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Abstract
We propose a general framework for automating
data structure design and apply it to the problem
of nearest neighbor search. Our model adapts to
the underlying data distribution and provides fine-
grained control over query and space complex-
ity, enabling the discovery of solutions tailored
to problem-specific constraints. We are able to
reverse-engineer learned data structures and query
algorithms in several settings. In 1D, the model
discovers optimal distribution (in)dependent al-
gorithms such as binary search and variants of
interpolation search. In higher dimensions, the
model learns solutions that resemble k-d trees in
some regimes, while in others, have elements of
locality-sensitive hashing.

1. Introduction
Data structures are ubiquitous objects in computer science
that enable efficient querying. Traditionally, they are de-
signed to be worst-case optimal and thus agnostic to specific
data and query distributions. However, in many applica-
tions, there are patterns in these distributions that can be
exploited to design faster algorithms [1]. For instance, in-
terpolation search [2] can significantly outperform binary
search for uniformly distributed data. This has motivated
recent work on learning-augmented data structures which
leverages knowledge of the data distribution to modify ex-
isting data structures [1], [3], [4]. In much of this work, the
goal of the learning algorithm is only to learn the probability
density function of the data distribution and the actual un-
derlying query algorithm/data structure is fixed. While this
line of work clearly demonstrates the potential in leveraging
distributional information, it still relies on expert knowledge
to design and integrate learning into such structures. This
raises the more fundamental question: can we learn effi-
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Figure 1. Our model has two components: (i) A data-processing
network that transforms raw data into structured data, arranging
it for efficient querying and generating additional statistics when
given extra space (not shown). (ii) A query-execution network
that performs M look-ups into the output of the data-processing
network in order to retrieve the answer to some query q. Each
lookup i is managed by a separate MLP Qi

θ , which takes q and
the lookup history Hi, and outputs a one-hot lookup vector mi

indicating the position to query.

cient distribution-dependent data structures from scratch?
As an initial step towards this goal, we propose a framework
for automating data structure design and apply it to nearest
neighbor (NN) search—a problem with extensive theoretical
work and widespread practical applications [5]. We show
that: (i) In 1D, our model learns to sort the data and apply
binary search or variants of interpolation search. (ii) In 2D,
our model learns solutions resembling k-d trees, and (iii) In
high-dimensions it discovers approximate nearest-neighbor
methods resembling locality-sensitive hashing. Addition-
ally, by learning directly from the data distribution, our
model can also discover data-dependent data structures and
query algorithms that outperform worst-case baselines. Our
model learns solutions with a high-degree of interpretability,
providing insights for data structure design.

2. Nearest Neighbor Search
Given a dataset D = {x1, ..., xN} of N points where
xi ∈ Rd and a query q ∈ Rd, the nearest neighbor y of
q is defined as y = argminxi∈D dist(xi, q). We focus
on the case where dist(·) corresponds to the Euclidean dis-
tance. Our objective is to learn a data structure D̂M for D
such that given q and a budget of M lookups, we can output
a (approximate) nearest neighbor of q by querying at most
M elements in D̂M . When M ≥ N , y can be trivially re-
covered via linear search so D̂M = D is sufficient. Instead,
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Figure 2. (a) Our model (adaptive) trained with 1D data from the uniform distribution over (−1, 1) outperforms binary search and several
ablations. (b) Distribution of lookups by the first query model. Unlike binary search, the model does not always start in the middle but
rather closer to the query’s likely position in the sorted data. (c) When trained on data from the hard distribution, the model finds a solution
similar to binary search. The figure shows an example of the model performing binary search (’X’ denotes the nearest neighbor location).

we are interested in the case when M ≪ N 1.

3. Architecture and Training Details
We frame the problem of learning efficient data structures
as a two-stage process: 1) data-processing and 2) query-
execution (see Fig 1). The role of data-processing is to trans-
form a raw dataset D into a structured database D̂M . Subse-
quently, the query-execution phase performs M lookups into
D̂M to retrieve the answer for some query q. Below, we dis-
cuss the details of the data-processing and query-execution
networks in the context of nearest neighbor search but the
same framework can be applied to other data structure prob-
lems with minor modifications.

3.1. Data-processing Network
The backbone of our data-processing network is a trans-
former model based on the NanoGPT architecture [6]. The
transformer takes as input the dataset D and is trained to
output a scalar oi ∈ R representing the rank for each point
xi ∈ D. These rankings {o1, ..., oN} are then sorted using
a differentiable sort function, sort({o1, o2 . . . , oN}) [7],
which produces a permutation matrix P that encodes the
order based on the rankings. By applying P to the input
dataset D, we obtain DP , where the input data points are
arranged in order of their rankings. By learning to rank
rather than directly outputting the transformed dataset, the
transformer avoids the need to reproduce the exact inputs.
Note that this division into a ranking model followed by
sorting does not impose any restrictions and the overall
model can represent any arbitrary ordering of the inputs.
We also consider scenarios where the data structure can use
additional space. To support this use case, the transformer
can also output T extra tokens b1, ..., bT ∈ Rd which can be
retrieved by the query-execution network. We form the data
structure D̂M by concatenating the permuted inputs and the

1E.g. in 1D, binary search requires M = log(N) lookups
given a sorted list.

extra tokens: D̂M = [DP , b1, ..., bT ].

3.2. Query Execution Network

The query-execution network consists of M MLP query
models2 Q1

θ1
, ..., QM

θM
. Each query model Qi

θi
outputs a

sparse vector mi ∈ RN+T which represents a lookup posi-
tion in D̂M . To execute the lookup, we compute the value
vi at position mi in D̂M as vi = m⊤

i D̂M . In addition to
the query q, each query model Qi

θi
also takes as input the

query execution history Hi = {(m1, v1), ..., (mi−1, vi−1)}
where H1 = ∅. The final answer of the network for the
nearest-neighbor query is given by ŷ = m⊤

M D̂M .

Enforcing sparse lookups To restrict our model to exactly
M lookups, we enforce each lookup vector mi to be a one-
hot vector. Enforcing this constraint during training poses
a challenge as it is a non-differentiable operation. Instead,
during training, our model outputs soft-lookups where mi

is the output of the softmax function and
∑

j mij = 1. This
alone, however, leads to non-sparse queries. To circumvent
this, we add noise (only during training) to the logits prior
to the softmax operation, which leads to sparser solutions
(see App E.1 for details).

3.3. Data Generation and Training
Each training example is a tuple (D, q, y) consisting of a
dataset D, query q, and nearest neighbor y generated as fol-
lows: (i) sample dataset D = {x1, ..., xN} from dataset dis-
tribution D, (ii) sample query q from query distribution QD,
(iii) compute nearest neighbor y = argminxi∈D ||xi − q||2.
The dataset and query distributions D,QD vary across the
different settings we consider and are defined later. Given
a training example (D, q, y), the data-processing network
transforms D into the data structure D̂M . Subsequently,
the query execution network, conditioned on q, queries the
data structure to output ŷ. We use SGD to minimize the

2The query models do not share weights.
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loss ||ŷ − y||22 averaged over all training examples. After
training, we test our model on inputs (D, q, y) generated in
the same way. We describe the exact model architecture and
training hyper-parameters in App A.

4. Experiments
We now evaluate our model (referred to as adaptive) on
one-dimensional, two-dimensional, and high-dimensional
nearest-neighbor problems. We primarily focus on data
structures that do not use extra space, but in Section 4.4, we
also explore scenarios with additional space.

Baselines We compare against suitable NN data struc-
tures in each setting (e.g., sorting followed by binary search
in 1D). In addition, to study the impact of various model
components, we compare against several ablations. The
frozen model does not train the data-processing network,
relying on rankings generated by the initial weights. The no-
permute model removes the permutation component of the
data-processing network so that the transformer has to learn
to transform the data points directly. The non-adaptive
model ablation conditions each query model Qi

θi
on only

the query q and not the query history Hi.

4.1. 1D

Uniform Distribution We consider a setting where D and
QD correspond to the uniform distribution over (−1, 1),
N = 50 and M = 6. We plot the mean squared error3

after each lookup in Figure 2(a). At each lookup index we
plot ||v∗i − y||22 where v∗i is the closest element to the query
among the first i lookups: v∗i = argminv∈{v1,...,vi} ||v −
q||22. We do this for all methods.

We verify that our model has learned to sort the inputs by
measuring the fraction of inputs that are mapped to the cor-
rect position in the sorted order, averaged over multiple
datasets. After training, our model correctly positions ap-
proximately 97% of the inputs. Despite using a separate
function for sorting rankings, the model must still learn
to output the correct rankings. In comparison, the frozen
ablation (untrained transformer) positions only about 38%
of inputs correctly, explaining its underperformance. The
non-adaptive baseline, lacking query history access, under-
performs as it fails to learn adaptive solutions crucial for 1D
NN search. The no-permute ablation also underperforms
due to its inability to fully retain inputs (verified by mea-
suring the distance between the transformer’s inputs and
outputs). These ablations highlight the crucial role of both
learned orderings and query adaptivity for our model.

Our model outperforms binary search for M < 6. This
is because unlike binary search (which is optimal only in
the worst-case), our model exploits knowledge of the data

3We include accuracy plots as well in Appendix B.

distribution to start its search closer to the nearest neighbor,
similar to interpolation search [2]. For instance, if the query
q ≈ 1, the model begins its search near the end of the list
(Fig 2(b)). The minor sorting error (∼ 3%) our model makes
likely explains its worse performance on the final query.

In summary, starting from scratch, the data-processing net-
work discovers that the optimal way to arrange the data is in
sorted order. Simultaneously, the query-execution network
learns to efficiently query this sorted data, leveraging the
properties of the data distribution.

Hard Distribution. To verify that our model can also
learn worst-case optimal search algorithms such as binary
search, we design a hard distribution DH with the property
that for any given query it is hard to learn a strong prior
over the position of its nearest neighbor in the sorted data
(see App. C for more details about DH). We generate our
queries by first sampling a point (uniformly at random) from
the dataset and then adding noise from the standard normal
distribution. In Fig 2(c), we demonstrate a representative
example showing that the trained model searches in a man-
ner similar to binary search (see Fig 9 for more examples).
In Fig 7, we plot the error curve for the model which closely
resembles that of binary search.

4.2. 2D

Uniform Distribution In 2D, we use a similar setup to
1D, sampling coordinates independently from the uniform
distribution on (−1, 1). We compare our model to a k-d tree
baseline with N = 50 and M = 5 queries (Fig. 5 in App.
B). A k-d tree is a binary tree for organizing points in k-
dimensional space, with each node splitting the space along
one of the k axes, cycling through the axes at each tree level.

Figure 3. The learned data structure resembles a k-d tree in 2D.
We show the average pairwise distances (across the first, second
and both dimensions) between points at different positions for the
learned data structure and k-d tree, with lighter colors indicating
smaller distances. For the k-d tree, data is arranged by in-order
traversal of the tree. The plots look similar for k-d trees and the
learned data structure, with dimensions 1 and 2 flipped.
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Figure 4. (a) For NN search in higher dimensions (d = 30), the trained models perform comparably to (adaptive) or better than (non-
adaptive) locality-sensitive hashing (LSH) baselines. (b) When trained with a single query, the model partitions the query space based on
projection onto two vectors, similar to LSH. We show the query projection onto the subspace spanned by these vectors and the lookup
positions for different queries. (c) For NN search in 1D (N=32), the model learns to use extra space and outperforms a bucketing baseline.

Similar to the 1D setting, our model outperforms the k-d
tree as it can exploit distributional information. Although
the no-permute ablation outperforms our model, it does not
fully retain the inputs, so it is not a feasible alternative. By
studying the permutations, we find that our model learns to
put points that are close together in the 2D plane next to each
other in the permuted order (see Fig. 11 for an example).

Hard Distribution We also consider the case where we
sample both coordinates independently from the hard dis-
tribution considered in the 1D setup (see Fig 10 for the
corresponding error curve). We observe that the data struc-
ture learned by our model is surprisingly similar to a k-d tree
(see Fig 3). This is striking as a k-d tree is a non-trivial data
structure, requiring either an O(N) median finding algorithm
or sorting data on both dimensions.

4.3. High Dimensions
High-dimensional NN search poses a challenge for
traditional low-dimensional algorithms due to the curse
of dimensionality. K-d trees, for instance, can require
an exponential number of queries in high dimensions
[8]. This has led to the development of approximate NN
search methods such as locality sensitive hashing (LSH)
which have a milder dependence on d [9], relying on hash
functions that map closer points in the space to the same
hash bucket with high probability.

In high dimensions, we train our model on datasets uni-
formly sampled from the d-dimensional unit hypersphere.
The query is sampled to have a fixed correlation ρ ∈ [0, 1]

with a dataset point, where ρ = |uT v|
||u||||v|| for vectors u, v ∈

Rd. When ρ = 1, the query matches a data point, making
hashing-based methods sufficient. For ρ < 1, LSH-based
solutions are competitive. We train our model for ρ = 0.8
and compare it to an LSH baseline when N = 50,M = 5,
and d = 30. In Fig 4(a), we observe that our model per-
forms competitively with LSH baselines (see details of the

baselines in App D). The non-adaptive model does slightly
better as adaptivity is not needed to do well in this setting
(e.g., LSH is non-adaptive), and lack of adaptivity likely
makes training easier. To better understand the data struc-
ture our model learns we consider a smaller setting where
N = 8 and M = 1. We find that the model learns an LSH
like solution, partitioning the space by projecting onto two
vectors in R30 (see Fig 4(b)). We provide more details in
App E.3.

4.4. Leveraging Extra Space
The previous experiments demonstrate our model’s ability
to learn useful orderings for efficient querying. However,
data structures can also store additional pre-computed in-
formation to speed up querying. For instance, with infinite
extra space, a data structure could store the nearest neigh-
bor for every possible query, enabling O(1) search. To
evaluate if our model can effectively use extra space, we
run an experiment in 1D on the uniform distribution with
N = 32,M = 2. We allow the data-processing network
to output T ∈ {0, 21, 22, 23, 24, 25} tokens b1, ..., bT ∈ R
in addition to the N rankings. We plot the NN error as
a function of T in Fig 4(c) compared to a simple bucket-
ing baseline (described in App E.4.1). The error mono-
tonically decreases with extra space demonstrating that the
data-processing network learns to pre-compute useful statis-
tics that enable more efficient querying. We provide some
insight into the learned solution in App E.4.2.

5. Conclusion
We propose a framework for learning data structures from
scratch and apply it to nearest neighbor search. Our model
discovers structures like sorted lists, k-d trees, and locality-
sensitive hashing, and simultaneously learns efficient
data-dependent algorithms to query them. Additionally, our
model leverages extra space to store pre-computed statistics,
effectively balancing query time and space complexity.
Related work and future work are discussed in App. F & G.
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A. Training Details
The transformer in the data-processing network is based on the NanoGPT architecture [6] and has 8 layers with 8 heads each
and an embedding size of 64. Each query model Qi

θ is a 3-layer MLP with a hidden dimension of size 1024. Each hidden
layer consists of a linear mapping followed by LayerNorm [10] and the ReLU activation function relu. In all experiments
we use a batch size of 1024, 1e-3 weight decay and the Adam optimizer [11] with default PyTorch pytorch settings. For
both the transformer and the MLP models we use a learning rate of 1e-4. All models are trained for 4 million gradient steps
with early-stopping. We apply the Gumbel Softmax [12] with a temperature of 2 to the lookup vectors to encourage sparsity.
For the experiments in 1D, we found it beneficial to only add Gumbel noise to the final lookup vector until training had
converged and then add noise to all vectors to find a sparser solution.

B. 1D, 2D, and 30D MSE and Accuracy Plots
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Figure 5. 1D, 2D, 30D N=50 MSE
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Figure 6. 1D, 2D, 30D N=50 Accuracy

C. Hard Distribution
To generate data from the hard distribution, we first sample the element at the 50th percentile from the uniform distribution
over a large range. We then sample the 25th and 75th percentile elements from a smaller range and so on. The intuition
behind this distribution is to reduce concentration such that p(NN |q) is roughly uniform where NN denotes the index of
the nearest-neighbor of q in the sorted list.

Precisely, to sample N points from the hard distribution we generate a random balanced binary tree of size N . All vertices
are random variables of the form Uniform(0, alogn−k) where a is some constant and k is the level in the tree that the
vertice belongs to. If the i− th node in the tree is the left-child of its parent, we generate the point xi as xi = xp(i) − di
where p(i) denotes the parent of the i− th node and di is a sample from node i of the random binary tree. Similarly, if node
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i is the right child of its parent, xi = xp(i) + di. For the root element x0 = d0. In our experiments we set a = 7. The larger
the value of a, the greater the degree of anti-concentration. We found it challenging to train models with N > 16 as the
range of values that xi can take increases with N . Thus for larger N , the model needs to deal with numbers at several scales,
making learning challenging.
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Figure 7. Our model’s performance is closely aligned with binary search on the hard distribution in 1D. By design, this distribution does
not have a useful prior our model can exploit and so it learns a binary search like solution.

Figure 8. The positional distribution per lookup in the 1D Hard experiment. Our model closely aligns with binary search, first looking at
the middle element, then (approximately) either the 25th or 75th percentile elements, and so on.

D. LSH Baseline
Our LSH baseline samples K random vectors r1, ..., rK from the standard normal distribution in Rd. For a given vector
v ∈ Rd, its hash code is computed as hash(v) = [sign(vTr1), ..., sign(v

TrK)]. In total, there are 2K possible hash
codes. To create a hash table, we assign each hash code a bucket of size N/2K . For a given dataset D = {x1, ..., xN}, we
place each input in its corresponding bucket (determined by its hash code hash(xi). If the bucket is full, we place xi in a
vacant bucket chosen at random. Given a query q and a budget of M lookups, the baseline retrieves the first M vectors in
the bucket corresponding to hash(q). If there are less than M vectors in the bucket, we choose the remaining vectors at
random from other buckets. We design this setup like so to closely align with the constraints of our model (i.e. only learning
a permutation).

E. Additional Experiment Findings
E.1. Noise Injection for Lookup Sparsity

We find that adding noise prior to applying the soft-max on the lookup vector mi leads to sparser queries. We hypothesize
that this is because the noise injection forces the model to learn a noise-robust solution which corresponds to a sparse solution.
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Figure 9. Binary Search vs. our model on the hard distribution in 1D

Consider a simplified setup in 1D where the query model is not conditioned on q and is only allowed one lookup (M = 1)
and D is a sorted list of three elements: D = [x1, x2, x3]. For a given query q and its nearest neighbor y, the query-execution

8
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Figure 10. On the 2D hard distribution our model roughly tracks the performance of a k-d tree.

network is trying to find the optimal vector m̂ ∈ R3 that minimizes ||y − mTD||22 where m = softmax(m̂ + ϵ), ϵ ∼
Gumbel distribution [12]. Given that M = 1, the model cannot always make enough queries to identify y and so in the
absence of noise the model may try to predict the ’middle’ element by setting m̂1 = m̂2 = m̂3. However, when noise is
added to the logits m̂ this solution is destabilized. Instead, in the presence of noise, the model can robustly select the middle
element by making m̂2 much greater than m̂1, m̂3. We test this intuition by running this experiment for large values of N
and find that with noise the average gradient is much larger for m̂N/2.

E.2. 2D Uniform Distribution
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Figure 11. Our model’s learned permutation on the 2D uniform distribution. The model puts elements that are close together in the
Euclidean plane next to each other in the permutation.

E.3. N=8, M=1 30D Experiment

To determine if our model has learned an LSH-like solution, we try to reverse engineer the query model in a simple setting
where N = 8 and M = 1. The query-execution model is only allowed one lookup. We fit 8 one-vs-rest logistic regression
classifiers using queries sampled from the query distribution and the output of the query model (lookup position) as features
and labels, respectively. We then do PCA on the set of 8 classifier coefficients. We find that the top 2 principal components
explain all of the variance which suggests that the query model’s mapping can be explained by the projection onto these two
components. In Figure 13 we plot the projection of queries onto these components and color them based on the position they
were assigned by the query model. We do the same for inputs xi ∈ D and color them by the position they were permuted to.
The plot on the right suggests that the data-processing network permutes the input vectors based on their projection onto
these two components. This assignment is noisy because there may be multiple inputs in a dataset that map to the same
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Figure 12. k-d search vs. our model on the uniform distribution in 2D. Unlike the k-d tree, our model has a stronger prior over where to
begin its search.

bucket and because the model can only store a permutation, some buckets experience overflow. Similarly, the query model
does a lookup in the position that corresponds to the query vector’s bucket. This behaviour suggests the model has learned a
locality-sensitive hashing type solution!

E.4. 1D Extra Space

E.4.1. BUCKET BASELINE

We create a simple bucket baseline that partitions [−1, 1] into T evenly sized buckets. In each bucket bi we store
argminxj∈D||xj − li|| where li is the midpoint of the segment partitioned in bi. This baseline maps a query to its
corresponding bucket and predicts the input stored in that bucket as the nearest-neighbor. As T → ∞ this becomes an
optimal hashing-like solution.

10
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Figure 13. Left Projection of queries onto top two PCA components of the decision boundaries of the query model, colored by the lookup
position the query is mapped to. Right Projection of inputs onto the same PCA components colored by the position the data-processing
model places them in. Both the data-processing and query models map similar regions to the same positions, suggesting an LSH-like
bucketing solution has been learned.
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Figure 14. (a) Decision boundary of the first query model. (b) The regression coefficients of the values stored in extra positions as a linear
function of the (sorted) inputs.

E.4.2. UNDERSTANDING EXTRA SPACE USAGE

By analyzing the lookup patterns of the first query model, we can better understand how the model uses extra space. In
Figure 14(a) we plot the decision boundary of the first query model. The plot demonstrates that the model chunks the query
space ([−1, 1]) into different buckets. To get a sense of what the model stores in the extra space, we fit a linear function on
the sorted inputs and regress the values stored in each of the extra space tokens bi and plot the coefficients for several of
the extra spaces in Figure 14(b). For a given subset of the query range, the value stored at its corresponding extra space is
approximately a weighted sum of the values stored at the indices that correspond to the percentile of that query range subset.
This is useful information as it tells the model for a given query percentile how ’shifted’ the values in the current dataset
stored in the corresponding indices are from model’s prior.

F. Related Work
To the best of our knowledge there is no prior work on using machine learning to design efficient data structures and query
algorithms end-to-end from scratch. However, we discuss several related works below and highlight the connections to our
work.
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Learning-Augmented Algorithms Recent work has shown that traditional data structures and algorithms can be made
more efficient by learning properties of the underlying data distribution. For example, Lykouris and Vassilvitskii [13]
proposed learning-augmented algorithms for online caching and paging problems, where predictions about future requests
are used to improve cache replacement policies. Kraska, Beutel, Chi, et al. [1] introduced the concept of learned index
structures, which use machine learning models to replace traditional index structures in databases, resulting in significant
performance improvements for certain query workloads. By learning the cumulative distribution function of the data
distribution the model has a stronger prior over where to start the search for a record. Other works augment the data structure
with predictions instead of the query algorithm. For example, Lin, Luo, and Woodruff [14] use learned frequency estimation
oracles to estimate the priority in which elements should be stored in a treap. Perhaps most relevant to the theme of our
work is [15], which trains neural networks to learn a partitioning of the space for efficient nearest neighbor search using
locality sensitive hashing.

In much of these works, the goal of the learning algorithm is only to learn certain properties of the data distribution while
most components of the underlying data structure/query algorithm remain fixed. While this line of work clearly demonstrates
the potential in leveraging distributional information, it still relies on expert knowledge to design and integrate learning into
such structures. The goal of our work is to push this idea even further by learning the data structure as well as the query
algorithm together from scratch, allowing much greater adaptability to the underlying data distribution.

Neural Algorithmic Learners Neural algorithmic learners focus on embedding traditional algorithms into neural network
frameworks, allowing these models to learn and execute algorithmic tasks. One of the pioneering works in this area is
the Neural Turing Machine (NTM) proposed by Graves, Wayne, and Danihelka [16], which combines a neural network
with an external memory, enabling it to learn and perform algorithmic tasks such as sorting and copying . More recent
approaches, such as those by Veličković, Ying, Padovano, et al. [17], have employed graph neural networks (GNNs) to learn
to perform classical algorithms such as breadth-first search (BFS) and shortest path algorithms, leveraging their ability to
handle structured data efficiently.

While these works share a similar motivation of training neural networks to execute algorithms, they are trained with a much
greater degree of supervision than our model and focus on embedding known algorithms into neural networks. For instance,
Graves, Wayne, and Danihelka [16] use the ground truth sorted list as supervision to train the model to learn to sort and
other works even use intermediate computations of algorithms as additional supervision [17]. Instead, we are interested
in discovering efficient solutions to more general tasks (e.g. nearest-neighbor search). Typically, such solutions require
learning algorithmic primitives (such as sorting) and so our model is indirectly encouraged to learn these. In this sense,
we take a more top-down approach. Instead of training neural networks to learn specific (known) primitives that can be
manually combined to solve a given task, we instead train models to solve the task directly. This approach allows the model
more freedom to discover solutions adapted to the specific task distribution. However, this is also more challenging as our
model needs to learn multiple algorithms in tandem, e.g. learning to both sort and execute binary search with only the
desired output as supervision.

There has also been work on learning end-to-end algorithms. Selsam, Lamm, Bünz, et al. [18] train neural networks to solve
SAT. Garg, Tsipras, Liang, et al. [19] and Akyürek, Schuurmans, Andreas, et al. [20] show that transformers can be trained
to encode learning algorithms for function classes such as linear functions and decision trees, and Fu, Chen, Jia, et al. [21]
observe that trained transformers discover algorithms resembling higher-order optimization methods.

Differentiable Algorithms Differentiable algorithms are traditional algorithms that have been modified to allow gradient-
based optimization, making them compatible with neural network training. This approach enables the integration of
algorithmic components directly into end-to-end machine learning models.

For instance, Grover, Wang, Zweig, et al. [7] proposed differentiable sorting and ranking functions, which approximate
traditional sorting algorithms with differentiable counterparts, allowing them to be used in gradient-based optimization
frameworks. In our work, we make use of this differentiable sorting function to reorder the input dataset into a data structure.
More recent works have proposed other differentiable sorting algorithms that use optimal transport or enforce monotonicity
[22], [23].

Xie, Dai, Chen, et al. [24] introduced differentiable top-k selection algorithms which enable the integration of top-k selection
within neural network architectures. Operating on pairwise distances, these top-k algorithms can be used to retrieve k-nearest
neighbors in a differentiable manner. However, this requires computing distances between the query and every item in the
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dataset (i.e. N lookups for a dataset of size N ). Instead, our work focuses on learning data structures and algorithms such
that nearest-neighbor queries can be executed with M << N lookups.

At a high-level, both components of our model can be regarded as differentiable algorithms themselves. For example, in the
context of high-dimensional NN search, the trained data-processing network buckets the input dataset based on hash codes.
The query-processing network searches in these buckets based on the query’s hash code. Both of these operations are fully
differentiable. Thus, our model can also be integrated into a larger pipeline that requires a learned differentiable algorithm.

G. Limitations and Future Work
There are several limitations to our current model that we plan to address in future work. One limitation is scaling. Our
current model can find sparse solutions up to N = 50 and non-sparse solutions up to N = 150 (Figure 15). While we
demonstrate that useful data structures can still be learned at this scale, it is possible that other classes of structures only
emerge for larger datasets. It is likely that significantly scaling up the parameter count can help scale up N . Complementary
to this, it would be worthwhile to explore better inductive biases for the query and data-processing networks, and other
methods to ensure sparse solutions, enabling smaller models to scale to larger datasets. While we intentionally refrained
from introducing additional inductive bias in this work in order to give both models more degrees of freedom, there are
several modifications that are likely helpful such as shared weights among query-models and using relative lookups (similar
to relative position encoding in transformers [25]) as opposed to absolute lookups.
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Figure 15. 2D and 30D experiments with N = 150 and M = 7. Our model can learn competitive solutions at this scale however they are
not fully sparse.
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