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Abstract— We present a method that learns to tell rear signals
from a number of frames using a deep learning framework. The
proposed framework extracts spatial features with a convolution
neural network (CNN), and then applies a long short term
memory (LSTM) network to learn the long-term dependencies.
The brake signal classifier is trained using RGB frames,
while the turn signal is recognized via a two-step localization
approach. The two separate classifiers are learned to recognize
the static brake signals and the dynamic turn signals. As a
result, our recognition system can recognize 8 different rear
signals via the combined two classifiers in real-world traffic
scenes. Experimental results show that our method is able to
obtain more accurate predictions than using only the CNN to
classify rear signals with time sequence inputs.

I. INTRODUCTION

In recent years, autonomous driving has drawn significant

attention, especially on the topic of safety. Human drivers

communicate lane changes and turns via the car’s rear signal

lights; thus, it is important that self-driving vehicles are

taught to comprehend what each signal is, and when each

signal is used. This is paramount in ensuring the safety of the

passenger in either autonomous or assistive driving systems.

Numerous methods have been proposed to recognize brake

and turn signals in the past decade. Existing systems mainly

use hand-crafted features such as color thresholds or lumi-

nance to detect and extract the light regions [5], [15], [18],

[13], [4]. As these manually defined features are variant due

to different lighting conditions or clutter, existing methods

based on such visual cues do not perform well in real-world

scenes.

In this work, we identify rear light signals through learning

deep features using CNN and LSTM networks. CNNs have

been widely used in vision tasks and provide effective

representations on learning the spatial features of images.

On the other hand, the LSTM networks have been shown

to be capable of handling the long-term dependencies in

a sequence. Existing CNN-based methods for classification

of brake signals [20] operate on the premise that brake

signals are static and can be classified using only spatial

features. However, turn signals are dynamic and cannot be

effectively recognized with one single frame, especially when

the signal flashes on and off during that frame. Thus, we

combine a LSTM network with a CNN to learn the temporal

information of a sequence. Additionally, we develop a two-

step localization approach to extract visual cues from the turn

signals. First, we use the SIFT flow [14] of two continuous

frames and warp the latter one based on the flow to align two

frames. Then we compute the absolute difference between

the warped image and the first frame to obtain the frame

differences. Moreover, we focus on the tail light regions

using region of interest (ROI) to crop out the input and send

to the network as the additional guidance. As a result, our

method is able to achieve higher classification accuracy than

using RGB frames as the input.

Our training process uses a data set collected under real-

world traffic conditions during the daytime. We define a total

of 8 different rear signal states and label the data accordingly

for supervised learning. Afterwards, we train classifiers for

brake and turn signals individually and then integrate them

into our rear signal recognition system. As a result, our

proposed system can effectively identify 8 rear signal states,

which outperforms the CNN only approach.

II. RELATED WORK

For intelligent vehicles, it is imperative to distinguish

between brake and turn signals, and learn when each is

used. Numerous brake recognition methods [5], [15], [18]

use thresholds on color features in order to detect the states

of brake signals. Learning approaches have also been applied

to learn feature representations for brake signals. Zhong et

al. [22] train a FCN network [16] to identify the light regions

and extract features within the region for classification using

a linear support vector machine (SVM) classifier. In addition,

deep convolution neural networks have been used to tell the

state of brake signals after vehicle detection [20].

Turn signal recognition methods based on color thresholds

have been developed [13], [4]. In these methods, turn signals

are recognized by separating frames into left and right halves

to determine the on and off states based on the number

of pixels in the frame preserved by thresholds [13]. On

the other hand, Chen et al. [4] train a classifier using

the AdaBoost algorithm to determine the existence of turn

lights, and then use reflectance contrast to tell the directions.

Alternatively, the method [10] locates the turn lights by using

the Kanade-Lucas-Tomasi feature tracker [19] to compute

the feature correspondence between two successive frames.

Afterwards, the RANSAC algorithm [9] is used to receive the

transformation matrix that maps the correspondence between

the two frames. The latter frame is then transformed and

subtracted from the first frame to get the absolute difference

for locating the turn signal. Features are then extracted from
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Fig. 1. The brake and turn signal classifiers utilized in this system are based on a CNN-LSTM structure. The proposed system integrates the two classifiers
with a 16-frame sequence as the input and outputs the rear light labels represented by three letters: B (brake), L (left) and R (right). We receive O (off)
when the corresponding signal is turned off. RGB frames are passed to the brake classifier to obtain the first letter of the sequence state. Then, the computed
difference image of the sequence is cropped into two ROI regions as input for the turn classifier and outputs the last two letters of the sequence state.

(a) OOO (b) BOO (c) OLO (d) BLO

(e) OOR (f) BOR (g) OLR (h) BLR

Fig. 2. Examples of rear signal states.

the located regions and transformed to the frequency domain,

in which an AdaBoost classifier is trained to identify the turn

lights.

Many methods have been proposed for recognizing both

brake and turn signals. Chen et al. [6] determine the lighted

pixels by defining a response function and apply it to every

pixel to locate the rear lights. A high-pass mask is used

to find the illuminated region with brighter inner pixels

for determining the states accordingly. Kalman filters and

codebooks are used in [1], [2], [3] to track rear lights. The

states are classified based on the luminance channel observed

over time on the two detected light regions. Recently, a

method that classifies rear lights into four states with an SVM

[7] is developed where the turn lights are detected based on

thresholds.

III. PROPOSED ALGORITHM

In contrast to existing methods that are mainly based

on hand-crafted features, we propose an algorithm to learn

feature representations from the training data. Instead of only

learning the spatial features through a CNN [20] to recognize

brake lights, we also aim to recognize turn signals. Turn

signals preserve different characteristics compared to brake

signals. While flashing, it is difficult to recognize from one

frame whether the turn signal is on or not at that time step.

Thus, we use a LSTM module with a CNN to facilitate

learning the temporal features of turn signals. We use a

similar network as LRCN [8] which is developed for action

recognition. This allows us to learn the different actions

of rear signal states throughout a sequence. Our network

takes a time-sequence as the input and determines the label

accordingly. The CNN is used to extract spatial features from

an input frame sequence, and the following LSTM module

receives the output features from the CNN and learns the

temporal information accordingly. Finally, we use the learned

classifiers in our recognition system to determine the state of

an input sequence in the real-world scenes. In the following

section, we first describe our recognition system including

the brake and turn signal classifiers, and then proceed with

the details of our CNN-LSTM framework used to train

the classifiers. Fig. 1 shows the overview of the proposed

algorithm.

A. Rear Signal Recognition System
Our recognition system has two main components includ-

ing the static brake classification and the dynamic turn signal

classification. As such, we can focus more on the specific

characteristic of each task and achieve better performance.

Toward this end, we learn two separate classifiers for brake

and turn signals, then integrate them into our recognition

system.
We define a total of 8 distinct states based on all combi-

nations of brake and turn lights. Each state is denoted by 3

letters of B (brake), L (left), and R (right). We give either the

corresponding letter of the signal when it is on, or a letter

O for off. Consequently, there will be 8 different states as

shown in Fig. 2. Accordingly, we annotate all frames in the

training and testing sets using the state definition.

Brake classifier. RGB frames are used as input to the

network for learning the brake classifier. We extract the

spatial features through the CNN (see Section III-B), and

then exploit additional temporal features in a sequence.

Turn signal classifier. When training the turn signal clas-

sifier, we notice that extracting spatial and temporal infor-

mation from RGB images is not sufficient for the system
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(a) Xi−1 (b) Xi (c) SIFT flow

(d) Wi (e) |Wi−Xi−1|
Fig. 3. Computing the difference between two consecutive frames. (a)
Frame from previous step Xi−1. (b) Current frame Xi. (c) The computed
SIFT flow [14] between Xi−1 and Xi. (d) Wi is the warped image of Xi
using SIFT flow in (c). (e) Absolute difference of Wi and Xi−1.

to recognize turn signals. We observe that there are different

ways for vehicles to signal a turn. One type uses an individual

light as the turn signal, and the other type utilizes the flashing

brake lights when the turn signal is on. This makes it more

difficult to distinguish between the brake and turn lights. In

addition, the flashing turn signal occupies a relatively small

area of the whole rear region and it is hard to extract a

sufficient amount of visual cues from the turn lights. To

resolve these problems, we propose a two-step turn signal

localization method by first replacing RGB frames to the

difference image of subsequent frames aligned using the

SIFT flow [14]. As a result, there will be no differences

on states besides turning and we can emphasize turn signals

without being affected by other information like brake lights.

In addition, we use ROI to exploit more information from

small regions of turn lights in the frames.

Two-step turn signal localization. The first step is to find

the frame difference. A difference image contrasts the change

in turn signal while other parts of the image are subtracted

and have no differences. However, we may obtain noisy

results by directly computing the absolute difference because

the vehicles in the two frames are not aligned well. To obtain

better difference images, we use the SIFT flow algorithm

[14] to help align the vehicles in successive frames. It has

been shown that images in the same scene can be effectively

aligned using the SIFT flow [14]. As the input sequences

considered in this work are from the same scene, the SIFT

flow is likely to help obtain better difference images. We

take two adjacent frames in the video sequence Xi−1 and Xi,

and compute the SIFT flow. Next, we warp Xi to Wi based

on their SIFT flow to align two images. We then obtain the

difference image by computing |Wi−Xi−1|. An example of

a difference image based on the above operations is shown

in Fig. 3(e).

In the next step, we use ROI to focus on the rear light

regions for better feature extraction. Our ROI is represented

as the blue highlighted region in Fig. 4. During the learning

process, we take the two regions of our ROI from the

computed difference image as separate inputs to our network.

Consequently, the network learns to distinguish whether that

Fig. 4. ROI is indicated as the blue highlighted area, where the left and
right blue regions are propagated through the network separately.

ROI region is flashing or not.

Our recognition system utilizes two classifiers to success-

fully recognize 8 different signal states. First of all, we pass

the RGB frames directly to the brake classifier and determine

the state of the brake signal. Second, we compute difference

images from the given sequence and extract the left and right

ROIs as two inputs. These two light regions then propagate

through our turn classifier to determine the states of the

left and right signals respectively. The states (represented

by three letters) from both classifiers form the prediction for

an image sequence.

B. Convolution Neural Network (CNN)

The CNN is able to learn the spatial features of images

and has been successfully applied to many different image

classification challenges. Therefore, we apply the CNN to

learn the underlying features of our input. The CNN serves

to exploit the spatial features within every frame in order to

further learn the long-term dependencies in the sequences.

Our network adopts the CNN-LSTM structure as shown in

Fig. 5. The CNN network for the spatial features extraction is

a variant based on CaffeNet [12], which is also utilized in [8].

There are nine layers in total, including five convolutional

layers, three pooling layers and a fully-connected layer. We

utilize this CNN to learn the tail light features of the vehi-

cles for localization and classification. After obtaining these

spatial features, we feed the information of each frame to the

LSTM module in order to learn the temporal information in

each image sequence.

C. Long Short-Term Memory (LSTM)

The LSTM model, derived from the the recurrent neural

network (RNN), has been used in various tasks (e.g. speech

recognition, action recognition) to learn the temporal infor-

mation of the sequence inputs. The advantage of the LSTM

over the RNN is that it effectively alleviate the vanishing

gradient problem in the RNN. The LSTM unit incorporates

several non-linear activation gates to determine whether

to retain or discard the information. There are numerous

variants since the first LSTM model [11]. In this work, we

use the LSTM unit proposed in [21].

The LSTM module is used in our network to maintain

the long-term dependencies of our input sequences. Since

obtaining the spatial features from the CNN is not sufficient

to classify turn signals, it is essential for the classifier to
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Fig. 5. Illustration of our network architecture. The layers before fc6 serve to extract spatial information from our input. Afterwards, we send the features
to the LSTM module to utilize the temporal information and further classify the desired state in the last fully-connected layer.

learn the temporal information throughout the sequences to

determine the dynamic flashing states.

The structure of the LSTM model in this work is shown

in Fig. 6. One input is the feature xt from the fc6 layer

of the CNN described in Section III-B at time step t, and

another input is the hidden unit ht−1 from the last time step.

At every time step, the LSTM unit estimates the hidden unit

ht and sends it to the LSTM unit at the next time step. The

LSTM unit also receives a memory cell ct−1 which holds

the information from previous time steps. The memory cell

is updated at every time step and then passed to the next

LSTM unit. All the updates and outputs are processed by

the different gates of the LSTM unit. First, the forget gate ft
determines what to discard from xt and ht−1. A forget gate is

a sigmoid function (σ ) that outputs values from 0 to 1 and

performs element-wise product (�) with previous memory

cell state ct−1 to determine what information to forget or

remember. Next, the LSTM unit updates information to the

memory cell through the input gate it and the hyperbolic

tangent (tanh) layer gt . These two gates, it and gt , control

what information to remember from xt and ht−1 then add

them to the memory cell. The activation gates are computed

by

ft = σ(Wx f xt +Wh f ht−1 +b f ) (1)

it = σ(Wxixt +Whiht−1 +bi) (2)

gt = tanh(Wxcxt +Whcht−1 +bc) (3)

ct = ft � ct−1 + it �gt (4)

where W denotes the weight connecting the inputs and the

given gate, and b is the corresponding bias term.

Aside from updating the memory cell, the LSTM unit also

outputs a hidden state ht at every time step. The output gate

ot is computed and weighted with the cell states through a

tanh layer to determine the hidden state ht by

ot = σ(Wxoxt +Whoht−1 +bo) (5)

ht = ot � tanh(ct) (6)

Fig. 6. The LSTM unit in the proposed algorithm.

The output of each LSTM layer is sent to the last fully

connected layer of our network to compute a class probability

for each time step. In order to take the temporal dependence

of an input sequence into account, we focus on the output

prediction of the last frame, which contains sufficient infor-

mation from all the previous frames. That is, we compute

the loss of the last frame and backpropagate all frames in

the sequence with the same loss. Given a test frame, instead

of taking average among the output predictions, we take the

prediction of the last frame as the label for the entire input

sequence.

IV. EXPERIMENTAL RESULTS

In this work, we collect a data set of 649 videos including

63,637 frames. The sequences are recorded during the day-

time under real-world driving conditions with various vehicle

types. We crop out the image regions of car rears in each

video and label them based on our definitions described in

Section III-A. It is difficult to collect videos for emergency

lights (OLR and BLR), since such cases are rarely observed

in daily driving conditions. However, our network is able to

handle this problem without having many samples of these

two particular cases. The proposed algorithm separates each

image into right and left signal light regions. With sufficient

amount of images in all the other turn signal states (OOR,

BOR, OLO and BLO), we are able to tell whether the turn

signals are on for both regions. Table I summarizes the
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TABLE I

DATA SET FOR TURN AND BRAKE LIGHTS.

OOO BOO OLO BLO OOR BOR OLR BLR Total

Videos 188 211 78 63 58 33 9 9 649

Frames 21867 17874 6271 6380 4728 3527 1600 1390 63637

TABLE II

BRAKE RECOGNITION ACCURACY (%) COMPARISON WITH USING THE

CNN AND OUR METHOD (CNN-LSTM). THE RESULTS ARE BASED ON

FIVE-FOLD CROSS VALIDATION.

Brake ON Brake OFF

CNN 94.52±0.19 95.60±0.03

Ours (CNN-LSTM) 94.80±0.21 96.22±0.03

properties of the collected dataset.

A. Data pre-processing

Before training the network, we process the raw data such

that we can have a sufficient amount of training samples for

training the proposed CNN-LSTM network. In this work,

we augment the raw data with random cropping, horizontal

flipping, gamma correction, rotation, and shifting such that

we increase the training samples by 300 folds.

For turn recognition, we compute the difference image of

all the video frames. Additionally, we crop the ROI on the

difference image, which is 2/5 height and 2/5 width of the

right and left regions as shown in Fig. 4. Both regions are fed

to the network as inputs and the training data is increased by

two folds. We evaluate the proposed algorithm by five-fold

cross validation.

B. Network settings

The proposed CNN-LSTM model is implemented using

the Caffe toolbox [12]. We fine-tune the pre-trained model

[8], which is developed based on the UCF101 data set [17].

The input of our network contains 10 batches each time, and

each one contains 16 frames. A sequence of 16 frames allows

us to obtain at least one cycle of the turn signal. Each frame

is given the ground truth label based on the video sequence

they belong to and resized to 227×227 pixels before feeding

to the network. During the error backpropagation process,

we take the ground truth and the output prediction of the

last frame to compute the loss for every frame in the same

sequence.

As we have an unbalanced data set for the brake and turn

signals as shown in Table I, we randomly select the same

amount of videos for the on and off of brake or turn signals

in our 10 batches each time. As a result, we have sufficient

amount of training samples for all classes.

C. Performance evaluation

For each test video, we select every unique sample of

16 frames sequence and feed it to the trained model (e.g.,

2 sequences for a video of 17 frames). We compute the

accuracy based on the percentage of correctly predicted

sequences in each video and use the average as the metric

for performance evaluation.

TABLE III

TURN RECOGNITION COMPONENT ANALYSIS OF THE PROPOSED

ALGORITHM WITH DIFFERENT COMBINATIONS OF FEATURES AND

MODULES. RGB/DIFFERENCE IMAGE (DIFF), ROI, AND LSTM ARE

ADDED FOR EVALUATION BASED ON PREDICTION ACCURACY (%).

ROI LSTM No turn Left turn Right turn Emergency

RGB � 88.90 59.82 43.63 0.00

Diff � 88.45 89.79 64.10 100.00

Diff � 90.85 80.50 64.47 100.00

Diff � � 97.94 94.57 87.72 100.00

TABLE IV

TURN RECOGNITION COMPARISON WITH USING THE CNN AND OUR

METHOD (CNN-LSTM). BOTH METHODS USE DIFFERENCE IMAGE AND

ROI FOR INPUTS, AND EVALUATED USING FIVE-FOLD CROSS

VALIDATION.

No turn Left turn Right turn Emergency

CNN 91.32±0.17 66.42±0.82 64.46±1.19 91.61±1.17

Ours 95.92±0.09 91.12±0.23 93.46±0.22 99.16±0.04

Table II shows the brake recognition results using the

proposed algorithm and the CNN only method, which is

implemented based on the AlexNet in the Caffe toolbox.

The CNN method is evaluated using the average accuracy

from the predictions of all frames in each video. The results

show that although brake lights are static and depend less

on temporal features, our method is able to achieve better

accuracy with additional temporal information.

We evaluate the turn signal classification results to analyze

how the proposed model performs. Table III shows the

experimental results with different features and modules

including RGB/difference image, ROI, and LSTM. Exper-

imental results show that we can increase the recognition

accuracy of turn signals using all the modules and features

in the proposed algorithm. In Table IV, we show the results

using five-fold cross validation on the proposed algorithm

in comparison to the method only using the CNN. Both

networks use difference image and ROI as inputs for classi-

fication. The results show the effectiveness of the proposed

algorithm using the LSTM model.

Table V shows the five-fold cross validation results for

8 turn signal recognition using the proposed algorithm.

Overall, the proposed algorithm is able to tell the turn light

signals effectively.

In the experiments, we observe some failure cases as

shown in Fig. 7. For brakes, there are cases that are difficult

to recognize due to the sunlight. For example, Fig. 7(a) is

labeled as OOO but it looks like the brake signal is turned

on. On the other hand, Fig. 7(b) is labeled as BOO but it is

difficult for humans to tell whether it is the color of the light

mask or it is actually turned on. Turn signals have similar

issues with additional factors such as shades. In Fig. 7(c),

tail lights of the middle two frames appear to be on due

to the sunlight, and the lights in the other frames have cast

shadows. As a result, the image differences between the first

two frames (and last two frames) appear to be similar to

flashing signals. In such cases, the proposed CNN-LSTM

model does not perform well.
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TABLE V

FINAL RECOGNITION ACCURACY (%) EVALUATED USING FIVE-FOLD CROSS VALIDATION.

OOO BOO OLO BLO OOR BOR OLR BLR

Accuracy 93.52±0.25 90.30±0.38 86.12±0.89 88.02±0.44 94.72±0.20 84.00±1.23 97.90±0.18 100.00

(a) Brake failure (OOO) (b) Brake failure (BOO)

(c) 4 continuous frames of the turn failure case (OOO)

Fig. 7. Brake and turn failure cases. (a) and (b) are brake recognition
failures affected by strong sunlight and is difficult for human to recognize
the signal state. (c) is a turn failure case caused by sunlight and shades
which in result acts similar to flashing signals.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a method that learns to recognize

8 different signal states. Our method utilizes a deep network

to learn the temporal information through a LSTM network

in addition to exploiting the spatial features from the CNN.

We train the brake signal classifier using RGB frames and

use a two-step localization method to learn the dynamic

patterns of the turn signals. First, we compute the difference

between two adjacent frames. Second, we segment out the

ROI for the rear light regions in the image as our input to

the network. The two classifiers are learned separately and

is then integrated to our recognition system. We show that

our proposed system is able to effectively predict each signal

states in the real-world traffic scenes. Instead of training two

separate classifiers, our future work will focus on learning

to tell the brake and turn signals altogether in an end-to-end

network.
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