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ABSTRACT

Symmetry is an important inductive bias that can improve model robustness and
generalization across many deep learning domains. In multi-agent settings, a pri-
ori known symmetries have been shown to address a fundamental coordination
failure mode known as mutually incompatible symmetry breaking; e.g. in a game
where two independent agents can choose to move “left” or “right”, and where a
reward of +1 or −1 is received when the agents choose the same action or differ-
ent actions, respectively. However, the efficient and automatic discovery of envi-
ronment symmetries, in particular for decentralized partially observable Markov
decision processes, remains an open problem. Furthermore, environmental sym-
metry breaking constitutes only one type of coordination failure, which motivates
the search for a more accessible and broader symmetry class. In this paper, we
introduce such a broader group of previously unexplored symmetries, which we
call expected return symmetries, which contains environment symmetries as a sub-
group. We show that agents trained to be compatible under the group of expected
return symmetries achieve better zero-shot coordination results than those using
environment symmetries. As an additional benefit, our method makes minimal a
priori assumptions about the structure of their environment and does not require
access to ground truth symmetries.

1 INTRODUCTION

Incorporating the symmetries of an underlying problem into models has had demonstrable success in
improving generalization and accuracy across many different machine learning domains (Bronstein
et al., 2021; Krizhevsky et al., 2017; Cohen et al., 2019; Finzi et al., 2020; Van der Pol et al., 2020).
As an important example, using data augmentations and equivariant networks has been shown to
improve zero-shot coordination (ZSC), the ability of independently trained agents to coordinate
in cooperative multi-agent settings at test time (Hu et al., 2020; Muglich et al., 2022a). Without
accounting for symmetries, independently trained agents can converge onto equivalent yet mutually
incompatible policies during training, leading to coordination failure at test time. For example,
one team of agents might use the color “blue” to signal “play” in a cooperative card game like
Hanabi, while a different team might use the equivalent color “red”. This issue, known as mutually
incompatible symmetry breaking, can be mitigated by incorporating symmetries like color into the
training process, as is done in other-play (OP) (Hu et al., 2020). OP addresses this by applying
an independently sampled symmetry transformation to each agent during every training episode,
ensuring compatibility amongst equivalent policies.

Environmental symmetry breaking constitutes a type of over-coordination, a situation where agents
adopt arbitrary and obscure conventions that hinder the ability of previously unseen partners to adapt
effectively within the scope of an episode. However, environmental symmetry breaking is far from
a complete characterization of over-coordination, many other coordination failure modes exist. For
instance, even in environments that lack non-trivial environmental symmetries, agents can still over-
coordinate by adopting overly specific conventions (see Example 2). Another key limitation with
current symmetry-based methods is that they assume a priori access to said symmetries, while their
automatic discovery, especially in large-scale decentralized partially observable Markov decision
processes (Dec-POMDPs (Oliehoek et al., 2007)), can be computationally infeasible (Narayana-
murthy & Ravindran, 2008).

To address these two issues, in this paper, we define the group of expected return symmetries (ER
symmetries), a relatively underexplored symmetry group that contains the environment symmetries
of a Dec-POMDP as a subgroup. Since in most cases ER symmetries are a strict superset of the envi-
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Figure 1: Mutually incompatible symmetry
breaking between chess players is shown in the
left side panels (Chess.com, 2021). Let π1, π2

represent the joint policies under which both play-
ers choose handshake, fist bump, respectively, and
let the reward be ±1, depending on whether they
match or not. The self-play score of both joint
policies is 1, but the cross-play score between
them is −1. Thus, policies incompatibly break
the symmetry between handshake and fist bump.

ronment symmetries, using them as the symmetry group for OP enforces training time compatibility
with a greater number of policies.

We also introduce a scalable method for discovering approximate ER symmetries, which lever-
ages gradient-based optimization to search for transformations that preserve expected returns across
optimal policies. Furthermore, we show that ER symmetries better improve zero-shot coordination
amongst independently trained agents than Dec-POMDP symmetries, while maintaining completely
model-free assumptions. To summarize, our main contributions are:

1. We define the group of expected return symmetries and introduce novel algorithms for
learning them.

2. We demonstrate that, when combined with the OP learning rule, expected return sym-
metries are significantly more effective at preventing over-coordination than Dec-POMDP
symmetries. Furthermore, we demonstrate that our methods is applicable in settings where
both off-belief learning Hu et al. (2021) and cognitive hierarchies Cui et al. (2021) fail.

3. We empirically demonstrate that expected return symmetries can be used as a policy im-
provement operator at test time by using a symmetrizer; an operator that maps any policy
to a policy that is invariant with respect to a given set of symmetries (see Section 4.4).

4. To the best of our knowledge, our method is the first symmetry-based method to im-
prove zero-shot coordination without a priori/privileged environment information, such as
of symmetries or dynamics.

2 BACKGROUND

2.1 DECENTRALIZED PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

We formalize the cooperative multi-agent setting as a decentralized partially observable
Markov decision process (Dec-POMDP) Oliehoek et al. (2007), defined as a 9-tuple
(S,N , {Ai}ni=1, {Oi}ni=1, T ,R, {U i}ni=1, H, γ), where:

• S is the set of states, N = {1, . . . , n} is the set of agents.
• Ai and Oi are the action and observation sets for agent i, with joint action and observation

sets A = ×iAi and O = ×iOi.
• The state transition is governed by st+1 ∼ T (st+1 | st, at), and observations are drawn

from ot+1 ∼ U(ot+1 | st+1, at).
• Rewards rt+1 ∼ R(rt+1 | st+1, at), and the horizon is H , with a discount factor γ ∈ [0, 1].

Each agent i selects actions based on its local action-observation history τ it = (ai0, o
i
1, . . . , a

i
t−1, o

i
t),

following a local policy ait ∼ πi(ait | τ it ). The joint policy π = (π1, . . . , πn) depends on the joint
history τ = (τ1, . . . , τn). The self-play (SP) objective J : Π→ R is the expected return:

J(π) := Eπ

[
H−1∑
t=0

γtrt+1

]
.

2.2 ZERO-SHOT COORDINATION

The self-play objective is widely used in multi-agent reinforcement learning (MARL) (Samuel,
1959; Tesauro et al., 1995), where agents train together under a joint policy. While effective for
coordination, it often results in arbitrary conventions that only work among agents trained together.
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However, many real-world tasks require coordination with unknown partners (Mariani et al., 2021;
Resnick et al., 2018; Kakish et al., 2019), making this limitation problematic.

To address this, Hu et al. (2020) introduced zero-shot coordination (ZSC). In ZSC, agents first
agree on a learning rule, which they each implement independently (e.g., cannot agree on seeds).
Each agent then trains a joint policy in a Dec-POMDP environment, without communication or
coordination between agents during training. Finally, agents participate in cross-play (XP), where
joint policies trained by different agents are combined to evaluate the XP objective (defined here
only for n = 2, but it can be extended to n > 2):

XP(π1, π2) :=
1

2

(
J(π1

1 , π
2
2) + J(π1

2 , π
2
1)
)
, (1)

for independently learned joint policies π1 and π2. ZSC aims for learning rules that optimize cross-
play with other rational partners using the same minimal set of assumptions (e.g., no access to be-
havioral data or coordination experience with specific groups of agents). ZSC presents a promising
approach to addressing real-world coordination challenges where relying on arbitrary conventions
is impractical. ZSC has become a key benchmark for human-AI coordination and is an important
step towards more generalized coordination capabilities (Ji et al., 2023; Hu et al., 2021).

2.3 SYMMETRY GROUPS AND OTHER-PLAY IN DEC-POMDPS

We consider symmetries that can be expressed as maps ϕ = (ϕS , ϕA, ϕO), consisting of bijective
maps ϕS : S → S , ϕA : A → A, and ϕO : O → O, which satisfy ϕA(Ai) = Ai and ϕO(Oi) = Oi

for all i = 1, ..., n. The set of all such maps forms a group, which we denote by Ψ. Given ϕ ∈ Ψ,
we slightly abuse notation and define ϕ(s) := ϕS(s), ϕ(a) := ϕA(a) and ϕ(o) := ϕO(o), for
s ∈ S, a ∈ A and o ∈ O. Given a joint action-observation history τ = (τ1, ..., τn), we define
ϕ(τ) := (ϕ(τ1), ..., ϕ(τn)), with ϕ(τ i) := (ϕ(ai0), ϕ(o

i
1), ..., ϕ(a

i
t−1), ϕ(o

i
t)). Furthermore, we let

a symmetry ϕ ∈ Ψ act on joint policies through the formula
ϕ(π)(ϕ(a) | ϕ(τ)) := π(a | τ). (2)

Any subgroup Φ ⊂ Ψ partitions the space of joint policies into disjoint equivalence classes: given a
joint policy π, we define its equivalence class [π] := {ϕ(π) : ϕ ∈ Φ}.
Definition 1 (Dec-POMDP Symmetries). A map ϕ ∈ Ψ is called a Dec-POMDP symmetry if for
all (o′, s, a, s′, r) ∈ O × S ×A× S ×R it holds that

T (s′ | s, a) = T (ϕ(s′) | ϕ(s), ϕ(a)),
U(o′ | s, a) = U(ϕ(o′) |, ϕ(s′), ϕ(a)),
R(r | s, a) = R(r | ϕ(s), ϕ(a)).

(3)

We denote the set of all the Dec-POMDP symmetries of a given Dec-POMDP by ΦMDP.

Dec-POMDP symmetries form a subgroup of Ψ, which corresponds to relabelings of the state,
action, and observation spaces that leave all the transition and reward functions of the Dec-POMDP
unchanged (see Example 2). We note that Dec-POMDP symmetries can be extended to also include
permutations between players (Treutlein et al., 2021).

Hu et al. (2020) demonstrate that policies equivalent under ΦMDP are prone to mutually incompat-
ible symmetry breaking: without biases like initialization or reward shaping, the learning rule may
converge to either π or its equivalent ϕ(π), as the learning process cannot distinguish between them
due to the symmetries of the Dec-POMDP. Although J(π) = J(ϕ(π)), the cross-play return may
suffer (J(π) > XP(π, ϕ(π))), meaning π and ϕ(π) were not trained to be compatible. See Figure 1.

To constrain policies to be compatible with policies that are equivalent with respect to the symmetry
group ΦMDP, Hu et al. (2020) introduced the other-play objective (can be extended to n > 2):
Definition 2 (Other-Play (OP) Objective). Given a Dec-POMDP and a symmetry group Φ ⊂ Ψ, we
define the other-play (OP) objective OPΦ : Π→ R w.r.t. Φ by

OPΦ(π) :=Eπ̃∈[π] [XP(π, π̃)] =
1

2|[π]|
∑
π̃∈[π]

(
J(π1, π̃2) + J(π̃1, π2)

)
. (4)

Hu et al. (2020) proposed the OP learning rule π∗ = arg supπ OPΦ(π), for Φ = ΦMDP. Agents
trained using the OP objective take into account modes of symmetry breaking resulting from the fact
that a test-time partner is unbiased in their choice between ϕ(π) and π, ∀ϕ ∈ Φ.

3
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3 METHOD

In Section 3.1, we generalize the OP objective (Equation 4) to be defined over a general symmetry
group Φ and highlight desirable properties that a symmetry group for OP should satisfy. In Section
3.2, we define the group of expected return symmetries, which we argue is better suited for OP than
Dec-POMDP symmetries by way of the aforementioned desirable properties. In Section 3.3, we
propose a method for learning expected return symmetries.

3.1 OTHER-PLAY OVER GENERAL SYMMETRY GROUPS

While Hu et al. (2020) introduced symmetry breaking w.r.t. ΦMDP, we extend the definition for a
general symmetry group Φ:
Definition 3 (Symmetry Breaking). Given a Dec-POMDP and a symmetry group Φ, we define a
joint policy π to be incompatibly breaking symmetry w.r.t. ϕ ∈ Φ if J(π) > XP(π, ϕ(π)), and w.r.t.
Φ if J(π) > OPΦ(π).

The OP objective (Equation 4) evaluates the expected return when an agent from one policy is
matched in a team with members of randomly chosen policies from the same equivalence class
induced by Φ. Thus OP optimal policies are maximally compatible with policies within their equiv-
alence class, as they best avoid incompatible symmetry breaking w.r.t. Φ. We note that different
OPΦ-optimal policies are not necessarily in the same equivalence class and can therefore be incom-
patible; for example, when Φ = Id, OPΦ reduces to SP, and each OPΦ-optimal policy forms its
own one-element equivalence class. We denote ΠΦ

∗ as the set of all optimal policies under OPΦ.

Rational and independent ZSC agents would therefore choose a symmetry group Φ such that:

1. (Diversity within Equivalence Classes) The choice of Φ should ensure that for all π ∈
ΠΦ

∗ , the equivalence class [π] is meaningfully diverse. This diversity should be such that
using OP to enforce π and [π] to be compatible makes π broadly compatible with policies
it could encounter at test-time, assuming other agents also adopt OPΦ as their learning rule.

2. (Optimality within Equivalence Classes) Φ should separate poor policies from good poli-
cies, i.e. OPΦ(π′) ≈ OPΦ(π), for any π ∈ ΠΦ

∗ and π′ ∈ [π], since otherwise there is no
reason to constrain oneself to be compatible with π′ (a rational test-time partner would not
use π′).

Example 1. For Φ = {Id}, OPΦ = SP, which corresponds to perfectly preserving optimality, but
not introducing any diversity to the equivalence class; i.e. perfect satisfaction of Item 2 but extremely
poor satisfaction of Item 1. On the other extreme, we can consider Φ to be the set of all bijections
on Π, which enforces compatibility with every possible test-time partner (i.e., rational partners), but
also with all other possible policies (which are mostly poor), thus converging to the best response to
a random player; i.e., perfect satisfaction of Item 1 but extremely poor satisfaction of Item 2.

The goal of ZSC is to find a learning rule that maximizes the expected XP score between indepen-
dently trained test-time partners. For the learning rule OPΦ the expected XP score is:

XP(OPΦ
∗ ) := Eπ1,π2∼ΠΦ

∗
[XP(π1, π2)] . (5)

Thus one can interpret maxπ∈Π OPΦ(π) as estimating XP(OPΦ
∗ ), but only through the cross-play

scores within a given equivalence class [π] induced by Φ:

max
π∈Π

OPΦ(π) = Eπ∼ΠΦ
∗

[
OPΦ(π)

]
= Eπ1∼ΠΦ

∗

[
Eπ2∼[π1] [XP(π1, π2)]

]
. (6)

Since optimal OPΦ policies are not trained to be compatible across different equivalence classes,
we can always assume w.l.o.g. that OPΦ(π) > Eπ′′∈[π′] [XP(π, π′′)] for any π, π′ ∈ ΠΦ

∗ for which
π /∈ [π′] (else one just merges [π] and [π′] by adding the transposition1 between π and π′ to Φ).
Thus if Item 2 is satisfied perfectly, it follows that

max
π∈Π

OPΦ(π) ≥ XP(OPΦ
∗ ), (7)

1A transposition is a permutation that swaps exactly two elements.
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with equality if and only if [π] = ΠΦ
∗ for any and thus all π ∈ ΠΦ

∗ . This means that if one finds a
symmetry group Φ which satisfies both of Items 1 and 2 perfectly, then [π] = ΠΦ

∗ for any π ∈ ΠΦ
∗

and OPΦ(π) = XP(OPΦ
∗ ). In other words, with such a choice of Φ, agents during training account

for any potential test-time partner produced by OPΦ, and only for such partners. Items 1 and 2
are thus desirable criteria for choosing a group Φ that makes OPΦ a suitable learning rule for ZSC.
However, these criteria alone are not sufficient for Φ to be optimal for ZSC, because agents in ZSC
cannot choose a symmetry group Φ that is tailored to a specific Dec-POMDP. For example, suppose
agents select Φ as the set of all bijections on Π that leave a particular SP optimal policy π unchanged.
In this case, except for trivially simple Dec-POMDPs, we have ΠΦ

∗ = [π] = {π}. This choice of Φ
would trivially satisfy Item 1 (since {π} is entirely representative of test-time policies) and Item 2
(since π ∈ ΠΦ

∗ and ϕ(π) = π,∀ϕ ∈ Φ). However, such a symmetry group is not permissible in ZSC
because it is specifically constructed for a particular policy in a specific Dec-POMDP, violating the
requirement for generality in ZSC. Therefore, while Items 1 and 2 are desirable properties, they are
not sufficient on their own for choosing an appropriate symmetry group Φ for ZSC.

3.2 EXPECTED RETURN SYMMETRIES

We propose that the group ΦER of expected return (ER) symmetries, which can be learned with
completely model-free assumptions, handles the above trade-off given by Items 1 and 2 favorably:
Definition 4 (Expected Return Symmetries). We denote by Π∗ the set of joint policies that maximize
the self-play objective, i.e. achieve the best possible expected return. We define ΦER as the subset
of Ψ which leaves Π∗ invariant, in the following sense:

ΦER :=
{
ϕ ∈ Ψ

∣∣∀π ∈ Π∗ : Eτ∼π[Vπ(τ)] = Eτ ′∼ϕ(π)[Vϕ(π)(τ
′)]
}
, (8)

where Vπ(τt) = Eπ

[∑H
t′=t+1 γ

t′−trt′
∣∣∣ τt] is the expected return from τt onwards when following

π, i.e. Vπ is the value function of π.

It is easy to see that ΦER is a group under function composition (see Appendix B), and that for
any Dec-POMDP symmetry ϕ ∈ ΦMDP and any joint policy π it holds that Eτ∼π[Vπ(τ)] =
Eτ ′∼ϕ(π)[Vϕ(π)(τ

′)] (see Appendix B and Treutlein et al. (2021)). These two facts together imply
that ΦMDP is a subgroup of ΦER.

At a high level, ΦMDP captures coordination differences based only on relabeling actions and obser-
vations, offering limited diversity. In contrast, self-play-optimal policies can differ significantly in
coordination strategies, beyond mere label permutations. By grouping such diverse policies into the
same equivalence class, ΦER better addresses Item 1 than ΦMDP. While ΦER may not fully satisfy
Item 2 (as ΦER is only required to preserve the expected return of self-play-optimal policies), we
show in Section 4.4 that learned symmetries in ΦER approximately meet this criterion. Overall, this
suggests ZSC agents using OPΦER

will coordinate better at test time than those using OPΦMDP
. Section

4 confirms that ΦER significantly improves (zero-shot) coordination across various environments.

The following example illustrates the advantage of ER symmetries over Dec-POMDP symmetries.
Example 2. Consider a cooperative communication game based on Hu et al. (2021). Alice observes
a binary variable (pet) representing either “cat” or “dog”. Her actions include turning a light bulb
on for a reward of 0.01, light bulb off for a reward of 0, bailing for a reward of 1 which ends the
game, or removing a barrier at a cost of 5 to let Bob directly observe the pet. Bob can bail for 0.5 or
guess the pet, receiving 10 for a correct “cat” guess, 11 for a correct “dog” guess, and losing 10 for
an incorrect guess.

In this game, there are two ways for Alice to communicate with Bob: a “cheap-talk” channel (turning
the light on or off) and a “grounded” channel (removing the barrier). There are exactly two self-
play-optimal joint policies, and both use the cheap-talk channel. However, they differ: one policy
associates “light on = dog, light off = cat,” while the other assigns the reverse. These policies are
incompatible in cross-play, where coordination fails if each agent follows a different encoding.

This cat/dog game contains no non-trivial Dec-POMDP symmetries, which means that OP with
ΦMDP reduces to self-play, which, as just discussed, leads to coordination failure since independently
trained agents will converge on either of the two self-play-optimal but cross-play-incompatible poli-
cies. Indeed, permuting “on/off” and “cat/dog” is not a Dec-POMDP symmetry because these envi-
ronmental features have different reward dynamics.

5
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However, these pairings are ER symmetries, as they transform the two self-play-optimal policies into
one another and thus preserve their expected return. Therefore, these two policies are symmetric to
each other w.r.t. ΦER, are put into the same equivalence class, and OP with ΦER is able to anticipate
their coordination failure. OP with ΦER then chooses the optimal grounded policy, leading to the
best possible cross-play score in this game for independent rational agents. This is demonstrated
empirically in Section 4.2.

3.3 ALGORITHMIC APPROACHES

In practice, if ΦER is large, we find that in some settings it can be approximated by a few learned
ϕ that are sufficiently diverse (see Section 3.1 for the importance of diversity). We therefore aim
to develop an algorithm to learn a few ER symmetries (which we find in Section 4 is sufficient to
significantly enhance agent coordination across various environments).

Based on Equation 8, we formulate the following objective for learning ER symmetries:

ϕθ∗ s.t. θ∗ = arg inf
θ∈Θ

Eπ∼Π′

∣∣∣Eτ∼π[Vπ(τ)]− Eτ ′∼ϕθ(π)[Vϕθ(π)(τ
′)]
∣∣∣, (9)

where Θ is the parameter space for the family of transformations ΨΘ, and Π′ ⊂ Π∗ is a training pool
of (near) optimal SP policies. Equation 9 enforces that the learned transformation ϕθ∗ preserves the
expected return across the entire distribution of trajectories generated by each policy in Π′2. The
broader the set Π′ is, the more representative it will be of Π∗, and hence the less likely the learned
ϕθ∗ will overfit to a specific policy (i.e. not able to preserve expected return for other optimal policies
outside the training set).

Note that since the policies in Equation 9 are approximately SP optimal, it suffices to consider

ϕθ∗ s.t. θ∗ = arg sup
θ∈Θ

Eπ∼Π′
[
Eτ∼ϕθ(π)[Vϕθ(π)(τ)]

]
. (10)

It is important to note that the optimization in Equation 10 focuses only on the ER symmetry. In
this process, we train the transformation ϕθ within a reinforcement learning loop, but we keep the
policies in Π′ fixed (i.e., their weights remain unchanged). During training, we sample actions from
π to ensure we explore the full range of possible actions. See Algorithm 1 in Appendix D for details.

Recall that ϕθ = {ϕS,θ, ϕO,θ, ϕA,θ}. Since we are interested in expected return symmetries insofar
as they act on the policy space rather than the Dec-POMDP itself, we fix ϕS,θ = Id 3. Further-
more, since typically |A| ≪ |O|, rather than learning both {ϕO,θ, ϕA,θ} in a reinforcement learning
loop, we can consider learning ϕA,θ through search over transpositions of the available actions; i.e.,
we initialize a fixed transposition on the actions as ϕA,θ and learn ϕO,θ as per Equation 10. See
Algorithm 1 in Appendix D for an outline of this procedure.

Learning ϕA,θ through search over the transposition space has several advantages: 1) transpositions
can generate any permutation in the action space (Cayley, 1854), and in Section 4.4 we show that
the learned transformations approximately preserve expected return; 2) if both ϕO,θ and ϕA,θ are
learned together, regularizing training to avoid trivial identity transformations is difficult. Fixing a
non-identity transposition in the action space allows ϕO,θ to converge to the optimal observation
transformation relative to the action transposition; 3) this approach facilitates enforcing invertibility
in Equation 11, as ϕ2

A,θ = Id by construction.

The action space allows for
(|A|

2

)
distinct transpositions, representing the number of unique ways

two actions can be permuted. Consequently, learning each observation transformation ϕO,θ cor-
responding to every possible action transposition requires O(|A|2) optimizations of Equation 10 to
perform an exhaustive search (i.e. O(|A|2) iterations of the outer for loop in Algorithm 1). However,
in Section 4.4 we show that a non-exhaustive search that undersamples the space of transpositions
is still sufficient for learning symmetries that improve coordination amongst agents.

Note the objective in Equation 10 does not enforce closure under composition (i.e., ϕ1 ◦ ϕ2 ∈ ΦER)
or invertibility (i.e., the existence of ϕ−1 ∈ ΦER such that ϕ−1 ◦ ϕ = Id), both necessary for ΦER to

2This is to ensure ϕθ explores the trajectory space in a way that respects the asymmetry of actions that might
not otherwise be taken by a self-play-optimal policy; e.g. “reveal” and “bail” in Example 2.

3Under the OP objective, ϕθ(π) only interacts with the original Dec-POMDP D.
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form a group. To address this, we add regularization terms to the objective in Equation 10:

ϕθ∗ s.t. θ∗ = argmax
θ∈Θ

Eπ∼Π′Ew∼Bernoulli(λ1)Eτ∼ϕ̃θ(π)

(
w · Vϕθ(π)(τ)

+ (1− w) · Eϕi,ϕj∼ΦER

[
Vϕi◦ϕθ◦ϕj(π)(τ)

]
− λ2DKL

(
π(· | τ) ∥ϕ2

θ(π)(· | τ)
))

, (11)

where λ1 ∈ (0, 1) controls compositionality strength, and λ2 enforces the learned transformation
to be its own inverse. Since ϕA,θ is a fixed transposition, ϕ2

A,θ = Id by design, so we can easily
enforce ϕ2

O,θ = Id. As shown in Appendix C, transformations learned via Equation 10 / Algorithm
1 largely satisfy closure under composition without explicit enforcement, making them reasonable
proxies for ϕi, ϕj when optimizing Equation 11. The objective is made stochastic to avoid having
to compute multiple policy gradients per update. This is detailed in Algorithm 2 in Appendix D.

We also propose an alternative objective for learning symmetries through cross-play maximization:

ϕθ∗ s.t. θ∗ = arg sup
θ∈Θ

Eτ ′∼(π1
i ,ϕθ(π2

j ))
[V(π1

i ,ϕθ(π2
j ))

(τ ′)], (12)

where πi, πj ∈ Π′ are a pair of SP optimal policies chosen from the training pool. If πi and πj belong
to the same equivalence class induced by ΦER, then by definition there exists an ER symmetry ϕ that
maximizes Equation 12 to the self-play optimum value of Eτ∼πi

[Vπ(τ)]. Therefore, for each pair
of optimal policies πi, πj ∈ Π′, we optimize Equation 12 over ϕθ, and save the ϕθ that optimize
Equation 12 to the highest value. We outline this approach in Algorithm 3 of Appendix D. We
highlight a trade-off between the objectives of Equation 11 and Equation 12: while the former more
directly optimizes for an ER symmetry, it assumes ϕA,θ to be of a certain form, while the latter
assumes no such form but tacitly assumes some pair in Π′ belong to the same equivalence class.

4 EXPERIMENTS

We evaluate our method in four different environments, focusing on how ER symmetries impact
zero-shot coordination (ZSC) compared to self-play and other-play with Dec-POMDP symmetries.
Specifically, we train independent agent populations that take advantage of ER symmetries and
compare their cross-play performance within the population to baseline populations. The goal is to
assess whether the use of ER symmetries leads to better coordination between agents than self-play
or Dec-POMDP-symmetry-based training.

Populations of agents using ER symmetries for ZSC are formed as follows: each agent i chooses k
seeds at random to train k different optimal policies, Π′

i. Agent i then independently performs ER
symmetry discovery with their specific Π′

i by optimizing Equation 10, Equation 11 or Equation 12,
and among their learned transformations uses the l that best preserve expected return as their ER
symmetries. Agent i then chooses m seeds at random and uses their learned symmetries to train
m policies {πi,k}mk=1 with reinforcement learning constrained by the learning rule in Equation 4;
multiple policies (m > 1) are trained to mitigate the effect of a seed that sub-optimally explores the
space. The agent then selects πi := argmaxk=1,...,m J(πi,k), and deploys πi for cross-play.

Aside from the environments in Sections 4.1 and 4.2, we parameterize ϕO,θ as a feed-forward neural
network with two hidden layers. The experiments in Sections 4.3 and 4.4 use the JaxMARL environ-
ment and implementations (Rutherford et al., 2023). For details on our setup and hyperparameters,
refer to Appendix A. See Appendix E for plots of interpretability of agent play. If accepted, we will
release our full working code for all four environments.

4.1 ITERATED THREE-LEVER GAME

We consider a Dec-POMDP inspired by Treutlein et al. (2021), where two agents simultaneously
choose one of three levers, receiving a reward of +1 if their choices match and −1 otherwise. This
repeats for 2 rounds, with each agent observing the other’s previous action. Thus, |S| = 1, and
A = O = {1, 2, 3} × {1, 2, 3}. Rewards are rt+1 = −1 + 2 · 1a1

t=a2
t
, and observations are

o1t+1 = a2t , o2t+1 = a1t .

There are 6 Dec-POMDP symmetries in this game, which correspond to the 6 permutations of the
three interchangeable levers. The optimal OPΦMDP

policy first chooses a lever uniformly at random in
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the first round, and then if the agents match, they stick with that lever; otherwise, they coordinate on
the unique unchosen lever. This joint policy achieves an expected return of 2/3, optimal for ZSC as
first-round success always only has probability 1/3. In this game, ΦMDP = ΦERS, and our Algorithm
1 successfully learns these symmetries to find an (approximately) optimal ZSC policy.

We train 10 ERS agents, each training k = 20 self-play optimal policies using IQL with shared
Q-values. For each fixed action permutation, ERS agents select the observation permutation maxi-
mizing the objective in Equation (10). The agents then use those l = 6 learned ER symmetries in
the OP objective, to train m = 1 policies to be employed for cross-play. The 10 ERS agents achieve
an average SP score of 0.7±0.059 and an average XP score of 0.672±0.092. To compare, we train
10 OPΦMDP

agents, who achieve mean SP score 0.654± 0.143 and mean XP score 0.671± 0.099.

This game highlights a setting where OP is advantaged over OBL (Hu et al., 2021). OBL fails in
this game (even after transforming it into a turn-based version) because agents assuming uniform
randomness in others’ past actions cannot prefer one lever over another, leading OBL policies to
converge onto the uniform distribution. We note however that in the variant of this game with two
levers, OP with ΦMDP also fails Treutlein et al. (2021), and since ΦMDP = ΦERS, OP with ΦERS fails
as well. This is because when there are just two levers, then there is no uniquely identifiable lever
to choose in the second round, whether the agents matched in the first round or not. Thus choosing
to repeat or to switch are both OPΦMDP

optimal policies, but they are in separate equivalence classes
and incompatible. This provides an example of insufficient expressivity in the symmetry group.

4.2 CAT/DOG ENVIRONMENT

We take the cat/dog game from Example 2. We build a population of 5 independent Q-learning
agents (IQL) (Tan, 1993) as a self-play baseline. We build a population of 5 ER symmetry agents,
for which each agent trains k = 10 optimal self-play policies as Π′, and then optimizes Equation
10 with vanilla policy gradient (Sutton et al., 1999), where ϕO,θ is parameterized as a probability
distribution over all possible permutations of the observations (there being 2! for Alice and 4! for
Bob). Equation 10 / Algorithm 1 suffices because permutations already satisfy compositionality and
invertibility. Each ER symmetry agent uses l = 3 ER symmetries to then train m = 1 OPΦER

policy.

IQL agents achieve a mean within-population cross-play score of −2.11 ± 0.2, whereas the ER
symmetry agents converge onto optimal grounded communication and achieve 5.50 ± 0.02. Thus,
ER symmetries can prevent over-coordination in settings where non-trivial Dec-POMDP symmetries
do not even exist. It is worth mentioning that approaches based on cognitive hierarchies fail to find
the optimal grounded communication protocol in this setting (Hu et al., 2021; Cui et al., 2021;
Camerer et al., 2004), since they assume other agents follow random or lower-level strategies, and
instead consistently converge onto “bailing” for a return of 1.

4.3 OVERCOOKED V2

Overcooked V2 is a recent AI benchmark for ZSC [Anonymous, under submission], which improves
on the cooperative multi-agent benchmark Overcooked (Carroll et al., 2019), by introducing asym-
metric information and increased stochasticity, creating more nuanced coordination challenges.

For ZSC, we train a population of 5 IPPO (Yu et al., 2022) policies as a SP baseline, where each
policy uses an RNN coupled with a CNN to process the observations. The population of ER sym-
metry agents each train k = 12 IPPO SP policies, to then use Equation 12 / Algorithm 3 to obtain
l = 16 ER symmetries. Each agent trains m = 2 OPΦER

policies using their learned symmetries.

The IPPO baseline population exhibits a highly bi-modal distribution of cross-play (XP) scores,
where agents are either largely compatible or largely incompatible. In Figure 2, we plot the cross-
play score distribution of both agent populations, and can see the SP-optimal IPPO baseline pop-
ulation achieves a mean cross-play score of 6.74, whereas the OPΦER

-optimal population achieves
a mean cross-play score of 15.8. In particular, the ER symmetry population is able to significantly
close the self-play to cross-play (SP-XP) gap compared to the baseline population, demonstrating
more consistent coordination across different agents. We emphasize that Overcooked V2 presents a
challenging environment where agents move simultaneously, which renders standard methods like
off-belief Learning (Hu et al., 2021) less applicable. This further highlights the effectiveness of ER
symmetries in improving ZSC.
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Figure 2: Cross-play
score distribution of the
IPPO self-play baseline
population and the ER
symmetry agent popula-
tion in Overcooked V2.
The baseline population
achieves mean SP scores
of 162.33 ± 0.14, and
the ER symmetry popu-
lation achieves mean SP
scores of 27.81± 0.3.

4.4 HANABI

Hanabi (see Appendix F for details) is a challenging AI benchmark, and has served as the primary
test bed for many algorithms designed for zero-shot coordination, ad-hoc teamplay, and other coop-
erative tasks (Bard et al., 2020; Cui et al., 2021; Nekoei et al., 2021; 2023; Muglich et al., 2022a;b).

Preserves OP Optimality

Since ER symmetries contain Dec-POMDP symmetries, and capture equivalences beyond just rela-
belling, they are clearly more diverse than Dec-POMDP symmetries, and hence better satisfy Item
1 from Section 3.1. We verify the ER symmetries also approximately satisfy Item 2.

We take the 8 learned regularized ER symmetries from above, denoting this set as Φ̂ER. We find that
Eπ∼ΠΦ̂ER

∗
[OPΦ̂ER

(π)] = 23.59± 0.04 and Eπ∼ΠΦ̂ER
∗

[
Eϕ∼Φ̂ER [OPΦ̂ER

(ϕ(π))]
]
= 23.34± 0.05, where

we train 5 OPΦER
policies. Thus, Item 2 is approximately satisfied by Φ̂ER.

Zero-Shot Coordination

For ZSC, we train as baselines 1) a population of 5 IPPO agents, and 2) a population of 5 IPPO
agents with access to all Dec-POMDP symmetries constrained by the OP objective in Equation
4. We train a population of ER symmetry agents that each independently discover ER symmetries
for the OP objective. Each agent in the ER symmetry population uses k = 6 seeds to learn ER
symmetries, amongst which they save the l = 8 that best preserve expected return. Each population
(baseline and return symmetry populations alike) has a total of 5 agents, where each agent trains
m = 3 policies and deploys the one achieving higher return.

Inspired by the symmetrizer in Treutlein et al. (2021); Muglich et al. (2022a); Van der Pol et al.
(2020), we consider S(π)(a | τ) := 1

|Φ|
∑

ϕ∈Φ ϕ(π)(a | τ), where Φ can be taken to be either ΦER

or ΦMDP. Agents from any population can thus transform their policy with S before deploying for
cross-play, ensuring invariance of the deployed policy w.r.t. Φ (since ϕ(S(π)) = S(π),∀ϕ ∈ Φ).
As per the empirical results below, the symmetrizer functions as a policy improvement operator for
cross-play across multiple policy populations.

Table 1 shows that the agents using ER symmetries improve in ZSC over both baselines; this is
even in spite of the Dec-POMDP agent population assuming access to environment symmetries. As
well, even with just using a subset of transformations from ΦER, the return symmetry agents are able
to converge on policies that generalize well in cross-play. We also notice that symmetrization with
respect to ΦER or ΦMDP improves coordination amongst agents of all populations considered; we can
see that ΦER better improves the optimal self-play policy population, and ΦMDP better improves the
other two, which aligns with expectation since ΦER is only explicitly enforced to maintain invariance
over optimal self-play policies, whereas ΦMDP maintains invariance over any policy type.

5 RELATED WORK

Extensive research exists on coordination in multi-agent systems, particularly in zero-shot coordi-
nation. Methods like Hu et al. (2020); Muglich et al. (2022a) use Dec-POMDP symmetries to avoid
incompatible policies, while Hu et al. (2021) rely on environment dynamics for grounded policies.
Diversity-based approaches also leverage known symmetries and simulator access (Cui et al., 2023;
Lupu et al., 2021). In contrast, ER symmetries can be learned from agent-environment interactions
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Table 1: Self-play, within-population mean cross-play (XP) and median cross-play (XP(*)) scores
are reported. The OPΦMDP

population used all 120 Dec-POMDP symmetries, whereas the OPΦER

population used 8 ER symmetries. “MDP” indicates the population was symmetrized with Dec-
POMDP symmetries at test time, and “ER” analogously indicates symmetrization with expected
return symmetries. The ER symmetrizer uses 8 expected return symmetries.

Model Self-Play XP XP(*) XP(*)+MDP XP(*)+ER

IPPO 24.04± 0.02 4.02± 0.17 0.12± 0.03 0.14± 0.03 0.10± 0.03

IPPO + OPΦMDP
23.81± 0.03 8.61± 0.17 8.14± 0.15 8.70± 0.16 9.91± 0.14

IPPO + OPΦER
23.74± 0.03 21.64± 0.07 22.03± 0.05 22.50± 0.06 22.25± 0.05

without privileged information, enabling grounded signaling and effective coordination in concur-
rent environments (see Sections 4.2 and 4.3).

In single-agent settings, symmetry has been shown to reduce sample complexity in reinforcement
learning (Van der Pol et al., 2020; Zhu et al., 2022; Nguyen et al., 2024). In multi-agent systems,
symmetries reduce policy space complexity and help agents identify equivalent strategies (van der
Pol et al., 2021; Muglich et al., 2022a). However, many methods require explicit knowledge of
symmetries, or rely on predefined groups (Abreu et al., 2023; Yu et al., 2024; Nguyen et al., 2024).
Our work generalizes these approaches by introducing ER symmetries, which do not require prior
symmetry knowledge or equivariant networks, and can be learned directly through environment
interactions.

Our work relates to value-based abstraction, which groups states or observations with similar value
functions. Rezaei-Shoshtari et al. (2022) use lax-bisimulation to learn MDP homomorphisms, while
Grimm et al. (2021) learn a model of the underlying MDP for value-based planning. In contrast, we
focus on symmetries in the policy space that preserve expected return. ER symmetries are concep-
tually related to Q∗-irrelevance abstractions (Li et al., 2006) in that both aim to preserve the optimal
value function of an MDP. However, whereas Q∗-irrelevance abstractions reduce complexity by ag-
gregating states, ER symmetries form a group that acts bijectively on the policy space, transforming
optimal policies into other policies with the same expected return.

6 CONCLUSION

This paper defined expected return symmetries—a group whose action preserves policy expected
return. We demonstrated that the symmetries in this group can be learned purely from interactions
with the environment and without requiring privileged environment information. We demonstrated
that this symmetry class significantly enhances zero-shot coordination, significantly outperforming
traditional Dec-POMDP symmetries, which are a subset of this group. Importantly, we showed that
expected return symmetries are effective in challenging settings where state-of-the-art ZSC methods,
such as off-belief learning (Hu et al., 2021) in Hanabi or approaches based on cognitive hierarchies,
either fail completely (e.g., in the lever game and cat/dog environments) or face difficulties in their
application (e.g., Overcooked V2).

One major limitation of our approach is that we constrain the search for symmetries to bijections
over the action and observation spaces. While this works well in many settings, as shown in our
experiments, there are environments, e.g. the two-lever game, in which this limited expressivity
cannot provide enough diversity within the equivalence classes of policies that are optimal w.r.t. OP
with ΦERS, to prevent coordination failure in ZSC. Another potential limitation is that our method
relies on access to a set of approximately self-play-optimal policies to identify ER symmetries. Its
performance in scenarios where these self-play policies are significantly suboptimal remains unclear.

Our work opens several avenues for future research. One direction is to explore the use of ex-
pected return symmetries in ad-hoc teamwork or single-agent settings. Another is to investigate
broader classes of symmetries, beyond the ones that arise from bijections on the action and obser-
vation spaces. A further possibility is to iterate the symmetry learning process: training symmetries
that preserve the optimal policies under OP with ΦERS, and using these new symmetries in subse-
quent other-play objectives. We would expect this to further improve optimality and diversity within
equivalence classes, and thus improve coordination outcomes.
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A EXPERIMENTAL SETUP

For expected return symmmetry discovery in the three-lever game, For expected return symmetry
discovery in cat/dog, we use a temperature of T = 2.667 for Boltzmann exploration to promote
sufficient exploration of different actions. We use a constant baseline function with value 9.5 for the
policy gradient. We use a learning rate of 0.01 and 2000 episodes for each inner loop of Algorithm
1.

For expected return symmetry discovery in Overcooked V2 and Hanabi, we parameterize ϕ̂O,θ as a
two hidden layer, feedforward neural network, with each linear layer intialized as a |Oi|-dimensional
identity matrix; this choice of initialization is necessary as the symmetry discovery is highly initial-
ization sensitive. We apply ReLU to the final output of the network to promote sparsity in the repre-
sentation. We build on top of the environment implementation and baseline algorithms in JaxMARL
(Rutherford et al., 2023).

For Hanabi, we run each inner loop of Algorithm 2 for 1.5e9 timesteps across vectorized Hanabi
environments. As per Equation 11 we use λ1 = 0.65, λ2 = 2.5e−9. ϕA,θ is a fixed action transpo-
sition for each learned symmetry. We use a temperature of T = 1 for Boltzmann exploration.

For Overcooked V2, we run each inner loop of Algorithm 3 for 1.5e8 timesteps. ϕA,θ is a learned
affine map. We use a temperature of T = 1.1 for Boltzmann exploration.

For both Hanabi and Overcooked V2, we use PPO and Generalized Advantage Estimation. For Han-
abi, we use 4 epochs, 1024 environments per pretrained policy, 128 environment steps per update, 4
minibatches, γ = 0.99, GAE Lambda = 0.95, CLIP EPS = 0.2, VF COEFF = 0.5, MAX GRAD
NORM = 0.5, a learning rate of 1e−5 and a linear learning rate annealing schedule. For Over-
cooked V2, we use 4 epochs, 256 environments, 256 environment steps per update, 64 minibatches,
γ = 0.99, GAE Lambda = 0.95, CLIP EPS = 0.2, VF COEFF = 0.5, MAX GRAD NORM = 0.25,
a learning rate of 1e−5 with no annealing.

Methods for Hanabi and Overcooked V2 were ran on A40 and L40S GPUs.

If accepted, we will release our full working code for all four environments.

B PROOFS

Theorem. ΦER :=
{
ϕ ∈ Ψ

∣∣∀π ∈ Π∗ : Eτ∼π[Vπ(τ)] = Eτ ′∼ϕ(π)[Vϕ(π)(τ
′)]
}

forms a group under
function composition.

Proof. To show that ΦER forms a group under function composition, we verify the group axioms:
closure, associativity, identity, and inverses.

Closure: For any ϕ1, ϕ2 ∈ ΦER, we need to show that ϕ1 ◦ ϕ2 ∈ ΦER. For the composition ϕ1 ◦ ϕ2,
we need to check:

Eτ∼π[Vπ(τ)] = Eτ ′′∼(ϕ1◦ϕ2)(π)[V(ϕ1◦ϕ2)(π)(τ
′′)].

13
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Using the preservation of expected returns under both ϕ1 and ϕ2, we get:

Eτ∼π[Vπ(τ)] = Eτ ′∼ϕ2(π)[Vϕ2(π)(τ
′)] = Eτ ′′∼ϕ1(ϕ2(π))[Vϕ1(ϕ2(π))(τ

′′)].

Hence, ϕ1 ◦ ϕ2 ∈ ΦER, proving closure.

Associativity: Function composition is associative, so for any ϕ1, ϕ2, ϕ3 ∈ ΦER:

(ϕ1 ◦ ϕ2) ◦ ϕ3 = ϕ1 ◦ (ϕ2 ◦ ϕ3).

Thus, associativity holds.

Identity: The identity function Id ∈ Ψ satisfies Id(π) = π for all π ∈ Π, and thus preserves the
expected return of optimal policies π ∈ ΠΦ

∗ :

Eτ∼π[Vπ(τ)] = Eτ ′∼Id(π)[VId(π)(τ
′)] = Eτ ′∼π[Vπ(τ

′)].

Therefore, Id ∈ ΦER and acts as the identity element.

Inverses: For each ϕ ∈ ΦER, there exists ϕ−1 ∈ Ψ such that ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ = Id. For any
π ∈ ΠΦ

∗ it then holds that

Eτ ′∼ϕ(π)[Vϕ(π)(τ
′)] = Eτ∼π[Vπ(τ)] = Eτ ′′∼ϕ−1(ϕ(π))[Vϕ−1(ϕ(π))(τ

′′)].

Since for any π̃ ∈ ΠΦ
∗ there exists π ∈ ΠΦ

∗ such that π̃ = ϕ(π), we see that ϕ−1 ∈ ΦER.

Since ΦER satisfies closure, associativity, identity, and inverses, it forms a group under function
composition.

Theorem. If π is a joint policy over a Dec-POMDP and ϕ ∈ ΦMDP is a Dec-POMDP symmetry,
then Eτ∼π[Vπ(τ)] = Eτ ′∼ϕ(π)[Vϕ(π)(τ

′)].

Proof. Let V π(τ) denote the value function for π. Then due to Bellman,

V π(τ) =
∑
s∈S

P (s | τ)
∑
a∈A

π(a | τ)[ER[R(s, a)] + γ
∑
s′∈S
T (s′ | s, a)

∑
o′∈O

U(o′ | s, a)V π(τ ′)],

where τ ′ = (τ1
′
, . . . , τn

′
) is the updated joint trajectory, where τ i

′
= (τ i, o′, ai).

Denoting π̃ = ϕ(π), we have

V π̃(ϕ(τ)) =
∑
s∈S

P (ϕ(s) | ϕ(τ))
∑
a∈A

π̃(ϕ(a) | ϕ(τ))[ER[R(ϕ(s), ϕ(a))]

+ γ
∑
s′∈S
T (ϕ(s′) | ϕ(s), ϕ(a))

∑
ϕ(o′)∈O

U(ϕ(o′) | ϕ(s), ϕ(a))V π̃(ϕ(τ ′))]

=
∑
s∈S

P (s | τ)
∑
a∈A

π(a | τ)[ER[R(s, a)] + γ
∑
s′∈S
T (s′ | s, a)

∑
o′∈O

U(o′ | s, a)V π̃(ϕ(τ ′))],

where the second equality follows from Equations 3 and 2. The result follows via induction on the
steps from the terminal state.

14
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C LEARNED TRANSFORMATIONS SATISFY GROUP PROPERTIES

This section analyzes the learned ER symmetries for their group properties.

We first train six (near-)optimal IPPO policies with independent seeds as Π′, obtaining a mean
expected return of Eπ∼Π′ [J(π)] = 24.04 ± 0.02. Next, we randomly select 64 action-space trans-
positions to fix as ϕA,θl

64
l=1, and learn the corresponding ϕO,θl

64
l=1 via optimizing Equation 10 /

Algorithm 1. This is a significant undersampling of the 190 possible transpositions, yet as we show
below we still learn effective ER symmetries for coordination. We then save the 8 best transfor-
mations (those that maximize Equation 10) as unregularized ER symmetries. These are used to
maximize Equation 11 / Algorithm 2 on another set of 64 random transpositions, now enforcing
compositional closure and invertibility. The 8 best are saved as regularized ER symmetries.

Table 2: Comparison of 8 unregularized and 8 regularized ER symmetries applied to 6 unseen
optimal policies (|Πunseen| = 6). Regularization enforces compositionality and invertibility. For
k = 1, 2, 3, let Jk = Eϕi∼ΦEπ∼Πunseen [J((ϕ1 ◦ · · · ◦ ϕk)(π))] denote the expected return after com-
posing k randomly sampled transformations. We report Single Transform. (J1), Double Comp.
(J2), and Triple Comp. (J3). Relative Reconstruction Loss measures approximate invertibility
(lower is better): Eπ∼ΠunseenEτ∼π[

||τ−ϕ2
O(τ)||

||τ || ], using the ℓ2 norm for trajectory vectors. Recall
Eπ∼Π′ [J(π)] = 24.04± 0.02.

Single Transform. Double Comp. Triple Comp. Rel. Rec. Loss

Unreg. 22.88± 0.07 21.10± 0.09 20.36± 0.11 31.4%± 1.8%

Reg. 23.32± 0.05 22.16± 0.07 20.94± 0.12 16.7%± 0.18%

Table 2 shows that up to minor deviations in expected return preservation, the learned ER symmetries
still approximately satisfy closure under composition. In addition, when invertibility is enforced, the
relative reconstruction loss decreases substantially (a lower relative reconstruction loss tells us ap-
plying the transformation twice brings us closer to the original trajectory, suggesting approximate
invertibility). We conclude that the learned ER symmetries, especially the regularized ones, approx-
imately satisfy the desired group-theoretic properties.
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D ALGORITHMS

Algorithm 1 Learning Expected Return Symmetries with Policy Gradients (without enforcing com-
positionality nor invertibility) . . . Optimization of Equation 10

1: Input: A set of (near-)optimal policies Π′, parameter space Θ for transformations, action space
A, learning rate η > 0, l for top transformations to save

2: Initialize list of top l average expected values: V̄top = [−∞, . . . ,−∞] (length l)
3: Initialize list of top l transformations: ϕtop = [∅, . . . , ∅] (length l)
4: for each action transposition ϕA,θ ∈ Transpositions(A) do
5: Initialize ϕO,θ with random parameters θ ∈ Θ
6: while not converged do
7: for each policy π ∈ Π′ do
8: Sample a batch of trajectories τ using the transformed policy ϕθ(π)
9: Compute the return R(τ) for each trajectory τ

10: Compute advantage Aϕθ(π)(τt, at) using any advantage function (e.g., TD, GAE)
11: Compute policy gradient:

∇θJ(ϕθ(π)) = Eτ∼ϕθ(π)

[
H∑
t=0

∇θ log ϕθ(π)(at | τt)Aϕθ(π)(τt, at)

]
12: Update parameters: θ ← θ + η∇θJ(ϕθ(π))
13: end for
14: Compute average expected return over trajectories:

V̄ϕθ
=

1

|Π′|
∑
π∈Π′

Eτ∼π[Vϕθ(π)(τ)]

15: end while
16: Find the index of the lowest return in J̄top, say imin

17: if V̄ϕθ
> V̄top[imin] then

18: Replace the lowest return: V̄top[imin]← V̄ϕθ

19: Replace the corresponding transformation: ϕtop[imin]← {ϕO,θ, ϕA,θ}
20: end if
21: end for
22: Output: Set of transformations ϕtop = {ϕθ∗ = {ϕO,θ∗ , ϕA,θ∗}}
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Algorithm 2 Learning Expected Return Symmetries (enforcing compositionality and invertibility)
. . . Optimization of Equation 11

1: Input: Policies Π′, parameter space Θ, action space A, learning rate η, transformations
{ϕ1, . . . , ϕm} obtained from Algorithm 1, l for top transformations to save, regularization
weights λ1, λ2

2: Initialize list of top l average expected values: V̄top = [−∞, . . . ,−∞] (length l)
3: Initialize list of top l transformations: ϕtop = [∅, . . . , ∅] (length l)
4: for each transposition ϕA,θ ∈ Transpositions(A) do
5: Initialize ϕO,θ with random θ ∈ Θ
6: while not converged do
7: for each policy π ∈ Π′ do
8: Sample ordinary or compositional trajectory based on λ1

9: if ordinary trajectory then
10: Set ϕ̃θ = ϕθ

11: else
12: Sample ϕi, ϕj ∈ {ϕ1, . . . , ϕm}
13: Set ϕ̃θ = ϕi ◦ ϕθ ◦ ϕj

14: end if
15: Sample a batch of trajectories τ using transformed policy ϕ̃θ(π), where π is Boltz-

mann exploratory
16: Compute return R(τ) and advantage Aϕ̃θ(π)(τt, at)
17: Compute invertibility regularizer: L(θ) = ||ϕ2

O,θ − Id||2
18: Compute policy gradient:

∇θJ(ϕ̃θ(π)) = Eτ∼ϕ̃θ(π)

[
H∑
t=0

∇θ log ϕ̃θ(π)(at | τt)Aϕ̃θ(π)(τt, at)

]

19: Update θ ← θ + η
(
∇θJ(ϕ̃θ(π))− λ2∇θL(θ)

)
20: end for
21: Compute average expected return over trajectories:

V̄ϕθ
=

1

|Π′|
∑
π∈Π′

Eτ∼πVϕθ(π)(τ)

22: end while
23: Find the index of the lowest return in V̄top, say imin

24: if V̄ϕθ
> V̄top[imin] then

25: Replace the lowest return: V̄top[imin]← V̄ϕθ

26: Replace the corresponding transformation: ϕtop[imin]← {ϕO,θ, ϕA,θ}
27: end if
28: end for
29: Output: Set of transformations ϕtop = {ϕθ∗ = {ϕO,θ∗ , ϕA,θ∗}}
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Algorithm 3 Learning Expected Return Symmetries for Pairs of Policies . . . Optimization of Equa-
tion 12

1: Input: A set of (near-)optimal policies Π′, parameter space Θ for transformations, action space
A, observation space O, learning rate η > 0, l for top transformations to save

2: Initialize list of top l average expected values: V̄top = [−∞, . . . ,−∞] (length l)
3: Initialize list of top l transformations: ϕtop = [∅, . . . , ∅] (length l)
4: for each pair of policies (π1

i , π
2
j ) ∈ Π′ ×Π′ do

5: Initialize ϕO,θ and ϕA,θ with random parameters θ ∈ Θ
6: while not converged do
7: Sample a batch of trajectories τ ′ using the transformed pair (π1

i , ϕθ(π
2
j ))

8: Compute the return R(τ ′) for each trajectory τ ′

9: Compute advantage A(π1
i ,ϕθ(π

2
j ))(τ ′t , at) using any advantage function (e.g., TD, GAE)

10: Compute policy gradient:

∇θJ(π
1
i , ϕθ(π

2
j )) = Eτ ′∼(π1

i ,ϕθ(π2
j ))

[
H∑
t=0

∇θ log ϕθ(π
2
j )(at | τ ′t)A(π1

i ,ϕθ(π
2
j ))(τ ′t , at)

]
11: Update parameters: θ ← θ + η∇θJ(π

1
i , ϕθ(π

2
j ))

12: Compute average expected return over trajectories:

V̄(π1
i ,ϕθ(π2

j ))
=

1

|Π′|
∑
(i,j)

Eτ ′∼(π1
i ,ϕθ(π2

j ))
[V(π1

i ,ϕθ(π2
j ))

(τ ′)]

13: end while
14: Find the index of the lowest return in J̄top, say imin

15: if V̄(π1
i ,ϕθ(π2

j ))
> V̄top[imin] then

16: Replace the lowest return: V̄top[imin]← V̄(π1
i ,ϕθ(π2

j ))

17: Replace the corresponding transformation: ϕtop[imin]← {ϕO,θ, ϕA,θ}
18: end if
19: end for
20: Output: Set of transformations ϕtop = {ϕθ∗ = {ϕO,θ∗ , ϕA,θ∗}}

18
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Figure 3: Conditional action matrices of OPΦMDP
-optimal and OPΦER

-optimal policies; i.e.,
P (ait | a

j
t−1). We select the agent from both respective populations achieving the highest cross-play

scores. We can see the OPΦER
-optimal policy more consistently uses a rank hint to signal playing

the fifth card, whereas the OPΦMDP
-optimal policy uses a similar convention but less consistently.

E INTERPRETABILITY OF HANABI OP AGENTS
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F HANABI

Hanabi is a cooperative card game that can be played with 2 to 5 people. Hanabi is a popular game,
having been crowned the 2013 “Spiel des Jahres” award, a German industry award given to the
best board game of the year. Hanabi has been proposed as an AI benchmark task to test models of
cooperative play that act under partial information Bard et al. (2020). To date, Hanabi has one of the
largest state spaces of all Dec-POMDP benchmarks.

The deck of cards in Hanabi is comprised of five colors (white, yellow, green, blue and red), and five
ranks (1 through 5), where for each color there are three 1’s, two each of 2’s, 3’s and 4’s, and one
5, for a total deck size of fifty cards. Each player is dealt five cards (or four cards if there are 4 or 5
players). At the start, the players collectively have eight information tokens and three fuse tokens,
the uses of which shall be explained presently.

In Hanabi, players can see all other players’ hands but their own. The goal of the game is to play
cards to collectively form five consecutively ordered stacks, one for each color, beginning with a
card of rank 1 and ending with a card of rank 5. These stacks are referred to as fireworks, as playing
the cards in order is meant to draw analogy to setting up a firework display.

We call the player whose turn it is the active agent. The active agent must conduct one of three
actions:

• Hint - The active agent chooses another player to grant a hint to. A hint involves the active
agent choosing a color or rank, and revealing to their chosen partner all cards in the partner’s
hand that satisfy the chosen color or rank. Performing a hint exhausts an information token.
If the players have no information tokens, a hint may not be conducted and the active agent
must either conduct a discard or a play.

• Discard - The active agent chooses one of the cards in their hand to discard. The iden-
tity of the discarded card is revealed to the active agent and becomes public information.
Discarding a card replenishes an information token should the players have less than eight.

• Play - The active agent attempts to play one of the cards in their hand. The identity of
the played card is revealed to the active agent and becomes public information. The active
agent has played successfully if their played card is the next in the firework of its color to
be played, and the played card is then added to the sequence. If a firework is completed,
the players receive a new information token should they have less than eight. If the player
is unsuccessful, the card is discarded, without replenishment of an information token, and
the players lose a fuse token.

The game ends when all three fuse tokens are spent, when the players successfully complete all five
fireworks, or when the last card in the deck is drawn and all players take one last turn. If the game
finishes by depletion of all fuse tokens (i.e. by “bombing out”), the players receive a score of 0.
Otherwise, the score of the finished game is the sum of the highest card ranks in each firework, for
a highest possible score of 25.

More facts about Hanabi:

1. The Dec-POMDP symmetries correspond to permutations of the five card colors (5! =
120).

2. In two-player Hanabi, there are 20 possible actions per turn, organized into four types:
Play, Discard, Color Hint, and Rank Hint. These yield 190 distinct action transpositions.

3. A perfect score is 25, though some deck permutations make this score unreachable, so no
policy can guarantee an expected return of 25.
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