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Abstract: Learning an effective policy to control high-dimensional, overactuated
systems is a significant challenge for deep reinforcement learning algorithms. Such
control scenarios are often observed in the neural control of vertebrate muscu-
loskeletal systems. The study of these control mechanisms will provide insights
into the control of high-dimensional, overactuated systems. The coordination of
actuators, known as muscle synergies in neuromechanics, is considered a pre-
sumptive mechanism that simplifies the generation of motor commands. The
dynamical structure of a system is the basis of its function, allowing us to derive
a synergistic representation of actuators. Motivated by this theory, we propose
the Dynamical Synergistic Representation (DynSyn) algorithm. DynSyn aims
to generate synergistic representations from dynamical structures and perform
task-specific, state-dependent adaptation to the representations to improve motor
control. We demonstrate DynSyn’s efficiency across various tasks involving dif-
ferent musculoskeletal models, achieving state-of-the-art sample efficiency and
robustness compared to baseline algorithms. DynSyn generates interpretable syn-
ergistic representations that capture the essential features of dynamical structures
and demonstrates generalizability across diverse motor tasks.

Keywords: Reinforcement Learning, Motor Control, Overactuated Systems, Syn-
ergistic Representation

1 Introduction

In the evolution of embodied intelligence, researchers have used reinforcement learning (RL) algo-
rithms to train controllers across diverse robotic platforms, yielding notable advancements in motor
control. These agents can acquire robust and generalizable policies through iterative trial and error
within large-scale simulations, subsequently deploying them onto real-world robots via sim-to-real
methodologies [1, 2, 3]. Overactuation and redundancy can often enhance the safety and robustness
of embodied intelligent systems, mitigating the risk of sudden control failures [4, 5, 6]. However,
overactuation will increase the complexity of the controlled object, particularly by enlarging the
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Figure 1: Motor behaviors of overactuated musculoskeletal systems acquired by DynSyn. (a)
Gait of MS-HUMAN-700 model. (b) Manipulation of MS-HUMAN-700 Arm model. (c) Locomotion
of Ostrich model. See our project website at https://sites.google.com/view/dynsyn.

dimensionality of the action space, making it difficult for the deep RL controllers to achieve motor
control.

A common example of overactuated embodied systems is musculoskeletal systems in nature. In
contrast to existing DRL agents, the motor control intelligence of vertebrates can control muscu-
loskeletal systems through the central nervous system, exhibiting the ability to generalize across a
variety of motor tasks while maintaining stability even under large disturbances, such as external force
interference and drastic changes of environmental parameters. Exploring musculoskeletal motion
control can help address the control challenges posed by high-dimensional, overactuated systems,
thereby advancing our progress towards embodied intelligence. Nevertheless, a musculoskeletal
model of human possesses characteristics that pose significant challenges for motor control by a
RL agent. Firstly, the muscle control parameter space is high-dimensional, where over 600 skeletal
muscles control hundreds of joints [7]. Secondly, the system is overactuated, as multiple muscles
actuate one joint and multiple joints may be affected by one muscle [8]. Thirdly, the dynamic of
neuro-muscular actuators is non-linear and inconstant [9, 10], and these actuators can only generate
tension and no reverse forces.

How does motor control in vertebrates effectively address the challenge of redundant actuation? In
neuroscience, there is a hypothesis known as muscle synergies. It proposes that coordinated recruit-
ment of groups of muscles serves as a modular framework for biological motor control, simplifying
the generation of motor commands. Studies have demonstrated that various motor behaviors can be
reconstructed with high fidelity using a basic set of coordinated muscle activity patterns endowed
with different weights [11, 12]. We conceptualize muscle synergies as representations of actuators’
control strategy. According to our hypothesis, these representations should depend on the physical
structure of the controlled system, as this structure determines the characteristics of actuators. These
representations should also exhibit generalizability across diverse tasks and conditions, reflecting
commonalities within motor systems. Furthermore, we assume that these synergies can be adaptively
fine-tuned to suit specific demands of each movement and state, as the actual working conditions of
actuators are not inherently identical when performing different movements. We explore to discover
synergistic representations from dynamical structures and embed them into deep RL methods to
achieve efficiency and generalization in physiological motor control tasks.

In this work, we propose DynSyn, a deep reinforcement learning algorithm that is capable of
generating interpretable synergistic representations of dynamical structures and performing task-
specific, state-dependent adaptation to the representations. The generation process is driven by
random perturbations. A stable and interpretable representation of dynamical synergies can be
obtained. Embedding the representation into the learning process improve the efficiency of the agent
when learning motor control policies demonstrated in Figure 1.

Our work mainly achieves following contributions: (1) We propose a method to generate syner-
gistic representations from dynamical structure (for the first time), and a learning algorithm for
state-dependent, task-specific adaptation in motion control tasks. (2) Experiments show that this
representation generation method can obtain stable and interpretable representations of different over-
actuated systems. The representations can be generalized across different tasks. (3) We demonstrate
that our representation-embedded learning algorithm can make the training process more efficient.2
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(4) Our algorithm achieves control of ultra-high-dimensional musculoskeletal models, while other
algorithms fail. DynSyn advances simulation control approaches in biomechanics, neuroscience and
motor control communities.

2 Related Work

Over-redundant actuation control. Overactuated systems, often observed in the motor control
of vertebrates, such as musculoskeletal systems, present a challenge for controllers trained by RL
algorithms. A low-dimensional representation can be used to evaluate the quality of the control [13].
A series of attempts aimed on tackling the problem of learning control policies for locomotion and
manipulation tasks with musculoskeletal models [14, 15, 16]. Leading solutions of these challenges
include heavy curriculum training approaches, with reward shaping or demonstration imitation [17].
Recently, a hierarchical reinforcement learning algorithm combined with imitation learning was
applied to a 346-muscle musculoskeletal model [18]. Generative models like variational autoencoders
were utilized to control this musculoskeletal model to generate diverse behaviors [19, 20]. In
addition to human models, a musculoskeletal model of ostrich was constructed using the MuJoCo
physics engine and controlled by TD4 deep reinforcement learning algorithm [21]. Recent works,
such as DEP-RL [22] and Lattice [23], have shown that employing better exploration techniques
in reinforcement learning can help address the problem. Multi-task learning method is used in
dexterous physiological control on a human hand model [24]. Bio-inspired approaches [25, 26] have
demonstrated their effectiveness in motion control by applying synergistic representations in distinct
parts of musculoskeletal bodies.

Synergies for motor control in neuroscience. For typical redundant actuation systems in nature,
the coordination of actuators in vertebrates’ neuromusculoskeletal motor control is known as muscle
synergies. This can be defined as the coordinated recruitment of groups of muscles in the spatial,
temporal, or spatiotemporal domains [27]. As a long-standing theory in neurophysiology, muscle
synergies is widely considered a possible approach for the central nervous system to overcome the
complexity of motor control by reducing the number of independent parameters to simplify the
generation of motor commands [28, 29]. Researchers can generate the representation of muscle
synergies through multidimensional matrix factorization from animals including rat, frog and human
[30, 11, 31, 32]. In experiments where humans perform fast reaching movements, changes of
the muscle contraction patterns among various conditions can be explained with a high degree
of confidence by assigning a set of synergy coefficients [12]. The methodology of learning lower-
dimensional action representations is being studied in the field of general robotics as well [33, 34, 35].

Our algorithm uses DRL to train control policies on high-dimensional, overactuated systems. Com-
pared to existing methods, our representation generation method avoids training cost in an inter-
pretable way. To the best of our knowledge, our work is the first algorithm to discover synergistic
representations from dynamical structures and successfully use them to solve the motor control
problem of high-dimensional overactuated systems.

3 System Dynamical Features

In this study, we aim to generate synergistic representations of actuators based on the dynamical
characteristics of overactuated systems. Overactuation is common in natural musculoskeletal systems
controlled by multi-articulation and pull-only actuations, making their motion control much harder
than conventional torque-controlled robots [24, 26]. In this section, we will introduce the neuro-
musculoskeletal control of a full-body model as an example and outline the problem formulation.

3.1 Physiological Neuro-Musculoskeletal Control

Full body musculoskeletal model. As shown in Figure 2(a), a full body musculoskeletal model MS-
HUMAN-700 [36] is used. The model has 90 rigid body segments, 206 joints, and 700 muscle-tendon
units, and is implemented in the MuJoCo physics simulator [37]. The base segment of the model is
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(a) (b)

Figure 2: Musculoskeletal model. (a) Full body model MS-HUMAN-700, red lines represent muscle-
tendon units. (b) Arm model with wrist and finger joints for dexterous manipulation. The top
illustrates the the skeleton structure and the bottom illustrates muscles.

pelvis, which can translate and rotate in full degrees of freedom. The body parts can interact with the
environment during simulation because the mesh files of their bones are used for collision calculation.
The dynamics of the human musculoskeletal system can be formulated with the Euler-Lagrangian
equations as

M(q)q̈ + c(q, q̇) = JT
mfm(act) + JT

c fc + τext (1)

where q represents the generalized coordinates of joints, M(q) represents the mass distribution matrix,
and c(q, q̇) stands for Coriolis and gravitational forces. fm(act) is the vector representing muscle
forces generated by all muscle-tendon units, and is determined by muscle activations (act). fc is
the constraint force. Jm and Jc are Jacobian matrices that map forces to the space of generalized
coordinates. τext is external torque. The input control signal of muscle-tendon units is the neural
excitations, which determine muscle activations. With the employment of the Hill-type muscle model
[9], the activation-contraction dynamics of muscles exhibit non-linearity and temporal delay, thereby
posing challenges to neuromuscular control (see Appendix A).

In Section 5, we apply DynSyn to several local models of human body (such as an arm model in Figure
2(b)) and a model of ostrich [21]. These local models of human body are part of the MS-HUMAN-700
model, with slight differences in the implementation of simulation. The details of human local models
and the ostrich model are presented in Section 5.1.

3.2 Problem Formulation

A motor control task of musculoskeletal models and robots can be formulated as a Markov decision
process, denoted byM = ⟨S,A, r, p, ρ0, γ⟩, where S ⊆ Rn represents the continuous space of all
valid states, and A ⊆ Rm represents the continuous space of all valid actions. r : S × A → R is
the reward function. The state transfer probability function p(s′|s, a) describes the probability of
an agent taking an action a to transfer from the current state s to the state s′. ρ0 is the probability
distribution of the initial state with

∑
s0∈S ρ0(s0) = 1 and γ ∈ [0, 1) is the discount factor. In the

reinforcement learning paradigm, the goal of the agent is to optimize the policy parameter θ that maps
from states to a probability distribution over actions πθ : S → P (A). The policy seeks to maximize
the discounted returns, π∗

θ(a|s) = argmaxθ[
∑T

t=0 γ
tr(st, at)]. The details of our action space and

state space are described in Appendix B.
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Figure 3: Motivation of DynSyn. The brown link represents a robot arm (or bone), while the blue
and green lines represent the cable actuators (or muscles). By randomly controlling the joint velocity,
the lengths of the four actuators are demonstrated on the right. Actuators with similar functions are
categorized into the same group due to similar structures, based on the correlation of length changes.

Algorithm 1: [DynSyn] Dynamical Synergistic Representation
Input: modelM, total trajectory steps Ns, control frequency T , control amplitude Ac, number

of groups Ng

Output: grouping bins G
1 Initialize trajectory buffer τ ← ∅, t← 0
// Random trajectory generation

2 while t ≤ Ns do
3 if t mod T = 0 then
4 Sample joint velocity q̇t ∼ Unif[−Ac, Ac]
5 Set model’s joint velocity q̇ ← q̇t
6 end
7 Simulation step(M, zero action)
8 τ ← τ

⋃
lt // Store the lengths of muscles

9 t← t+ 1
10 end

// Grouping based on the correlation
11 Calculate correlation matrix R using τ with Equation 2
12 Grouping bins G← K-Medoids(1−R)

4 Dynamical Synergistic Representation

As the action space enlarges, the sample efficiency of DRL algorithms sharply decreases. Researchers
have explored various aspects of a typical example of these problems, human musculoskeletal system
control, by means including refining exploration strategies [22, 23] and the utilization of hierarchical
learning approaches [18]. Efforts has been made to learn synergistic action representations from
trajectories in pre-training stage to expedite training, which is highly reliant on pre-training outcomes
[26]. As shown in Figure 3, we observe that actuators with similar functions exhibit structural simi-
larities. Hence, we employ a dynamics-based method which is able to rapidly generate interpretable
synergistic representation. We then propose a novel algorithm to use these representations for further
learning process.

4.1 Representation Generation

As illustrated in Algorithm 1, We employ a similarity-based grouping method for the dynamical
synergistic representation generation. Firstly, we generate muscle length trajectories of length Ns

through applying random control to the joint space of a musculoskeletal modelM. Here, the control
signal is the joint velocity q̇ of the musculoskeletal model, and this signal is sampled randomly
from a uniform distribution Unif[−Ac, Ac] every T time intervals. Upon obtaining the muscle
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Figure 4: Overview of DynSyn. The algorithm generates a unified action aG for each group of
actuators, along with state-dependent correction weights w for each actuator on top of the unified
action aG. Separate MLPs are used to generate the parameters of two Gaussian distributions. We
then sample from the Gaussian distributions and pass them through a squashing function Tanh to
obtain aG and w.

length trajectory τ ∈ RNs×Nm , we calculate the correlation between length changes for each pair of
muscles according to Equation 2. Nm is the dimension of actions (the number of muscles). Based on
the correlation matrix R ∈ RNm×Nm , and a predetermined number of groups Ng, we employ the
K-Medoids [38] clustering algorithm to generate the closest clustering results, forming grouping bins
G.

Ri,j =
1

N

N−1∑
k=0

Sc(τ
i
[Ns

N k:Ns
N (k+1)]

, τ j
[Ns

N k:Ns
N (k+1)]

) (2)

The correlation matrix is calculated by Equation 2. We divide the trajectories into N segments with
respect to time and then average the similarity of each segmented trajectory. N represents the number
of segmented trajectories, Sc is the cosine similarity, and i, j correspond to the i th and j th muscles,
respectively. Subscript [t1 : t2] represents the trajectory from time t1 to time t2.

4.2 State-dependent Representation

Using the above algorithm, functionally similar actuators will be categorized into a group, and
assigned with same actions. This prevents DRL algorithms from assigning opposite actions to
functionally similar actuators during the learning process, thereby enhancing effective exploration in
high-dimensional action spaces. However, merely assigning same actions to all actuators within a
group may result in unnatural movements. Therefore, we propose the algorithm illustrated in Figure
4. While the actuators within a group perform shared actions, state-dependent correction weights are
produced for each actuator to facilitate fine-tuned adjustments.

Based on the SAC algorithm [39], our algorithm generates a unified action aG for each group, along
with state-dependent correction weights w for each actuator on top of the unified action aG. aG and
w are written as

aG = tanh(uG), uG ∼ N (µG, σG) (3)
w = tanh(ŵ), ŵ ∼ N (µw, σw), (4)

where µG, σG represent the mean and variance of the unified actions, µw is the mean of state-
dependent correction weights and σw is the state-independent variance of the weights. By default,
the first actuator in each group is assumed to have a correction weight of 1, and Nm −Ng correction
weights are to be determined. The final action is computed using the following equations:

aI = IS(aG)⊙ clip(κw,−c, c) (5)
c =min(max(kDt+ aD, 0), κ) (6)
a = clip([aG, aI ],−1, 1), (7)
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Figure 5: Experiment environments. (a) MS-HUMAN-700-Gait (a ∈ R700). (b) Legs-Walk
(a ∈ R100). (c) Arm-Locate (a ∈ R81). (d) MyoLegs-Walk with rough terrain (a ∈ R80). (e)
MyoHand-Reorient100 (a ∈ R39). (f) Ostrich-Run (a ∈ R120). The semitransparent objects in
manipulation environments are the target indicators.

where clip(x, l, h) is a function that restricts the value of x to the interval [l, h]. The Index Selection
function (IS function), selects corresponding unified actions aG according to indices determined by
grouping results. ⊙ represents element-wise multiplication, and [·, ·] denotes concatenation. aI is
the individual action. kD, aD and κ are the hyperparameters of the weight boundary, which relaxes
gradually as the training timesteps t increase. During training, the state-dependent adaptation of
representations will start at aD considering the stability of learning. Finally, the policy π will be
updated according to the following formula:

π∗ = argmax
π

E
τ∼π

[

∞∑
t=0

γt(R(st, at) + αH(π(aG|st)))] (8)

5 Experiments

We demonstrate our method’s efficiency during learning and its generalization ability in overactuated
motor control benchmarks built in MuJoCo. In this part, we will introduce the benchmarks, the
learning process of DynSyn and the details of baselines.

5.1 Environments

We create reinforcement learning environments of various models and tasks to test our algorithm.
Additionally, two tasks from MyoSuite [40] are taken into account. We use Model-Task pair to label
the environments, as shown in Figure 5. A complete description including the action space, the state
space and the reward function of each environment is given in Appendix B.

Human Motion Imitation: In FullBody-Gait, we expect the full body MS-HUMAN-700 model with
206 joints actuated by 700 muscles (described in Section 3.1) to mimic a motion-capture walking
trajectory. During training, the model may be initialized at any time step throughout a trajectory
cycle.

Human Locomotion: In Legs-Walk, a 20-DoF Legs model actuated by 100 muscles is used. In
MyoLegs-Walk, the MyoLegs model in MyoSuite with 20 DoF and 80 muscles is used. Both models
are expected to walk forward robustly, driven by biomechanically inspired reward functions.

Human Manipulation: In Arm-Locate, an Arm model of 28 DoF and 81 muscles, with wrist and
fingers is used. The agent is trained to learn to grasp a bottle, relocate it to the random target position
and orientation. In MyoHand-Reorient100, the MyoHand model in MyoSuite with 23 DoF and
39 muscles needs to rotate a set of 4 objects, each with 25 different geometries, to predetermined
orientations.

Animal Locomotion: In Ostrich-Run, an Ostrich model [21] with 50 joints actuated by 120 muscles
is used. The model is trained to run horizontally as fast as possible by rewarding its velocity.

Generation Tasks: We test various terrain conditions (MyoLegs-Walk-Terrain) and different walk-
ing targets (Legs-Walk-Fast, Legs-Walk-Diagnal) to demonstrate the generalization capability of
the dynamical synergistic representation across various physical conditions, as well as the robustness
of generated motor behaviors.
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The Legs model and the Arm model are obtained by removing irrelevant degrees of freedom from the
full body model. For the locomotion task and the manipulation task, two environments are tested
for each task to demonstrate the robustness of the algorithm, given that there are several variations
between the models and the environments.

5.2 Learning Dynamical Synergistic Representation

Before training, dynamical synergistic representations (i.e. the grouping of actuators) are gener-
ated for each model. We impose random control on joint velocities for 5e5 simulation frames to
collect sequences of actuators’ features. For muscle-tendon units, the collected feature is length.
The grouping of actuators is then obtained according to Section 4.1. We choose an appropriate
number of groups where the difference between maximum and minimum distances among cluster
centers are large enough. This process is further detailed in Appendix C.2. To demonstrate that the
representation generated by our method can stably capture the dynamical features of the models, we
repeat the generation for 10 times on each model and calculate the mean value and variance. The
same representation of a single model are retained in tasks with changed conditions to verify the
generalization ability of the algorithm. Furthermore, a series of ablation experiments are presented to
prove that our choice of the number of groups is reasonable and helpful for the learning of motor
control (see Section 6.2).

5.3 Baselines

We compared DynSyn with current DRL methods in overactuated systems: SAC [39], SAR [26] and
DEP-RL [22]. SAR collects low-dimensional representations from a pre-training collection stage
over M time steps and its training stage is over another N time steps. Other methods are directly
trained over M + N time steps. It should be noted that DEP-RL is an exploration method which
can be integrated into our algorithm. DynSyn are based on the RL library Stable-Baselines 3 [41].
Hyperparameters and implementation details in the experiments are summarized in Appendix C.4.
All results are averaged across 5 random seeds.

6 Results and Analysis

In this section, we present the experimental results, demonstrating that DynSyn effectively facilitates
motor control across various tasks involving different models, exhibiting state-of-the-art sample
efficiency and high stability. Additionally, we illustrate that the dynamical synergistic representations
extracted from models exhibit good performance in terms of convergence and interpretability. This
allows the model to leverage the representations in learning motor control across diverse tasks, even
under varying conditions such as terrain and training targets.

6.1 Efficient Learning

Figure 6(a) illustrates that DynSyn achieves higher returns in fewer training steps across all standard
experimental environments. This implies that DynSyn efficiently produces robust motor control (refer
to Figure 1) in various overactuated models and motor tasks. Notably, the performance of baseline
agents significantly deteriorates as the number of action dimensions increases, whereas DynSyn
performs well even in a very high-dimensional action space of 700 dimensions.

6.2 Synergies Generalization

When the same representations are applied to tasks with additional environmental conditions or
changed targets, such as rugged terrains and walking direction, DynSyn maintains good performance
(see Figure 6(b)). This suggests that the generated synergistic representations of the same model can
effectively generalize across different tasks. Figure 7(a) shows the average results of 10 preliminary
group extractions for the Legs model, showing a high probability of obtaining the same grouping
result (close to 1) and furthermore, the stability of the extraction process.
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(a) (b)

Figure 6: Experimental results. Learning curves in the experimental environments. Mean ± SD
across 5 random seeds for all the environments. (a) Standard experimental results. SAR are depicted
to begin at M timesteps in order to account for the steps of pre-training. The return of baselines
decreases as the number of action dimensions increases, while DynSyn is the only algorithm that
performs well even in a very high-dimensional action space of 700 dimensions in the FullBody-
Gait environment. (b) Generalization experimental results. Learning curves in the generalization
environments in which the physical situations or targets are changed. Here, the M of SAR is 0
because the representations are generated from standard environments.

For ablation study, we utilize a random grouping approach to create 40 clusters for comparison. As
shown in Figure 8, our method consistently yields performance improvements. However, randomly
generated representations outperform the SAC algorithm, possibly due to the influence of our state-
dependent algorithm. The high standard deviation of the learning curve of randomly generated
representation shows a decrease in stability. We also attempt to generate representations for varying
numbers of clusters. The results demonstrate that our cluster number selection scheme ensures
performance stability with a lower standard deviation of the learning curve (see Figure 8). Each
grouping mode is tried with 5 different random seeds.

6.3 Physiological Analysis

In accordance with the left-right symmetry in Legs modeling, 50 indices, from 0 to 49, are assigned
to muscles of each leg symmetrically. In the grouping matrix in Figure 7(a), the upper left quad-
rant signifies the correlation between left-leg muscles, and the lower right quadrant represents the
correlation between right-leg muscles. The remaining part of Figure 7(a) depicts correlation near 0
between pairs of muscles from both legs. Notably, our representation generation method identifies
inherent symmetries in the musculoskeletal model. Only groupings within the same leg are observed.
Furthermore, the groupings of muscles from the left and right legs are symmetrical. For improved
visualization, the muscle grouping result of the right leg is expanded and depicted in Figure 7(b),
detailing two representative muscle grouping examples in the musculoskeletal model (i.e., Psoas
Major and Thigh Adductors). From a biomechanical perspective, this is evident that muscles grouped
together exhibit similar effects, highlighting our method’s ability to capture fundamental dynamical
characteristics in the system.
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(a) (b)

Figure 7: Muscle grouping of Legs model. (a) Grouping matrix Pn, where pij is the probability that
muscle i and muscle j are in the same group (averaged over 10 seeds). For the Legs model where
n = 100, the first 50 muscle indices represent muscles of the right leg, and the other 50 indices
represent the left leg. The model is bilaterally symmetrical, and the muscle indices are reordered for
better visualization. (b) Visualization of muscle groupings for the right leg. Each number represents
a muscle, and different groups are delineated by borders.

Figure 8: Ablation study results. Learning curves on the Legs-Walk environment. Mean ± SD
across 5 random seeds. (a) Performance variation with different numbers of clusters, we apply
Ng = 40 in our final control tasks. (b) Performance comparison between randomly generating 40
clusters and our method generating the dynamical synergistic representation of 40 clusters.

7 Conclusion and Discussion

We introduce DynSyn, a deep RL method that generates synergistic representations of actuators from
dynamical structures of overactuated systems and make task-specific, state-dependent adaptation to
the representations, thereby expediting and stabilizing motor control learning. Applying DynSyn to
musculoskeletal locomotion and manipulation tasks, we demonstrate its superior learning efficiency
compared to all baselines. Additionally, we illustrate the robust generalization ability of the extracted
synergistic representations across various motor tasks with the same model. In conclusion, our
work offers an efficient, generalizable, and interpretable approach to controlling high-dimensional
redundant actuation systems. The generation method of synergistic representations can help deepen
the understanding of motor intelligence. This research aims to facilitate the training of motor control
policies for use in artificial intelligence, robotics and medicine, contributing to the development of a
versatile embodied agent.
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Despite the promising outcomes, distinctions persist between real embodied motor intelligence and the
musculoskeletal model simulation employed in our study. For instance, current simulation methods
primarily leverage proprioception (joint position and velocity), whereas in the real world, an animal
receives additional sensory inputs, including vision and touch [42, 43, 44]. To enhance customization
for specific applications, further work on biomechanically realistic simulations is essential. Other
significant limitations include the multiple potential solutions in overactuated systems, and our
method can only generate one of the numerous high-dimensional combinations to control the system.
Future research may need to consider establishing a solution space of control patterns.
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A Neuro-muscle dynamics

The input control signal of muscle-tendon units is the neural excitation ctrl, and the muscle activation
act is calculated by a first-order nonlinear filter as follow:

∂act

∂t
=

ctrl − act

τ(ctrl, act)
, τ(ctrl, act) =

{
τact(0.5 + 1.5act) ctrl > act

τdeact/(0.5 + 1.5act) ctrl ≤ act
, (9)

(τact, τdeact) is a time constant to activate or deactivate latency of defaults (10ms, 40ms). The force
produced by a single muscle-tendon unit can be formulated as

fm(act) = fmax · [Fl(lm) · Fv(vm) · act+ Fp(lm)], (10)

where fmax stands for the maximum isometric muscle force and act, lm, vm respectively stand for the
activation, normalized length and normalized velocity of the muscle. Fl and Fv represent force-length
and force-velocity functions fitted using data from biomechanical experiments [45].

B Environment Details

For all environments, the simulation time step is 0.01s. The action space consists of muscle excitations
ctrl (i.e. motor neuron signals). The dimensions of action and state spaces, number of joints and
episode length of all the environments are summarized in Table A.1. Task and reward parameters are
summarized in Table A.2.

FullBody-Gait We expect the full body MS-HUMAN-700 model with 206 joints actuated by 700
muscles (Section 3.1) to mimic a motion-capture walking trajectory. During training, the model may
be initialized at any time step throughout a trajectory cycle. The state space consists of simulation
time, joint positions, joint velocities, muscle forces, muscle lengths, muscle velocities, muscle
activation and reference joint positions. The reward function is:

R =wvRv + wqRq + whIalive (11)
Rv =exp(−(vcomx − vtx)

2) + exp(−(vcomy − vty)
2) (12)

Rq =− ||q − qr||2 (13)

where q is actual joint positions, qr is the reference joint positions,
{
vcomx , vcomy

}
is the velocity of

the center of mass and
{
vtx, v

t
y

}
is the desired velocity. wv , wq and wh are the weights.

MyoLegs-Walk The MyoLegs model in MyoSuite with 20 DoF and 80 muscles is used. The model
is expected to walk forward robustly, driven by biomechanically inspired reward functions:

R = wvRv − wcRc + wrRr + wjRj − waRa − wdRd (14)

Rd = {falled}, imposes a penalty when the model falls. The weights wv, wc, wr, wj , wa, and wd

determine the importance of each reward term. The other terms are as follow:

Rv = exp(−
√

vrx − vx) + exp(−
√
vry − vy) (15)

vr and v represent the desired and actual velocity of the center of mass. Rv represents the velocity
reward.

Rc = ||[0.8 cos(ϕ× 2π + π), 0.8 cos(ϕ× 2π)]− [qrhip, qlhip]|| (16)

ϕ is the phase percentage of the pre-define gait period. qrhip and qlhip are the hip flexion angle of
both legs. Rc encourages rhythmic hip movements.

Rr = exp(−5||(qpelvis − qinitpelvis)||) (17)

qpelvis and qinitpelvis are the quaternions of pelvis and its initial value when reset. Rr encourages the
model to follow a predetermined rotation pattern.

Rj = exp(−5
N∑
i=1

|qi|/N) (18)
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In the environment, N = 4 and qi are the hip abduction and rotation angles of both legs. Rj penalizes
deviations from desired joint angles.

Ra = ||act||/Na (19)

act is the muscle activation vector, Na is the number of muscles, and Ra promotes efficient actuator
usage by computing the norm of the action divided by the number of actuators.

The state space consists of simulation time, joint positions (except x and y positions for the base
segment), joint velocities, muscle forces, muscle lengths, muscle velocities and muscle activations.
The task-specific observations include time phase percentage of the gait, velocity and height of the
center of mass, torso angle, the height of the feet and their positions relative to the pelvis. The diverse
terrain conditions including slopes and rough ground can be added to the task (see Figure 9).

(a) (b) (c)

Figure 9: MyoLegs-Walk terrains. (a) Flat terrain. (b) Hilly terrain. (c) Rough terrain.

Legs-Walk A 20-DoF Legs model actuated by 100 muscles is used. The observations and reward
function are the same as MyoLegs-Walk environment except that there is no Ra term. In addition,
we apply diverse walking speed targets in the simulation.

Arm-Locate An Arm model of 28 DoF and 81 muscles with wrist and fingers is used. The agent
is trained to learn to grasp a bottle, relocate it to the target position and reorient it to the target
orientation. The position and orientation of target are randomized when reset. The reward function is:

R = wpRp × woRo + wrRr − waRa (20)

Ra = ||act||/Na, promotes efficient actuator usage. We use multiplication to enforce the relocation
and reorientation simultaneously. The weights wp, wo, wr and wa determine the importance of each
reward term. The other terms are as follow:

Rp = exp(−10
√
||ptarget − pobject||) (21)

ptarget and pobject represent the positions of the target and the object, respectively. Rp represents the
reward for relocation.

Ro = exp(−2||otarget − oobject||) (22)

otarget and oobject represent the orientation of the target and the object (in Euler angle, except for the
rotation of the bottle around the vertical axis). Ro represents the reward for reorientation.

Rr = exp(−10||ppalm − pobject||) (23)

ppalm and pobject represent the positions of the palm of the arm model and the position of object. Rr

encourages the model to grab the object.

The state space consists of simulation time, joint positions, joint velocities, muscle forces, muscle
lengths, muscle velocities and muscle activations. The task-specific observations include the positions
of the object and the target, the orientations of the object and the target, the error of position and
orientation, the position of the model’s palm and the distance between the palm and the object.

MyoHand-Reorient100 MyoHand model in MyoSuite with 23 DoF and 39 muscles needs to
rotate a set of 4 objects, each with 25 different geometries, to a given orientation without dropping
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them. This set of 100 objects is randomly presented, and initialized onto the hand. The reward
function is:

R = −wpRp + woRo − wdRd − waRa + wbRb (24)
Ra = ||act||/Na, promotes efficient actuator usage. The weights wp, wo, wd, wa and wb determine
the importance of each reward term. The other terms are as follow:

Rp = ||ptarget − pobject|| (25)
ptarget and pobject represent the positions of the target and the object. Rp keeps the object at its
initial position (i.e. onto the palm).

Ro = cos(otarget − oobject) (26)
otarget and oobject represent the orientations of the target and the object (in vector). Ro represents
the reward for reorientation.

Rd = (||ptarget − pobject|| > 0.075) (27)
Rd represents the penalty for dropping objects.

Rb = (cos(otarget − oobject) > 0.9)× (||ptarget − pobject|| < 0.075)

+ 5× (cos(otarget − oobject) > 0.95)× (||ptarget − pobject|| < 0.075) (28)
Rb represents the bonus reward for simultaneous rotational and positional alignment above a threshold.

The state space consists of simulation time, joint positions, joint velocities, muscle forces, muscle
lengths, muscle velocities and muscle activations. The task-specific observations include the positions
of the object and the target, the orientations of the object and the target, the velocities of objects, and
the error of position and orientation.

Ostrich-Run An Ostrich model [21] with 50 joints actuated by 120 muscles is used. It needs to
run horizontally as fast as possible, rewarded only by the velocity of the center of mass projected to
the x-axis.

R = wvv
COM
x (29)

The state space consists of joint positions (except x position for the base segment), joint veloci-
ties, muscle forces, muscle lengths, muscle velocities and muscle activations. The task-specific
observations include the height of ostrich torso, the height of the feet and the horizontal velocity.

Table A.1: The action, state dimensions, number of joints and episode length of all the environments.

Environment Action
dimensions

State
dimensions

Number of joints Episode length

FullBody-Gait 700 2971 206 (6 for the base) 3000
Legs-Walk 100 488 36 (6 for the base) 1000
MyoLegs-Walk 80 403 34 (6 for the base) 1000
Arm-Locate 81 442 48 (6 for the object) 200
MyoHand-Reorient100 39 200 29 (6 for the object) 50
Ostrich-Run 120 596 56 (6 for the base) 1000

C Implementation Details

C.1 Action normalization

Our preliminary experiments reveal that in MyoSuite, the action space, originally [0, 1], is normalized
to [-1, 1] using Equation 30. This normalization method enhances training effectiveness. Conse-
quently, we apply this normalization approach in all our environments and algorithm comparison
experiments.

a =
1

1 + e−5(a−0.5)
(30)
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C.2 Dynamical synergistic representation generation

In the process of representation generation, determining the number of groups is crucial. In Figure
10(a), we illustrate the maximum and minimum values of the distance among cluster centers for
different group configurations. The algorithm exhibits robust and explainable performance when we
choose an appropriate number of clusters where the difference between maximum and minimum
distances are large enough. In Figure 10(b), it is evident that when the selected number of groups is
40, the t-SNE visualization maintains symmetry and interpretability.

As illustrated in Figure 11 and Figure 12, the grouping results are shown to converge to their final
grouping with a data point quantity as low as 25,600. It’s also displayed that even if we have only
100 data points, the grouping result is similar to the final result.

(a) (b)

Figure 10: Generation criteria and visualization. (a) In Legs model, the K-medoids algorithm
is employed for clustering with varying cluster numbers. The curve depicting the maximum and
minimum distance between cluster centers changes with the number of clusters. (b) t-SNE algorithm
is used to reduce the cosine similarity distance to two dimensions for visualization.

Figure 11: Grouping matrix Pn derived from varying sample sizes, and the distance (Frobenius norm)
between them and a 500K-sample grouping matrix. pij is the probability that muscle i and muscle j
are in the same group (averaged over 10 seeds). The grouping results are shown to converge to their
final grouping with a data point quantity as low as 25,600. Even if we have only 100 data points, the
grouping result is similar to the final result.
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Figure 12: The distance (Frobenius norm) between grouping matrices derived from varying sample
sizes and a 500K-sample grouping matrix.

C.3 Baselines

We compare our algorithm with the best performing baselines, SAC, SAR and DEP-RL. SAR and
DEP-RL algorithms are implemented using the official released code. SAC, SAR and DynSyn
all adopt the DRL framework Stable baselines3, and DEP-RL adopts the Tonic framework. All
algorithms adopt SAC as the basic algorithm. The specific algorithm parameters of SAR and DEP-RL
are those reported in the original papers, and for models with similar complexity we use the same
parameters. See Table A.3 and Table A.4 for details.

C.4 Hyperparameters of DynSyn and baselines

Algorithm hyperparameters are summarized in Table A.3 and A.4.
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Table A.2: The task and reward parameters of all the environments.

Task FullBody-Gait Ostrich-Run
Parameter Value Parameter Value

Min pelvis height 0.6 Min head height 0.9
Min sternum height 1 Min pelvis height 0.6

Max rot. 0.8 Min torso angle -0.8
Max torso angle 0.8

Reward Pos. 1 Vel. 1
Vel. 0.005

Concerned 1
Done 10

Task Legs-Walk Arm-Locate
Parameter Value Parameter Value
Min height 0.8 Pos. x target bound (-0.1, 0.1)
Max rot. 0.8 Pos. y target bound (-0.2, 0.2)

Hip period 100 Pos. z target bound (0.1, 0.3)
Reward Target forward vel. 1.2 (3 in Fast env) Ori. x target bound (-0.4, 0.4)

Target lateral vel. 0 (1.2 in Diagnal env) Ori. y target bound (-0.4, 0.4)
Vel. 5 Pos. 50

Cyclic hip 10 Ori. 5
Ref rot. 10 Reach 10

Joint angle 5 Action reg. 1
Done 100

Task MyoLegs-Walk MyoHand-Reorient100
Parameter Value Parameter Value
Min height 0.8 - -
Max rot. 0.8

Hip period 100
Target forward vel 1.2
Target lateral vel 0

Terrain Flat (Rough, Hilly,
in separate envs)

Reward Vel. 5 Pos. 1
Cyclic hip 10 Ori. 1

Ref rot. 10 Drop 5
Joint angle 5 Action reg. 5
Action reg. 1 Bonus 10

Done 100
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Table A.3: Parameters of SAC, DynSyn, SAR and DEP-RL in the standard tasks

Algorithm Parameter Task
FullBody-

Gait
Legs-
Walk

MyoLegs-
Walk

Arm-
Locate

MyoHand-
Reorient100

Ostrich-
Run

SAC

Learning rate linear schedule(0.001)
Batch size 256
Buffer size 3e6

Warmup steps 100
Discount factor 0.98

Soft update coeff. 2
Train frequency (steps) 1

Gradient steps 4
Traget update interval 1
Environment number 80

Entropy coeff. auto
Target entropy auto
Policy hiddens [512, 300] [256, 256]

Q hiddens [512, 300] [256, 256]
Activation ReLU

Training steps 5e7 3e6 5e6

DynSyn

Control Amplitude 5 10 10 5 100 10
Trajectory steps 5e5

Control frequency 10
Number of groups 100 40 25 40

aD 3e7 1e6
kD 5e-9 5e-8

SAR
Dimensionality 200 20
Blend weight 0.66
Training steps

(play phase + training phase) 2e7+3e7 1.5e6+1.5e6 2e6+3e6

DEP-RL

Bias rate 0.002 0.03
Buffer size of DEP 200 90
Intervention length 5 4
Intervention proba 0.0004

Kappa 1169.7 20
Normalization Independent

Q norm selector l2
regularization 32

s4avg 2 1
Sensor delay 1

tau 40 8
Test episode every 3

Time dist 5
With learning True
Return steps 2

Entropy coeff. 0.2
Learning rate 3e-4

Environment number
(parallel * sequential) 80*1
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Table A.4: Parameters of SAC, DynSyn, SAR and DEP-RL in the generalization tasks

Algorithm Parameter Task
Legs-
Walk-

Diagnal

Legs-
Walk-
Fast

MyoLegs-
Walk-
Hilly

MyoLegs-
Walk-
Rough

SAC

Learning rate linear schedule(0.001)
Batch size 256
Buffer size 3e6

Warmup steps 100
Discount factor 0.98

Soft update coeff. 2
Train frequency (steps) 1

Gradient steps 4
Traget update interval 1
Environment number 80

Entropy coeff. auto
Target entropy auto
Policy hiddens [256, 256]

Q hiddens [256, 256]
Activation ReLU

Training steps 3e6

DynSyn aD 1e6
kD 5e-6

SAR
Dimensionality 20
Blend weight 0.66
Training steps

(play phase + training phase) 0+3e6

DEP-RL

Bias rate 0.002
Buffer size of DEP 200
Intervention length 5
Intervention proba 0.0004

Kappa 1169.7
Normalization Independent

Q norm selector l2
regularization 32

s4avg 2
Sensor delay 1

tau 40
Test episode every 3

Time dist 5
With learning True
Return steps 2

Entropy coeff. 0.2
Learning rate 3e-4

Environment number
(parallel × sequential) 80×1
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