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ABSTRACT

A diffusion model for image generation transforms noise into an image via a neural
denoiser. The denoiser is trained with a time-integrated, weighted mean-squared
error (MSE) between the noised image and the network’s prediction. The weighting
is often absorbed into the noised image, yielding different parameterizations of the
prediction (e.g., noise-, data-, or velocity parameterization). Thus, the denoiser
is determined by the noise schedule and the chosen parameterization, whereas
the generative diffusion process is specified by its noise and diffusion schedules
(i.e., by both the scale and the variance-rate coefficients). In practice, the gener-
ator typically inherits only the noise schedule from the trained denoiser. In this
work, guided by a principle of coherence between the MSE training objective and
maximum-likelihood (ML) proximity of the induced processes, we derive a closed-
form expression for the diffusion schedule given a noise schedule and a network
parameterization. Widely used methods train on one (implicit) process but generate
with another—often one with an optimal diffusion schedule in the ML sense, or
even with zero diffusion, that is a deterministic flow. Recent empirical approaches
yield diffusion schedules closer to our formula, which supports the coherence prin-
ciple and suggests that it is beneficial to generate samples using the very process
that is actually learned. We analyze both discrete-time and continuous-time models
using elementary autoregressive arguments, yielding formulas that are simpler than
those used so far. In particular, we provide a representation of the diffusion state as
the sum of an explicit linear component, an unweighted pathwise integral of the
denoiser, and a noise term. This representation makes it straightforward to apply
classical numerical integration methods and clarifies the relation to the DPM-solver
family.

1 INTRODUCTION

A typical diffusion generative model for image generation transforms noise into an image over
a few-dozen to a few-hundred time steps by means of a neural network. a neural denoiser. The
denoiser is trained with a time-integrated, weighted mean-squared error (MSE) between the noised
image and the network’s prediction. The weighting is often absorbed into the noised image, yielding
different parameterizations of the prediction (e.g., noise-, data-, or velocity parameterization). Thus,
the denoiser is determined by the noise schedule and the chosen parameterization, whereas the
generative diffusion process is specified by its noise and diffusion schedules (i.e., by both the scale
and the variance-rate coefficients). In practice, the generator typically inherits only the noise schedule
from the trained denoiser. Widely used methods train on one (implicit) process but use one of two
processes for generation: either one with a diffusion schedule which is optimal with respect to
maximum likelihood (ML) or one with no diffusion at all, that is a deterministic flow (Ho et al., 2020;
Song et al., 2021b; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Salimans & Ho, 2021; Song
et al., 2021a; Kingma et al., 2021; Ho & Salimans, 2022; Rombach et al., 2022; Kingma & Gao,
2023; Esser et al., 2024).

In this work, guided by a principle of coherence between the empirically shaped MSE training
objective and the main criterion for fitting distributions to data, that is ML-proximity of the induced
processes, we derive a closed-form expression for the diffusion schedule given a noise schedule and a
network parameterization (Proposition 3). Recent empirical approaches yield diffusion schedules
closer to our formula, which supports the coherence principle and suggests that it is beneficial to
generate samples using the very process that is actually learned (Ma et al., 2024; Cui et al., 2025).
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We analyze both discrete-time and continuous-time models using elementary autoregressive ar-
guments, yielding formulas that are simpler than those used so far. In particular, we provide a
representation of the diffusion state as the sum of an explicit linear component, an unweighted
pathwise integral of the denoiser, and a noise term (Section 3.2).

Our representation makes it straightforward to apply classical numerical integration methods. For
comparison, schemes designed specifically for diffusion—such as DPM-solvers—require integrating
a pathwise integral of the signal or noise estimators with an exponential weight, which is difficult. To
our knowledge, an analogue of one of the most popular universal schemes, the Runge-Kutta method
of order 4, has not yet been developed (Lu et al., 2023; 2022; Cui et al., 2025).

2 A DENOISER INDUCED BY MSE TRAINING

Assume that we have two positive, continuously differentiable functions of time t ∈ (0, 1), namely
increasing signal schedule schedule αt and decreasing noise schedule σt. Let us ρ̊t = αt/σt, λ̊t =
log ρ̊t denote signal-to-noise ratio oraz log signal-to-noise ratio, analogon. (The ring accents over
the symbols indicate that these functions are special cases of more general functions, without rings,
which will be defined later.) Let t ∼ U(0, 1), X ∼ px in Rd and ε ∼ N (0, Id) be independent. We
consider the linear noise generators

Ȳt := X + ρ̊−1
t ε and Z̄t := αtȲt = αtX + σt ε. (1)

We train a scaled denoiser ût : Rd → Rd by fitting its parameters, denoted as a hat, according to the
mean squared error (MSE)

min
∧

Et,ε,X
∥∥ût(αtȲt)− ut∥∥2

= min
∧

∫ 1

0

Eε,X
∥∥ût(αtȲt)− ut∥∥2

dt, (2)

where t ∼ U(0, 1), ut = AtȲt + Stε is a target and functions At, St are scaling schedules, with
positive and continuous St called parameterization. From any ût we recover an estimator of the
noise from the formula for the target ut and a denoiser or a data estimator via (1)

ε̂t(Ȳt) :=
ût(αtȲt)−At Ȳt

St
and X̂t(Ȳt) := Ȳt − ρ̊−1

t ε̂t(Ȳt). (3)

A direct calculation shows that ût − ut = St(ε̂t − ε) = −ρ̊tσt(X̂t −X). We can also define a target
using data: ut = BtȲt − CtX , then for this target learn the network, define X̂t, and then, using (1),
define ε̂t and set St := Ct/ρ̊t.

For our purposes, the interface between the denoiser and the generator consists of, in addition to ε̂t or
X̂t, the pair (Ct, ρ̊t). These can be viewed as input and output scalings, respectively. Kingma & Gao
(2023) showed that MSE-training is determined by λ̊t and weights equivalent to our St.

Popular noise schedules. Kingma & Gao (2023) demonstrated that three popular noise sched-
ules can be derived uniformly as quantile functions of bell-shaped densities: normal, logistic and
hyperbolic secant. In particular,

• cosine: αt = sin((t + .008)π/2.016), σt := cos((t + .008)π/2.016), λt := π
2F
−1(t),

where F−1(t) = 2
π log(tan(π2 t)) is the quatile function of the hyperbolic secant distribution

(Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Kingma et al., 2021; Esser et al.,
2024).

• edm: λt := 1.2Φ−1(t) − 1.2, where Φ is the standard normal cumulative distribution
function (Karras et al., 2022; Esser et al., 2024).

• linear: αt := t, σt := 1− t, λt := F−1(t), where F−1(t) = log(t/(1− t)) is the quantile
of the (standard) logistic distribution (Lipman et al., 2022; Liu et al., 2022; Albergo &
Vanden-Eijnden, 2022; Albergo et al., 2023; Ma et al., 2024; Esser et al., 2024).

Note that in our setting, unlike in the original works, a signal schedule is an increasing on (0, 1).
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Popular parametrizations.

• noise: The network predicts ε, thus St ≡ 1 (Ho et al., 2020; Nichol & Dhariwal, 2021;
Dhariwal & Nichol, 2021).

• data: The network is trained to predict X , so St = ρ̊t (Kingma et al., 2021; Lu et al., 2022).

• F-prediction: Ft :=
√

4 + ρ̊2
tX − ρ̊2

t/
√

4 + ρ̊2
tYt, thus St =

√
ρ̊−2
t + 1 (Karras et al.,

2022; Cui et al., 2025).

• velocity: The target is vt := Z̄ ′t = α′tX + σ′tε = α′tȲt − λ̊′tσtε, then (3) yields the identity
v̂t(αtȲt) = αtȲt− λ̊′tσtε̂t(Ȳt), so St = λ̊′tσt (Lipman et al., 2022; Liu et al., 2022; Albergo
& Vanden-Eijnden, 2022; Albergo et al., 2023; Ma et al., 2024; Esser et al., 2024).

3 DIFFUSION MODELS INDUCED BY THE DENOISER

A diffusion denoising model that generates from the distribution estimator px is a diffusion process
with a drift estimated by a denoiser, starting from pure noise. In this section, we will first define the
discrete-time diffusion noise. Then, by adding a denoiser, we will obtain a denoising process, and
we will subsequently define an analogous process in continuous time. Finally, we will specify the
generation interval and state our main problem.

3.1 DISCRETE DIFFUSION MODELS

Stationary, time-inhomogeneous autoregression. Let us fix a grid 0 < t0 < t1 < · · · < tN =
t ≤ tmax < 1, where ti = t0 + i(tmax − t0)/N, i = 0, 1, . . . , N . Let ρt be a positive, increasing,
continuously differentiable function of time t ∈ (0, 1). This function, which we will refer to as the
diffusion schedule, defines the cumulative relative variance of the diffusion processes. We also define
rt = ρtρ̊t and λt = log ρt.

Let {ξti}Ni=0 and ε ≡ ε0 be i.i.d. N (0, Id) and for t = ti, s = ti−1 set

εt :=
ρs
ρt

εs +

√
1− ρ2

s

ρ2
t

ξs. (4)

The rescaled εt, εs form an autoregressive process with additive noise

ρtεt = ρs εs +
√
ρ2
t − ρ2

s ξs. (5)

From (5), it is clear that εt ∼ N (0, Id), and that εs, ξs are independent. The correlation and
conditional variance are also easily computable

cor(εt,j , εs,k) = 1(j = k)ρs/ρt, V(εt,j | εs,k) = 1− 1(j = k)ρ2
s/ρ

2
t , j, k = 1, 2, . . . , d. (6)

This indicates that ρ2
t represents the relative cumulative variance of the process {εti}Ni=0. The scaled

versions of εt and εs constitute an autoregressive process with additive noise.

Denoising diffusion models. Assume that {εti}Ni=0 are independent of X . Let us define

Yt := X + ρ̊−1
t εt and Zt := αtX + σt εt. (7)

It is clear that for any diffusion schedule ρt, the random variables Yt, Zt are distributed identically to
the linear noise generators Ȳt, Z̄t defined in (1) at times t = ti. By substituting the expressions for
εt, εs in terms of Yt, Ys lub Zt, Zs (from (7)) into (5), we get

rtYt = rsYs + (rt − rs)X +
√
ρ2
t − ρ2

s ξs. (8)

ρt
σt
Zt =

ρs
σs
Zs + (rt − rs)X +

√
ρ2
t − ρ2

s ξs. (9)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Thus, the function αt, which was previously shown to be an internal learning function, is now
independently found to be unnecessary for generation. It is sufficient to generate the process Yt and,
if necessary, scale it at the end of generation to obtain ZtN = αtNYtN . However, the value of αtN
can be chosen in many ways, so in this section, we only consider the process Yt. This is not a true
generator because it uses X , so we will call it an oracle.

By substituting the prediction induced by the denoiser, X̂s ≡ X̂s(Ŷs), for X in the oracle process
(8), we obtain the generator

Ŷt0 := ρ̊−1
t0 εt0 and rtŶt := rs Ŷs + (rt − rs) X̂s +

√
ρ2
t − ρ2

s ξs. (10)

Note that in our setting, unlike in many works on generative diffusion models, time in the oracle and
the generator runs forward.

3.2 CONTINUOUS DIFFUSION MODELS.

By induction, from (10) for any grid points ti < tj we obtain

rtj Ŷtj = rti Ŷti + (rti+1 − rti)X̂ti + . . .+ (rtj − rtj−1)X̂tj−1 +
√
ρ2
tj − ρ

2
ti ξ
∗
ti , (11)

where Ŷti , ξ
∗
ti are independent and

ξ∗ti :=

√
ρ2
ti+1
− ρ2

ti ξti + . . .+
√
ρ2
tj − ρ

2
tj−1

ξtj−1√
ρ2
tj − ρ

2
ti

∼ N (0, Id).

Assuming t 7→ X̂t(Ŷt) is continuous and N approaches infinity in (11), we arrive at a new repre-
sentation of the diffusion state as the sum of an explicit linear component, an unweighted pathwise
integral of the denoiser, and a noise term

rtŶt = rsŶs +

∫ rt

rs

X̂r(Ŷr) dr +
√
ρ2
t − ρ2

s ξ
∗
s , (12)

where Ŷs, ξ∗s are independent and ξ∗s ∼ N (0, Id).

Universal diffusion generator. From (12) we obtain the generator

Ŷt =
rs
rt
Ŷs +

1

rt
APPROX

[∫ rt

rs

X̂r(Ŷr) dr

]
+ ρ̊−1

t

√
1− ρ2

s

ρ2
t

ξ∗s , (13)

where APPROX denotes any numerical ODE integration method.

Universal schemes as the Euler-Maruyama suffer from integrating the rapidly-changing linear term,
whereas schemes designed specifically for diffusion, such as DPM-solvers, treat the linear term
analytically, but they require integrating ε̂t or X̂t with an exponential weight, which is difficult (Lu
et al., 2023; 2022; Cui et al., 2025). In particular, DPM solvers of order 1-3 are analogous to the
Runge-Kutta methods, but—to our knowledge—an analogue of one of the most popular universal
schemes, the Runge-Kutta method of order 4, has not yet been developed. For comparison, our
method is both universal and specific to diffusion.

From the generator to SDE and back. The equation (10) for the simplest generator is equivalent
to

Ŷt − Ŷs =
(rs − rt

∆t rt
Ŷs +

rt − rs
∆t rt

X̂s

)
∆t+ ρ̊−1

t

√
ρ2
t − ρ2

s

∆t ρ2
t

√
∆t ξ∗s . (14)

A direct manipulation with Taylor expansions yields, for s = t−∆t,

rt − rs
∆t rt

= (log rt)
′(1 + δ1) and

ρt − ρs
∆t ρt

ρt + ρs
ρt

= 2(log ρt)
′(1 + δ2), (15)
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where |δ1|, |δ2| = O(1/N). Hence (14) takes the form

Ŷt − Ŷs = (log rt)
′ (X̂t − Ŷt) ∆t+ ρ̊−1

t

√
2(log ρt)′

√
∆t ξ∗s +OP (∆t). (16)

Let Wt be a standard d-dimensional Wiener process and assume that X̂t is sufficiently regular. Then
the difference equation (16) converges to the Itô SDE

dŶt = (log rt)
′ (X̂t − Ŷt) dt + ρ̊−1

t

√
2(log ρt)′ dWt, (17)

= (λ′t + λ̊′t)
(
X̂t − Ŷt) dt + ρ̊−1

t

√
2λ′t dWt, (18)

= ρ̊−1
t (λ′t + λ̊′t) ε̂t dt + ρ̊−1

t

√
2λ′t dWt. (19)

By substituting Ỹt = (rt/rs)Ŷt for Ŷt in (17) we get

rsdỸt = r′tX̂t dt + ρt
√

2(log ρt)′ dWt (20)

By integrating (20) and returning to Ŷt, we obtain (12), which, with the simplest discretization, takes
the form of (10).

Note that the substitution leading to formula (20) uses the method of variation of constants—this
approach is used to derive DPM solvers. Thanks to the construction of the diffusion process by (12),
SDEs are not needed.

3.3 GENERATION INTERVAL AND THE MAIN PROBLEM

Comparing the formulas for popular noise schedules with the formula for the generator (10), we see
that ρ̊0 = 0 oraz ρ̊0 =∞. This means we do not start at the moment when the generator and oracle
have the same distribution, nor do we reach the point where the oracle has the distribution px. To
precisely define the generation task, we need to specify the start t0 and end tmax of the generation.
From formula (10), it is also clear that the function λt is not needed for generation, only its quotients.
Equivalently, it is sufficient to calculate λt from the integral formula based on the derivative λ′t,
hereafter referred to as the diffusion rate, by arbitrarily setting λtmax

. At this point, we can define the
main problem of our work.

Main Problem. Determine λ′t based on the training of the denoiser (ρ̊t, St) (the input and output
scales of the prediction) and the generation interval 0 < t0 < tmax < 1.

4 A DIFUSION MODEL INDUCED BY THE PENALIZED MAXIMUM LIKELIHOOD

We need a measure of proximity between the oracle process and the generator process to choose
the diffusion schedule. The processes are defined by distributions, and MSE does not determine
the proximity between them, so we will use the most popular measure for this purpose, that is the
maximum likelihood or, equivalently, the Kullback-Leibler divergence.

4.1 DIVERGENCE DECOMPOSITIONS

As in the previous sections, we start with the processes Zt = αtYt and Ẑt = αtŶt to see that it is
enough to consider only Yt and Ŷt. Let t0 < t1 < · · · < tN = t be a discretization of the time
interval [t0, t], set s = tN−1. For x ∼ px we denote latent variables along the path by zti and write
zti:t = (zti , zti+1

, . . . , zt). From the definition of the oracle process (9) it follows that

pt(zt|zs, x) = N
(
zt|µs(zs, x), σt

√
1− ρ2

s/ρ
2
t Id

)
,

where µs(zs, x) :=
σtρs
σsρt

zs +
σs
ρt

(ρtρ̊t − ρsρ̊s)X,

=
αt
αs
zs − σt

( ρ̊t
ρ̊s
− ρs
ρt

)
εs.

5
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Analogously

p̂t(zt|zs) = N
(
zt|µ̂s(zs), σt

√
1− ρ2

s/ρ
2
t Id

)
,

where µ̂s(zs) :=
σtρs
σsρt

zs +
σs
ρt

(ρtρ̊t − ρsρ̊s)X̂s,

=
αt
αs
zs − σt

( ρ̊t
ρ̊s
− ρs
ρt

)
ε̂s.

The Kullback-Leibler divergence between these two normal distributions is

D[pt(.|zs, x) | p̂t(.|zs)] := EZt
log
[
pt(Zt|zs, x)/p̂t(Zt|zs)

]
(21)

=
‖µs(zs, x)− µ̂s(zs)‖2

2σ2
t (1− ρ2

s/ρ
2
t )

= wNs ‖ε̂s(zs)− εs‖
2
, (22)

where wNs :=
(ρ̊t/ρ̊s − ρs/ρt)2

2(1− ρ2
s/ρ

2
t )

. (23)

We define the following conditional and joint distributions

pNt1:t(zt1:t|zt0 , x) := pt(zt|zs, x) . . . pt1(zt1 |zt0 , x),

p̂Nt1:t(zt1:t|zt0) := p̂t(zt|zs) . . . p̂t1(zt1 |zt0),

pt0,x(zt0 , x) := pt0(zt0 |x) px(x),

pt0,t(zt0 , x|zt) := pt0(zt0) pt(x|zt),
pNt0:t,x(zt0:t, x) := pNt1:t(zt1:t|zt0 , x)pt0,x(zt0 , x),

p̂Nt0:t,x(zt0:t, x) := p̂Nt1:t(zt1:t|zt0)pt0,t(zt0 , x|zt).

The distribution pt represents the “reconstruction error,” which determines how well the image was
recovered from the final zt representation. The overline symbol indicates its parameters, and its effect
on the divergence between the joint distributions is often called the bias, denoted below as B̄. Two
KL decompositions that we shall use are

D
[
pNt0:t,x

∥∥ p̂Nt0:t,x

]
= D

[
px
∥∥ p̂Nx ] + EX D

[
pNt0:t(.|X)

∥∥ p̂Nt0:t(.|X)
]
, (24)

D
[
pNt0:t,x

∥∥ p̂Nt0:t,x

]
= L̂N (t0, t, λ̊, λ) + B̄(t0, t), (25)

where

L̂N (t0, t, λ̊, λ) := EZt0 ,X
D
[
pNt1:t(.|Zt0 , X)

∥∥ p̂Nt1:t(.|Zt0)
]

(26)

B̄(t0, t) := D
[
pt0,x

∥∥ pt0,t]. (27)

Both of these decompositions together imply that the diffusion loss, denoted as L̂N , is the objective
function for (implicitly) a penalized negative log-likelihood of the estimator for the distribution px
induced by the denoiser with parameters ∧.

Proposition 1.

L̂N (t0, t, λ̊, λ) =

N∑
i=0

wNti Eε,x ‖ε̂ti − ε‖
2
. (28)

Proposition 2. Assuming t 7→ ε̂t(Ŷt) is continuous, we have

L̂N (t0, t, λ̊, λ) = L̂(t0, t, λ̊, λ) +O(1/N), (29)

where

L̂(t0, t, λ̊, λ) ≡ L̂(t0, t, λ̊
′, λ′) :=

∫ t

t0

(
λ′τ + λ̊′τ

)2
4λ′τ

Eε,X
∥∥ε̂τ (Yτ )− ε

∥∥2
dτ. (30)

Propositions 1-2 are proven in Appendix A.
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4.2 PENALIZED MAXIMUM LIKELIHOOD

Observe that the weights under the integral in (30) are of the form(
λ′t + λ̊′t

)2
4λ′t

= λ̊′t +
1

4
χ2(λ′t, λ̊

′
t), where χ2(λ′t, λ̊

′
t) :=

(
λ′t − λ̊′t

)2
λ′t

(31)

is the well known χ2-distance. So weights determining the diffusion process in L̂ are, up to a constant,
scaled distance between λ′t and λ̊′t.

Since the function L̂ is (implicitly) a penalized ML objective, we do not change its meaning or
difficulty of its calculation, if we add a simple penalty to the weights and define (explicitly) the
penalized maximum likelihood objective

L̂c(t0, t, λ̊, λ) ≡ L̂c(t0, t, λ̊′, λ′) :=

∫ t

t0

[̊
λ′τ +

χ2(λ′t, λ̊
′
t) + ctλ

′
t

4

]
Eε,X

∥∥ε̂τ (Yτ )− ε
∥∥2
dτ, (32)

for some positive, continuous function ct. Indeed, it is easy to check that the optimal diffusion rate
for such penalized weights is

λ′c,t := λ̊′t/
√

1 + ct. (33)

Penalized maximum likelihood covers many important approaches: if ct = 0, then we obtain the
maximum (joint) likelihood solution; if ct →∞, then λ′c,t → 0, and a diffusion process converges to
a deterministic flow. Our MSE-induced diffusion is a tradeoff between these extremes.

5 A DIFFUSION MODEL INDUCED BY MSE TRAINING

We want the losses to agree not only globally on the interval [t0, tmax], but also on each of its
subintervals. Let us imagine a scenario where the group optimizing the reconstruction error improves
its method and decreases tmax, or when it becomes possible to start the generation process for a
larger t0. It could also be that we should generate diffusions in stages using different samplers, and
our sampler might only care about optimality for a certain subinterval. Below we will formulate an
appropriate condition, but first let us define MSE for each initial interval (t0, t)

M̂(t0, t, λ̊, S) :=

∫ t

t0

Eε,XS2
t

∥∥ε̂t(Ȳt)− εt∥∥2
dt =

∫ t

t0

Eε,X
∥∥ût(αtȲt)− ut∥∥2

dt. (34)

We will say that the diffusion process defined by (t0, t, λ̊
′, λ′c) is coherent with MSE if and only if the

following condition is satisfied

Coherence Principle. There exist a constant M ≡M(t0, tmax, λ̊, S) such that ∀t ∈ [t0, tmax] we
have

L̂(t0, t, λ̊
′, λ′c) = MM̂(t0, t, λ̊, S). (35)

The loss L̂ (without subscript c) is invariant to data scaling, because it is the expected divergence,
whereas MSE depends on data scaling. Therefore, to compare the two functions, we need an
appropriate normalization, that is some constant M .

Proposition 3. Let us define

M := max
t∈[t0,tmax]

λ̊t/S
2
t and St,M :=

√
MSt ∀t ∈ [t0, tmax]. (36)

Then the coherence principle holds with M iff the diffusion rate is

λ′t,c =
(
St,M −

√
S2
t,M − λ̊′t

)2

. (37)

The diffusion process with a parameter λ̌t
′ ≡ λ′t,c is called the MSE-induced diffusion.
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Proof of Proposition 3. Let us fix t and simplify notation β := λ′t, βc := λ′c,t, β̊ := λ̊′t, s := St,M .
The coherence condition implies that the integrals L̂ and MM̂ agree on the initial intervals, which is
equivalent to the equality of the integrands. Therefore(

β + β̊)2

4β
= MS2

t = s2. (38)

The definition of the constant M implies that s2 ≥ β̊, thus equation (38) has 2 roots

β− =
(
s2 −

√
s2 − β̊

)2

and β+ =
(
s2 +

√
s2 − β̊

)2

. (39)

Observe that β−β+ = β̊2, so β− ≤ β̊ ≤ β+. By comparison with (33) β− = βc− , β+ = βc+ , we
obtain formulas for the penalty constants c− = (β̊/β−)2− 1, c+ = (β̊/β+)2− 1 and c+ ≤ 0 ≤ c−.
Hence only β− optimizes the penalized maximum likelihood objective. Sufficiency is obvious.

Example. Consider the logistic noise schedule with the velocity parametrization: αt := t, σt :=

1− t, λ̊′t = 1/[t(1− t)], St = 1/t. Thus M = tmax/(1− tmax) and

λ̌t
′

=
(√

M −
√
M − t/(1− t)

)2/
t2.

In this case, we obtain a compact form for λ̌t

λ̌t = − log
( t

1− t

)
− log

(
1 + gt
1− gt

)
+

2 tmax
(1− tmax)

1− t
t

(
gt − 1

)
+ const,

where

gt :=

√
tmax − t
tmax(1− t)

.

Discrete time. It seems that in the discrete model there is no natural parameter that would also
be associated with λt. In our research, the parameter ηt :=

√
1− ρ2

s/ρ
2
t proved to be convenient.

Rewriting equation (4) we see that η2
t is the proportion of new noise ξs to the total noise εt

εt =
√

1− η2
t εs + ηt ξs.

From (23)

wNt ≡ wNt (ηt) =
1

η2
t

(√
γt −

√
1− η2

t

)2
, where γt := ρ̊2

t/ρ̊
2
s.

It can be easily checked that

η̊t := arg min
ηt

w2
t (ηt) =

√
1− γ−1

t ,

and

η̌t =
γt − 1√

γtS2
t,M +

√
S2
t,M + 1− γt

.

MSE-induced diffusion and recent empirical diffusion schedules. In Figure (1) we illustrate
comparison of recent diffusion schedules in three popular scenarios (noise, parametrization). We
normalize λt because then ((tmax − t0)/N)λ′t ≈ η2

t , while η2
t has an easy interpretation. The results

in different scenarios are very similar, so it might be worth considering other bell-shaped densities
like Student’s t or Tukey-lambda. Interestingly, MSE-induced diffusion differs significantly from a
deterministic flow only at the very end of the generation, when the noise is the lowest.
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Figure 1: This study compares several diffusion schedules ((tmax − t0)/N)λ′t in different (noise,
parametrization) scenarios: MSE-induced diffusion (MSE); maximum likelihood (ML); maximum
likelihood multiplied by a discount function, ER-SDE-4 (Cui et al., 2025) (Discount); and empirically
fitted penalized ML (empPML) (Ma et al., 2024). Noise schedule and parametrization from left:
(a) linear and velocity, (b) edm and F-prediction, (c) cosine and noise. In all cases N=250, t0 =
0.016, tmax = 1− t0

6 DISCUSSION

Two-state domain. From a formal standpoint, a diffusion process can have a degenerate scale,
λ̊t ≡ C, but it must have a diffusion schedule λt. It is therefore interesting that many seminal works
on generative diffusion models do not include λt or an equivalent parameter defining the process’s
cumulative relative variance (Ho et al., 2020; Song et al., 2021b; Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021; Salimans & Ho, 2021; Song et al., 2021a; Kingma et al., 2021; Ho & Salimans, 2022;
Rombach et al., 2022; Kingma & Gao, 2023; Esser et al., 2024). One might think that what these
papers do provide—time-reversible processes with λt = λ̊t—would be entirely sufficient. However,
if so, why are deterministic flows so popular, resulting in a two-state domain? It seems that the main
reason for the lack of λt is the difficulty in setting it, as seen in papers like Karras et al. (2022). In
this work, we show that there is a natural choice between 0 and λ̊t that is consistent with empirically
motivated training using a weighted MSE and with the standard criterion for fitting distributions to
data, namely maximum likelihood.

Scaling. Implementing a diffusion model using αt and σt has become common practice, despite
the mostly simulation-based arguments of Karras et al. (2022), that αt is unnecessary. In our work,
we specify these arguments: αt is merely an input scaling in the denoiser, which is not needed for
generation or in the context of maximum likelihood analysis. Our research indicates that the natural
scale for the process values is λt + λ̊t, while the natural scale for the process arguments is ρt + ρ̊t.

Time interval. From a theoretical standpoint, we see no difference between score-based models
that generate processes on (0,∞) and stochastic interpolants that work on [0, 1]. It is important that
ρ̊t and ρt take on positive values within the closed interval of actual generation. This is necessary to
make the analysis realistic, which is clearly visible in the proofs of global convergence for numerical
ODE solvers. As long as the limits 0 < t0 < tmax for the main noise schedules do not depend on the
number of steps, there are no problems. However, when we begin to consider more realistic scenarios,
such as t0 ≡ t0(N)→ 0 and tmax ≡ tmax(N)→ 1, we see that the convergence is violated by the
conditions σt → 0 or σt → 1.

Open problems. We transform the generative process to one with additive noise. This allows us to
replace the Gaussian noise with noise originating from a α-stable distribution. Upper bounds on KL
divergence exist for these processes, so there may also be formulas analogous to our MSE-induced
diffusion. An interesting problem seems to be training a noise schedule and a parameterization in
alternation with a diffusion schedule.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marco S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

Marco S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Qinpeng Cui, Xinyi Zhang, Qiqi Bao, and Qingmin Liao. Elucidating the solution space of extended
reverse-time sde for diffusion models. In 2025 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 243–252. IEEE, 2025.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In Advances
in neural information processing systems, volume 34, pp. 8780–8794, 2021.

Patrick Esser, Suneet Kulal, Andreas Blattmann, Rameen Entezari, Jürgen Müller, Himanshu Saini,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
Forty-first international conference on machine learning, pp. 23–40, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
neural information processing systems, volume 33, pp. 6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, volume 35, pp.
26565–26577, 2022.

Diederik Kingma and Rui Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. In Advances in Neural Information Processing Systems, volume 36, 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
Advances in neural information processing systems, volume 34, pp. 21696–21707, 2021.

Yaron Lipman, Ricky TQ Chen, Hadar Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chen Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. In Advances in Neural
Information Processing Systems, 2023.

Nic Ma, Matt Goldstein, Marco S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sifan Xie.
Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers.
In European Conference on Computer Vision, pp. 23–40, 2024.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171, 2021.

Robin Rombach, Andreas Blattmann, Dan Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yang Song, Chris Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-
based diffusion models. In Advances in neural information processing systems, volume 34, pp.
1415–1428, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

A APPENDIX

Proof of Proposition 1. By the chain rule for KL along the grid t0 < t1 < · · · < tN = t we obtain

D
[
pNt1:t(.|zt0 , x)

∥∥ p̂Nt1:t(.|zt0)
]

= D
[
pt1(.|zt0 , x)

∥∥ p̂t1(.|zt0)
]

+ EZt1,X
D
[
pt2(.|Zt1 , X)

∥∥ p̂t2(.|Zt1)
]

+ · · ·
+ EZtN−1

,X D
[
pt(.|ZtN−1

, X)
∥∥ p̂t(.|ZtN−1

)
]
. (40)

In our setting, from (23) this can be rewritten in terms of denoising errors with weights wNtj :

(40) = wNt1 ‖ε̂t0 − εt0‖
2

+ wNt2 Eεt1
∥∥ε̂t1 − εt1∥∥2

+ · · ·+ wNtN EεtN−1

∥∥ε̂tN−1
− εtN−1

∥∥2
. (41)

So

EZt0
,XD

[
pNt1:t(.|Zt0 , X)

∥∥ p̂Nt1:t(.|Zt0)
]

=

N∑
i=0

Eεti ,Xw
N
ti ‖ε̂ti − εti‖

2
=

N∑
i=0

Eε,XwNti ‖ε̂ti − ε‖
2
.

Proof of Proposition 2. A direct manipulation with Taylor expansions yields, for s = t−∆τ ,

w̄Nt−∆τ :=
wNt−∆τ

∆τ
=

(
ρ̊t − ρ̊s
∆τ ρ̊s

+
ρt − ρs
∆τ ρt

)2
/(

2
ρt − ρs
∆τ ρt

ρt + ρs
ρt

)

=

(
λ̊′t
λt

(1 + δ1) +
λ′t
λt

(1 + δ2)

)2/(
4
λ′t
λt

(1 + δ3)

)

= w̄t +O(1/N), where w̄t :=

(
λ′t + λ̊′t

)2
4λ′t

and |δ1|, |δ2|, |δ3| = O(1/N). (42)

For τ ∈ [t0, t] define tN (τ) := min{ti : τ ≥ ti}. We have

max
t0≤τ≤t

(
w̄NtN (τ)

∥∥ε̂tN (τ) − ε
∥∥2 − w̄τ ‖ε̂τ − ε‖2

)
= O(1/N), (43)

and consequently

L̂N (t0, t, λ̊, λ) = Eε,X

(
N∑
i=0

wNti
∆τ

∥∥ε̂ti − ε∥∥2
∆τ

)

= Eε,X
(∫ t

t0

w̄NtN (τ)

∥∥ε̂tN (τ) − ε
∥∥2

dτ

)
=

∫ t

t0

w̄τ Eε,X
∥∥ε̂τ − ε∥∥2

dτ +O(1/N).
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