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Abstract

Existing benchmarks in chart-based visual001
question answering (VQA) often fail to eval-002
uate visual cognitive load variations in vision-003
language models (VLMs) and lack structured004
multi-visual context reasoning. We introduce005
InterChart, a novel benchmark designed to as-006
sess multi-visual context reasoning across vary-007
ing levels of cognitive complexity. InterChart008
comprises 5,214 carefully crafted QA pairs009
spanning 983 multi-chart visual contexts, struc-010
tured into three distinct sets of breadth-to-depth011
cognitive context load. The dataset covers a012
spectrum of approaches and reasoning tasks,013
including decomposition, numerical analysis,014
entity inference and more. We conduct a com-015
prehensive baseline evaluation across multiple016
VLMs, exploring different prompting strategies017
and a chart-to-table multi-table paradigm. Our018
results underscore the importance of structured019
cognitive decomposition in enhancing chart-020
based reasoning and highlight critical gaps in021
existing VLM capabilities.022

1 Introduction023

As vision capabilities in Large Language Models024

(LLMs) advance, tasks and benchmarks related to025

visual question answering (VQA) and reasoning026

have garnered significant attention effectively gaug-027

ing performance for real-world vision tasks. An028

emerging context for such tasks are charts. Charts029

are a common method for representing numerically030

varying information across diverse fields such as031

scientific experiments, data analysis, business re-032

ports, and time-varying visualizations. Unlike nat-033

urally occurring images, charts have a fixed format034

of representation and require reasoning to interpret.035

Numerous chart benchmarks have been proposed036

to enhance the understanding and reasoning ca-037

pabilities of multi-modal large language models038

(MLLMs) over charts, including those by Masry039

et al. (2022), Methani et al. (2020a), Kafle et al.040

(2018), Davila et al. (2021), Li and Tajbakhsh041

(2023) and Kantharaj et al. (2022). Such data is 042

prevalent in real-world scenarios, including aca- 043

demic papers and analytical reports, making the 044

ability to understand and reason over charts an es- 045

sential task for MLLMs. Numerous studies have 046

explored decompositions in various modalities, in- 047

cluding graphs (Miao et al., 2021; Jin et al., 2024), 048

tables and premises (Ye et al., 2023b,a), and multi- 049

hop questions (Deng et al., 2022; Prasad et al., 050

2024; Methani et al., 2020b; Huang et al., 2023). A 051

key insight from these works is that the representa- 052

tions generated from a complex modality often fail 053

to capture all the individual components required 054

to reason effectively about the questions posed on 055

them. 056

Cognitive Load: Cognitive load refers to the 057

mental effort required to process and understand 058

context, determined by the working memory re- 059

sources being utilized. In cognitive psychology, 060

this concept is central to understanding decision- 061

making and task performance, particularly in sce- 062

narios where excessive cognitive load can lead to 063

errors or inefficiencies. Xu et al. (2024) tries to 064

evaluate erratic behavior of LLMs and jailbreak 065

tendencies through overloading however, in the 066

context reasoning for VLMs, cognitive load is an 067

essential but under-explored factor. We hypoth- 068

esize that varying levels of cognitive load, when 069

structured instructionally, can influence VLM out- 070

comes. This aligns with John Sweller’s founda- 071

tional theory on cognitive load (Sweller, 1988), 072

which posits that instructional design can mitigate 073

cognitive load in learners—a principle we extend 074

to evaluating VLM reasoning over complex visual 075

scenarios. 076

While many benchmarks aim to evaluate models 077

using real-world chart "contexts," they often fail to 078

establish clear boundaries - both a floor and a ceil- 079

ing, for chart-based vision-language model (VLM) 080

performance, even though an estimate of real-world 081

performance can be gauged we still do not effec- 082
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Figure 1: Illustrative examples from our InterChart Resource’s Sets 1, 2 and 3. The Set 1 sample is a decomposed
version of a chart similar to a single one shown in Set 3.

tively understand how differences in cognitive load083

in visual contexts passed to the model affect per-084

formance in complex chart scenarios. One key085

question remains: To what extent can a language086

model reason over complex visual scenarios, and087

does decomposing them reduce cognitive load and088

improve performance?089

In breadth-focused scenarios, a complex chart090

is decomposed into multiple independent charts,091

thereby reducing information density and cogni-092

tive load. In contrast, depth-focused scenarios re-093

tain highly information-dense data, challenging the094

VLM’s capacity for reasoning over tightly inter-095

linked visual and textual elements. To test this096

setting, we propose a VQA task where the con-097

text provided for QA consists of multiple charts,098

which seems ideal for evaluating reasoning ca-099

pabilities. We segment our approach into levels:100

breadth-level decomposition and depth analy-101

sis. A complex multi-entity compound chart is102

broken down into simpler, single-entity charts in103

breadth-level decomposition. Increasing breadth104

essentially refers to expanding the token context105

size passed to the model, allowing it to process mul-106

tiple simpler charts simultaneously. On the other107

hand, depth evaluation involves presenting pairs of108

complex compound charts with high information109

density, challenging the model to reason over in-110

tricate and tightly interconnected data. We scale111

this gradient by testing across three distinct Inter-112

Chart VQA Sets, providing a comprehensive eval- 113

uation of both breadth and depth scenarios linked 114

via a true multi-chart set. We then evaluate base- 115

lines across a spectrum of models, a myriad of 116

approaches including directional CoT prompting, 117

Chart-to-Table paradigms and more. More details 118

about the InterChart Dataset are in section 2. All 119

data and approaches will be made public. 120

2 Proposed InterChart Resource 121

In this section, we provide a detailed overview of 122

the construction process for our comprehensive In- 123

terChart Benchmark. The benchmark is divided 124

into three distinct sets: Set 1 (S1), Set 2 (S2), and 125

Set 3 (S3). S1 is decomposition focused, S2 mim- 126

ics real world multichart contexts through simu- 127

lated AI Table Generation and S3 which is our hard 128

set that measures visual context ceiling. We detail 129

our dataset creation, combining raw data collection, 130

multi-step processing, and comprehensive human 131

annotation. 132

S1: Compound Chart Decomposition 133

This set focuses on decomposing complex, multi- 134

entity compound charts into their corresponding 135

single-entity charts, followed by relevant question 136

generation. 137

Chart Creation: We utilize established datasets 138

such as ChartQA (Masry et al., 2022), ChartLlama 139

(Han et al., 2023), ChartInfo (Davila et al., 2025) 140

and DVQA (Kafle et al., 2018) filtering for multi- 141
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S1 Distributions Count

Chart Type:
Line 22
Horizontal Bar 52
Vertical Bar 149
Box Plot 58
Heat Map 37
Dot 37

Original Chart Sources:
ChartQA 153
DVQA 70
ChartInfo 27
ChartLlama 105

QA Generation Methods:
Original QA 665
Table-LLM 1,467
Table-SQL-LLM 677

Total QA Pairs 2,809
Total Original Charts 355
Total Decomposed Charts 1,188

Table 1: Summary of Chart Data and QA Pairs for S1.

S2 Distributions Count

Question Types:
Correlated 1,481
Independent 245

Total QA Pairs 1,717
Unique Context Sets 333
Total Unique Charts 870

Table 2: Summary of Chart Data and QA Pairs for S2

entity charts, including hbar, vbar, scatter plots,142

box plots, and line charts. For charts with existing143

tables, we use them directly; otherwise, we gener-144

ate tables via DePlot (Liu et al., 2023). A custom145

script iteratively parses each chart’s table, decom-146

posing data into individual entities, mapping them147

to legends and axes, and rendering decomposed148

charts using the Plotly library. The final dataset149

consists of 355 complex charts, decomposed into150

2809 single-entity charts.151

QA Generation: To ensure quality and scalabil-152

ity, we implement a “generate and filter” pipeline153

inspired by prior work (Han et al., 2023; Singh154

et al., 2024).155

Generate: Constrained SQL sampling of linked156

data points within a chart’s table forms the basis157

S3 Distributions Count

Question Types:
Range Estimation 270
Abstract Numerical Analysis 254
Entity Inference 164

Total QA Pairs 688
Unique Context Sets 295
Total Unique Images 590

Table 3: Summary of Question Types and Counts for S3

for definitive SQL queries. These queries, pre- 158

templated with WHERE conditions, produce ob- 159

jective answers, replicating multi-row and multi- 160

column reasoning. The SQL query, selected data 161

points, derived answer, and chart context are fed 162

into Gemini-1.5 (Vertex), prompting naturalized 163

QA pair generation. We also prompt the Gemini 164

model to create questions directly from the table 165

and use a subset of the original questions as well. 166

However, this approach may introduce entropy and 167

noise, the filtration steps deals with this. 168

Filter: The initial method generated 36,000+ QA 169

pairs across 6,200+ charts. These pairs, along with 170

tables, were re-evaluated via an LLM acceptability 171

test, reducing the set to 5,800. A final human re- 172

view refined the dataset to 2,809 high-quality QA 173

pairs, optimizing naturalness and minimizing en- 174

tropy. 175

S2: Synthetic Simulation 176

This set evaluates multi-chart reasoning in scenar- 177

ios where information is distributed across related 178

visualizations rather than a single chart. For this we 179

craft all charts from LLM generated context tables 180

through a human-in-the-loop process. For example, 181

understanding urban living conditions may require 182

analyzing one chart depicting city-to-green-space 183

ratios and another showing happiness indices. 184

Chart Creation: We first generate structured 185

entity relationships to simulate diverse real world 186

situations through Gemini 1.5 Pro (Vertex). This 187

is followed by a table creation process by the us- 188

ing the same model, ensuring that they are linked 189

through one common axis and focusing on creating 190

realistic data incorporating noise as well. These ta- 191

bles are then converted into charts through a human- 192

in-the-loop process, ensuring readability, accuracy, 193

and diversity in visualization types. 194

QA Generation: We use Gemini 1.5 Pro to gen- 195

erate questions requiring direct data extraction, cal- 196
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culations, and counting operations (e.g., calculat-197

ing averages, counting occurrences under condi-198

tions) as well as questions demanding common-199

sense reasoning, trend identification, and extrapola-200

tion based on the data (e.g., situation-based scenar-201

ios, trend analysis, predictive inferences). We then202

generate accurate and human-readable answers us-203

ing the tables and questions generated. We use204

a prompt-chaining approach with an LLM agent205

equipped with a Python REPL tool to generate ac-206

curate answers, followed by another step to convert207

the generated answers to natural language.208

Filter: The dataset undergoes rigorous human209

validation to ensure correctness, clarity, and rele-210

vance, with low-quality and unsuitable entries re-211

moved. This meticulous human verification pro-212

cess guarantees the accuracy and reasoning in-213

tegrity of the final dataset. After filtration we are214

left with 1,717 QA pairs and 333 context pairs.215

S3: Visual Context Ceiling216

This set shifts focus from decomposition to assess-217

ing the performance ceiling of Visual Language218

Models (VLMs) in high-complexity contexts. It219

features dense, multi-entity compound charts, re-220

quiring retrieval not just within but across chart221

pairs. Rather than measuring gains from decompo-222

sition, this dataset evaluates inference limits under223

extreme contextual and visual complexity.224

Chart Creation: We curate chart pairs from225

Our World in Data’s line chart repository using226

a metadata-driven semantic pairing algorithm, fol-227

lowed by manual refinement. Each pair contains228

complex, interrelated charts sharing common en-229

tities, ensuring relational coherence. This shared-230

entity structure acts as a keying mechanism, an-231

choring relationships across contexts and enabling232

robust visual grounding assessments.233

QA Generation: A team of five independent234

annotators crafted inferential QA pairs, ensuring235

relevance and challenge. Questions fall into three236

categories:237

1. Contextual Range Estimation: Evaluating238

value ranges across both charts, testing contextual239

reasoning.240

2. Abstract Numerical Analysis: Requiring arith-241

metic and logical deductions from data points.242

3. Entity Inference: Identifying trends and pat-243

terns across entities to prompt meaningful conclu-244

sions.245

This is further filtered by another independent246

human verification team. The final S3 set includes247

295 chart pairs and 688 corresponding QA pairs. 248

The final InterChart Resource contains 5,214 249

QA pairs over 983 Visual Context Sets and 2,648 250

Individual Chart Images. Tables 1, 2, and 3 show 251

a summary of the internal distribution for all sets. 252

Deeper processes for all sets are outlined in Al- 253

gorithms 1,2 and 3 in the Appendix along with 254

flowcharts in Figures 4, 5, and 6. Table 4 shows 255

pre and post filtration stats for all sets. 256

# QA Samples # S1 # S2 # S3

Pre 13,000 5,800 4800 2,400
Post 5,214 2,809 1,717 688

% drop 59.9% 51.6% 64.2% 71.3%

Table 4: InterChart Human Filtering stats pre and post human
verification and filtration for QA pairs sets S1, S2 and S3

.

3 Experimentation 257

This section details the experimental setup, includ- 258

ing the models, prompting strategies, and evalua- 259

tion methodology used to assess the performance 260

of various multimodal models on chart-based rea- 261

soning tasks. We address the following research 262

questions through our experiments: 263

RQ1. How does multi-entity chart decomposition 264

impact the reasoning performance of VLMs? 265

RQ2. To what extent does cognitive load variation 266

affect VLMs’ ability to process multi-chart 267

contexts? 268

RQ3. How do different prompting strategies 269

influence model accuracy on multi-chart question 270

answering? 271

RQ4. How does multi-chart to multi-table 272

paradigms differ in accuracies? Is visual overload 273

tougher on the model than data-based overload? 274

3.1 Models 275

We evaluated diverse state-of-the-art multimodal 276

models, including closed-source (Google Gem- 277

ini 1.5 Pro (Vertex) and OpenAI’s GPT-4o mini 278

(OpenAI, 2024) via API) and open-source options. 279

Our open-source selection included Qwen2-VL- 280

7B-Instruct (Yang et al., 2024), MiniCPM-V-2_6 281

(Hu et al., 2024), InternVL-2-8B (Chen et al., 282

2025), and Idefics3-8B-Llama3 (Laurençon et al., 283

2024) (a Llama3-based vision-language model). 284

This allows comparison of open-source and closed- 285

source performance on chart reasoning. We also 286
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Figure 2: Visual Representation for Combined Visual
Context and Interleaved Context

examined chart-to-table specialized models, De-287

Plot (Liu et al., 2023) and Chart-to-Text (Kantharaj288

et al., 2022), to assess the utility of intermediate289

table representations.290

3.2 Baselines and Methodologies291

We established baselines to evaluate chart under-292

standing, categorized into Chart Question Answer-293

ing and Chart-to-Table Question Answering.294

3.2.1 Chart Question Answering295

This section evaluates models’ ability to answer296

questions from charts, using two image input for-297

mats (illustrated in Figure 6):298

1. Combined Image: Multiple charts combined299

into a single image.300

2. Interleaved Images: Each chart as a separate301

image, presented sequentially.302

Original Charts: For charts from set 1, we also303

performed experiments using corresponding charts304

from their original dataset305

Three prompting techniques assessed reasoning306

capabilities:307

• Zero-Shot: Here the model was prompted to308

answer through a direct question and no other309

hints. (Appendix C.1).310

• Zero-Shot Chain-of-Thought (COT): Here311

the model was prompted for step-by-step rea-312

soning for improved transparency and accu-313

racy. (Appendix C.2).314

• Few-Shot with Directives: Here the model315

was instructed to follow a structured approach316

to answer the question. The key steps focused317

on identifying key entities, extracting required318

values from charts and performing reasoning 319

to reach the final answer. (Appendix C.6) 320

Note: Interleaved images were not tested for 321

InternVL (context limits) and Idefics3 (compute 322

constraints). 323

3.2.2 Chart-to-Table Question Answering 324

This approach uses a two-stage process: (1) con- 325

verting charts to tables and (2) answering questions 326

using the tables, aiming to improve reasoning with 327

structured data. 328

1. Data Extraction: Models extract all data (in- 329

cluding title and chart type) from chart im- 330

ages into a structured format (e.g., a table), 331

prompted as in Appendix C.3. 332

2. Table-Based Question Answering: The 333

extracted table and original question are 334

given to the model. A zero-shot chain-of- 335

thought prompt (Appendix C.4, similar to Sec- 336

tion 3.2.1) requires answers based on the table, 337

to test if structured data improves accuracy 338

and interpretability. 339

We evaluated specialized chart-to-table models 340

using this pipeline with Gemini 1.5 Pro for ques- 341

tion answering. We also tested Gemini 1.5 Pro, 342

Qwen2-VL-7B-Instruct, and MiniCPM-V-2_6. 343

To address DePlot’s inaccurate title extraction, 344

we created DePlot++: an enhanced pipeline us- 345

ing Gemini 1.5 Pro to extract chart titles (Ap- 346

pendix C.5) before integration with Deplot’s out- 347

put. 348

3.3 Evaluation 349

Our methodology adopts an "AI as an Evaluator" 350

approach similar to Fu et al. (2023); Lin and Chen 351

(2023); Chiang and Lee (2023); Singh et al. (2024). 352

We employ two evaluator models — Gemini 1.5- 353

Flash 8B (Vertex), and Qwen 2.5-7B-Instruct 354

(Bai et al., 2023) to assess the model-generated 355

responses, which are compared against a gold stan- 356

dard short answer and the question. The evaluators 357

assign a binary label to determine whether a re- 358

sponse is correct, effectively framing the task as 359

a "length-invariant" paraphrase detection problem 360

for short text responses, surpassing traditional sim- 361

ilarity metrics. Assessments rely solely on the pro- 362

vided information, accepting paraphrased answers 363

with the same meaning and allowing numerical ap- 364

proximations with explicit assumptions. The two 365
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Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net S1 S2 S3 Net S1 S2 S3 Net S1 S2 S3
Combined Visual Context Image

GPT-4o-mini 42.6 60.9 48.5 18.6 44.7 69.8 47.2 17.9 43.9 69.4 45.5 17.6
Gemini-1.5-Pro 52.1 66.3 61.7 28.3 53.3 73.8 62.0 24.1 53.1 74.6 62.9 21.9
Qwen2-VL-7B 34.1 50.3 33.9 18.0 36.4 60.7 36.7 11.9 34.0 55.6 34.5 11.8
MiniCPM-V-2_6 32.6 53.4 34.0 10.3 32.9 53.9 33.4 11.3 29.5 50.8 27.7 9.9
InternVL-2-8B 27.1 40.3 27.8 13.1 25.0 43.4 26.2 5.5 24.1 44.3 22.4 5.5
Idefics3-8B-Llama3 22.8 38.2 19.6 10.5 22.1 38.1 18.3 9.9 23.9 33.5 27.0 11.2

Mean 35.2 51.6 37.6 16.5 35.8 56.6 37.3 13.4 34.8 54.7 36.7 13.0

Interleaved Visual Context

GPT-4o-mini 46.0 66.1 52.2 20.3 47.5 74.0 50.9 19.0 47.6 73.0 49.8 20.5
Gemini-1.5-Pro 55.7 74.2 62.9 30.1 55.4 75.0 61.9 29.4 52.1 76.1 61.3 18.9
Qwen2-VL-7B 32.4 47.6 34.1 15.6 37.5 59.6 38.8 14.0 31.9 52.5 32.5 10.8
MiniCPM-V-2_6 36.4 59.1 36.6 13.4 36.0 57.1 37.2 13.7 32.5 53.3 32.2 12.1

Mean 42.7 61.8 46.5 19.9 44.2 66.4 47.2 19.0 41.1 63.7 44.0 15.6

Table 5: Baseline Accuracies using our evaluation method with Gemini-1.5 Eval Engine on All Models and Strategies broken
down by Set Type Wise (S1, S2, S3) and Strategy wise. The highest values are highlighted.

models demonstrate a very strong Pearson’s Corre-366

lation value of 0.98 for accuracies across 114 dif-367

ferent evaluations combinations (Model+Strategy)368

and a strong absolute agreement of 88% as seen in369

Table 9. Figure 3 validates this as well. We show370

results from Gemini 1.5 flash in Table 4. Results371

from Qwen are available in Table 10 in the Ap-372

pendix.373

Figure 3: Visual Representation for Combined Visual
Context and Interleaved Context, Qwen vs. Gemini
Evaluations across 114 Evaluation Combinations

4 Results and Analysis374

A New Challenging Benchmark. Our dataset375

benchmarks Vision-Language Models (VLMs) on376

fine-grained visual understanding and multi-image377

reasoning, emphasizing entity selection and recog-378

nition across images. Table 5 shows a significant379

performance gap between even the strongest VLMs380

Set Overlap

S1 89%
S2 85%
S3 89%
Total 88%

Table 6: Label Overlap Across Different Sets for Qwen
and Gemini Eval Engines.

and ideal scores, particularly in Set 3 (S3), high- 381

lighting limitations in reasoning capabilities for 382

complex, real-world scenarios. 383

Model Performance Comparison. Gemini-1.5- 384

Pro consistently outperforms other models across 385

all strategies and visual contexts (Table 5), at- 386

tributable to its strong long-context attention, data 387

extraction, and reasoning skills. Among open- 388

source models, Qwen2-VL-7B and MiniCPM-V- 389

2_6 are relatively stronger, but all open-source mod- 390

els significantly underperform closed-source coun- 391

terparts, especially on complex reasoning in S3 392

(often below 15% accuracy). S3 remains a consis- 393

tent challenge across all models. 394

Prompt Effectiveness. Table 5 shows that Zero- 395

Shot CoT marginally outperforms Zero-Shot, con- 396

trasting with previous findings where CoT provided 397

more substantial gains. This suggests models may 398

be implicitly adopting step-by-step reasoning. Few- 399

Shot CoTD doesn’t consistently outperform Zero- 400

Shot CoT, sometimes even decreasing performance 401
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(e.g., Gemini-1.5-Pro with Combined Visual Con-402

text), possibly due to unintended biases from few-403

shot examples. Interleaved visual context consis-404

tently yields better results than Combined Visual405

Context. This also answers our third research ques-406

tion.407

Model S1 S2 S3 S1O

C2T 45.9 46.0 7.1 62.7
Gemini-1.5-Pro 70.2 69.8 15.1 75.2
Deplot 57.8 58.4 8.1 63.8
Deplot++ 62.8 58.7 8.4 63.3
MiniCPM-V-2_6 34.6 21.4 8.7 36.7
Qwen2-VL-7B 49.8 34.3 9.2 53.6

Table 7: Accuracies from the chart-to-table prompting
and rendering strategies for S1, S2, S3 and S1 compound
charts.

Does converting charts to tables help? Contrary408

to expectations, introducing a chart-to-table conver-409

sion step (Table 7) did not universally improve rea-410

soning performance. The leading model, Gemini-411

1.5-Pro, saw decreased accuracy, especially in the412

complex S3, indicating its direct visual reasoning413

surpasses relying on potentially lossy tabular rep-414

resentations. The inconsistent results across other415

models and the significant performance drop in S3416

highlight the crucial role of generated table quality417

and the potential loss of vital visual information418

during conversion. Thus, while explicit data extrac-419

tion can be beneficial, directly processing visual420

input remains more effective for robust models, par-421

ticularly in complex reasoning tasks. This also an-422

swers our fourth research question and highlights423

the need of more effective chart summarization424

methods to counter the information loss.425

Model ZS CoT FSwD

GPT-4o-mini 46.3 52.2 51.5
Gemini-1.5-Pro 66.9 70.1 70.7
Qwen2-VL-7B 49.0 52.8 46.6
MiniCPM-V-2_6 49.8 49.6 46.5
InternVL-2-8B 42.7 49.1 46.7
Idefics3-8B-Llama3 43.9 43.8 38.2

Table 8: Accuracy on the original single compound
charts for S1, comparing Zero-Shot (ZS), Zero-Shot
CoT (ZSCoT), and Few-Shot with Directives (FSwD).

Comparison with Original Complex Charts (S1).426

To assess the influence of visual complexity, we427

compared model performance on the original, sin-428

gle compound charts (Table 8) against the modified429

S1 charts from Table 5, where the original complex430

visualizations were decomposed into multiple, sim-431

pler charts. A significant performance drop was 432

observed for most models when faced with the orig- 433

inal, non-decomposed charts. For each model, we 434

can see that the scores drop by atleast 3-5% which 435

is a significant drop in accuracy. This performance 436

difference indicates that the models benefit from 437

the decomposition of complex charts into simpler 438

forms, which can be an useful method for improv- 439

ing chart question answering capabilities. This 440

also answers our first research question showing 441

that multi-entity chart decomposition can lead im- 442

proved reasoning performance of VLMs. 443

S1 Chart Type Mean Best

S1-Decomposition
Line 39.66 57.76
Horizontal Bar 50.95 73.36
Vertical Bar 56.17 78.63
Box Plot 64.3 84.23
Heat Map 55.36 81.35
Dot 58.24 78.63

Table 9: Distribution of Accuracies for Chart Decompo-
sition Approach for S1.

Performance Variation across Chart Types (S1). 444

Table 9 shows significant performance variation 445

across different chart types within Set 1 (S1). Box 446

plots proved the easiest for models (mean accuracy 447

64.3%, best 84.23%), likely due to their emphasis 448

on summary statistics. Line charts were the most 449

challenging (mean 39.66%, best 57.76%), suggest- 450

ing difficulty in tracking trends and extracting pre- 451

cise values. Other chart types showed intermedi- 452

ate performance, indicating varying challenges in 453

comparing magnitudes, identifying patterns, and 454

interpreting spatial relationships. This highlights 455

the crucial impact of chart type on VLM visual 456

understanding and pinpoints areas needing further 457

model development. 458

S2 Question Category Mean Best

S2-Decomposition
Correlated 39.49 67.43
Independent 43.22 73.47

Table 10: Distribution of Accuracies for Question Cate-
gorization Approach for S2.

Impact of Attending to Multiple Charts (S2). 459

Table 10 shows that in Set 2 (S2), models per- 460

formed slightly better on questions answerable 461

from a single chart ("Independent": mean 43.22%, 462
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best 73.47%) than those requiring correlation463

across multiple charts ("Correlated": mean 39.49%,464

best 67.43%). While the mean difference is small,465

the higher top performance on "Independent" ques-466

tions suggests some models have greater capacity467

for focused single-chart analysis. The lower "Corre-468

lated" scores, even for the best model, highlight the469

significant challenge of multi-chart reasoning, un-470

derscoring the need for VLMs that can effectively471

integrate information from multiple visualizations.472

S3 Question Category Mean Best

S3-Decomposition
Abstract Numerical Analysis 10.32 29.13
Entity Inference 15.34 31.09
Reasoning with Range Estimation 18.77 37.40

Table 11: Distribution of Accuracies for Question Cate-
gorization Approach for S3.

Challenges in Advanced Reasoning (S3). Ta-473

ble 11 reveals that Set 3 (S3), poses significant474

challenges to VLMs across all question types. Rea-475

soning with Range Estimation achieved slightly476

better, though still low, scores (mean 18.77%, best477

37.40%), indicating limited ability in estimation.478

Abstract Numerical Analysis was the most difficult479

(mean 10.32%, best 29.13%), highlighting a weak-480

ness in deriving non-explicit numerical insights.481

Entity Inference showed intermediate performance482

(mean 15.34%, best 31.09%), suggesting some,483

but not robust, capability in inferring relationships.484

The consistently low performance across all S3485

categories underscores the need for fundamental486

advancements in VLM design to address these ad-487

vanced reasoning challenges.488

5 Comparison to Related Work489

Existing ChartQA benchmarks such as Masry et al.490

(2022); Methani et al. (2020a); Li and Tajbakhsh491

(2023) are primarily designed for single-chart ques-492

tion answering, limiting their applicability to real-493

world multi-chart scenarios. However, neither ad-494

dress multi-chart reasoning and cognitive complex-495

ity, making them less suitable for evaluating reason-496

ing across structured multi-visual contexts in com-497

parison to InterChart. InterChart also introduces498

three cognitive complexity levels which allows for499

a more nuanced evaluation of how models handle500

varying levels of difficulty.501

More recent efforts such as MultiChartQA (Zhu502

et al., 2025) have taken important steps towards503

addressing the aforementioned gaps, there remains 504

room for further refinement and expansion. In- 505

terChart features over 5000 unique QA pairs and 506

2500+ individual charts, providing a broader and 507

more diverse dataset. In comparison, a portion of 508

MultiChartQA’s queries are multiple-choice or di- 509

rect ChartVQA-style. While MultiChartQA serves 510

as an important static benchmark, InterChart com- 511

plements such efforts by extending the evaluation 512

spectrum by incorporating multi-image-based QA, 513

chart-to-table conversion, and multiple prompting 514

strategies (zero-shot, chain-of-thought, few-shot) 515

which enables a more comprehensive assessment 516

of VLMs. This work also introduces a breadth- 517

to-depth decomposition strategy to systematically 518

structure reasoning, potentially reducing cognitive 519

load and enhancing interpretability. 520

By addressing the limitations of prior bench- 521

marks and introducing a structured evaluation 522

methodology, InterChart establishes itself as a more 523

scalable, generalizable, and insightful resource for 524

evaluating chart-based reasoning in VLMs. 525

6 Conclusion and Future Work 526

In this paper, we introduced InterChart, a novel 527

benchmark designed to evaluate multi-chart reason- 528

ing across varying levels of cognitive complexity. 529

By structuring our dataset into three distinct sets, 530

we systematically assessed the impact of cogni- 531

tive load on vision-language model (VLM) perfor- 532

mance. Our experiments demonstrate that while 533

state-of-the-art models exhibit strong performance 534

on simple visual contexts, their capabilities dimin- 535

ish significantly when faced with complex multi- 536

visual reasoning tasks. The structured cognitive 537

decomposition approach introduced in InterChart 538

provides insights into VLM limitations, emphasiz- 539

ing the need for enhanced reasoning mechanisms 540

and structured multi-modal understanding. 541

For future work, we aim to expand InterChart by 542

incorporating additional real-world visual context 543

datasets that are not chart specific, further increas- 544

ing domain diversity. Additionally, integrating mul- 545

tidimesional support will help assess model perfor- 546

mance across linguistic variations. Future studies 547

should also explore fine-tuning methodologies and 548

architectural innovations specifically tailored for 549

multi-chart reasoning. By addressing these areas, 550

we hope to further advance the field of multi-modal 551

AI and bridge the existing gaps in chart-based rea- 552

soning tasks. 553
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Limitations554

Our work has a few notable limitations. Primar-555

ily, due to financial and computational resource556

constraints, we were unable to fine-tune all the557

models under consideration, which may have led558

to an under-representation of the broader capabil-559

ities of various NLP models beyond our primary560

focus. Additionally, the language constraints in561

this research, particularly the emphasis on English562

for generating Visual Question Answering (VQA)563

methods, highlight the need for greater linguistic564

diversity in NLP applications to enhance inclusivity565

and applicability. Incorporating human cognitive566

modeling techniques could provide deeper insights567

into optimizing instructional strategies for VLMs,568

ultimately improving their ability to handle com-569

plex structured visual data. Given the novelty of570

the task, it is also important to recognize that our571

insights may not be exhaustive, underscoring op-572

portunities for future research. Additionally, due to573

certain constraints, we were not able to explore a574

promising avenue for improving VLM performance575

on combined chart images: augmenting InterChart576

with explicit sub-chart localization. Had resources577

permitted, we would have pursued a methodology578

wherein decomposed charts are randomly com-579

bined, with their bounding box coordinates and cor-580

responding titles stored in a JSON format. A model,581

potentially such as Qwen2VL, would then be fine-582

tuned using LoRA to predict this JSON structure583

directly from the combined images. A separate tool584

would then leverage the predicted bounding boxes585

to extract the relevant sub-charts, feeding these as586

context for question answering. Furthermore, re-587

source constraints prevented us from implementing588

a chart distillation step, where an LLM classifier589

would select only the necessary charts (based on590

titles) from a larger set to answer a given question.591

Several other approaches could be proposed, such592

as neuro-symbolic AI techniques to enhance logical593

and structured reasoning over multi-chart contexts,594

and retrieval-augmented generation (RAG) based595

chart retrieval methods to dynamically fetch and596

integrate relevant visual information. We antici-597

pate these approaches would reduce the cognitive598

load on the model and hence improve model per-599

formance.600
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Figure 4: Flowchart for S1: Constrained SQL Sampling
-Multi-Entity Chart Decomposition

A Algorithms & Diagrams807

Algorithm 1 S1 Constrained SQL Sampling -Multi-
Entity Chart Decomposition

1: Input: Table T , Level L, Operators OPnum,
OPstr, FLops, STRops, Cnj

2: Output: SQL Query S
3: for each column C in T do
4: Identify C.dataType
5: end for
6: while not ValidSQL(S, T ) do
7: Initialize empty SQL Query S

▷ Chart Decomposition via SQL
Sampling

8: select_col← Random Column from T
9: if L = 1 and Random(0,1) = 0 then

10: Skip Selection Operation
11: else
12: if select_col is Numerical then
13: Apply Numerical Operator
14: else
15: Apply String Operator
16: end if
17: end if

▷ WHERE Clause - Linked Data Points
Selection

18: if Random(0,1) = 1 then
19: Choose Column C, Value V , Operator

OP
20: Add Condition COPV
21: end if

▷ WHERE Clause - Multi-Row and
Multi-Column Reasoning

22: Extract Numeric Columns
23: Choose Number of Conditions Based on L
24: for each Condition do
25: Pick Two Numeric Columns CA, CB

26: Add Condition CAOPCB

27: end for
▷ Combine Conditions with

Conjunctions for Complex Queries
28: for each Condition do
29: Merge using Cnj (AND, OR)
30: end for

▷ ORDER BY Clause (For L = 2)
31: if select_col is Numerical and not in Con-

ditions then
32: Apply ORDER BY with ASC/DESC
33: end if
34: end while
35: Filter by Human ▷ Ensuring Logical

Consistency and Quality
36: return S
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Figure 5: Flowchart for S2: Synthetic Simulation -
Multi-Chart Reasoning with LLM-Generated Contexts

Algorithm 2 Synthetic Simulation - Multi-Chart
Reasoning with LLM-Generated Contexts

1: Input: LLM Model MLLM , Human Annota-
tors A, Chart Generator Gchart

2: Output: Dataset D with Context Pairs and QA
Pairs

▷ Step 1: Context Table and Chart
Generation

3: Tcontexts ← ∅
4: for each scenario S generated by MLLM do
5: Extract structured entity relationships ES

6: Construct context tables TS based on ES

7: Tcontexts ← Tcontexts ∪ TS

8: end for
9: Csynthetic ← ∅

10: for each table T in Tcontexts do
11: Convert T into chart C using Gchart

12: Perform human review for accuracy and
readability

13: Csynthetic ← Csynthetic ∪ C
14: end for

▷ Step 2: Multi-Chart QA Generation
15: QA← ∅
16: for each related chart pair (C1, C2) in

Csynthetic do
17: for each annotator a in A do
18: Generate Questions
19: Use LLM-based prompt chaining for

QA refinement
20: end for
21: end for

▷ Step 3: Dataset Filtering and
Compilation

22: Perform Human Validation for Correctness and
Clarity

23: Remove Low-Quality QA Pairs
24: D ← {Csynthetic, QA}
25: return D
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Figure 6: Flowchart for S3: Ceiling Performance - Eval-
uating VLM Inference Under Extreme Complexity

Algorithm 3 S3: Ceiling Performance - Evaluating
VLM Inference Under Extreme Complexity

1: Input: Chart Repository Crepo, Semantic Pair-
ing Algorithm Spair, Annotator Team A

2: Output: Dataset D with Chart Pairs and QA
Pairs

▷ Step 1: Chart Pairing and
Preprocessing

3: Cpairs ← ∅
4: for each chart C in Crepo do
5: Identify Metadata Attributes MC

6: Apply Spair to find a semantically linked
chart C ′ with shared entities

7: if Valid Semantic Relationship Exists then
8: Add (C,C ′) to Cpairs

9: end if
10: end for
11: Perform Manual Refinement on Cpairs for re-

lational coherence
▷ Step 2: Inferential QA Generation

12: QA← ∅
13: for each (C,C ′) in Cpairs do
14: for each annotator a in A do
15: Generate Questions in Three Cate-

gories:
16: 1. Contextual Range Estimation (Value

Range Evaluation)
17: 2. Abstract Numerical Analysis (Arith-

metical & Logical Deductions)
18: 3. Entity Inference (Pattern Recogni-

tion Across Charts)
19: end for
20: end for

▷ Step 3: Dataset Compilation
21: D ← {Cpairs, QA}
22: return D
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B Additional Results 808

B.1 Qwen Results Table 809

Model Zero-Shot Zero-Shot CoT Few-Shot CoTD

Net S1 S2 S3 Net S1 S2 S3 Net S1 S2 S3
Combined Visual Context Image

GPT-4o-V 35.0 55.3 37.4 12.4 39.5 61.2 39.5 17.9 40.7 61.7 41.7 18.8
Gemini-1.5-Pro-V 43.6 62.1 54.5 14.1 45.6 67.0 54.9 14.8 48.3 68.6 57.2 19.5
Qwen2-VL-7B 31.7 48.0 29.0 18.2 31.3 52.5 29.8 11.5 30.3 50.1 29.8 11.0
MiniCPM-V-2 26.0 45.2 25.6 7.1 26.5 45.4 25.1 9.0 26.2 45.2 23.4 10.0
InternVL-2-8B 21.1 35.1 19.6 8.6 22.2 38.6 21.8 6.1 25.7 41.4 24.1 11.6
Idefics3-8B-Llama3 22.8 38.1 18.8 11.5 22.7 37.7 19.0 11.3 22.5 35.0 20.4 12.2

Interleaved Visual Context

GPT-4o-V 39.4 61.3 42.4 14.5 41.9 65.8 42.7 17.3 43.6 65.6 45.5 19.6
Gemini-1.5-Pro-V 44.6 67.0 50.9 15.8 44.8 68.1 53.8 12.5 48.0 70.3 54.1 19.5
Qwen2-VL-7B 30.5 46.3 29.5 15.7 30.6 51.4 32.6 7.8 28.7 48.7 28.8 8.6
MiniCPM-V-2 30.5 52.3 29.6 9.7 29.8 49.9 29.4 10.0 29.9 49.8 28.7 11.2

Table 12: Qwen Baseline Accuracies using our evaluation method with Gemini-1.5 Eval Engine on All Models and
Strategies broken down by Set Type Wise (S1, S2, S3) and Strategy wise. The highest values are highlighted.

C Prompts 810

C.1 Zero-Shot Prompt 811

Zero-Shot Prompt

Your task is to answer the question based on the given {img_word}. Your final
answer to the question should strictly be in the format - "Final Answer:"
<final_answer>.

Question: {question}
812

C.2 Zero-Shot Chain-of-Thought Prompt 813

Zero-Shot Chain-of-Thought Prompt

Your task is to answer the question based on the given {img_word}. Your final
answer to the question should strictly be in the format - "Final Answer:"
<final_answer>.
Let's work this out in a step by step way to be sure we have the right answer.

Question: {question}
814
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C.3 Data Extraction Prompt815

Data Extraction Prompt

Your task is to extract all data from the chart image provided. Make sure to
include the chart's title. Output the data in a structured format. Ensure
every data point is accurately captured and represented. Be meticulous and do
not omit any information.

Think step by step. Identify the chart type to extract data accordingly.
816

C.4 Table-Based Question Answering Prompt817

Table-Based Question Answering Prompt

You are tasked with answering a specific question. The answer must be derived
solely from information provided, which is extracted from image(s) of
chart(s). This information will include the data extracted from the chart,
including the chart title. Your final answer to the question should strictly
be in the format - "Final Answer:" <final_answer>. Let's work this out in a
step by step way to be sure we have the right answer.

Data extracted from charts:
{tables}

Question: {question}
818

C.5 Chart Title Extraction Prompt819

Chart Title Extraction Prompt

Your task is to extract the main title of the chart image. The main title is
typically located at the top of the chart, above the chart area itself, and
describes the overall subject of the chart. The title usually describes what
data is being presented, the time period, or the geographic location, if
applicable. If the chart does not have a discernible main title, your
response should be 'Title: None'. Otherwise, your response should be in the
format 'Title: <title>'.

820
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C.6 Few-Shot with Directives Prompt 821

Few-Shot with Directives Prompt

Your task is to answer a question based on a given {img_word}. To ensure
clarity and accuracy, you are required to break down the question into steps
of extraction and reasoning. Your final answer should strictly rely on the
visual information presented in the {img_word}.

Here are a few directives that you can follow to reach your answer:

Step 1: Identify Relevant Entities
First, identify the key entities or data points needed to answer the given
question. These could be labels, categories, values, or trends in the chart
or image.

Step 2: Extract Relevant Values
Extract all necessary values related to the identified entities from the
image. These values might be numerical (e.g., percentages, quantities) or
categorical (e.g., labels, categories).

Step 3: Reasoning and Calculation
Using the extracted values, apply logical reasoning and calculations to
derive the correct answer. Explicitly state the reasoning process to ensure
the steps leading to the final answer are understandable and correct. Think
step by step and make sure you arrive at the correct answer for the given
question.

Step 4: Provide the Final Answer
Based on your reasoning, provide the final answer in the following format:
Final Answer: <final_answer>

Here's are a few examples of reasoning using the given directives:
Example 1
Chart Provided: You are shown a chart representing the monthly sales figures
of four products (Product A, Product B, Product C, and Product D) across six
months.
Question: Which product had the highest average sales over the six months?

Model's Response:
Step 1: The relevant entities to focus on are the monthly sales figures for
Product A, Product B, Product C, and Product D.
Step 2: Extract the sales values for each product across all six months from
the chart.
Step 3: Calculate the average sales for each product by summing the sales
values across the six months and dividing by six. Compare the averages to
determine which product had the highest average sales.
Step 4: Final Answer: The product with the highest average sales is <Product X>.

Question: {question}
822
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C.7 LLM-as-a-Judge Prompt823

LLM-as-a-Judge Prompt

You will be given a question, the correct answer to that question (called the
"Ground Truth answer"), and a student's attempt to answer the same question
(called the "Student Written Answer"). Your task is to determine if the
Student Written Answer is correct when compared to the Ground Truth answer.

**Instructions:**

* The answer should be based solely on the provided information in the
question and the Ground Truth answer.

* An answer is correct if it contains the same information as the Ground
Truth answer, even if phrased differently.

* Ignore minor differences in wording or phrasing that do not change the
meaning.

* If the Ground Truth answer is a number, consider the Student Written
Answer correct if it is approximately equal to the Ground Truth answer
(e.g., if the Ground Truth answer is 20.24553 and the Student Written
Answer is 20.24, it is correct). State these assumptions clearly in your
reasoning.

* For questions involving ranges,
if the model's answer falls within the ground truth range,
consider it correct.
* Provide a brief explanation of your reasoning within `<reasoning>` tags.
* 1 means the Student Written Answer is correct. 0 means the Student Written

Answer is incorrect.
* State your final decision (1 or 0) within `<answer>` tags.

**Example:**

Question: "What is the color of water?"
Ground Truth answer: "Pink"
Student Written Answer: "Final Answer: Water is colorless."

Response: `<reasoning> The student answer does not match with the given ground
truth. As a result, the answer is wrong.</reasoning>`
`<answer> 0 </answer>`

**Now, answer the following:**

Question: {question}
Ground Truth answer: {ground_truth}
Student Written Answer: {student_answer}

824
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