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ABSTRACT

A diffusion model for image generation transforms noise into an image via a neural
denoiser. The denoiser is trained with a time-integrated, weighted mean-squared
error (MSE) between the noised image and the network’s prediction. The weighting
is often absorbed into the noised image, yielding different parameterizations of the
prediction (e.g., noise-, data-, or velocity parameterization). Thus, the denoiser
is determined by the noise schedule and the chosen parameterization, whereas
the generative diffusion process is specified by its noise and diffusion schedules
(i.e., by both the scale and the variance-rate coefficients). In practice, the gener-
ator typically inherits only the noise schedule from the trained denoiser. In this
work, guided by a principle of coherence between the MSE training objective and
maximum-likelihood (ML) proximity of the induced processes, we derive a closed-
form expression for the diffusion schedule given a noise schedule and a network
parameterization. Widely used methods train on one (implicit) process but generate
with another—often one with an optimal diffusion schedule in the ML sense, or
even with zero diffusion, that is a deterministic flow. Recent empirical approaches
yield diffusion schedules closer to our formula, which supports the coherence prin-
ciple and suggests that it is beneficial to generate samples using the very process
that is actually learned. We analyze both discrete-time and continuous-time models
using elementary autoregressive arguments, yielding formulas that are simpler than
those used so far. In particular, we provide a representation of the diffusion state as
the sum of an explicit linear component, an unweighted pathwise integral of the
denoiser, and a noise term. This representation makes it straightforward to apply
classical numerical integration methods and clarifies the relation to the DPM-solver
family.

1 INTRODUCTION

A typical diffusion generative model for image generation transforms noise into an image over
a few-dozen to a few-hundred time steps by means of a neural network. a neural denoiser. The
denoiser is trained with a time-integrated, weighted mean-squared error (MSE) between the noised
image and the network’s prediction. The weighting is often absorbed into the noised image, yielding
different parameterizations of the prediction (e.g., noise-, data-, or velocity parameterization). Thus,
the denoiser is determined by the noise schedule and the chosen parameterization, whereas the
generative diffusion process is specified by its noise and diffusion schedules (i.e., by both the scale
and the variance-rate coefficients). In practice, the generator typically inherits only the noise schedule
from the trained denoiser. Widely used methods train on one (implicit) process but use one of two
processes for generation: either one with a diffusion schedule which is optimal with respect to
maximum likelihood (ML) or one with no diffusion at all, that is a deterministic flow (Ho et al., [2020;
Song et al.,|2021b; [Nichol & Dhariwall 2021; Dhariwal & Nichol, 2021} |Salimans & Ho, 2021} |Song
et al., 2021a; Kingma et al., 2021} Ho & Salimans|, 2022 Rombach et al.| 2022} [Kingma & Gaol
2023 [Esser et al., [2024]).

In this work, guided by a principle of coherence between the empirically shaped MSE training
objective and the main criterion for fitting distributions to data, that is ML-proximity of the induced
processes, we derive a closed-form expression for the diffusion schedule given a noise schedule and a
network parameterization (Proposition 3). Recent empirical approaches yield diffusion schedules
closer to our formula, which supports the coherence principle and suggests that it is beneficial to
generate samples using the very process that is actually learned (Ma et al., 2024} |Cui et al.,|2025)).
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We analyze both discrete-time and continuous-time models using elementary autoregressive ar-
guments, yielding formulas that are simpler than those used so far. In particular, we provide a
representation of the diffusion state as the sum of an explicit linear component, an unweighted
pathwise integral of the denoiser, and a noise term (Section 3.2).

Our representation makes it straightforward to apply classical numerical integration methods. For
comparison, schemes designed specifically for diffusion—such as DPM-solvers—require integrating
a pathwise integral of the signal or noise estimators with an exponential weight, which is difficult. To
our knowledge, an analogue of one of the most popular universal schemes, the Runge-Kutta method
of order 4, has not yet been developed (Lu et al.| 2023} 2022} |Cui et al., [2025).

2 A DENOISER INDUCED BY MSE TRAINING

Assume that we have two positive, continuously differentiable functions of time ¢ € (0, 1), namely
increasing signal schedule schedule o, and decreasing noise schedule 0. Let us py = ay /oy, S\t =
log p; denote signal-to-noise ratio oraz log signal-to-noise ratio, analogon. (The ring accents over
the symbols indicate that these functions are special cases of more general functions, without rings,
which will be defined later.) Let t ~ U(0,1), X ~ p, in R% and ¢ ~ N(0, I;) be independent. We
consider the linear noise generators

}/t = X-'-ﬁ;l&' and Zt = Olti/% = O[tX+UtE. (1)

We train a scaled denoiser i, : R — R by fitting its parameters, denoted as a hat, according to the
mean squared error (MSE)

1
m/in Et,a,X Hﬂt(ath) - Ut”2 = mAin / Es,X Hﬂt(ath) - Ut”2 dt, (2)
0

where t ~ U(0,1),u; = AY, + Sicisa target and functions A;, S; are scaling schedules, with
positive and continuous .S; called parameterization. From any 4; we recover an estimator of the
noise from the formula for the target u; and a denoiser or a data estimator via (T))
. ﬂtOéth—Ait Ty > o1~ (T
£(Yy) = (;—t and X(Y;) := Y, — p;té(V7). 3)
t
A direct calculation shows that 4; — u; = Sy(é; — €) = —poy (Xt — X)). We can also define a target

using data: u; = B,Y, — C; X, then for this target learn the network, define Xt, and then, using (T)),
define &; and set S; := Cy/py.

For our purposes, the interface between the denoiser and the generator consists of, in addition to &; or
X, the pair (Cy, ;). These can be viewed as input and output scalings, respectively. Kingma & Gao
(2023)) showed that MSE-training is determined by \; and weights equivalent to our S;.

Popular noise schedules. Kingma & Gao| (2023) demonstrated that three popular noise sched-
ules can be derived uniformly as quantile functions of bell-shaped densities: normal, logistic and
hyperbolic secant. In particular,

* cosine: ay = sin((t 4 .008)7/2.016), oy := cos((t + .008)7/2.016), \; := FF~1(¢t),
where F~1(t) = 2 log(tan(Zt)) is the quatile function of the hyperbolic secant distribution
(Nichol & Dhariwall, 2021} [Dhariwal & Nicholl, 2021} |Kingma et al.| 2021} |[Esser et al.,

2024).

e edm: Ny := 1.2071(t) — 1.2, where ® is the standard normal cumulative distribution
function (Karras et al .l [2022; |[Esser et al.| [2024).

e linear: oy :=t, oy :=1—t, Ay := F~1(t), where F~1(t) = log(t/(1 —t)) is the quantile
of the (standard) logistic distribution (Lipman et al., 2022; |[Liu et al., [2022} |Albergo &
Vanden-Eijnden, [2022; |Albergo et al., [2023; Ma et al., [2024; [Esser et al., [2024).

Note that in our setting, unlike in the original works, a signal schedule is an increasing on (0, 1).
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Popular parametrizations.
* noise: The network predicts ¢, thus S; = 1 (Ho et al, [2020; Nichol & Dhariwal, 2021}
Dhariwal & Nichol, 2021]).
* data: The network is trained to predict X, so S; = p; (Kingma et al., 2021} [Lu et al.,[2022).
s F-prediction: Fy := \/4+ p?X — p2/\/4+ p?Ys;, thus S; = \/p; 2 + 1 (Karras et al.,
20225 |Cui et al., [2025)).

« velocity: The target is v; := Z| = &} X + oje = a,Y; — N,04¢, then (3) yields the identity
O (o Yy) = Yy — Nyoréi(V2), 50 Sy = Moy (Lipman et al., 2022; Liu et al., 2022; Albergo
& Vanden-Eijnden| 2022} |Albergo et al.,2023; Ma et al., |2024; |[Esser et al., [2024]).

3 DIFFUSION MODELS INDUCED BY THE DENOISER

A diffusion denoising model that generates from the distribution estimator p,, is a diffusion process
with a drift estimated by a denoiser, starting from pure noise. In this section, we will first define the
discrete-time diffusion noise. Then, by adding a denoiser, we will obtain a denoising process, and
we will subsequently define an analogous process in continuous time. Finally, we will specify the
generation interval and state our main problem.

3.1 DISCRETE DIFFUSION MODELS

Stationary, time-inhomogeneous autoregression. Letusfixagrid0 <ty <t <--- <ty =
t < tmar < 1, where t; = to + i(tmaz — to)/N,i =0,1,..., N. Let p; be a positive, increasing,
continuously differentiable function of time ¢ € (0, 1). This function, which we will refer to as the
diffusion schedule, defines the cumulative relative variance of the diffusion processes. We also define
r¢ = pypr and Ay = log p;.

Let {&;,}Y , and € = g be i.i.d. N'(0, I) and for t = t;,s = t;_1 set

2
e o= e b 1= g @)
Pt Pt

The rescaled ¢, £, form an autoregressive process with additive noise

pier = ps€s + \/pi — P2 s )

From (E]), it is clear that &, ~ N(0,I;), and that €,,&, are independent. The correlation and
conditional variance are also easily computable

cor(ej,es) = 1(j = k)ps/pt, V(er; | esn) =1 =10 = k)p2/p;, j.k=1,2,....d. (6)

This indicates that p7 represents the relative cumulative variance of the process {e, }¥ ;. The scaled
versions of €; and €, constitute an autoregressive process with additive noise.

Denoising diffusion models. Assume that {¢;, } Y, are independent of X. Let us define
Y;g ::X+,5t_1€t and Zt = OétX+O't€t. (7)

It is clear that for any diffusion schedule p, the random variables Y;, Z; are distributed identically to
the linear noise generators Y;, Z; defined in (1)) at times ¢ = ¢;. By substituting the expressions for
€t,€s in terms of Yy, Y lub Z;, Z (from (7)) into (@), we get

Yy = 1Ys + (re—rs) X 4+ \/p?—p2 & (8)
Poz = P22 ¢ (=) X + \JpE—p2 s )
Ot Og
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Thus, the function «;, which was previously shown to be an internal learning function, is now
independently found to be unnecessary for generation. It is sufficient to generate the process Y; and,
if necessary, scale it at the end of generation to obtain Z;,, = a4, Y;,, . However, the value of oy,
can be chosen in many ways, so in this section, we only consider the process Y;. This is not a true
generator because it uses X, so we will call it an oracle.

By substituting the prediction induced by the denoiser, X, = X,(Y5), for X in the oracle process
(8), we obtain the generator

Ytg = ,Bt_olsto and r,Y; == r, Y, + (ry frs)f(s + \/p? — p2 &, (10)

Note that in our setting, unlike in many works on generative diffusion models, time in the oracle and
the generator runs forward.

3.2 CONTINUOUS DIFFUSION MODELS.

By induction, from for any grid points ¢; < t; we obtain

rtjf/tj = Ttthi + (Tti+1 - Tti)Xti +.oo+ (th - lrtj—l))/\(tj—l + \/ pfj - pr%i 5217 (1D

where Yti , &, are independent and

[ 2 2 [ 2 2
Pior = PE St T T [PE P Sty ~ N(0,13).

2 2
Pt; — Pt

EZ =

Assuming t — )A(t(Yf) is continuous and N approaches infinity in (1)), we arrive at a new repre-
sentation of the diffusion state as the sum of an explicit linear component, an unweighted pathwise
integral of the denoiser, and a noise term

¥y = Y + / Xo (V) dr + \/p? = p2 €L, (12)
where Y, & are independent and &% ~ N(0, I).

Universal diffusion generator. From (12) we obtain the generator

/Xr

where APPROX denotes any numerical ODE integration method.

2
Y, = —Y + APPROX + 1= (13)
p

t

Universal schemes as the Euler-Maruyama suffer from integrating the rapidly-changing linear term,
whereas schemes designed specifically for diffusion, such as DPM-solvers, treat the linear term
analytically, but they require integrating €, or X, withan exponential weight, which is difficult (Lu
et al., [2023;2022; |Cui et al., 2025)). In particular, DPM solvers of order 1-3 are analogous to the
Runge-Kutta methods, but—to our knowledge—an analogue of one of the most popular universal
schemes, the Runge-Kutta method of order 4, has not yet been developed. For comparison, our
method is both universal and specific to diffusion.

From the generator to SDE and back. The equation for the simplest generator is equivalent
to

Ts =Tt Tt —

At 1y s+ Att At 2

A direct manipulation with Taylor expansions yields, for s =t — At,

Wg (14)

Y, —Y, = ( )At+p

Tt —Ts

At Tt

nd Pt Ps Pt +Ps _

= (logry) (146
(gt)( 1) Apt Py

= 2(log py) (1 + d2), (15)

4
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where |01], 02| = O(1/N). Hence (14)) takes the form
Y — Y= (logr) (X — Y) At + p; '\/2(log pr)! VAL EL + Op(AL). (16)

Let W, be a standard d-dimensional Wiener process and assume that X, is sufficiently regular. Then
the difference equation (I6) converges to the It6 SDE

dV; = (logr)' (X¢ = Yy)dt + p;"v/2(log i) AW, (17)
= (/\’ ) (X = Yo dt + py /2N, AW, (18)
= ()\’ +X g dt + py \/2)\/ dW;. (19)

By substituting Y; = (Tt/rs)Yt for Y, in we get

redY; = X, dt + p\/2(log pr)’ AW, (20)

By integrating (20) and returning to Y;, we obtain (T2), which, with the simplest discretization, takes
the form of (10).

Note that the substitution leading to formula (20) uses the method of variation of constants—this
approach is used to derive DPM solvers. Thanks to the construction of the diffusion process by (12),
SDE:s are not needed.

3.3 GENERATION INTERVAL AND THE MAIN PROBLEM

Comparing the formulas for popular noise schedules with the formula for the generator (I0), we see
that oy = 0 oraz py = co. This means we do not start at the moment when the generator and oracle
have the same distribution, nor do we reach the point where the oracle has the distribution p,. To
precisely define the generation task, we need to specify the start ¢y and end ¢,,,, of the generation.
From formula (T0), it is also clear that the function ); is not needed for generation, only its quotients.
Equivalently, it is sufficient to calculate \; from the integral formula based on the derivative A},
hereafter referred to as the diffusion rate, by arbitrarily setting A\; At this point, we can define the
main problem of our work.

max*

Main Problem. Determine \; based on the training of the denoiser (¢, St) (the input and output
scales of the prediction) and the generation interval 0 < tg < t4. < 1.

4 A DIFUSION MODEL INDUCED BY THE PENALIZED MAXIMUM LIKELIHOOD

We need a measure of proximity between the oracle process and the generator process to choose
the diffusion schedule. The processes are defined by distributions, and MSE does not determine
the proximity between them, so we will use the most popular measure for this purpose, that is the
maximum likelihood or, equivalently, the Kullback-Leibler divergence.

4.1 DIVERGENCE DECOMPOSITIONS

As in the previous sections, we start with the processes Z; = «;Y; and Zt = atﬁ to see that it is

enough to consider only Y; and Y} Letty < t1 < --- < ty = t be a discretization of the time
interval [to, t], set s = ty_1. For 2 ~ p, we denote latent variables along the path by z;, and write
Zt,:¢ = (24,5 %4141 » - - - » 2 ). From the definition of the oracle process (9) it follows that
CAENED :N(ztms(zs,x),m/l ~ P26} 1a),
op .
where Ms(zm LL’) = s Zs + (ptpt psps)Xa
Uspt
oy (ﬁt ps)
= —Z2s —0¢| 7 — — s
Qg Ps Pt
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Analogously
ﬁt(zt|zs) - N<Zt|p's(zs)a Ot \/ 1- Pg/ﬂ%fd),
N OtPs o 4
where [is(zs) 1= tf) s -|- (ptpt psps)Xs,
st
e (i,
s Ps Pt
The Kullback-Leibler divergence between these two normal distributions is
Dpe (|25, 2) | pe(|25)] := Bz, log [pe(Ze|zs, @) /De(Ze)2s)] @21
N 2
_ H/f“s(zsam) - MS(ZS)H — ||£—f (Z ) —e ||2 (22)
207 (1 — p2/p?) °
oy 2
where wh 1= (P1/Ps = Ps/P1)” (23)

’ 2(1—p2/p?)
We define the following conditional and joint distributions

Pi\f (2t 20, T) = pe(2e|2s, @) - pey (20| 20, @),

P (zea:t|2e0) 7= De(2t]25) - Pey (21 200),
Dto,z(Zto> T) = Dio (240 |7) P2 (),

Dio,t(2t0, T[2t) 1= P (21,) Pe(@21),

pto;t@(zto:t, ) —pﬁ:t(ztl;tlzto, )pto, (Zt(,,x),

Pt (Ztorts ©) 7= DY (2t 220 )Pyg 4 (210 T 20)-

The distribution p, represents the “reconstruction error,” which determines how well the image was
recovered from the final z; representation. The overline symbol indicates its parameters, and its effect
on the divergence between the joint distributions is often called the bias, denoted below as B. Two
KL decompositions that we shall use are

D[pN o || i) = Do | 5] + Ex D[p, (1X) | 52 (1X)], (24)
D[pN o || i) = LY (to.t, A A) + Blto,t), (25)
where
ﬁN(t07 t, 5" )‘) = EZtO’X D[pg:t("ztov X) H ﬁtjit('lzto)] (26)
B(to,t) :== D [pio.x || Dy 1] - (27)

Both of these decompositions together imply that the diffusion loss, denoted as LN, is the objective
function for (implicitly) a penalized negative log-likelihood of the estimator for the distribution p,,
induced by the denoiser with parameters A.

Proposition 1.

LN (to, t, M, \) = Zwt E.. |, —¢|?. (28)

Proposition 2. Assuming t — &,(Y};) is continuous, we have

LN (to, t, A A) = Lto, t, \, ) + O(1/N), (29)
where )
) 3 R 3 £\ j\/
L(to, t, A, A) = L(tg, t, N, N) == / % E. x HéT(YT) — e:||2 dr. (30)
to T

Propositions 1-2 are proven in Appendix A.
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4.2 PENALIZED MAXIMUM LIKELIHOOD
Observe that the weights under the integral in (30) are of the form

1

NN ° °
KA At XN AL, where X (A, XY) =

4N

SN2
(AL — )
— (3D
A
is the well known x2-distance. So weights determining the diffusion process in L are, up to a constant,
scaled distance between A} and A;.

Since the function £ is (implicitly) a penalized ML objective, we do not change its meaning or
difficulty of its calculation, if we add a simple penalty to the weights and define (explicitly) the
penalized maximum likelihood objective

t

LAY + e\,

4 EE,X

& (Yy) —e| dr, 32)

Leo(to, t, M A) = Le(to, t, N, N) = / {5\’7 +
to

for some positive, continuous function c;. Indeed, it is easy to check that the optimal diffusion rate

for such penalized weights is

Xy =N /VIF e (33)

Penalized maximum likelihood covers many important approaches: if ¢; = 0, then we obtain the
maximum (joint) likelihood solution; if ¢; — oo, then )‘é,t — 0, and a diffusion process converges to
a deterministic flow. Our MSE-induced diffusion is a tradeoff between these extremes.

5 A DIFFUSION MODEL INDUCED BY MSE TRAINING

We want the losses to agree not only globally on the interval [tg, tmaz], but also on each of its
subintervals. Let us imagine a scenario where the group optimizing the reconstruction error improves
its method and decreases t,,4,, Or when it becomes possible to start the generation process for a
larger t(. It could also be that we should generate diffusions in stages using different samplers, and
our sampler might only care about optimality for a certain subinterval. Below we will formulate an
appropriate condition, but first let us define MSE for each initial interval (¢, t)

t t
M(to,t, ), S) ::/ EE,Xsfuét(ﬁ)—gtHZdtz/ Ee x |[@e(aVy) —w||® dt. (34
to to

We will say that the diffusion process defined by (to,t, N, \.) is coherent with MSE if and only if the
following condition is satisfied

o

Coherence Principle. There exist a constant M = M (o, tmax, A, S) such that V¢ € [to, tmaz] We
have

Lto, t, N, \)) = MM(to, t, \, S). (35)

The loss £ (without subscript c) is invariant to data scaling, because it is the expected divergence,
whereas MSE depends on data scaling. Therefore, to compare the two functions, we need an
appropriate normalization, that is some constant M.

Proposition 3. Let us define

M = max S\t/Sf and Sy = VMS, Vt € [to, tmaz)- (36)

te [t07tmam]

Then the coherence principle holds with M iff the diffusion rate is
—\ 2
Xo = (Suar = \/SEa = X) (37)

The diffusion process with a parameter Xt/ = A is called the MSE-induced diffusion.
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Proof of Proposition 3. Let us fix ¢ and simplify notation 3 := A}, . := AL, Bi=N,s:= St -

The coherence condition implies that the integrals L and MM agree on the initial intervals, which is
equivalent to the equality of the integrands. Therefore

2\2
(*3255) = MS? = s° (38)

The definition of the constant M implies that $2 > BO, thus equation (38) has 2 roots
o\ 2 o\ 2
6,:(52— 32—6) and 6+:(32+\/52—5) ) (39)
Observe that B_3, = 32, so B_ < 3 < ;. By comparison with B = Be_, B+ = Be,, We
obtain formulas for the penalty constants c_ = (8/8_)2—1, ¢ = (8/8.)*—1landc, <0 < c_.

Hence only 5_ optimizes the penalized maximum likelihood objective. Sufficiency is obvious. [

Example. Consider the logistic noise schedule with the velocity parametrization: «; := t, 0y :=
1—t, A\, =1/[t(1 —¢)],S: = 1/t. Thus M = tyn00/(1 — timae) and

. 2
A = (\/M — VM =t/(1 —t)) /t2.
In this case, we obtain a compact form for ):t

- t 14+ g, 2tmar  1—1
Az—l( )—1 ( —1) t
t ogj =1 Og<1_gt>+(l_tmax) 7 gt + cons
where
— tmax_t
A T

Discrete time. It seems that in the discrete model there is no natural parameter that would also

be associated with \;. In our research, the parameter 7; := /1 — p2/p? proved to be convenient.
Rewriting equation (@) we see that n? is the proportion of new noise &; to the total noise &,

e = \/1—nfes + ne s

From 23))
1 2 02 /o
wff =) = o (VA = 1) where 5, = g2/,
t
It can be easily checked that
e = argminwy () =/ 1 =17 ",
e

and
; v —1

e = .
\/’ytStQ,M + \/StQ,M Tl-m

MSE-induced diffusion and recent empirical diffusion schedules. In Figure (I) we illustrate
comparison of recent diffusion schedules in three popular scenarios (noise, parametrization). We
normalize \; because then ((¢,,q. — to)/N)N, ~ n;, while n? has an easy interpretation. The results
in different scenarios are very similar, so it might be worth considering other bell-shaped densities
like Student’s t or Tukey-lambda. Interestingly, MSE-induced diffusion differs significantly from a
deterministic flow only at the very end of the generation, when the noise is the lowest.
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Figure 1: This study compares several diffusion schedules ((¢,,q: — to)/N)A} in different (noise,
parametrization) scenarios: MSE-induced diffusion (MSE); maximum likelihood (ML); maximum
likelihood multiplied by a discount function, ER-SDE-4 (Cui et al., 2025) (Discount); and empirically
fitted penalized ML (empPML) (Ma et al.l [2024)). Noise schedule and parametrization from left:
(a) linear and velocity, (b) edm and F-prediction, (c) cosine and noise. In all cases N=250, ty =
0.016, tymee = 1 —tg

6 DISCUSSION

Two-state domain. From a formal standpoint, a diffusion process can have a degenerate scale,
A\ = C, but it must have a diffusion schedule A;. It is therefore interesting that many seminal works
on generative diffusion models do not include A\; or an equivalent parameter defining the process’s
cumulative relative variance (Ho et al.| [2020; [Song et al., 2021bf Nichol & Dhariwal, [2021} Dhariwal
& Nichol, 2021; Salimans & Hol[2021;|Song et al.|[2021a; |Kingma et al.,2021}; /Ho & Salimans}, 2022
Rombach et al., |2022; Kingma & Gao, [2023]; [Esser et al., [2024). One might think that what these

papers do provide—time-reversible processes with \; = A—would be entirely sufficient. However,
if so, why are deterministic flows so popular, resulting in a two-state domain? It seems that the main
reason for the lack of )\, is the difficulty in setting it, as seen in papers like Karras et al.|(2022). In
this work, we show that there is a natural choice between 0 and )\, that is consistent with empirically
motivated training using a weighted MSE and with the standard criterion for fitting distributions to
data, namely maximum likelihood.

Scaling. Implementing a diffusion model using a; and o, has become common practice, despite
the mostly simulation-based arguments of |[Karras et al.[(2022)), that o, is unnecessary. In our work,
we specify these arguments: o is merely an input scaling in the denoiser, which is not needed for
generation or in the context of maximum likelihood analysis. Our research indicates that the natural

scale for the process values is A\; + S\t, while the natural scale for the process arguments is p; + py.

Time interval. From a theoretical standpoint, we see no difference between score-based models
that generate processes on (0, 00) and stochastic interpolants that work on [0, 1]. It is important that
p¢ and p, take on positive values within the closed interval of actual generation. This is necessary to
make the analysis realistic, which is clearly visible in the proofs of global convergence for numerical
ODE solvers. As long as the limits 0 < ¢y < t,,4, for the main noise schedules do not depend on the
number of steps, there are no problems. However, when we begin to consider more realistic scenarios,
such as tg = to(N) — 0 and ez = tmaz (V) — 1, we see that the convergence is violated by the
conditions o; — 0 or oy — 1.

Open problems. We transform the generative process to one with additive noise. This allows us to
replace the Gaussian noise with noise originating from a a-stable distribution. Upper bounds on KL
divergence exist for these processes, so there may also be formulas analogous to our MSE-induced
diffusion. An interesting problem seems to be training a noise schedule and a parameterization in
alternation with a diffusion schedule.
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A APPENDIX

Proof of Proposition 1. By the chain rule for KL along the grid tp < ¢; < --- < ty =t we obtain

D[pi\f:t(-|2to,$) ||ﬁtjlvt(|zto)]
= D[ptl('|ztov‘r) Hﬁtl("ztoﬂ +Ezt1,XD[pt2('|Zt17X) Hﬁt2(|Zt1)] +oe

+ EZt,N,FX D[pt('|ZtN715X) ﬁt('|ZtN—1)]' (40)
In our setting, from (23)) this can be rewritten in terms of denoising errors with weights wt]j :
. . 2 R 2
" = wi]\f Hgto — &t H2 + wg EEtIHEtl — & H +oet wzf\zfv EEtN,IH‘gtN71 —Ctnoa H . 4D
So
N N
EZtD,XD[piY:t('|Zto’X) ﬁtly:t('|Zt0)] = ZEEt“Xin ||étL — &t P = ZEE,XU)L{:/ éti - €H2'
i=0 =0
O

Proof of Proposition 2. A direct manipulation with Taylor expansions yields, for s =t — Ar,
N oo 2
N = Limar Pr—Ps | Pt—Ps o Pt = Ps Pt + Ps
AT AT ATps  Arp INF

X X, SN
:<At(1+61)+)\t(1+52)> /(4)%(1+53)>

i b )
=w; + O(1/N), where w,; := v and |d1],]02], |03] = O(1/N).  (42)
t

For 7 € [to,t] define ¢V (7) := min{t; : 7 > t;}. We have

max (wﬁv(T) [ 5||2) — O(1/N), 43)

toSTSt

and consequently

AN 3 - al wif A2
L (t07 ta /\7 )\) - ]EE,X E Ar |5t1‘, EH AT
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t t
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