (Monteforte & Wolf, 2010; Engelken et al., 2020), while RNNs are typically non-autonomous
due to external inputs. However, as long as input sequences are sampled from a stationary distribution,
LS can be generalized to a non-autonomous dynamical system such as RNN based on random
dynamical theory (Arnold, 1995). Another property of LS is that if RNN sequence is long enough,
the resulting LS converges to the same curve, as proved by Oseledets theorem (Saitô & Ichimura,
1979; Ochs, 1999). These results indicate that the information captured by LS could be indicative of
network dynamics. In (Legenstein & Maass, 2007; Pennington et al., 2018; Laurent & von Brecht,
2016), the correlation between the largest Lyapunov exponent sign and the existence of chaos in the
network has been studied. In addition, research succeeded in connecting LS features, such as zeros,
negative, mean, and variance, and concepts in dynamical systems, such as quasi-periodic orbits, fixed
point attractor, heterogeneity, and rate of contraction (Dawson et al., 1994; Abarbanel et al., 1991;
Shibata, 2001; Brandstäter et al., 1983; Yamada & Ohkitani, 1988). While each feature seems to
extract knowledge about the network, their correlation with network accuracy is unclear (Vogt et al.,
2022a). With the efficient LS computing algorithm proposed in (Vogt et al., 2022a), the correlation
between LS and network performance was found via an additional AutoEncoder network (Vogt et al.,
2022b) such that this AutoEncoder can be used to predict the performance of random hyperparameter
configurations. Motivated by this work, we propose an LS-based distance that is used to eliminate
unpromising candidates and generate new candidates. While in general applications an additional
AutoEncoder network might be needed for organizing candidates into similarity groups, for pruning,
the existence of a dense model for which LS can be computed sets the similarity and we find that direct
distance between LS of dense and pruned networks provides a robust indicator of their similarity.

3 METHODS

LS-based Hyperpruning (LSH) both eliminates and generates candidates. LSH effectively eliminates
unpromising candidates from the candidate set based on their closeness to the dense reference in the
LS space. It then generates new candidates given the remaining candidates in the set and inserts them
into the set. Such elimination and insertion procedure is iterated for multiple times. At completion,
the most promising candidates are selected with most of the training resources allocated to them for
full extensive training. The LSH method is illustrated in Fig. 2.

Lyapunov Spectrum Computation We adapt the algorithm from (Vogt et al., 2022b), which computes
LS by monitoring the contraction/expansion history of the network over the entire time sequence.
Specifically, it first randomly selects a batch X of K samples with sequence length T from the
validation set Dval, i.e., X ≡ {xk = {xt,k}Tt=1, xk ∈ Dval, k = 1, 2, . . . ,K}, where xt,k is the t-th
time step of the k-th sample in X . A vector of zeros 0 and an identity matrix I are initialized as the
original hidden state h0 and orthogonal representation base B0. Hidden state ht tracks the evolution
of network and orthogonal representation base Bt captures contraction/expansion of each direction in
the hidden state till time step t. At each time step, ht and Bt are updated, i.e., ht,k = f(ht−1,k, xt,k)
and Bt,k, Rt,k = qr(J t,k · Bt−1,k), where f is the network function, J is the Jacobian matrix
between hidden states, qr denotes QR decomposition, and · denotes matrix multiplication. The
contraction/expansion ratio at time step t is incorporated into the i-th vector of Bt and measured by
rti , the i-th diagonal element of Rt. The i-th LS, λi is then calculated by taking the average over the
entire time sequence T and K samples.

λi =
1

K

1

T

K∑
k=1

T∑
t=1

log(rt,ki ) (1)

We denote LS as Λ, i.e., Λ ≡ {λi}Li=1, where L is the dimension of hidden states ht.

LS-based Hyperpruning (LSH) Starting with a random candidate set T where each candidate is
a hyperparameter configuration of a pruned network, the goal of hyperpruning is to find the best
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Figure 2: LS-based Hyperpruning: The process starts with an initial candidate set of hyperparameter
configurations (gray circles) and a dense reference model (black circle), and executes elimination
and insertion in turns. Elimination: The reference model and each candidate is trained for e0 or ei
epochs and projected to the LS space. Candidates are ranked and eliminated depending on their
distance to the reference in the LS space. Insertion: New candidates are adaptively generated given
the remaining candidate in the set and inserted into the set. After several rounds of elimination and
insertion, the remaining candidates in the set are extensively trained and the best one (green circle) is
picked as the final selection.

configuration, see Fig. 2. The procedure of LSH is guided by a dense network t̂ since it provides a
target performance for the pruned model to reach or even surpass it. Candidate selection process
includes LS-based elimination and adaptive insertion phases executed in turns for several iterations.
In the LS-based elimination step, each candidate ti ∈ T is trained for E epochs, and after each epoch
of training, their LS is computed according to Eq. 1 and denoted as Λi

j where i and j stand for the
i-th candidate and the j-th epoch, respectively. LS till the E-th epoch of ti are grouped as Λi, i.e.,
Λi ≡ {Λi

j}Ej=0. Similarly, all LS from the dense model till epoch E are denoted as Λ̂. We then project
Λ̂ and Λi to an embedding space and use the distance between the last epoch of t̂ and ti to indicate
their closeness, i.e., [v̂0, . . . , v̂E , xi

0, . . . , v
i
E ] = embedding([Λ̂,Λi]) and s = distance(v̂E , v

i
E),

where E can either be the starting epoch e0 or the incremental epoch ei depending at which time the
LS-based elimination is being performed, see Fig. 2. In our work, we choose PCA to construct the
embedding space and project LS to a 2d PCA space, called LS Space. We use L2 distance to measure
the closeness of networks in this LS space. The distance s between ti and t̂ is then used to rank the
candidates in T . In our case, n

2 out of n candidates with longer distances are eliminated from T .
Even though LS-based elimination can efficiently find the best configuration in T , it is not guaranteed
to find the best configuration for this task since the best configuration may not necessarily exist in the
initial set. Therefore, in addition to elimination, LSH adaptively generates new candidates based on
the remaining candidates in T and inserts them to T . Generation is based on remaining promising
candidates since as LSH is iterating through elimination, it refines the candidates such that promising
candidate would move the distribution in T closer to the optimal distribution and would increase the
chance of finding the best configuration. The new candidate generation and insertion happens after
the LS-based elimination. Specifically, after the elimination, given the remaining n

2 candidates in T ,
the knowledge of their configurations and distances s serves as an initial history/archive for Bayesian
hyperparameter optimization methods such as Tree Parzen Estimators (TPE) and Adaptive TPE
(APTE) to generate new candidates. For example, TPE uses this initial knowledge to build a surrogate
model and generate new configuration candidates via Expected Improvement. In particular, n

4 new
candidates are generated and then added to candidate set T . This uneven number of elimination(n2 )
and insertion(n4 ) candidates from and to T asymptotically decreases the number of candidates in T so
that eventually only the most promising candidates are left in T . The elimination/insertion schedule
is controlled by e0 and ei which decide when to execute the first and future elimination, respectively.
As a result, they manipulate the required time budget for the candidate selection process.

After m epochs of the candidate selection process, the remaining candidates in T are extensively
trained for P epochs where P >> m until their losses/accuracies converge. Given the final
performance of extensively trained candidates, the best one is selected as the final pruned network.
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4 EXPERIMENTS

To demonstrate the effectiveness of LS-based distance (LSH), we perform multiple experiments
comparing LS-based distance (LSH) and Loss-based distance as early estimation criteria for HPO
algorithms in hyperpruning. The same initial candidates set size and elimination/insertion schedule
are used for a fair comparison, i.e., the number of initial candidates n, the starting epoch e0, and
incremental epoch ei are kept the same. This results in the same resource budget for both methods
since it only depends on n, e0, and ei. We show the generality of our method by applying it to two
sequence models, stacked LSTM and RHN, trained with Penn Treebank dataset (Marcinkiewicz,
1994) for a language modeling task. In each experiment, we follow the setup of a SOTA RNN
pruning (Liu et al., 2021). We also show the robustness of LSH by conducting experiments on stacked
LSTM under different pruning ratios. Furthermore, we demonstrate the time efficiency of LSH by
comparing the time difference between LSH and the loss-based full training search to achieve a
target accuracy. The training and LS computation are conducted on an NVIDIA RTX 2080 Ti. More
hyperparameters of architectures can be found in Supplementary Material.

Table 1: The validation and testing perplexity of stacked LSTM and RHN on PTB dataset for a
language modeling task (lower perplexity means better performance). LSH applied with Grid Search
(GS), TPE, and Adaptive TPE (ATPE). Vanilla GS, TPE, and ATPE use Loss-based distance. DSR,
SNFS, SET, RigL, GMP, Dense, and Selfish-RNN data are from (Liu et al., 2021).

Stacked-LSTM RHNMethod Validation Testing Validation Testing
DSR (Mostafa & Wang, 2019) 90.0 88.2 65.4 63.2

SNFS (Dettmers & Zettlemoyer, 2019) 88.3 86.3 74.0 71.0
SET (Mocanu et al., 2018) 87.3 85.8 63.7 61.1

RigL (Evci et al., 2020) 78.3 75.9 64.8 62.5
GMP (Gale et al., 2019; Zhu & Gupta, 2017) 76.8 74.8 65.6 64.0

Dense (Liu et al., 2021) 74.5 72.4 63.4 61.8
GS 74.2 72.5 62.1 60.4

APTE 74.3 72.7 63.4 61.6
TPE (Bergstra et al., 2011) 74.4 72.7 62.1 60.2

Selfish RNN (Liu et al., 2021) 73.8 71.7 62.1 60.4
LSH-GS (Ours) 72.5 70.8 62.1 60.4

LSH-ATPE (Ours) 72.1 69.9 60.5 59.5
LSH-TPE (Ours) 72.0 69.9 60.2 59.0

Effectiveness. We first demonstrate the effectiveness of LSH for selecting hyperparameter config-
urations including methodological and non-methodological hyperparameters. We consider sparse
initialization, death mode, and redistribution mode for the methodological hyperparameters. Sparse
initialization determines the initial pruning mask. Death and redistribution modes determine how
the weights in the network are pruned and redistributed before and after weight growth, respectively.
There are two available initialization modes, four death modes, and three redistribution modes. For
the non-methodological hyperparameters, we consider the death rate, which is the ratio of pruned
weight and total nonzeros weight at each time. The death rate is generated from the range of [0.4, 0.9].

We evaluate LS-based and Loss-based distances on different HPO algorithms, such as Grid Search
(GS), TPE, and Adaptive TPE (APTE). The pruning ratio for Stacked LSTM and RHN is 0.67 and
0.53, respectively. e0 and ei are [3, 3] and [6, 3] for stacked-LSTM and RHN, respectively. For GS,
we fix the death rate of stacked LSTM to 0.8 and RHN to 0.5. Therefore, only methodological
hyperparameters are considered and result in a total of 24 configurations. For TPE and APTE in
Table. 1, n is 40 for both stacked LSTM and RHN. As shown in Table 1, LSH (bottom three rows)
consistently outperforms by a margin dense models and SOTA pruning methods. Note that in Table. 1
is that GS, TPE, and APTE row uses Loss-based distance in comparison with LS-based distance
(bottom three rows). LSH with different HPO algorithms also achieves better performance than
the loss-based counterparts in most cases (3/3 in stacked LSTM and 2/3 in RHN). The best result
is achieved by LSH-TPE in both stacked LSTM and RNH cases which outperforms the previous
best result (Selfish RNN), i.e., 69.9 vs. 71.7 for stacked LSTM and 59.0 vs. 60.4 for RHN. Another
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Figure 3: (Left) Pruning Ratio vs. Perplexity: Comparison among LSH (blue), TPE/loss-based
(brown), and selfish-RNN (gray) on different pruning ratios.; (Right) Achieved Perplexity vs Time
Budget: Comparison between LSH (blue) and loss-based full training search (brown) on required
time budget (hours) to reach a target perplexity.

important observation is that LSH with HPO algorithms, such as TPE and ATPE, outperforms LSH
with GS. Quantitatively, LSH obtains 0.9 and 1.4 perplexity improvement on stacked LSTM and RHN
by switching from GS to TPE, respectively. Notably, this improvement is not found in the loss-based
counterparts and indicates that LSH utilizes advanced hyperparameter optimization methods better
for forming more optimal elimination and generation which leads to a more optimal selection.

We also test LSH under different resource budgets, i.e, different sizes of the initial candidate set. We
consider three resource budgets, low, moderate, and high which have 24, 30, and 40 candidates in
the initial set, respectively. We demonstrate it on stacked LSTM with pruning ratio= 0.67. Each
experiment is repeated three times and the average perplexity with 95% confidence interval are
reported. As shown in Table. 2, with increasing resource budget (Low → High), LSH can improve
the average performance (70.9 → 69.9 for TPE and ATPE) and achieve more reliable result as
confidence interval drops (3.0 → 2.6 for TPE and 0.4 → 0.3 for ATPE), while this improvement
does not necessarily exist in Loss-based counterpart (mean: 72.3 → 72.7 for TPE 72.0 → 72.7 and
ATPE; confidence interval: 0.8 → 1.1 for TPE and 1.9 → 0.1 for ATPE).

Table 2: Comparison between LS-based (LSH) and Loss-based distances applied with GS, TPE, and
ATPE under different budgets. Stacked LSTM with pruning ratio 0.67 trained on PTB is used here.
The average perplexity with 95% confidence interval are reported.

Low Budget Moderate Budget High BudgetMethods Validation Testing Validation Testing Validation Testing
GS 74.2 72.5 74.2 72.5 74.2 72.5

ATPE 74.2 (1.2) 72.0 (1.9) 74.3 (0.7) 72.7 (0.1) 74.3 (0.7) 72.7 (0.1)
TPE 74.1 (1.3) 72.3 (0.8) 74.2 (0.6) 72.4 (1.0) 74.4 (0.5) 72.7 (1.1)

LSH-ATPE (Ours) 73.3 (0.9) 70.9 (0.4) 72.1 (0.2) 69.9 (0.3) 72.1 (0.2) 69.9 (0.3)
LSH-TPE (Ours) 72.6 (1.9) 70.9 (3.0) 72.8 (1.1) 70.9 (2.6) 72.0 (0.2) 69.9 (2.6)
LSH-GS (Ours) 72.5 70.8 72.5 70.8 72.5 70.8

Robustness. We evaluate the robustness of LSH to pruning ratios and show our results in Fig. 3-Left.
We test from moderate (0.5) to high (0.8) pruning ratios by a step of 0.1. For each experiment, TPE
is used as the HPO algorithm and n is set to 20. The experiment is on Stacked LSTM and the same
e0 and ei are used. As shown in Fig. 3-Left, LSH (blue) consistently outperforms TPE/loss-based
(brown), Selfish-RNN (gray) methods, and dense model for all pruning ratios.

Time Efficiency. We compare the time that LSH uses to reach a particular target perplexity with
the baseline loss-based full training search, which selects the optimal configuration after finishing
training all candidates. We use stacked LSTM with a fixed pruning ratio of 0.67 for these experiments.
Fig. 3-Right shows the amount of time (y-axis) required for finding a configuration with a particular
target perplexity (x-axis). We observe that LSH is more efficient than the loss-based approach for all
perplexities. Particularly, for finding the optimal configuration (72), LSH (≈15 hours) is an order of
magnitude faster than the loss-based approach (≈150 hours, > 6 days).
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Ablation Study. For the completeness of LSH, we perform ablation studies of the effect of elimina-
tion/insertion schedule and LS computation efficiency. Experiments are on stacked LSTM.

We first studied the efficiency and effectiveness of elimination/insertion schedules set by e0 and ei.
We fixed the hyperparameter optimization method to Grid Search with 24 configurations, and the
rest of the setup is as in previous experiments. Table. 3 shows the number of epochs required for
the candidate selection process under each schedule. Cells with green color denote that the optimal
configuration was indeed selected. We find that with e0 = 3, ei = 1, the minimum number of
required epochs is achieved (130), the performance might not be robust across different experiments
since, with a small change in the e0 direction, the selection might fail. Therefore, we set e0 = ei = 3
which is robust is both e0 and ei directions. While this configuration requires addition 116 epochs
(an increase from 130 → 246) which is about 2 hours of additional running time, this time is still
significantly shorter compared to extensive training of the two remaining candidates (> 20 hours).

Table 3: The efficiency and the effectiveness of scheduling. Each cell reports the number of required
epochs for the candidate selection process. Green cells mean the best candidate is indeed selected.

e0

ei 1 2 3 4

1 82 140 198 256
2 106 164 222 280
3 130 188 246 (⋆) 304

Notably, LS computation is an efficient process and is relatively faster than training the network itself,
i.e., it takes 6s for the LS computation of each sample vs. 120s for one training epoch. However,
with large LS computation batch sizes, the overall process could slow down hyperpruning. Here
we empirically show that only a few validation samples are needed for the LS computation. We
demonstrate it by comparing the maximum, mean, and variance of LS computed from different
numbers of validation samples across two pruned models. As discussed in (Vogt et al., 2022a), those
are the main features that determine the characteristic of LS. As shown in Table. 4, maximum, mean
and variance are similar for LS calculated from 2 and 10 validation samples. Their different ∆ is one
order of magnitude smaller compared to the difference between different pruned models.

Table 4: Effect of LS computation batch size: The maximum, mean, and variance of LS computed
from 2 and 10 validation samples on two pruned models.

Pruned 1 Pruned 2
2 10 ∆ 2 10 ∆

maximum -1.26 -1.20 0.06 -0.52 -0.46 0.06
mean -4.40 -4.41 0.01 -3.97 -3.97 0

variance 2.59 2.67 0.08 1.92 1.98 0.06

5 CONCLUSION

In this work, we propose a novel hyperparameter search approach that deals with selecting the optimal
pruning method with the corresponding hyperparameter configuration for a particular scenario. To
resolve that, we propose a novel Lyapunov Spectrum(LS)-based hyperpruning algorithm, termed LSH,
to effectively and efficiently select the optimal configuration. LSH iteratively eliminates unpromising
pruned variants based on their distance to a dense reference model in LS space and adaptively
generates new variants that are enhanced iteratively. Eventually, most resources are allocated to
the most promising selected candidates to fully train an optimal pruned network. Our method can
be incorporated into different existing hyperparameter optimization algorithms, such as TPE and
ATPE, and achieves an order of magnitude boost compared to the loss-based full training search in
terms of efficiency. We conduct experiments on stacked LSTM and RHN models trained with the
Penn Treebank Dataset on language modeling tasks. Our results show that LSH is robust to different
pruning ratios and given a fixed pruning ratio, it outperforms its loss-based counterparts, other SOTA
pruning method, and even the dense model.
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Antônio H Ribeiro, Koen Tiels, Luis A Aguirre, and Thomas Schön. Beyond exploding and vanishing
gradients: analysing rnn training using attractors and smoothness. In International Conference on
Artificial Intelligence and Statistics, pp. 2370–2380. PMLR, 2020.

David Ruelle. Ergodic theory of differentiable dynamical systems. Publications Mathématiques de
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