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ABSTRACT

In the DDPM paper, Ho, Jain, and Abbeel introduced two reversible diffusion pro-
cesses parameterized by a noise schedule—a generator and an oracle process that
the generator learns from—and derived a formula for the Kullback-Leibler diver-
gence (KL) in the form of a time-weighted Mean Squared Error (MSE). However,
they empirically found that omitting the weights improved performance on image-
synthesis benchmarks, a result later corroborated by many studies. More recently,
removing the stochastic component at generation time has proved effective. (1) In
this work, we provide a theoretical justification for these practices. We consider a
broader class of diffusion processes (not necessarily reversible) parameterized by
a noise schedule and a diffusion size b that share the same marginals. Since the
weight associated with the MSE depends on b, omitting the weight is equivalent to
solving the equation weight(b)=1, which yields a unique MSE-diffusion. For SOTA
models, we checked that b is close to zero; that is, the learned MSE-diffusion
is nearly a flow, and we confirm this observation by comparing generators on
ImageNet 512×512. Therefore, flows beat reversible diffusions because training
of SOTA models is an implementation of KL minimization for MSE-diffusions,
which are nearly flows. The models that succeed are the ones that are really trained.
(2) Moreover, by generalizing the diffusion process to both discrete and continuous
time, we obtained a novel representation of the diffusion state as the sum of an
explicit linear component, an unweighted pathwise integral of the denoiser, and
a noise term. This representation offers the advantages of DPM-solvers while
enabling the use of classical numerical methods for ODEs.

1 INTRODUCTION

A typical diffusion model for image generation transforms noise into an image over a few dozen to a
few hundred time steps by means of a neural network, a neural denoiser. The denoiser is trained with
a time-weighted mean-squared error (MSE) between the noised image and the network’s prediction.
Averaging is performed over independent trios (time, noise, image), thus no diffusion model is needed
to train the denoiser. The weights associated with MSE are often absorbed into the noised image,
yielding different parameterizations of the prediction (e.g., noise-, data-, or velocity parameterization).
Therefore, the denoiser is determined by the noise schedule and the chosen parameterization.

On the other hand, a diffusion model is specified by its noise schedule and diffusion size (variance-
rate coefficient). To train a diffusion model, we need a measure of proximity between 2 diffusion
processes: a generator and an oracle process that the generator learns from. The processes are defined
by distributions, and MSE does not determine the proximity between them, so we may use the most
popular measure for this purpose, that is the Kullback-Leibler divergence (KL) or, equivalently, the
maximum likelihood (ML).

This brings us to the problem: how to combine the practical training of the denoiser with the
theoretical training of the diffusion process, and then determine the diffusion size for a generator
based on the noise schedule and parameterization used in training. This issue has been known since
at least the work of Ho et al. (2020). They expressed the KL between reversible diffusion processes
as a time-weighted MSE. However, empirical results showed that dropping the weights improved
performance—a finding later confirmed by many studies. Since then, the problem has become more
entrenched because several different noise schedules and parameterizations have appeared, while
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diffusion models are defined using a noise schedule and the reversibility condition (Ho et al., 2020;
Song et al., 2021c; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Salimans & Ho, 2021; Song
et al., 2021b; Kingma et al., 2021; Ho & Salimans, 2022; Rombach et al., 2022; Kingma & Gao,
2023; Esser et al., 2024). More recently, it has also proved effective to zero out the diffusion size
during sampling, replacing the reversible diffusion with a deterministic flow. We validate this claim
in the review of state-of-the-art (SOTA) models presented in Section 6.

Main result. In this work, we provide a theoretical justification for these practices. We consider a
broader class of diffusion processes (not necessarily reversible) parameterized by a noise schedule
and a diffusion size that share the same marginals. In Proposition 1 and Proposition 2, we generalize
the KL formulas from the Ho et al. (2020) and Kingma et al. (2021) papers, respectively, for
this class of models. Subsequently in Proposition 3, we derive a closed-form expression for the
diffusion size of the unique MSE-diffusion learned by KL minimization, given a noise schedule and
a denoiser parameterization. Moreover, in Section 6, we checked that the MSE-diffusion size is
close to zero for current SOTA models; that is, the MSE-diffusion is nearly a flow. We then confirm
this observation by comparing generators on the ImageNet 512×512 class-conditional benchmark.
Therefore, the practical training of denoisers for generators of deterministic flows can be understood
as an implementation of KL minimization for MSE-diffusion processes, which are nearly flows. The
models that succeed are the ones that are really trained.

Additional results. By generalizing the diffusion process to both discrete and continuous time, we
can use elementary autoregressive arguments, yielding formulas that are simpler than those used so
far. In particular, in Section 3, we obtained a novel representation of the diffusion state as the sum of
an explicit linear component, an unweighted pathwise integral of the denoiser, and a noise term. This
representation offers the advantages of DPM solvers (Lu et al., 2023; 2022; Cui et al., 2025), while
additionally enabling the use of classical methods of numerical integration for differential equations.

2 A DENOISER INDUCED BY MSE TRAINING

Assume that we have two positive, continuously differentiable functions of time t ∈ (0, 1), namely
increasing signal schedule αt and decreasing noise schedule σt. Let ρ̊t = αt/σt and λ̊t = log ρ̊t
denote signal-to-noise ratio and its logarithm, respectively. The ring accents over the symbols indicate
that these functions are special cases of more general functions, without rings, which will be defined
later. Note also that in our setting, unlike in the original works, a signal schedule is an increasing
function. Let t ∼ U(0, 1), X ∼ px in Rd and ε ∼ N (0, Id) be independent. We consider the linear
noise generators

Ȳt := X + ρ̊−1
t ε and Z̄t := αtȲt = αtX + σt ε. (1)

We train a prediction ût : Rd → Rd by fitting its parameters, denoted as a hat, according to the mean
squared error (MSE)

min
∧

Et,ε,X
∥∥ût(αtȲt)− ut∥∥2

= min
∧

∫ 1

0

Eε,X
∥∥ût(αtȲt)− ut∥∥2

dt, (2)

where t ∼ U(0, 1), ut = AtȲt + Stε is a target and functions At, St are scaling schedules, with
positive and continuous St called parameterization. Observe that averaging is performed over
independent trios (t, ε,X), thus no diffusion process is needed to train the denoiser. From a unique
ût we recover an estimator of the noise from the formula for the target ut and a denoiser or a data
estimator via (1)

ε̂t(Ȳt) :=
ût(αtȲt)−At Ȳt

St
and X̂t(Ȳt) := Ȳt − ρ̊−1

t ε̂t(Ȳt). (3)

A direct calculation shows that ût− ut = St(ε̂t− ε) = −ρ̊tSt(X̂t−X). We can also define a target
using data: ut = BtȲt − CtX , then for this target learn the network, define X̂t, and then, using (1),
define ε̂t and set St := Ct/ρ̊t.

For our purposes, the interface between the denoiser and the generator consists of, in addition to ε̂t or
X̂t, the pair (̊λt, St). These can be viewed as input and output scalings, respectively. Kingma & Gao
(2023) showed that MSE-training is determined by λ̊t and weights ωt = S2

t /̊λ
′
t equivalent to our St.

2
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We now present the most popular noise schedules and parameterizations, including those used in
current SOTA models.

Noise schedules. Kingma & Gao (2023) demonstrated that three popular noise schedules can be
derived uniformly as quantile functions of bell-shaped densities: normal, logistic, and hyperbolic
secant.

Normal. λ̊t := Φ−1(t) + 0.4, αt := 1, σt = exp(−λ̊t), where Φ is the standard normal cumulative
distribution function. This schedule is used in the EDM2 model (Karras et al., 2024b;a).

Logis. αt := t, σt := 1 − t, λ̊t = log(t/(1 − t)), that is, the quantile of the (standard) logistic
distribution. This schedule is inspired by optimal transport between the noise and data distributions
(Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023; Ma
et al., 2024; Esser et al., 2024; Yao et al., 2025).

Sech. αt := sin(πt/2), σt := cos(πt/2), λ̊t = log(tan(πt/2)), so (2/π) λ̊t is the quantile function
of the hyperbolic secant distribution (Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Kingma
et al., 2021).

SechInter. Hoogeboom et al. (2023; 2025) proposed the shifted Sech schedule interpolation, which
can be expressed in a simplified form as

λ̊t := log(tan(πt/2)) + (log 16)(t− 1), αt := (1 + exp(−2̊λt))
−1/2, σ2

t = 1− α2
t .

Parameterizations.
Noise. The network predicts ε, thus St ≡ 1. This parameterization is undoubtedly the most popular
(Ho et al., 2020; Song et al., 2021a;c; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Rombach
et al., 2022; Peebles & Xie, 2023; Hoogeboom et al., 2023; Chen et al., 2024b;a).

Data. The network is trained to predictX , so St = ρ̊−1
t . This natural schedule is mainly of theoretical

importance (Kingma et al., 2021; Lu et al., 2022).

F-pred. The target for this prediction is Ft :=
√

4 + ρ̊2
t X − ρ̊2

t/
√

4 + ρ̊2
t Yt, thus St =

√
4ρ̊−2
t + 1.

It is an effective schedule used in the EDM and EDM2 models (Karras et al., 2022; 2024b;a).

Vel. The target is the velocity of Z̄t, that is, vt := α′tX + σ′tε = α′tȲt − λ̊′tσtε. Then (3) yields
v̂t(αtȲt) = αtȲt − λ̊′tσtε̂t(Ȳt), so St = λ̊′tσt. This parameterization is motivated by considerations
from optimal transport theory and is closely related to the logistic noise schedule (Lipman et al.,
2023; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023; Ma et al., 2024; Yu
et al., 2025; Leng et al., 2025; Zheng et al., 2025).

VelLN. St := λ̊′tσt exp
(
− 1

4

(
log t

1−t
)2)/(

(2π)1/4
√
t(1− t)

)
. This parameterization results from a

velocity-type prediction that employs a logit-normal distribution for time sampling (Esser et al., 2024;
Yao et al., 2025).

Sigmoid. St :=
√

2̊λ′t/
(
1 + exp(2̊λt + 3)

)
. This parameterization was introduced in (Kingma &

Gao, 2023) and is employed in the SiD2 model (Hoogeboom et al., 2025).

3 DIFFUSION MODELS INDUCED BY THE DENOISER

A diffusion denoising model that generates from the distribution estimator px is a diffusion process
with a drift estimated by a denoiser, starting from pure noise. In this section, we will first define the
discrete-time diffusion noise. Then, by adding a denoiser, we will obtain a denoising process, and
we will subsequently define an analogous process in continuous time and a numerical solver for it.
Finally, we will specify the generation interval and state our main problem.

Stationary, time-inhomogeneous autoregression. Let us fix a grid 0 < t0 < t1 < · · · < tN =
t ≤ tmax < 1, where ti = t0 + i(tmax − t0)/N, i = 0, 1, . . . , N . Let ρt be a positive, increasing,
continuously differentiable function of time t ∈ (0, 1). This function, which we will refer to as the
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diffusion schedule, defines the cumulative relative variance of the diffusion processes. We also define
rt = ρtρ̊t and λt = log ρt.

Let {ξti}Ni=0 and εt0 ≡ ε0 be i.i.d. N (0, Id) and for t = ti, s = ti−1 set

εt :=
ρs
ρt

εs +

√
1− ρ2

s

ρ2
t

ξs. (4)

The rescaled εt, εs form an autoregressive process with additive noise

ρtεt = ρs εs +
√
ρ2
t − ρ2

s ξs. (5)

From (5), it is clear that εt ∼ N (0, Id), and that εs, ξs are independent. The correlation and
conditional variance are also easily computable for coordinates j, k = 1, 2, . . . , d

cor(εt,j , εs,k) = 1(j = k)ρs/ρt, V(εt,j | εs,k) = 1− 1(j = k)ρ2
s/ρ

2
t . (6)

These formulas indicate that ρ2
t represents the relative cumulative variance of the process {εti}Ni=0.

Discrete diffusion models. Assume that {εti}Ni=0 are independent of X . Let us define

Yt := X + ρ̊−1
t εt and Zt := αtYt = αtX + σt εt. (7)

It is clear that for any diffusion schedule ρt, the random variables Yt, Zt are distributed identically to
the linear noise generators Ȳt, Z̄t defined in (1) at times t = ti. By substituting the expressions for
εt, εs in terms of Yt, Ys or Zt, Zs (from (7)) into (5), we get

rtYt = rsYs + (rt − rs)X +
√
ρ2
t − ρ2

s ξs. (8)

ρt
σt
Zt =

ρs
σs
Zs + (rt − rs)X +

√
ρ2
t − ρ2

s ξs. (9)

Thus, the function αt, which was previously shown to be an internal learning function, is now
independently found to be unnecessary for generation. It is sufficient to generate the process Yt and,
if necessary, scale it at the end of generation to obtain ZtN = αtNYtN . Hence, in this section, we
only consider the process Yt. Obviously, the process (8) is not a true generator because it uses X , so
we will call it an oracle.

By substituting the prediction induced by the denoiser, X̂s ≡ X̂s(Ŷs), for X in the oracle process
(8), we obtain the generator

Ŷt0 := ρ̊−1
t0 εt0 and rtŶt := rs Ŷs + (rt − rs) X̂s +

√
ρ2
t − ρ2

s ξs. (10)

Note that in our setting, unlike in many works on generative diffusion models, time in the oracle and
the generator runs forward.

Continuous diffusion models. By induction, for any grid points ti < tj we obtain from (10)

rtj Ŷtj = rti Ŷti + (rti+1
− rti)X̂ti + . . .+ (rtj − rtj−1

)X̂tj−1
+
√
ρ2
tj − ρ

2
ti ξ
∗
ti , (11)

where Ŷti , ξ
∗
ti are independent and

ξ∗ti :=

√
ρ2
ti+1
− ρ2

ti ξti + . . .+
√
ρ2
tj − ρ

2
tj−1

ξtj−1√
ρ2
tj − ρ

2
ti

∼ N (0, Id).

Assuming t 7→ X̂t(Ŷt) is continuous and N approaches infinity in (11), we arrive at a new repre-
sentation of the diffusion state as the sum of an explicit linear component, an unweighted pathwise
integral of the denoiser, and a noise term

rtŶt = rsŶs +

∫ rt

rs

X̂r(Ŷr) dr +
√
ρ2
t − ρ2

s ξ
∗
s , (12)

where Ŷs, ξ∗s are independent, ξ∗s ∼ N (0, Id) and t0 < s < t ≤ tmax < 1.

Given (12), we do not need the SDEs. Moreover, the appropriate SDE can be naturally derived from
(10); subsequently, using the variation of constants method on the SDE, we can obtain (12) which,
with the simplest discretization, takes the form of (10) (the construction is provided in Appendix A).

4
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Universal diffusion solver (UDS). Let t = s + ∆t, qst := rs/rt and βst := ρ̊−1
t

√
1− ρ2

s/ρ
2
t ,

then from (12) we obtain the solver family

Ŷt := qst Ŷs + (1− qst)APPROX
[
Eq∼U(qst,1)X̂q(Ŷq)

]
+ βst ξ

∗
s , (13)

where APPROX denotes any numerical ODE integration method. In the simplest cases, formula (13)
yields the Euler and Heun schemes, with the Heun equation depending on a prior calculation of the
Euler equation

Euler: Ŷt := qst Ŷs + (1− qst)X̂s(Ŷs) + βst ξ
∗
s , (14)

Heun: Ŷt := qst Ŷs + (1− qst)
X̂s(Ŷs) + X̂t(Ŷt)

2
+ βst ξ

∗
s . (15)

1. Observe that the deterministic component of the UDS scales withX (usually pre-normalized) as we
mix the previous prediction Ŷs with the mean prediction over the transformed interval (s, t). Hence,
the coefficient βst of the standard normal noise warrants the name diffusion size and can be used for
an equivalent definition of the diffusion process. 2. It is easy to check that EulerUDS is identical
to the DDPM solver (Ho et al., 2020) for reversible diffusions, βst = ρ̊−1

t

√
1− ρ̊2

s/ρ̊
2
t , and to the

DDIM solver (Song et al., 2021a) for deterministic flows, βst = 0. 3. Universal schemes such as the
Euler-Maruyama method struggle with integrating the rapidly-changing linear term, whereas schemes
designed specifically for diffusion, such as DPM-solvers, treat the linear term analytically. However,
they require integrating ε̂t or X̂t with an exponential weight, a procedure which is complicate (Lu
et al., 2023; 2022; Cui et al., 2025). In particular, DPM solvers of order 1-3 are analogous to the
Runge-Kutta methods, but the analogue for the Runge-Kutta method of order 4, has not yet been
developed. For comparison, our method is both universal and specific to diffusion.

Generation interval and the main problem. Comparing the formulas for popular noise schedules
with the formula for the generator (10), we see that ρ̊0 = 0, ρ̊1 = ∞ and we do not start at the
moment when the generator and oracle have the same distribution, nor do we reach the point where
the oracle has the distribution px. To precisely define the generation task, we need to specify the
start t0 and end tmax of the generation. From formula (10), it is also clear that the function λt is not
needed for generation, only its quotients. Equivalently, it is sufficient to calculate λt from the integral
formula based on the derivative λ′t, hereafter referred to as the diffusion rate. At this point, we can
define the main problem of our work: determine λ′t based on the training of the denoiser (ρ̊t, St) and
the generation interval 0 < t0 < tmax < 1.

4 A DIFFUSION MODEL INDUCED BY THE PENALIZED MAXIMUM LIKELIHOOD

We need a measure of proximity between the oracle process and the generator process to choose
the diffusion schedule. The processes are defined by distributions, and MSE does not determine the
proximity between them, so we will use the most popular measure for this purpose, that is the ML or,
equivalently, the KL.

4.1 DIVERGENCE DECOMPOSITIONS

As in the previous sections, we start with the processes Zt = αtYt and Ẑt = αtŶt to see that it is
enough to consider only Yt and Ŷt. Let t0 < t1 < · · · < tN = t be a discretization of the time
interval [t0, t], set s = tN−1. For x ∼ px we denote latent variables along the path by zti and write
zti:t = (zti , zti+1

, . . . , zt). From the definition of the oracle process (9) and the generator (10) it
follows that

pt(zt|zs, x) = N
(
zt|µs(zs, x), σt

√
1− ρ2

s/ρ
2
t Id

)
,

where µs(zs, x) :=
σtρs
σsρt

zs +
σt
ρt

(ρtρ̊t − ρsρ̊s)X =
αt
αs
zs − σt

( ρ̊t
ρ̊s
− ρs
ρt

)
εs.

Analogously

p̂t(zt|zs) = N
(
zt|µ̂s(zs), σt

√
1− ρ2

s/ρ
2
t Id

)
,

where µ̂s(zs) :=
σtρs
σsρt

zs +
σt
ρt

(ρtρ̊t − ρsρ̊s)X̂s =
αt
αs
zs − σt

( ρ̊t
ρ̊s
− ρs
ρt

)
ε̂s.

5
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The KL divergence between these two normal distributions is

D[pt(.|zs, x) | p̂t(.|zs)] := EZt|zs,x log
[
pt(Zt|zs, x)/p̂t(Zt|zs)

]
(16)

=
‖µs(zs, x)− µ̂s(zs)‖2

2σ2
t (1− ρ2

s/ρ
2
t )

= wNs ‖ε̂s(zs)− εs‖
2
, where wNs :=

(ρ̊t/ρ̊s − ρs/ρt)2

2(1− ρ2
s/ρ

2
t )

. (17)

We define the following conditional and joint distributions

pNt1:t(zt1:t|zt0 , x) := pt(zt|zs, x) . . . pt1(zt1 |zt0 , x),

p̂Nt1:t(zt1:t|zt0) := p̂t(zt|zs) . . . p̂t1(zt1 |zt0),

pt0,x(zt0 , x) := pt0(zt0 |x) px(x),

pt0,t(zt0 , x|zt) := pt0(zt0) pt(x|zt),
pNt0:t,x(zt0:t, x) := pNt1:t(zt1:t|zt0 , x)pt0,x(zt0 , x),

p̂Nt0:t,x(zt0:t, x) := p̂Nt1:t(zt1:t|zt0)pt0,t(zt0 , x|zt).
The distribution pt represents the “reconstruction error,” which determines how well the image was
recovered from the final zt representation. The overline symbol indicates its parameters, and its effect
on the divergence between the joint distributions will be called the bias and denoted below as B̄. Two
KL decompositions that we shall use are

D
[
pNt0:t,x

∥∥ p̂Nt0:t,x

]
= D

[
px
∥∥ p̂Nx ] + EX D

[
pNt0:t(.|X)

∥∥ p̂Nt0:t(.|X)
]
, (18)

D
[
pNt0:t,x

∥∥ p̂Nt0:t,x

]
= L̂N (t0, t, λ̊, λ) + B̄(t0, t), (19)

where

L̂N (t0, t, λ̊, λ) := EZt0
,X D

[
pNt1:t(.|Zt0 , X)

∥∥ p̂Nt1:t(.|Zt0)
]

and B̄(t0, t) := D
[
pt0,x

∥∥ pt0,t]. (20)

Both of these decompositions together imply that the diffusion loss, denoted as L̂N , is the objective
function for (implicitly) a penalized negative log-likelihood of the estimator p̂Nx of the density px
induced by the denoiser with parameters ∧.
Proposition 1.

L̂N (t0, t, λ̊, λ) =

N−1∑
i=0

wNti Eε ‖ε̂ti − ε‖
2
. (21)

Proposition 2. Assuming t 7→ ε̂t(Ŷt) is continuous, we have

L̂N (t0, t, λ̊, λ) = L̂(t0, t, λ̊, λ
′) +O(1/N), (22)

where

L̂(t0, t, λ̊
′, λ′) :=

∫ t

t0

(
λ′τ + λ̊′τ

)2
4λ′τ

Eε,X
∥∥ε̂τ (Yτ )− ε

∥∥2
dτ. (23)

Propositions 1-2 are proven in Appendix A.

4.2 PENALIZED MAXIMUM LIKELIHOOD

Observe that the weights under the integral in (23) are of the form(
λ′t + λ̊′t

)2
4λ′t

= λ̊′t +
1

4
χ2(λ′t, λ̊

′
t), where χ2(λ′t, λ̊

′
t) :=

(
λ′t − λ̊′t

)2
λ′t

(24)

is the well-known χ2-distance. So weights determining the diffusion process in L̂ are, up to a constant,
scaled distance between λ′t and λ̊′t.

Since the function L̂ is (implicitly) a penalized ML objective, we do not change its meaning or
difficulty of its calculation, if we add a simple penalty to the weights and define (explicitly) the
penalized maximum likelihood objective

L̂c(t0, t, λ̊, λ′) :=

∫ t

t0

[̊
λ′τ +

χ2(λ′t, λ̊
′
t) + ctλ

′
t

4

]
Eε,X

∥∥ε̂τ (Yτ )− ε
∥∥2
dτ, (25)
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for some non-negative, continuous function ct. Indeed, it is easy to check that the optimal diffusion
rate for such penalized weights is

λ′c,t := λ̊′t/
√

1 + ct. (26)

Penalized maximum likelihood covers many important approaches. If ct = 0, then we obtain the
maximum (joint) likelihood solution, hereinafter denoted as ML-diffusion, which is, as previously
shown (Ho et al., 2020; Kingma et al., 2021; Kingma & Gao, 2023), a reversible diffusion. If ct →∞,
then λ′c,t → 0, and a diffusion process converges to a deterministic flow. Our MSE-diffusion, defined
in the next section, is a tradeoff between these extremes.

5 A DIFFUSION MODEL INDUCED BY MSE TRAINING

We want the losses to agree not only globally on the interval [t0, tmax], but also on each of its
subintervals. Let us imagine a scenario where the group of researchers optimizing the reconstruction
error improves its method and thus decreases tmax, or when it becomes possible to start the generation
process for a larger t0. It could also be that we should generate diffusions in stages using different
samplers, and our sampler might only care about optimality for a certain subinterval. Below we will
formulate an appropriate condition, but first let us define MSE for each initial interval (t0, t)

M̂(t0, t, λ̊, S) :=

∫ t

t0

Eε,XS2
t

∥∥ε̂t(Ȳt)− εt∥∥2
dt =

∫ t

t0

Eε,X
∥∥ût(αtȲt)− ut∥∥2

dt. (27)

We will say that the diffusion process defined by (t0, t, λ̊
′, λ′c) is coherent with MSE if and only if the

following condition is satisfied

Coherence principle. There exist a constant M ≡M(t0, tmax, λ̊, S) such that ∀t ∈ [t0, tmax] we
have

L̂(t0, t, λ̊
′, λ′c) = MM̂(t0, t, λ̊, S). (28)

The loss L̂ (without subscript c) is invariant to data scaling, because it is the expected divergence,
whereas MSE depends on data scaling. Therefore, to compare the two functions, we need an
appropriate normalization, that is some constant M .

Proposition 3. Let us define

M := max
t∈[t0,tmax]

λ̊′t/S
2
t . (29)

Then the coherence principle holds with M iff the diffusion rate is

λ′t,c =
(√

MSt −
√
MS2

t − λ̊′t
)2

. (30)

The diffusion process with a parameter λ̌t
′ ≡ λ′t,c is called the MSE-diffusion. Proposition 3 is proven

in Appendix A.

Example. Consider the logistic noise schedule with the velocity parametrization: αt := t, σt :=

1− t, λ̊′t = 1/[t(1− t)], St = 1/t and gt :=
√

(tmax − t)/(tmax(1− t)).
Thus M = tmax/(1− tmax) and

λ̌t
′

=
(√

M −
√
M − t/(1− t)

)2/
t2.

In this case, we obtain a compact form for λ̌t

λ̌t = − log
( t

1− t

)
− log

(
1 + gt
1− gt

)
+

2 tmax
(1− tmax)

1− t
t

(
gt − 1

)
+ const.

7
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Discrete time. The coherence principle and MSE-diffusion have their equivalent in the discrete
model. Let us define ηst :=

√
1− ρ2

s/ρ
2
t = ρ̊tβst and s := t − ∆t, ∆t := (tmax − t0)/N .

Rewriting equation (4) we see that η2
st is the proportion of new noise ξs to the total noise εt

εt =
√

1− η2
st εs + ηst ξs.

From (17)

wNt (ηst) =
1

η2
st

(√
γst −

√
1− η2

st

)2
, where γst := ρ̊2

t/ρ̊
2
s.

It can be easily checked that

η̊st := arg min
η

w2
t (η) =

√
1− γ−1

st ,

and

η̌st =
γst − 1√

2MS2
t γst +

√
2MS2

t + 1− γst
, where M := max

t∈{t0,...,tmax}
(γst − 1)/(2S2

t ).

To calculate the diffusion size βt−∆t,t in the next section, we employ both λ′t and ηt−∆t,t using the
approximation 2∆tλ′t ≈ η2

t−∆t,t .

6 EXPERIMENT AND DISCUSSION

In this section, we present a concise review of SOTA models and argue, based on experimental
evidence, that their corresponding MSE-diffusions are almost flows. We also briefly discuss additional
results. Let ML(ρ̊t) and MSE(ρ̊t, St) denote the diffusion size βt−∆t,t for ML-diffusion and MSE-
diffusion, respectively.

Current open-source SOTA “diffusion models” generate deterministic flows. It is natural to
group SOTA “diffusion models” for image generation according to their neural network architec-
ture—either DiT (Peebles & Xie, 2023) or U-Net (Ronneberger et al., 2015). This applies to both
ImageNet class-conditioned models and text-to-image models.

The largest group consists of DiT-based models, which can be conveniently divided into two sub-
groups depending on whether Saining Xie is listed as a co-author. The subsequent models by Xie
include DiT (Peebles & Xie, 2023), SiT (Ma et al., 2024), REPA (Yu et al., 2025), REPA-E (Leng
et al., 2025) and RAE (Zheng et al., 2025). The original DiT employed the noise schedule, parame-
terization, and generator from DDPM, whereas the later models use the Logis noise schedule and
V el parameterization. It is instructive to examine how the generators evolved across these models:
initially, a reversible diffusion ML(Logis) generator from DDPM was used (DiT); then a limited
diffusion REPA(Logis) generator defined by λ′t = 1/(2t) was adopted (SiT, REPA, REPA-E); and
finally, a deterministic flow βt−∆t,t = 0 ≈MSE(Logis, V el) emerged (RAE)—see Figure 1). This
evolution of Xie’s models—from reversible diffusion to flows—provides empirical confirmation of
our claim that SOTA models fit MSE-diffusions. Other DiT-based models include LightningDiT (Yao
et al., 2025) and popular text-to-image models such as SD3 (Esser et al., 2024) and PixArt (Chen
et al., 2024b;a). All of them generate flows. The SD3 and LightningDiT models use the Logis noise
schedule and V elLN parameterization resulting from the use of importance sampling in velocity
parameterization, while PixArt uses a beta-linear noise schedule and Noise parameterization. Thus,
the latest SOTA “diffusion models” based on DiT generate deterministic flows.

SOTA “diffusion models” based on U-Net originate from the DDPM network and its mature modifi-
cation, ADM (Dhariwal & Nichol, 2021), which operated with the Sech noise schedule and Noise
parameterization and used the DDPM generator. These models can be further divided according
to the research group. The first subgroup consists of models developed at NVIDIA: EDM (Karras
et al., 2022) and EDM2 (Karras et al., 2024b;a). These models use a Normal noise schedule,
F − pred parameterization, and generate flows. The second subgroup consists of models developed
at Google: SiD (Hoogeboom et al., 2023) and SiD2 (Hoogeboom et al., 2025). These models use
a SechInter noise schedule and noise and sigmoid parameterization, respectively. They are the
only SOTA “diffusion models” known to us that generate reversible diffusion (approximately, due to
interpolation between the prior and posterior variance), but they are not publicly available.
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MSE-diffusions are nearly flows. In Figure 1, we show the diffusion size βt−∆t,t for ML-diffusion
and MSE-diffusion for the current SOTA models. It can be observed that the MSE-diffusion is close
to zero for all models except at the initial stage of generation, which should not matter given that
the generator starts from a normal distribution and the diffusion noise is also normal. In the later
stages of generation, the diffusion size is below 1% in all models, with the exception of EDM2,
where it remains at 5% of the image size. Therefore, we decided to verify whether such values imply
that the flow generator and the MSE-diffusion are practically indistinguishable in terms of FID in
image generation. We conducted an experiment comparing generators in the EDM2 environment
using version S with CFG, applying all settings including the selection of time steps, specific to this
model. The results are shown in Table 1. As expected, the MSE-diffusion performs nearly like a flow,
whereas HeunUDS (15) in the flow version performs worse than the original HeunEDM2—likely
due to the choice of the EDM2 non-uniform time grid.
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Figure 1: Diffusion sizes of current SOTA models. The FID scores for the ImageNet 256×256
and ImageNet 512×512 class-conditional benchmarks are indicated in parentheses next to the model
names. In the case of EDM2, the generator uses only 32 steps on a non-uniform grid, which we have
marked with dots. In all other cases, the generators operate on a uniform grid, with default settings of
250 steps for RAE and LightningDiT, and 512 steps for SiD2.

HeunEDM2 HeunUDS, eq. (15) EulerUDS, eq. (14)
NFE Flow Flow MSE ML Flow MSE ML

63 2.28 2.45 2.45 3.39 2.81 2.84 4.30
255 2.26 2.27 2.28 2.71 2.34 2.36 2.84

Table 1: The FID scores for the ImageNet 512×512 in the EDM2 environment. We run the
generators in the environment of the EDM2 version S with CFG, leaving all settings unchanged. NFE
denotes the number of function evaluations. We compute FID 5 times in each experiment and report
the mean.

Remarks. 1. We generalize the generative diffusion model and the formulas for the diffusion
loss from Kingma et al. (2021) and Song et al. (2021b). Formula (23) is equivalent to the ‘KLUB’
expression introduced in Sabour et al. (2024), but we do not use stochastic calculus in its proof.
Despite the generalization, our continuous-time diffusion construction is much simpler than previous
ones: time runs forward and there is no need to consider SDEs at all. 2. Implementing a diffusion
model using αt and σt has become common practice, despite the mostly simulation-based arguments
of Karras et al. (2022), that αt is unnecessary. We specify these arguments: αt is merely an input
scaling in the denoiser, which is not needed for generation or in the context of maximum likelihood
analysis. Our research indicates that the natural scale for the process values is λt + λ̊t. 3. We see no
significant difference between score-based models that generate processes on (0,∞) and stochastic
interpolants that work on [0, 1]. It is important that ρ̊t and ρt take on positive values within the closed
interval of actual generation. This is necessary to make the analysis realistic, which is clearly visible
in the proofs of global convergence for numerical ODE solvers (Lu et al., 2023; 2022).

Conclusion. SOTA models learn MSE-diffusions; MSE-diffusions are nearly flows; flow generators
beat reversible diffusions. The models that succeed are the ones that are really trained.
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A APPENDIX

From the generator (10) to SDE and back. The equation (10) for the simplest generator is
equivalent to

Ŷt − Ŷs =
(rs − rt

∆t rt
Ŷs +

rt − rs
∆t rt

X̂s

)
∆t+ ρ̊−1

t

√
ρ2
t − ρ2

s

∆t ρ2
t

√
∆t ξ∗s . (31)

A direct manipulation with Taylor expansions yields, for s = t−∆t,
rt − rs
∆t rt

= (log rt)
′(1 + δ1) and

ρt − ρs
∆t ρt

ρt + ρs
ρt

= 2(log ρt)
′(1 + δ2), (32)

where |δ1|, |δ2| = O(1/N). Hence (31) takes the form

Ŷt − Ŷs = (log rt)
′ (X̂t − Ŷt) ∆t+ ρ̊−1

t

√
2(log ρt)′

√
∆t ξ∗s +OP (∆t). (33)

Let Wt be a standard d-dimensional Wiener process and assume that X̂t is sufficiently regular. Then
the difference equation (33) converges to the Itô SDE

dŶt = (log rt)
′ (X̂t − Ŷt) dt + ρ̊−1

t

√
2(log ρt)′ dWt, (34)

= (λ′t + λ̊′t)
(
X̂t − Ŷt) dt + ρ̊−1

t

√
2λ′t dWt, (35)

= ρ̊−1
t (λ′t + λ̊′t) ε̂t dt + ρ̊−1

t

√
2λ′t dWt. (36)

By substituting Ỹt = (rt/rs)Ŷt for Ŷt in (34) we get

rsdỸt = r′tX̂t dt + ρt
√

2(log ρt)′ dWt. (37)

By integrating (37) and returning to Ŷt, we obtain (12), which, with the simplest discretization, takes
the form of (10).

Note that the substitution leading to formula (37) uses the method of variation of constants—the
same approach is used to derive DPM solvers. Thanks to the construction of the diffusion process by
(12), SDEs are not needed.

Proof of Proposition 1. By the chain rule for KL along the grid t0 < t1 < · · · < tN = t we obtain

D
[
pNt1:t(.|zt0 , x)

∥∥ p̂Nt1:t(.|zt0)
]

= D
[
pt1(.|zt0 , x)

∥∥ p̂t1(.|zt0)
]

+ EZt1
D
[
pt2(.|Zt1 , x)

∥∥ p̂t2(.|Zt1)
]

+ · · ·
+ EZtN−1

D
[
pt(.|ZtN−1

, x)
∥∥ p̂t(.|ZtN−1

)
]
. (38)

In our setting, from (17) this can be rewritten in terms of denoising errors with weights wNtj :

(38) = wNt0 ‖ε̂t0 − εt0‖
2

+ wNt1 Eεt1
∥∥ε̂t1 − εt1∥∥2

+ · · ·+ wNtN−1
EεtN−1

∥∥ε̂tN−1
− εtN−1

∥∥2
. (39)

So

EZt0
,XD

[
pNt1:t(.|Zt0 , X)

∥∥ p̂Nt1:t(.|Zt0)
]

=

N−1∑
i=0

Eεti ,Xw
N
ti ‖ε̂ti − εti‖

2
=

N−1∑
i=0

Eε,XwNti ‖ε̂ti − ε‖
2
.

Proof of Proposition 2. A direct manipulation with Taylor expansions yields, for s = t−∆τ ,

w̄Nt−∆τ :=
wNt−∆τ

∆τ
=

(
ρ̊t − ρ̊s
∆τ ρ̊s

+
ρt − ρs
∆τ ρt

)2
/(

2
ρt − ρs
∆τ ρt

ρt + ρs
ρt

)
=
(̊
λ′t (1 + δ1) + λ′t (1 + δ2)

)2/(
4λ′t (1 + δ3)

)
= w̄t +O(1/N), where w̄t :=

(
λ′t + λ̊′t

)2
4λ′t

and |δ1|, |δ2|, |δ3| = O(1/N). (40)
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For τ ∈ [t0, t] define tN (τ) := min{ti : τ ≥ ti}. We have

max
t0≤τ≤t

(
w̄NtN (τ)

∥∥ε̂tN (τ) − ε
∥∥2 − w̄τ ‖ε̂τ − ε‖2

)
= O(1/N), (41)

and consequently

L̂N (t0, t, λ̊, λ) = Eε,X

(
N−1∑
i=0

wNti
∆τ

∥∥ε̂ti − ε∥∥2
∆τ

)

= Eε,X
(∫ t

t0

w̄NtN (τ)

∥∥ε̂tN (τ) − ε
∥∥2

dτ

)
=

∫ t

t0

w̄τ Eε,X
∥∥ε̂τ − ε∥∥2

dτ +O(1/N).

Proof of Proposition 3. Let us fix t and simplify notation β := λ′t, βc := λ′c,t, β̊ := λ̊′t, s :=√
MSt. The coherence condition implies that the integrals L̂ and MM̂ agree on the initial intervals,

which is equivalent to the equality of the integrands. Therefore(
β + β̊)2

4β
= MS2

t = s2. (42)

The definition of the constant M implies that s2 ≥ β̊, thus equation (42) has 2 roots

β− =
(
s−

√
s2 − β̊

)2

and β+ =
(
s+

√
s2 − β̊

)2

. (43)

Observe that β−β+ = β̊2, so β− ≤ β̊ ≤ β+. By comparison with (26) β− = βc− , β+ = βc+ , we
obtain formulas for the penalty constants c− = (β̊/β−)2− 1, c+ = (β̊/β+)2− 1 and c+ ≤ 0 ≤ c−.
Hence only β− optimizes the penalized maximum likelihood objective. Sufficiency is obvious.
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