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Abstract

As deep neural networks become adopted in high-stakes domains, it is crucial
to be able to identify when inference inputs are Out-of-Distribution (OOD)
so that users can be alerted of likely drops in performance and calibration
(Ovadia et al., 2019) despite high confidence (Nguyen et al., 2015). Among
many others, existing methods use the following two scores to do so without
training on any apriori OOD examples: a learned temperature (Hsu et al.,
2020) and an energy score (Liu et al., 2020). In this paper we introduce
Ablated Learned Temperature Energy (or "AbeT" for short), a method
which combines these prior methods in novel ways with an effective ablation.
Due to these contributions, AbeT lowers the False Positive Rate at 95%
True Positive Rate (FPR@95) by 47.32% in classification (averaged across
all ID and OOD datasets measured) compared to state of the art without
training networks in multiple stages or requiring hyperparameters or test-
time backward passes. We additionally provide empirical insights as to
why our model learns to distinguish between In-Distribution (ID) and OOD
samples while only being explicitly trained on ID samples via exposure to
misclassified ID examples at training time. Lastly, we show the efficacy of our
method in identifying predicted bounding boxes and pixels corresponding
to OOD objects in object detection and semantic segmentation, respectively
- with an AUROC increase of 5.15% in object detection and both a decrease
in FPR@95 of 41.48% and an increase in AUPRC of 34.20% on average in
semantic segmentation compared to previous state of the art. 2

1 Introduction

In recent years, machine learning models have shown impressive performance on fixed
distributions (Lin et al., 2017; Ren et al., 2015; Girshick, 2015; Liu et al., 2016; Redmon
et al., 2016; Dai et al., 2016; Radford et al., 2021; Feichtenhofer, 2020; Devlin et al., 2018;
Dosovitskiy et al., 2020). However, distribution from which examples are drawn at inference
time are not always stationary or overlapping with training distributions. In these cases
where inference examples are far from the training set, not only does model performance
drop, all known uncertainty estimates also become miscalibrated (Ovadia et al., 2019) -
i.e. the output probabilities of the model become greatly misaligned with performance.
Without OOD detection, users can be completely unaware of these drops in performance
and calibration, and often can be fooled into false trust in model predictions due to high
confidence on OOD inputs (Nguyen et al., 2015). Thus, identifying the presence of examples
which are far from the training set is of utmost importance to AI safety and reliability.

Aimed at OOD detection, existing methods have explored (among many other methods)
modifying models via a learned temperature which is dynamic depending on input (Hsu
et al., 2020) and an inference-time post-processing energy score which measures the log of the

2
We make our code publicly available at https://github.com/anonymousoodauthor/abet, with

our method requiring only a single line change to the architectures of classifiers, object detectors,

and segmentation models prior to training.
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Figure 1: Histograms showing the separability between OOD scores on OOD inputs (red) and
ID inputs (blue) for different methods. The goal is to make these red and blue distributions
as separable as possible, with scores on OOD inputs (red) close to 0 and scores on ID inputs
(blue) of high-magnitude (away from 0). (Center) Our first contribution is replacing the
Scalar Temperature in the Energy Score (Liu et al., 2020) with a Learned Temperature (Hsu
et al., 2020). This infusion leads to Equation 2, with the Learned Temperature showing up in
the Exponential Divisor Temperature (overlined in Equation 2) and Forefront Temperature
Constant (underlined in Equation 2) forms. (Right) The Forefront Temperature Constant
contradicts the desired property of scores being close to 0 for OOD points (red) and of high
magnitude for ID points (blue). (Left) Therefore, our second contribution is to ablate this
Forefront Temperature Constant, leading to our final Ablated Learned Temperature Energy
(AbeT) score. This ablation increases the separability of the OOD scores vs. ID scores, as
can be seen visually and numerically (in terms of AUROC) comparing the center and left
plots - where the only difference is this ablation of the Forefront Temperature Constant.
Higher AUROC means more separability.

exponential sum of logits on a given input, scaled by a scalar temperature (Liu et al., 2020).
In this paper, we combine these methods and introduce an ablation, leading to our method
deemed “AbeT." Due to these contributions, we demonstrate the efficacy of AbeT over
existing OOD methods. We establish state of the art performance in classification, object
detection, and semantic segmentation on a suite of common OOD benchmarks spanning a
variety of scales and resolutions. We also perform extensive visual and empirical investigations
to understand our algorithm. Our key results and contributions are as follows:

• We combine the learned temperature (Hsu et al., 2020) and post-processing energy
score (Liu et al., 2020) by simply using the learned temperature in the calculation
of the energy score.

• We resolve a contradiction in the energy score (Liu et al., 2020) by ablating one
of the learned temperature terms. We deem this "Ablated Learned Temperature
Energy" (or "AbeT" for short) and it serves as our ultimate OOD score.

• We provide visual and empirical evidence to provide intuition as to why our method
is able to achieve superior OOD detection performance despite not being exposed to
explicit OOD inputs at training time via exposure to misclassified ID samples.

• We show the efficacy of AbeT in identifying predicted bounding boxes and pixels
corresponding to OOD objects in object detection and semantic segmentation,
respectively.

2 Preliminaries

Let X and Y be the input and response random variables with realizations x 2 RD and
y 2 {1, 2, ..., C � 1, C} (where C is the number of output classes), respectively. Typically X
has information about Y and we’d like to make inferences about Y given X using a learned
model f̂ : RD ! RC . In practice, a learner only has access to a limited amount of training
examples in this data-set Dtrain

in = {(xi, yi)}Ni=1 which are realizations of (X,Y ) (or a subset
thereof) on which to train f̂ .
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Figure 2: The network architecture of a classification network with a learned temperature.

2.1 Problem Statement

We define Dtest
in identical to Dtrain

in but unseen at training time. And we define Dtest
out as

any dataset that has non-overlapping output classes with those of Dtrain
in , as is standard in

OOD detection evaluations (Huang et al., 2021; Hsu et al., 2020; Liu et al., 2020; Djurisic
et al., 2022; Sun et al., 2021; Hendrycks & Gimpel, 2016; Liang et al., 2017; Sun et al., 2022;
Katz-Samuels et al., 2022). The goal of Out-of-Distribution Detection is to define a score S
such that S(xout) and S(xin) are far from each other 8 xout 2 Dtest

out , xin 2 Dtest
in .

2.2 Standard Classification Model Optimization

In OOD detection, f̂ serves a dual purpose: its outputs are directly optimized to classify
among outputs {1, 2, ..., C � 1, C} and functions of the network are used as inputs to S.
Though we use f̂ for both purposes, our aim is for AbeT to neither have OOD data at
training time nor significantly modify training to account for the ability to detect OOD data.
Therefore, we train our classification models in a standard way: to minimize a loss function
L =

PN
i=1 L(f̂(xi; ✓), yi), where (xi, yi) 2 Dtrain

in . In deep learning classification settings, the
cross-entropy loss function is normally used for training: LCE(f̂(xi; ✓), yi) = � log f̂yi(xi; ✓).
Networks can be optimized towards other loss functions, but we did not test our method in
conjunction with any other loss functions.

2.3 Model Output

To estimate f̂yi(xi; ✓), models typically use logit functions per class which calculate the
activation of class c on input xi as Lc(xi; ✓) = ĝc(xi; ✓).

We now define ĝc: let w and b represent the weights and biases of the final layer of a
network (mapping penultimate space to output space) respectively and fp(xi) represent the
penultimate representation of the network on input xi. Normally, deep networks use the inner
product of the w and xi (plus the bias term) as the logit function: ĝc(xi; ✓) = wT

c f
p(xi) + bc.

However, Hsu et al. (2020) found that a logit function based on the cosine similarity between
w and fp(xi)

ĝc(xi; ✓) =
wT

c f
p(xi)

||wT
c ||||fp(xi)||

was more effective when training logit functions that serve this dual-purpose of classifying
among outputs {1, 2, ..., C�1, C} and as an input to S. We therefore use this cosine-similarity
score as our logit function ĝ.

We now discuss tempering the logit function L: often employed to increase calibration,
Temperature Scaling (Guo et al., 2017) geometrically decreases the logit function L by a
single scalar Tscalar. That is, f̂ has a logit function that employs a scalar temperature as
Lc(xi; ✓, Tscalar) = ĝc(xi; ✓)/Tscalar. Introduced in Hsu et al. (2020), a learned temperature
Tlearned : X ! (0, 1) is a temperature that depends on input xi. That is, f̂ has a logit
function that employs a learned temperature

Lc(xi; ✓, Tlearned) = ĝc(xi; ✓)/Tlearned(xi) (1)
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The softmax of this tempered logit serves as the final model prediction:

f̂yi(xi; ✓) =
exp (ĝyi(xi; ✓)/Tlearned(xi))PC
c=1 exp (ĝc(xi; ✓)/Tlearned(xi))

This is input to the loss L during training. In this formulation, ĝ and Tlearned serve
disjoint purposes: ĝ reduces loss by selecting ĝyi(xi; ✓) as highest among {ĝc(xi; ✓)}Cc=1; and
Tlearned(xi) reduces loss by modifying the confidence (but not changing the classification)
such that the confidence is high or low when the model is correct or incorrect, respectively.

We provide a visual architecture of a forward pass with a learned temperature in Figure 2.

2.3.1 Learned Temperature Details

For all AbeT models, the learned temperature function is architecturally identical to that in
Hsu et al. (2020): a single fully connected layer which takes inputs from the penultimate layer
and outputs a single scalar per input, passes these scalars through a Batch Normalization
layer, then activates these scalars via a sigmoid which normalizes them to (0, 1). The learned
temperature is automatically trained via the gradients induced by the back-propagation of
the network’s optimization since the learned temperature modifies the logits used in the
forwards pass of the model. In this way, it is updated like any other layer which affects
the forwards pass of the network, and thus requires no tuning, training, or datasets other
than the cross-entropy-based optimization using the training dataset. The only requirement
to train the learned temperature is this one-line architectural change prior to training or
fine-tuning. For analysis on the insignificance of the inference time and memory costs due to
the learned temperature, see Appendix Section A.2.

3 Our Approach: A��T

The following post-processing energy score was previously used for OOD detection in Liu
et al. (2020): E(xi;L, Tscalar, ✓) = �Tscalar log

PC
c=1 e

Lc(xi;✓,Tscalar) . This energy score was
intended to be highly negative on ID input and close to 0 on OOD inputs via high logits on
ID inputs and low logits on OOD inputs.

Our first contribution is replacing the scalar temperature with a learned one:

E(xi;L, Tlearned, ✓) = � Tlearned(xi)| {z }
Forefront Temperature Constant

log
CX

c=1

eLc(xi;✓,

Exponential Divisor Temperaturez }| {
Tlearned)

(2)

By introducing this learned temperature, there become two ways to control the OOD score:
by modifying the logits and by modifying the learned temperature. We note that there are
two different operations that the learned temperature performs in terms of modifying the
energy score. We deem these two operations the "Forefront Temperature Constant" and
the "Exponential Divisor Temperature", which are underlined and overlined, respectively, in
Equation 2. Our second contribution is noting that only the Exponential Divisor Temperature
contributes to the OOD score being in adherence with this property of highly negative on
ID inputs and close to 0 on OOD inputs, while Forefront Temperature Constant counteracts
that property - we therefore ablate this Forefront Temperature Constant. To see this, we
note that the learned temperature is trained to be higher on inputs on which the classifier
is uncertain - such as OOD and misclassified ID inputs - in order to deflate the softmax
confidence on those inputs (i.e. increase softmax uncertainty); and the learned temperature
is trained to be lower on inputs on which the classifier is certain - such as correctly classified
ID inputs - in order to inflate the softmax confidence on those inputs (i.e. increase softmax
certainty). Thus, the temperature term being high on OOD inputs and low on ID inputs
leads to the energy score being closer to 0 on OOD inputs and more highly negative on ID
inputs when used in the Exponential Divisor Term, as desired. However, the temperature
term being high on OOD inputs and low on ID inputs leads to the energy score being
more highly negative on OOD inputs and closer to 0 on ID inputs when being used in the
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Forefront Temperature Constant, which is the opposite of what we would like. We therefore
(as previously mentioned) simply ablate the Forefront Temperature Constant, leading to the
following Ablated Temperature Energy score:

AbeT(xi;L, Tlearned, ✓) = � log
CX

c=1

eLc(xi;✓,Tlearned)

We visualize the effects of this ablation in Figure 1, using Places365 (Zhou et al., 2018) as
the OOD dataset, CIFAR-100 (Krizhevsky, 2009) as the ID dataset, and a ResNet-20 (He
et al., 2016a) trained with learned temperature and a cosine logit head as the model.

4 Classification Experiments

4.1 Classification Experimental Setup

4.1.1 Classification Datasets

We follow standard practices in OOD evaluations (Huang et al., 2021; Hsu et al., 2020;
Liu et al., 2020; Djurisic et al., 2022; Sun et al., 2021; Hendrycks & Gimpel, 2016; Liang
et al., 2017; Sun et al., 2022; Katz-Samuels et al., 2022) in terms of metrics, ID datasets,
and OOD datasets. For evaluation metrics, we use AUROC and FPR@95. We measure
performance at varying number of ID classes via CIFAR-10 (Krizhevsky, 2009), CIFAR-100
(Krizhevsky, 2009), and ImageNet-1k (Huang & Li, 2021). For our CIFAR experiments, we
use 4 OOD datasets standard in OOD detection: Textures (Cimpoi et al., 2014), SVHN
(Netzer et al., 2011), LSUN (Crop) (Yu et al., 2015), and Places365 (Zhou et al., 2018). For
our ImageNet-1k experiments we also evaluate on four standard OOD test datasets, but
subset these datasets to classes that are non-overlapping with respect to ImageNet-1k as is
common practice (Huang et al., 2021; Sun et al., 2022; 2021; Sun & Li, 2021): iNaturalist
(Van Horn et al., 2018), SUN (Xiao et al., 2010), Places365 (Zhou et al., 2018), and Textures
(Cimpoi et al., 2014). See Appendix D.1.1 for details about these datasets.

4.1.2 Classification Models and Hyperparameters

For all experiments with CIFAR-10 and CIFAR-100 as ID data, we use a ResNet-20 (He
et al., 2016a). For all experiments with ImageNet-1k as ID data, we use a ResNetv2-101 (He
et al., 2016b). We present additional experiments where we retain top OOD performance
with ImageNet-1k as the ID data using an alternative architecture, DenseNet-121 (Huang
et al., 2017), in Appendix Section B.3. All models are trained from scratch. For more
experimental details, see Appendix Section D.2.1.

4.1.3 Previous Classification Approaches

We compare against previous methods with similar constraints, training settings, and testing
settings. We note that we do not compare against other methods that are trained on OOD
data (Ming et al., 2022; Katz-Samuels et al., 2022; Hendrycks et al., 2018) or methods that
require multiple stages of training (Khalid et al., 2022). Principally, we compare against
Maximum Softmax Probability (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2017),
GODIN (Hsu et al., 2020), Mahalanobis (Lee et al., 2018), Energy Score (Liu et al., 2020),
Gradient Norm (Huang et al., 2021), ReAct (Sun et al., 2021), DICE (Sun & Li, 2021), Deep
Nearest Neighbors (DNN) (Sun et al., 2022), and ASH (Djurisic et al., 2022). For more
details about these competitive methods, see Appendix Section E.

4.2 Performance On Standard OOD in Classification Suite

In Table 1, we compare against the aforementioned methods outlined in Section 4.1.3. All
results are averaged across the four previously mentioned OOD test datasets per ID dataset
outlined in Section 4.1.1, with the standard deviations calculated across these same 4 OOD
datasets. All OOD methods keep accuracy within 1% of their respective baseline methods
without any modifications to account for OOD. Results from MSP (Hendrycks & Gimpel,
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Dtest
in CIFAR-10 CIFAR-100 ImageNet-1k

Method FPR@95 #AUROC " FPR@95 # AUROC " FPR@95 #AUROC "
MSP 60.5 ± 15 89.5 ± 3 82.7 ± 11 71.9 ± 7 63.9 ± 8 79.2 ± 5
ODIN 39.1 ± 24 92.4 ± 4 73.3 ± 31 75.3 ± 13 72.9 ± 7 82.5 ± 5

Mahalanobis 37.1 ± 35 91.4 ± 6 63.9 ± 16 85.1 ± 5 81.6 ± 19 62.0 ± 11
Gradient Norm 28.3 ± 24 93.1 ± 6 56.1 ± 38 81.7 ± 13 54.7 ± 7 86.3 ± 4

DNN 49.0 ± 11 83.4 ± 5 66.6 ± 13 78.6 ± 5 61.9 ± 6 82.9 ± 3
GODIN 26.8 ± 10 94.2 ± 2 47.0 ± 7 90.7 ± 2 52.7 ± 5 83.9 ± 4
Energy 39.7 ± 24 92.5 ± 4 70.5 ± 32 78.0 ± 12 71.0 ± 7 82.7 ± 5

Energy + ReAct 39.6 ± 15 93.0 ± 2 62.8 ± 17 86.3 ± 6 31.4* 92.9*
Energy + DICE 20.8 ± 1 95.2 ± 1 49.7 ± 1 87.2 ± 1 34.7* 90.7*
Energy + ASH 20.0 ± 21 95.4 ± 5 37.6 ± 34 89.6 ± 12 16.7 ± 13 96.5 ± 2

AbeT 12.5 ± 2 97.8 ± 1 31.1 ± 12 94.0 ± 1 40.0 ± 11 91.8 ± 3
AbeT + ReAct 12.2 ± 1 97.8 ± 1 26.2 ± 7 94.1 ± 2 38.1 ± 11 92.2 ± 3
AbeT + DICE 11.6 ± 2 97.9 ± 1 31.3 ± 13 94.3 ± 2 30.7 ± 15 93.2 ± 3
AbeT + ASH 10.9 ± 5 97.9 ± 1 30.6 ± 12 94.4 ± 2 3.7 ± 3 99.0 ± 1

* Results where a ResNet-50 is used as in their corresponding papers instead of ResNet-101
as in our experiments. This is due to our inability to reproduce their results with ResNet-101

Table 1: Comparison with other competitive OOD detection methods in classifica-
tion. OOD detection results on a suite of standard datasets compared against competitive
methods which are trained with ID data only and require only one stage of training. All
results are averaged across 4 OOD datasets, with the standard deviations calculated across
these same 4 OOD datasets. " means higher is better and # means lower is better.

2016), ODIN (Liang et al., 2017), Energy (Lee et al., 2018), and Gradient Norm (Huang et al.,
2021) are taken from Huang et al. (2021) and results of Mahalnobis using ImageNet-1k as the
ID dataset are taken from Huang & Li (2021), as their models, datasets, and hyperparameters
are identical to ours. We provide detailed results for each OOD test dataset in Appendix
Section B.

We note that our method achieves an average reduction in FPR@95 of 45.50% on CIFAR-10,
18.61% on CIFAR-100, and 77.84% on ImageNet. We additionally note that not only is the
mean performance of our method superior in all settings, but the standard deviation of our
performance across OOD datasets is relatively low in nearly all cases, meaning our method
is consistently performant.

We additionally present a study of our Forefront Temperature Constant ablation in Appendix
Section B.1 and show that this singular ablation contribution leads to a reduction in FPR@95
of 28.76%, 59.00%, and 24.81% with CIFAR-10, CIFAR-100, and ImageNet as the ID datasets
respectively (averaged across their 4 respective OOD datasets) compared to AbeT without
the Forefront Temperature Constant ablation.

In Appendix Section B.4, we present Gradient Input Perturbation (Liang et al., 2017) in
conjunction with our method and show that it harmed our method.

We also present experiments in Appendix Section B.2 where we replace the Cosine Logit
Head with the standard Inner Product Head which reaffirms the finding of Hsu et al. (2020)
that the Cosine Logit Head is preferable over the Inner Product Head in OOD Detection.

5 Understanding A��T

In Section 5, we provide intuition-building evidence to suggest that the superior OOD
performance of AbeT despite not being exposed to explicit OOD samples at training time is
due to exposure to misclassified ID examples during training. Towards building intuition
we provide visual evidence in Figure 3 based on TSNE-reduced (Van der Maaten & Hinton,
2008) embeddings to support the following two hypotheses:
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Figure 3: (Left) Scatter plot of OOD LSUN examples (red) and ID test CIFAR-10 examples
(blue). (Center) ID test CIFAR-10 examples correctly classified (blue) and incorrectly
classified (red). (Right) ID test CIFAR-10 examples colored by their AbeT score. Red is
estimated to be more OOD. The learned temperature increasing on misclassified points (in
order to deflate softmax confidence when incorrect) leads our score to inflate towards 0 on
misclassified points, as can be seen in the center plot. The presence of a comparatively higher
proportion of points in the center of penultimate representation space which are misclassified
therefore leads to the relationship that our our score inflates towards 0 as distance to the
center decreases (as can be seen on ID points in the right plot). In combination with OOD
points lying in the center of penultimate representation space (as can be seen on the left
plot), this means that our scores are close to 0 on OOD points - thus providing intuition (but
not proof) as to why our method is able to achieve superior OOD detection performance.

1. Our method learns a representation function such that OOD points are closer to
misclassified ID points than correctly classified ID points, in general.

2. Our OOD scores are comparatively higher (closer to 0) on misclassified ID examples.

These combined hypotheses suggest that our score responds to OOD points similarly to the
way it responds on misclassified ID points. Our scores are therefore close to 0 on OOD points
due to the OOD points learning this inflation of our score (towards 0) from the (sparse)
misclassified points near them, while this inflation of our score doesn’t apply as much to ID
points overall - as desired. This is learned without ever being exposed to OOD points at
training time.

In Appendix Section C.1, we present empirical evidence to support these two hypothesis
which does not utilize dimensionality reduction.

6 Applications in Semantic Segmentation & Object Detection

6.1 Semantic Segmentation

In Table 2, we compare against competitive OOD Detection methods in semantic segmentation
that predict which pixels correspond to object classes not found in the training set (i.e. which
pixels correspond to OOD objects). For evaluations, we report ID metric mIOU and OOD
metrics FPR@95, AUPRC, and AUROC. For our experiments with AbeT, we replace the
Inner Product per-pixel in the final convolutional layer with a Cosine Logit head per-pixel
and a learned temperature layer per-pixel. Further details about model training can be found
in Appendix Section D.2.2. We compare against methodologies which follow similar training,
inference, and dataset paradigms. Notably, similar to classification, we do not compare
with methods which fine-tune or train on OOD (or OOD proxy data like COCO (Lin et al.,
2014b)) (Chan et al., 2021; Tian et al., 2022) or with methods which significantly change
training (Mukhoti & Gal, 2018). We additionally do not compare with methods which involve
multiple stages of OOD score refinement by leveraging the geometric location of the scores
(Jung et al., 2021; Chan et al., 2021), as these refinement processes could be performed on
top of any given OOD score in semantic segmentation. We compare with Standardized Max
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Figure 4: Qualitative comparison of OOD scores for semantic segmentation. The top row
and bottom row contain examples from the datasets RoadAnomaly (Lis et al., 2019) and
LostAndFound (Pinggera et al., 2016), respectively. Pixels corresponding to OOD objects
are highlighted in red in each image in the leftmost column, which are cropped to regions
where we have ID/OOD labels. Scores for each example (row) and technique (column) are
thresholded at their respective 95% True Positive Rate and then normalized [0, 1] in the red
channel, with void pixels (which have no ID/OOD label) set to 0. Bright red pixels represent
high OOD scores, which should cover the same region as the pixels which correspond to
OOD objects in the leftmost column. We invert the scores of Standardized Max Logit, Max
Logit, and MSP to allow these methods to highlight OOD pixels in red.

Dtest
in LostAndFound RoadAnomaly

Method ID mIOU FPR@95 #AUPRC "AUROC " FPR@95 #AUPRC "AUROC "
Entropy 81.39 35.47 46.01 93.42 65.26 16.89 68.24

MSP 81.39 31.80 27.49 91.98 56.28 15.24 65.96
SML 81.39 44.48 25.89 88.05 70.70 17.52 75.16
ML 81.39 15.56 65.45 94.52 70.48 18.98 72.78

MHLBS 81.39 27 48 - 81.09 14.37 62.85
AbeT 80.56 3.42 68.35 99.09 53.5 31.12 81.55

PEBAL 80 0.81 78.29 99.76 44.58 45.10 87.63

Table 2: Comparison with other competitive OOD detection methods in semantic
segmentation. OOD detection results on a suite of standard datasets compared against
competitive methods which are trained with similar constraints. We present PEBAL (Tian
et al., 2022) which trains on OOD data to provide context as to current performance of
methods which do have access to OOD samples at training time, rather than presenting it
as a competitive method against which we directly compare. Cityscapes is used as the ID
dataset. " means higher is better and # means lower is better.

Logit (SML) (Jung et al., 2021), Max Logit (ML) (Hendrycks et al., 2022), and PEBAL (Tian
et al., 2022), with results taken from Tian et al. (2022). We also compare with Mahalanobis
(MHLBS) (Lee et al., 2018), with results for LostAndFound and RoadAnomaly taken from
(Chan et al., 2021) and (Tian et al., 2022), respectively. Additionally, we compare to entropy
(Chan et al., 2021) and Max Softmax Probability (MSP) (Hendrycks & Gimpel, 2016). We
use Mapillary (Neuhold et al., 2017) and Cityscapes (Cordts et al., 2016) as the ID datasets
and LostAndFound (Pinggera et al., 2016) and RoadAnomaly (Lis et al., 2019) as the OOD
datasets. Details about these OOD Datasets can be found in Appendix Section D.1.2.

Notably, our method reduces FPR@95 by 78.02% on LostAndFound and increases AUPRC
by 63.96% on RoadAnomaly compared to competitive methods.

We also present visualizations of pixel-wise OOD predictions for our method and methods
against which we compare on a selection of images from OOD datasets in Figure 4.

6.2 Object Detection

In Table 3, we compare against competitive OOD Detection methods in object detection.
For evaluations we use ID metric AP and OOD metrics FPR@95, AUROC, and AUPRC.
These evaluation metrics are calculated without thresholding detections based on any of the
ID or OOD scores. For our experiments with AbeT, the learned temperature and Cosine

8



Under review as a conference paper at ICLR 2023

Method ID AP " FPR@95 #AUROC "AUPRC "
Basline 40.2 91.47 60.65 88.69
VOS (Du et al., 2022) 40.5 88.67 60.46 88.49
AbeT (Ours) 41.2 88.81 65.34 91.76

Table 3: Comparison with other competitive OOD detection methods in object
detection. ID model performance and OOD performance of baseline model, state of the art
OOD object detection method Virtual Outlier Synthesis (Du et al., 2022), and our method,
all of which do not have access to OOD at training time. " means higher is better and #
means lower is better.

Logit Head are directly attached to a FasterRCNN classification head’s penultimate layer as
described in the above sections. Further training details can be found in Appendix Section
D.2.3. Our method is compared with a baseline FasterRCNN model and a FasterRCNN
model using the state of the art VOS method proposed by Du et al. (2022)3. For datasetss
we use PASCAL VOC dataset (Everingham et al., 2010) as the ID dataset and COCO (Lin
et al., 2014a) as the OOD dataset.

We note that our method shows improved performance on ID AP (via the learned temperature
decreasing confidence on OOD-induced false positives), AUROC, and AUPRC with compa-
rable performance on FPR@95. Our method provides the added benefit of being a single,
lightweight modification to detectors’ classification heads as opposed to significant changes
to training with additional Virtual Outlier Synthesis, loss functions, and hyperparameters as
in Du et al. (2022).

7 Limitations & Failure Cases of Our Method

Because our method uses misclassified ID examples as surrogates for OOD samples (as is
shown in Section 5): our method does not perform well in cases where there are few misclas-
sified ID examples during training; and most of our method’s failures are on misclassified ID
examples. That being said, in our experiments, all tested OOD detection methods’ failures
were concentrated on misclassified ID examples. For more information and experimental
expositions of these statements, see Appendix Section A.1.

8 Conclusion

Inferences on examples far from a model’s training set tend to be significantly less performant
than inferences on examples close to its training set. Moreover, even if a model is calibrated on
a holdout ID dataset, the confidence scores of these inferences on OOD examples are typically
miscalibrated (Ovadia et al., 2019). In other words, not only does performance drop on
OOD examples - users are often completely unaware of these performance drops. Therefore,
detecting OOD examples in order to alert users of likely miscalibration and performance
drops is one of the biggest hurdles to overcome in AI safety and reliability. Towards detecting
OOD examples, we have introduced AbeT which mixes a learned temperature (Hsu et al.,
2020) and an energy score (Liu et al., 2020) in a novel way with an effective ablation.
We have established the superiority of AbeT in detecting OOD examples in classification,
detection, and segmentation. We have additionally provided visual and empirical evidence
as to why our method is able to achieve superior performance via exposure to misclassified
ID examples during training time. Future work will explore if such exposure drives the
performance of other OOD methods which do not train on OOD samples - as is suggested by
our finding shown in Appendix Section A.1 that all tested OOD detection methods’ failures
were concentrated on misclassified ID examples.

3
When computing OOD metrics on VOS, we use the post-processing Energy Score (Liu et al.,

2020) as the OOD score, as in their paper.
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