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Abstract

Existing benchmarks in chart-based visual
question answering (VQA) often fail to eval-
uate visual cognitive load variations in vision-
language models (VLMs) and lack structured
multi-visual context reasoning. We introduce
InterChart, a novel benchmark designed to as-
sess multi-visual context reasoning across vary-
ing levels of cognitive complexity. InterChart
comprises 5,214 carefully crafted QA pairs
spanning 983 multi-chart visual contexts, struc-
tured into three distinct sets of breadth-to-depth
cognitive context load. The dataset covers a
spectrum of approaches and reasoning tasks,
including decomposition, numerical analysis,
entity inference and more. We conduct a com-
prehensive baseline evaluation across multiple
VLMs, exploring different prompting strategies
and a chart-to-table multi-table paradigm. Our
results underscore the importance of structured
cognitive decomposition in enhancing chart-
based reasoning and highlight critical gaps in
existing VLM capabilities.

1 Introduction

As vision capabilities in Large Language Models
(LLMs) advance, tasks and benchmarks related to
visual question answering (VQA) and reasoning
have garnered significant attention effectively gaug-
ing performance for real-world vision tasks. An
emerging context for such tasks are charts. Charts
are a common method for representing numerically
varying information across diverse fields such as
scientific experiments, data analysis, business re-
ports, and time-varying visualizations. Unlike nat-
urally occurring images, charts have a fixed format
of representation and require reasoning to interpret.

Numerous chart benchmarks have been proposed
to enhance the understanding and reasoning ca-
pabilities of multi-modal large language models
(MLLMs) over charts, including those by Masry
et al. (2022), Methani et al. (2020a), Kafle et al.
(2018), Davila et al. (2021), Li and Tajbakhsh

(2023) and Kantharaj et al. (2022). Such data is
prevalent in real-world scenarios, including aca-
demic papers and analytical reports, making the
ability to understand and reason over charts an es-
sential task for MLLMs. Numerous studies have
explored decompositions in various modalities, in-
cluding graphs (Miao et al., 2021; Jin et al., 2024),
tables and premises (Ye et al., 2023b,a), and multi-
hop questions (Deng et al., 2022; Prasad et al.,
2024; Methani et al., 2020b; Huang et al., 2023). A
key insight from these works is that the representa-
tions generated from a complex modality often fail
to capture all the individual components required
to reason effectively about the questions posed on
them.

Cognitive Load: Cognitive load refers to the
mental effort required to process and understand
context, determined by the working memory re-
sources being utilized. In cognitive psychology,
this concept is central to understanding decision-
making and task performance, particularly in sce-
narios where excessive cognitive load can lead to
errors or inefficiencies. Xu et al. (2024) tries to
evaluate erratic behavior of LLMs and jailbreak
tendencies through overloading however, in the
context reasoning for VLMs, cognitive load is an
essential but under-explored factor. We hypoth-
esize that varying levels of cognitive load, when
structured instructionally, can influence VLM out-
comes. This aligns with John Sweller’s founda-
tional theory on cognitive load (Sweller, 1988),
which posits that instructional design can mitigate
cognitive load in learners—a principle we extend
to evaluating VLM reasoning over complex visual
scenarios.

While many benchmarks aim to evaluate models
using real-world chart "contexts," they often fail to
establish clear boundaries - both a floor and a ceil-
ing, for chart-based vision-language model (VLM)
performance, even though an estimate of real-world
performance can be gauged we still do not effec-
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Figure 1: Illustrative examples from our InterChart Resource’s Sets 1, 2 and 3. The Set 1 sample is a decomposed

version of a chart similar to a single one shown in Set 3.

tively understand how differences in cognitive load
in visual contexts passed to the model affect per-
formance in complex chart scenarios. One key
question remains: To what extent can a language
model reason over complex visual scenarios, and
does decomposing them reduce cognitive load and
improve performance?

In breadth-focused scenarios, a complex chart
is decomposed into multiple independent charts,
thereby reducing information density and cogni-
tive load. In contrast, depth-focused scenarios re-
tain highly information-dense data, challenging the
VLM’s capacity for reasoning over tightly inter-
linked visual and textual elements. To test this
setting, we propose a VQA task where the con-
text provided for QA consists of multiple charts,
which seems ideal for evaluating reasoning ca-
pabilities. We segment our approach into levels:
breadth-level decomposition and depth analy-
sis. A complex multi-entity compound chart is
broken down into simpler, single-entity charts in
breadth-level decomposition. Increasing breadth
essentially refers to expanding the token context
size passed to the model, allowing it to process mul-
tiple simpler charts simultaneously. On the other
hand, depth evaluation involves presenting pairs of
complex compound charts with high information
density, challenging the model to reason over in-
tricate and tightly interconnected data. We scale
this gradient by testing across three distinct Inter-

Chart VQA Sets, providing a comprehensive eval-
uation of both breadth and depth scenarios linked
via a true multi-chart set. We then evaluate base-
lines across a spectrum of models, a myriad of
approaches including directional CoT prompting,
Chart-to-Table paradigms and more. More details
about the InterChart Dataset are in section 2. All
data and approaches will be made public.

2 Proposed InterChart Resource

In this section, we provide a detailed overview of
the construction process for our comprehensive In-
terChart Benchmark. The benchmark is divided
into three distinct sets: Set 1 (S1), Set 2 (S$2), and
Set 3 ($3). S1 is decomposition focused, $2 mim-
ics real world multichart contexts through simu-
lated Al Table Generation and $3 which is our hard
set that measures visual context ceiling. We detail
our dataset creation, combining raw data collection,
multi-step processing, and comprehensive human
annotation.

S1: Compound Chart Decomposition

This set focuses on decomposing complex, multi-
entity compound charts into their corresponding
single-entity charts, followed by relevant question
generation.

Chart Creation: We utilize established datasets
such as ChartQA (Masry et al., 2022), ChartLlama
(Han et al., 2023), ChartInfo (Davila et al., 2025)
and DVQA (Kafle et al., 2018) filtering for multi-



S1 Distributions Count
Chart Type:

Line 22
Horizontal Bar 52
Vertical Bar 149
Box Plot 58
Heat Map 37
Dot 37
Original Chart Sources:

ChartQA 153
DVQA 70
ChartInfo 27
ChartLlama 105
QA Generation Methods:

Original QA 665
Table-LLM 1,467
Table-SQL-LLM 677
Total QA Pairs 2,809
Total Original Charts 355
Total Decomposed Charts 1,188

Table 1: Summary of Chart Data and QA Pairs for S1.

S2 Distributions Count
Question Types:

Correlated 1,481
Independent 245
Total QA Pairs 1,717
Unique Context Sets 333
Total Unique Charts 870

Table 2: Summary of Chart Data and QA Pairs for S2

entity charts, including hbar, vbar, scatter plots,
box plots, and line charts. For charts with existing
tables, we use them directly; otherwise, we gener-
ate tables via DePlot (Liu et al., 2023). A custom
script iteratively parses each chart’s table, decom-
posing data into individual entities, mapping them
to legends and axes, and rendering decomposed
charts using the Plotly library. The final dataset
consists of 355 complex charts, decomposed into
2809 single-entity charts.

QA Generation: To ensure quality and scalabil-
ity, we implement a “generate and filter” pipeline
inspired by prior work (Han et al., 2023; Singh
etal., 2024).

Generate: Constrained SQL sampling of linked
data points within a chart’s table forms the basis

S$3 Distributions Count
Question Types:

Range Estimation 270
Abstract Numerical Analysis 254
Entity Inference 164
Total QA Pairs 688
Unique Context Sets 295
Total Unique Images 590

Table 3: Summary of Question Types and Counts for S3

for definitive SQL queries. These queries, pre-
templated with WHERE conditions, produce ob-
jective answers, replicating multi-row and multi-
column reasoning. The SQL query, selected data
points, derived answer, and chart context are fed
into Gemini-1.5 (Vertex), prompting naturalized
QA pair generation. We also prompt the Gemini
model to create questions directly from the table
and use a subset of the original questions as well.
However, this approach may introduce entropy and
noise, the filtration steps deals with this.

Filter: The initial method generated 36,000+ QA
pairs across 6,200+ charts. These pairs, along with
tables, were re-evaluated via an LLM acceptability
test, reducing the set to 5,800. A final human re-
view refined the dataset to 2,809 high-quality QA
pairs, optimizing naturalness and minimizing en-
tropy.

S$2: Synthetic Simulation

This set evaluates multi-chart reasoning in scenar-
ios where information is distributed across related
visualizations rather than a single chart. For this we
craft all charts from LLM generated context tables
through a human-in-the-loop process. For example,
understanding urban living conditions may require
analyzing one chart depicting city-to-green-space
ratios and another showing happiness indices.

Chart Creation: We first generate structured
entity relationships to simulate diverse real world
situations through Gemini 1.5 Pro (Vertex). This
is followed by a table creation process by the us-
ing the same model, ensuring that they are linked
through one common axis and focusing on creating
realistic data incorporating noise as well. These ta-
bles are then converted into charts through a human-
in-the-loop process, ensuring readability, accuracy,
and diversity in visualization types.

QA Generation: We use Gemini 1.5 Pro to gen-
erate questions requiring direct data extraction, cal-



culations, and counting operations (e.g., calculat-
ing averages, counting occurrences under condi-
tions) as well as questions demanding common-
sense reasoning, trend identification, and extrapola-
tion based on the data (e.g., situation-based scenar-
ios, trend analysis, predictive inferences). We then
generate accurate and human-readable answers us-
ing the tables and questions generated. We use
a prompt-chaining approach with an LLM agent
equipped with a Python REPL tool to generate ac-
curate answers, followed by another step to convert
the generated answers to natural language.

Filter: The dataset undergoes rigorous human
validation to ensure correctness, clarity, and rele-
vance, with low-quality and unsuitable entries re-
moved. This meticulous human verification pro-
cess guarantees the accuracy and reasoning in-
tegrity of the final dataset. After filtration we are
left with 1,717 QA pairs and 333 context pairs.

S$3: Visual Context Ceiling

This set shifts focus from decomposition to assess-
ing the performance ceiling of Visual Language
Models (VLMs) in high-complexity contexts. It
features dense, multi-entity compound charts, re-
quiring retrieval not just within but across chart
pairs. Rather than measuring gains from decompo-
sition, this dataset evaluates inference limits under
extreme contextual and visual complexity.

Chart Creation: We curate chart pairs from
Our World in Data’s line chart repository using
a metadata-driven semantic pairing algorithm, fol-
lowed by manual refinement. Each pair contains
complex, interrelated charts sharing common en-
tities, ensuring relational coherence. This shared-
entity structure acts as a keying mechanism, an-
choring relationships across contexts and enabling
robust visual grounding assessments.

QA Generation: A team of five independent
annotators crafted inferential QA pairs, ensuring
relevance and challenge. Questions fall into three
categories:

1. Contextual Range Estimation: Evaluating
value ranges across both charts, testing contextual
reasoning.

2. Abstract Numerical Analysis: Requiring arith-
metic and logical deductions from data points.

3. Entity Inference: ldentifying trends and pat-
terns across entities to prompt meaningful conclu-
sions.

This is further filtered by another independent
human verification team. The final S3 set includes

295 chart pairs and 688 corresponding QA pairs.

The final InterChart Resource contains 5,214
QA pairs over 983 Visual Context Sets and 2,648
Individual Chart Images. Tables 1, 2, and 3 show
a summary of the internal distribution for all sets.
Deeper processes for all sets are outlined in Al-
gorithms 1,2 and 3 in the Appendix along with
flowcharts in Figures 4, 5, and 6. Table 4 shows
pre and post filtration stats for all sets.

# QA Samples  #S1 #S2 #S3
Pre 13,000 5,800 4800 2,400
Post 5,214 2,809 1,717 688
% drop 59.9% 51.6% 642% 71.3%

Table 4: InterChart Human Filtering stats pre and post human
verification and filtration for QA pairs sets S/, S2 and S3

3 Experimentation

This section details the experimental setup, includ-
ing the models, prompting strategies, and evalua-
tion methodology used to assess the performance
of various multimodal models on chart-based rea-
soning tasks. We address the following research
questions through our experiments:

RQ1. How does multi-entity chart decomposition
impact the reasoning performance of VLMs?

RQ2. To what extent does cognitive load variation
affect VLMs’ ability to process multi-chart
contexts?

RQ3. How do different prompting strategies
influence model accuracy on multi-chart question
answering?

RQ4. How does multi-chart to multi-table
paradigms differ in accuracies? Is visual overload
tougher on the model than data-based overload?

3.1 Models

We evaluated diverse state-of-the-art multimodal
models, including closed-source (Google Gem-
ini 1.5 Pro (Vertex) and OpenAIl’s GPT-40 mini
(OpenAl, 2024) via API) and open-source options.
Our open-source selection included Qwen2-VL-
7B-Instruct (Yang et al., 2024), MiniCPM-V-2_6
(Hu et al., 2024), InternVL-2-8B (Chen et al.,
2025), and Idefics3-8B-Llama3 (Laurencon et al.,
2024) (a Llama3-based vision-language model).
This allows comparison of open-source and closed-
source performance on chart reasoning. We also
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examined chart-to-table specialized models, De-
Plot (Liu et al., 2023) and Chart-to-Text (Kantharaj
et al., 2022), to assess the utility of intermediate
table representations.

3.2 Baselines and Methodologies

We established baselines to evaluate chart under-
standing, categorized into Chart Question Answer-
ing and Chart-to-Table Question Answering.

3.2.1 Chart Question Answering

This section evaluates models’ ability to answer
questions from charts, using two image input for-
mats (illustrated in Figure 6):

1. Combined Image: Multiple charts combined
into a single image.

2. Interleaved Images: Each chart as a separate
image, presented sequentially.

Original Charts: For charts from set 1, we also
performed experiments using corresponding charts
from their original dataset

Three prompting techniques assessed reasoning
capabilities:

» Zero-Shot: Here the model was prompted to
answer through a direct question and no other
hints. (Appendix C.1).

e Zero-Shot Chain-of-Thought (COT): Here
the model was prompted for step-by-step rea-
soning for improved transparency and accu-
racy. (Appendix C.2).

* Few-Shot with Directives: Here the model
was instructed to follow a structured approach
to answer the question. The key steps focused
on identifying key entities, extracting required

values from charts and performing reasoning
to reach the final answer. (Appendix C.6)

Note: Interleaved images were not tested for
InternVL (context limits) and Idefics3 (compute
constraints).

3.2.2 Chart-to-Table Question Answering

This approach uses a two-stage process: (1) con-
verting charts to tables and (2) answering questions
using the tables, aiming to improve reasoning with
structured data.

1. Data Extraction: Models extract all data (in-
cluding title and chart type) from chart im-
ages into a structured format (e.g., a table),
prompted as in Appendix C.3.

2. Table-Based Question Answering: The
extracted table and original question are
given to the model. A zero-shot chain-of-
thought prompt (Appendix C.4, similar to Sec-
tion 3.2.1) requires answers based on the table,
to test if structured data improves accuracy
and interpretability.

We evaluated specialized chart-to-table models
using this pipeline with Gemini 1.5 Pro for ques-
tion answering. We also tested Gemini 1.5 Pro,
Qwen2-VL-7B-Instruct, and MiniCPM-V-2_6.

To address DePlot’s inaccurate title extraction,
we created DePlot++: an enhanced pipeline us-
ing Gemini 1.5 Pro to extract chart titles (Ap-
pendix C.5) before integration with Deplot’s out-
put.

3.3 Evaluation

Our methodology adopts an "Al as an Evaluator”
approach similar to Fu et al. (2023); Lin and Chen
(2023); Chiang and Lee (2023); Singh et al. (2024).
We employ two evaluator models — Gemini 1.5-
Flash 8B (Vertex), and Qwen 2.5-7B-Instruct
(Bai et al., 2023) to assess the model-generated
responses, which are compared against a gold stan-
dard short answer and the question. The evaluators
assign a binary label to determine whether a re-
sponse is correct, effectively framing the task as
a "length-invariant" paraphrase detection problem
for short text responses, surpassing traditional sim-
ilarity metrics. Assessments rely solely on the pro-
vided information, accepting paraphrased answers
with the same meaning and allowing numerical ap-
proximations with explicit assumptions. The two



Zero-Shot

Zero-Shot CoT

Few-Shot CoTp

Model
Net S1 S2 S3 Net S1 S2 S3 Net S1 S2 S3
Combined Visual Context Image
GPT-40-mini 426 609 485 18.6 447 698 472 179 439 694 455 17.6
Gemini-1.5-Pro 52.1 66.3 61.7 283 533 738 62.0 24.1 531 746 629 219
Qwen2-VL-7B 34.1 50.3 339 180 364 60.7 36.7 11.9 340 556 345 11.8
MiniCPM-V-2_6 326 534 340 103 329 539 334 11.3 295 50.8 277 9.9
InternVL-2-8B 27.1 40.3 27.8 13.1 25.0 43.4 26.2 5.5 24.1 443 224 5.5
Idefics3-8B-Llama3  22.8  38.2 19.6 105  22.1 38.1 18.3 9.9 239 335 270 11.2
Mean 352 516 376 16.5 358 566 373 134 348 547 367 13.0
Interleaved Visual Context

GPT-40-mini 46.0  66.1 522 203 475 740 509 19.0 476 730 498  20.5
Gemini-1.5-Pro 557 742 629 301 554 75.0 619 294 521 761 613 18.9
Qwen2-VL-7B 324 476  34.1 156 375 59.6 3838 140 319 525 325 10.8
MiniCPM-V-2_6 36.4 59.1 36.6 134 36.0 57.1 37.2 13.7 32.5 53.3 322 12.1
Mean 427  61.8 465 199 442 664 472 19.0 41.1 63.7 440 15.6

Table 5: Baseline Accuracies using our evaluation method with Gemini-1.5 Eval Engine on All Models and Strategies broken

down by Set Type Wise (S, S2, $3) and Strategy wise. The highest values are highlighted.

models demonstrate a very strong Pearson’s Corre-
lation value of 0.98 for accuracies across 114 dif-
ferent evaluations combinations (Model+Strategy)
and a strong absolute agreement of 88% as seen in
Table 9. Figure 3 validates this as well. We show
results from Gemini 1.5 flash in Table 4. Results
from Qwen are available in Table 10 in the Ap-
pendix.

Accuracy (0-1 Range)

Set 1 Set3

Overall Performance

Figure 3: Visual Representation for Combined Visual
Context and Interleaved Context, Qwen vs. Gemini
Evaluations across 114 Evaluation Combinations

4 Results and Analysis

A New Challenging Benchmark. Our dataset
benchmarks Vision-Language Models (VLMs) on
fine-grained visual understanding and multi-image
reasoning, emphasizing entity selection and recog-
nition across images. Table 5 shows a significant
performance gap between even the strongest VLMs

Set Overlap

S1 89%
S2 85%
S3 89%
Total 88%

Table 6: Label Overlap Across Different Sets for Qwen
and Gemini Eval Engines.

and ideal scores, particularly in Set 3 (S3), high-
lighting limitations in reasoning capabilities for
complex, real-world scenarios.

Model Performance Comparison. Gemini-1.5-
Pro consistently outperforms other models across
all strategies and visual contexts (Table 5), at-
tributable to its strong long-context attention, data
extraction, and reasoning skills. Among open-
source models, Qwen2-VL-7B and MiniCPM-V-
2_6 are relatively stronger, but all open-source mod-
els significantly underperform closed-source coun-
terparts, especially on complex reasoning in S3
(often below 15% accuracy). S3 remains a consis-
tent challenge across all models.

Prompt Effectiveness. Table 5 shows that Zero-
Shot CoT marginally outperforms Zero-Shot, con-
trasting with previous findings where CoT provided
more substantial gains. This suggests models may
be implicitly adopting step-by-step reasoning. Few-
Shot CoTp doesn’t consistently outperform Zero-
Shot CoT, sometimes even decreasing performance



(e.g., Gemini-1.5-Pro with Combined Visual Con-
text), possibly due to unintended biases from few-
shot examples. Interleaved visual context consis-
tently yields better results than Combined Visual
Context. This also answers our third research ques-
tion.

Model S1 S2 S3 Slo
C2T 459 46.0 7.1 62.7
Gemini-1.5-Pro 70.2 69.8 15.1 75.2
Deplot 57.8 58.4 8.1 63.8
Deplot++ 62.8 58.7 8.4 63.3
MiniCPM-V-2_6 34.6 21.4 8.7 36.7
Qwen2-VL-7B 49.8 34.3 9.2 53.6

Table 7: Accuracies from the chart-to-table prompting
and rendering strategies for S/, S2, $3 and S1 compound
charts.

Does converting charts to tables help? Contrary
to expectations, introducing a chart-to-table conver-
sion step (Table 7) did not universally improve rea-
soning performance. The leading model, Gemini-
1.5-Pro, saw decreased accuracy, especially in the
complex S3, indicating its direct visual reasoning
surpasses relying on potentially lossy tabular rep-
resentations. The inconsistent results across other
models and the significant performance drop in S3
highlight the crucial role of generated table quality
and the potential loss of vital visual information
during conversion. Thus, while explicit data extrac-
tion can be beneficial, directly processing visual
input remains more effective for robust models, par-
ticularly in complex reasoning tasks. This also an-
swers our fourth research question and highlights
the need of more effective chart summarization
methods to counter the information loss.

Model 7S CoT FSwD
GPT-40-mini 46.3 52.2 51.5
Gemini-1.5-Pro 66.9 70.1 70.7
Qwen2-VL-7B 49.0 52.8 46.6
MiniCPM-V-2_6 49.8 49.6 46.5
InternVL-2-8B 427 49.1 46.7
Idefics3-8B-Llama3 43.9 43.8 38.2

Table 8: Accuracy on the original single compound
charts for S1, comparing Zero-Shot (ZS), Zero-Shot
CoT (ZSCoT), and Few-Shot with Directives (FSwD).

Comparison with Original Complex Charts (S1).
To assess the influence of visual complexity, we
compared model performance on the original, sin-
gle compound charts (Table 8) against the modified
S1 charts from Table 5, where the original complex
visualizations were decomposed into multiple, sim-

pler charts. A significant performance drop was
observed for most models when faced with the orig-
inal, non-decomposed charts. For each model, we
can see that the scores drop by atleast 3-5% which
is a significant drop in accuracy. This performance
difference indicates that the models benefit from
the decomposition of complex charts into simpler
forms, which can be an useful method for improv-
ing chart question answering capabilities. This
also answers our first research question showing
that multi-entity chart decomposition can lead im-
proved reasoning performance of VLMs.

S1 Chart Type Mean  Best
S1-Decomposition

Line 39.66 57.76
Horizontal Bar 50.95 73.36
Vertical Bar 56.17 78.63
Box Plot 64.3 8423
Heat Map 55.36  81.35
Dot 58.24  78.63

Table 9: Distribution of Accuracies for Chart Decompo-
sition Approach for S1.

Performance Variation across Chart Types (S1).
Table 9 shows significant performance variation
across different chart types within Set 1 (S1). Box
plots proved the easiest for models (mean accuracy
64.3%, best 84.23%), likely due to their emphasis
on summary statistics. Line charts were the most
challenging (mean 39.66%, best 57.76%), suggest-
ing difficulty in tracking trends and extracting pre-
cise values. Other chart types showed intermedi-
ate performance, indicating varying challenges in
comparing magnitudes, identifying patterns, and
interpreting spatial relationships. This highlights
the crucial impact of chart type on VLM visual
understanding and pinpoints areas needing further
model development.

$2 Question Category Mean  Best
S$2-Decomposition

Correlated 3949 6743
Independent 4322 7347

Table 10: Distribution of Accuracies for Question Cate-
gorization Approach for S2.

Impact of Attending to Multiple Charts (S2).
Table 10 shows that in Set 2 (S2), models per-
formed slightly better on questions answerable
from a single chart ("Independent”: mean 43.22%,



best 73.47%) than those requiring correlation
across multiple charts ("Correlated": mean 39.49%,
best 67.43%). While the mean difference is small,
the higher top performance on "Independent” ques-
tions suggests some models have greater capacity
for focused single-chart analysis. The lower "Corre-
lated" scores, even for the best model, highlight the
significant challenge of multi-chart reasoning, un-
derscoring the need for VLMs that can effectively
integrate information from multiple visualizations.

$3 Question Category Mean  Best
S$3-Decomposition

Abstract Numerical Analysis 10.32  29.13
Entity Inference 1534  31.09
Reasoning with Range Estimation ~ 18.77  37.40

Table 11: Distribution of Accuracies for Question Cate-
gorization Approach for S3.

Challenges in Advanced Reasoning (S3). Ta-
ble 11 reveals that Set 3 (S3), poses significant
challenges to VLMs across all question types. Rea-
soning with Range Estimation achieved slightly
better, though still low, scores (mean 18.77%, best
37.40%), indicating limited ability in estimation.
Abstract Numerical Analysis was the most difficult
(mean 10.32%, best 29.13%), highlighting a weak-
ness in deriving non-explicit numerical insights.
Entity Inference showed intermediate performance
(mean 15.34%, best 31.09%), suggesting some,
but not robust, capability in inferring relationships.
The consistently low performance across all S3
categories underscores the need for fundamental
advancements in VLM design to address these ad-
vanced reasoning challenges.

5 Comparison to Related Work

Existing ChartQA benchmarks such as Masry et al.
(2022); Methani et al. (2020a); Li and Tajbakhsh
(2023) are primarily designed for single-chart ques-
tion answering, limiting their applicability to real-
world multi-chart scenarios. However, neither ad-
dress multi-chart reasoning and cognitive complex-
ity, making them less suitable for evaluating reason-
ing across structured multi-visual contexts in com-
parison to InterChart. InterChart also introduces
three cognitive complexity levels which allows for
a more nuanced evaluation of how models handle
varying levels of difficulty.

More recent efforts such as MultiChartQA (Zhu
et al., 2025) have taken important steps towards

addressing the aforementioned gaps, there remains
room for further refinement and expansion. In-
terChart features over 5000 unique QA pairs and
2500+ individual charts, providing a broader and
more diverse dataset. In comparison, a portion of
MultiChartQA’s queries are multiple-choice or di-
rect ChartVQA-style. While MultiChartQA serves
as an important static benchmark, InterChart com-
plements such efforts by extending the evaluation
spectrum by incorporating multi-image-based QA,
chart-to-table conversion, and multiple prompting
strategies (zero-shot, chain-of-thought, few-shot)
which enables a more comprehensive assessment
of VLMs. This work also introduces a breadth-
to-depth decomposition strategy to systematically
structure reasoning, potentially reducing cognitive
load and enhancing interpretability.

By addressing the limitations of prior bench-
marks and introducing a structured evaluation
methodology, InterChart establishes itself as a more
scalable, generalizable, and insightful resource for
evaluating chart-based reasoning in VLMs.

6 Conclusion and Future Work

In this paper, we introduced InterChart, a novel
benchmark designed to evaluate multi-chart reason-
ing across varying levels of cognitive complexity.
By structuring our dataset into three distinct sets,
we systematically assessed the impact of cogni-
tive load on vision-language model (VLM) perfor-
mance. Our experiments demonstrate that while
state-of-the-art models exhibit strong performance
on simple visual contexts, their capabilities dimin-
ish significantly when faced with complex multi-
visual reasoning tasks. The structured cognitive
decomposition approach introduced in InterChart
provides insights into VLM limitations, emphasiz-
ing the need for enhanced reasoning mechanisms
and structured multi-modal understanding.

For future work, we aim to expand InterChart by
incorporating additional real-world visual context
datasets that are not chart specific, further increas-
ing domain diversity. Additionally, integrating mul-
tidimesional support will help assess model perfor-
mance across linguistic variations. Future studies
should also explore fine-tuning methodologies and
architectural innovations specifically tailored for
multi-chart reasoning. By addressing these areas,
we hope to further advance the field of multi-modal
Al and bridge the existing gaps in chart-based rea-
soning tasks.



Limitations

Our work has a few notable limitations. Primar-
ily, due to financial and computational resource
constraints, we were unable to fine-tune all the
models under consideration, which may have led
to an under-representation of the broader capabil-
ities of various NLP models beyond our primary
focus. Additionally, the language constraints in
this research, particularly the emphasis on English
for generating Visual Question Answering (VQA)
methods, highlight the need for greater linguistic
diversity in NLP applications to enhance inclusivity
and applicability. Incorporating human cognitive
modeling techniques could provide deeper insights
into optimizing instructional strategies for VLM,
ultimately improving their ability to handle com-
plex structured visual data. Given the novelty of
the task, it is also important to recognize that our
insights may not be exhaustive, underscoring op-
portunities for future research. Additionally, due to
certain constraints, we were not able to explore a
promising avenue for improving VLM performance
on combined chart images: augmenting InterChart
with explicit sub-chart localization. Had resources
permitted, we would have pursued a methodology
wherein decomposed charts are randomly com-
bined, with their bounding box coordinates and cor-
responding titles stored in a JSON format. A model,
potentially such as Qwen2VL, would then be fine-
tuned using LoRA to predict this JSON structure
directly from the combined images. A separate tool
would then leverage the predicted bounding boxes
to extract the relevant sub-charts, feeding these as
context for question answering. Furthermore, re-
source constraints prevented us from implementing
a chart distillation step, where an LLM classifier
would select only the necessary charts (based on
titles) from a larger set to answer a given question.
Several other approaches could be proposed, such
as neuro-symbolic Al techniques to enhance logical
and structured reasoning over multi-chart contexts,
and retrieval-augmented generation (RAG) based
chart retrieval methods to dynamically fetch and
integrate relevant visual information. We antici-
pate these approaches would reduce the cognitive
load on the model and hence improve model per-
formance.
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Algorithm 1 S7 Constrained SQL Sampling -Multi-
Entity Chart Decomposition

l:

10:
11:
12:
13:
14:
15:

17:

18:
19:

20:
21:

22:
23:
24:
25:
26:
27:

28:
29:
30:

31:
32:
33:
34
35:

36:

AN S

Input: Table 7', Level L, Operators O Py,
O-Pstra FLOpS7 STRopSa an
QOutput: SQL Query S
for each column C in T do
Identify C'.dataType
end for
while not ValidSQL(S, T') do
Initialize empty SQL Query S
> Chart Decomposition via SQL
Sampling
select_col <+ Random Column from 7’
if L = 1 and Random(0,1) = O then
Skip Selection Operation
else
if select_col is Numerical then
Apply Numerical Operator
else
Apply String Operator
end if
end if
> WHERE Clause - Linked Data Points
Selection
if Random(0,1) = 1 then
Choose Column C, Value V', Operator
OoP
Add Condition COPV
end if
> WHERE Clause - Multi-Row and
Multi-Column Reasoning
Extract Numeric Columns
Choose Number of Conditions Based on L
for each Condition do
Pick Two Numeric Columns C' 4, Cp
Add Condition C4OPCp
end for
> Combine Conditions with
Conjunctions for Complex Queries
for each Condition do
Merge using Cy,; (AND, OR)
end for
> ORDER BY Clause (For L =2)
if select_col is Numerical and not in Con-
ditions then
Apply ORDER BY with ASC/DESC
end if
end while
Filter by Human
Consistency and Quality
return S

> Ensuring Logical
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Algorithm 2 Synthetic Simulation - Multi-Chart
Reasoning with LLM-Generated Contexts

1:

17:
18:
19:

20:

21:

22:

23:

24
25:

Input: LLLM Model My s, Human Annota-
tors A, Chart Generator G oj,qrt
Output: Dataset D with Context Pairs and QA
Pairs
> Step 1: Context Table and Chart
Generation
Tcontemts — @
for each scenario .S generated by My do
Extract structured entity relationships Eg
Construct context tables T's based on Eg
Teonteats < Teontexts U Ts
end for
Csynthetic — (Z)
for each table T' in T.ppteqts dO
Convert T into chart C' using Gepart
Perform human review for accuracy and
readability
Csynthetic < Csynthetic ucC

- end for

> Step 2: Multi-Chart QA Generation

QA
: for each related chart pair (C;,C2) in

Csynthetic do
for each annotator a in A do
Generate Questions
Use LLM-based prompt chaining for
QA refinement
end for
end for
> Step 3: Dataset Filtering and
Compilation
Perform Human Validation for Correctness and
Clarity
Remove Low-Quality QA Pairs
D <« {Csynthetim QA}
return D
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Algorithm 3 S§3: Ceiling Performance - Evaluating
VLM Inference Under Extreme Complexity

1:

A A

%

10:
11:

12:
13:
14:
15:
16:
17:

18:

19:
: end for

21:
22:

Input: Chart Repository Ci.¢p,, Semantic Pair-
ing Algorithm S,;,, Annotator Team A
Output: Dataset D with Chart Pairs and QA
Pairs
> Step 1: Chart Pairing and
Preprocessing
Cpairs < (Z)
for each chart C'in C,.p, do
Identify Metadata Attributes M¢
Apply Speir to find a semantically linked
chart C” with shared entities
if Valid Semantic Relationship Exists then
Add (C, C") to Cpgirs
end if
end for
Perform Manual Refinement on Cj;,-s for re-
lational coherence
> Step 2: Inferential QA Generation
QA0
for each (C, C’) in Cpgirs do
for each annotator a in A do
Generate Questions in Three Cate-
gories:
1. Contextual Range Estimation (Value
Range Evaluation)
2. Abstract Numerical Analysis (Arith-
metical & Logical Deductions)
3. Entity Inference (Pattern Recogni-
tion Across Charts)
end for

> Step 3: Dataset Compilation
D + {Cpairs’ QA}
return D




B Additional Results

B.1 Qwen Results Table

Zero-Shot Zero-Shot CoT Few-Shot CoTp
Model
Net S1 S2 S3 Net S1 S2 S3 Net S1 S2 S3
Combined Visual Context Image

GPT-40-V 35.0 55.3 374 12.4 39.5 61.2 39.5 17.9 40.7 61.7 41.7 18.8
Gemini-1.5-Pro-V 43.6 62.1 54.5 14.1 45.6 67.0 54.9 14.8 48.3 68.6 57.2 19.5
Qwen2-VL-7B 31.7 48.0 29.0 18.2 31.3 52.5 29.8 11.5 30.3 50.1 29.8 11.0
MiniCPM-V-2 26.0 452 25.6 7.1 26.5 454 25.1 9.0 26.2 452 23.4 10.0
InternVL-2-8B 21.1 35.1 19.6 8.6 22.2 38.6 21.8 6.1 25.7 414 24.1 11.6

Idefics3-8B-Llama3 22.8 38.1 18.8 11.5 22.7 37.7 19.0 11.3 22.5 35.0 20.4 12.2

Interleaved Visual Context

GPT-40-V 394 613 42.4 14.5 419 658 427 173 43.6 656 455 19.6
Gemini-1.5-Pro-V 44.6 67.0 509 158 448 68.1 53.8 125 480 703 54.1 19.5
Qwen2-VL-7B 30.5 46.3 29.5 15.7 306 514 32.6 7.8 28.7 487 28.8 8.6
MiniCPM-V-2 30.5 523 29.6 9.7 29.8 499 294 100 299 498 28.7 11.2

Table 12: Qwen Baseline Accuracies using our evaluation method with Gemini-1.5 Eval Engine on All Models and
Strategies broken down by Set Type Wise (S7, S2, S3) and Strategy wise. The highest values are highlighted.

C Prompts

C.1 Zero-Shot Prompt

Zero-Shot Prompt

Your task is to answer the question based on the given {img_word}. Your final
answer to the question should strictly be in the format - "Final Answer:"
<final_answer>.

Question: {question}

C.2 Zero-Shot Chain-of-Thought Prompt

Zero-Shot Chain-of-Thought Prompt

Your task is to answer the question based on the given {img_word}. Your final
answer to the question should strictly be in the format - "Final Answer:"”
<final_answer>.

Let's work this out in a step by step way to be sure we have the right answer.

Question: {question}




C.3 Data Extraction Prompt

Data Extraction Prompt

Your task is to extract all data from the chart image provided. Make sure to
include the chart's title. Output the data in a structured format. Ensure
every data point is accurately captured and represented. Be meticulous and do
not omit any information.

Think step by step. Identify the chart type to extract data accordingly.

C.4 Table-Based Question Answering Prompt

Table-Based Question Answering Prompt

You are tasked with answering a specific question. The answer must be derived
solely from information provided, which is extracted from image(s) of
chart(s). This information will include the data extracted from the chart,
including the chart title. Your final answer to the question should strictly
be in the format - "Final Answer:" <final_answer>. Let's work this out in a
step by step way to be sure we have the right answer.

Data extracted from charts:
{tables}

Question: {question}

C.5 Chart Title Extraction Prompt

Chart Title Extraction Prompt

Your task is to extract the main title of the chart image. The main title is
typically located at the top of the chart, above the chart area itself, and
describes the overall subject of the chart. The title usually describes what
data is being presented, the time period, or the geographic location, if
applicable. If the chart does not have a discernible main title, your
response should be 'Title: None'. Otherwise, your response should be in the
format 'Title: <title>'.




C.6 Few-Shot with Directives Prompt

Few-Shot with Directives Prompt

Your task is to answer a question based on a given {img_word}. To ensure
clarity and accuracy, you are required to break down the question into steps
of extraction and reasoning. Your final answer should strictly rely on the
visual information presented in the {img_word}.

Here are a few directives that you can follow to reach your answer:

Step 1: Identify Relevant Entities

First, identify the key entities or data points needed to answer the given
question. These could be labels, categories, values, or trends in the chart
or image.

Step 2: Extract Relevant Values

Extract all necessary values related to the identified entities from the
image. These values might be numerical (e.g., percentages, quantities) or
categorical (e.g., labels, categories).

Step 3: Reasoning and Calculation

Using the extracted values, apply logical reasoning and calculations to
derive the correct answer. Explicitly state the reasoning process to ensure
the steps leading to the final answer are understandable and correct. Think
step by step and make sure you arrive at the correct answer for the given
question.

Step 4: Provide the Final Answer
Based on your reasoning, provide the final answer in the following format:
Final Answer: <final_answer>

Here's are a few examples of reasoning using the given directives:

Example 1

Chart Provided: You are shown a chart representing the monthly sales figures
of four products (Product A, Product B, Product C, and Product D) across six
months.

Question: Which product had the highest average sales over the six months?

Model's Response:

Step 1: The relevant entities to focus on are the monthly sales figures for
Product A, Product B, Product C, and Product D.

Step 2: Extract the sales values for each product across all six months from
the chart.

Step 3: Calculate the average sales for each product by summing the sales
values across the six months and dividing by six. Compare the averages to
determine which product had the highest average sales.

Step 4: Final Answer: The product with the highest average sales is <Product X>.

Question: {question}
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C.7 LLM-as-a-Judge Prompt

LLM-as-a-Judge Prompt

You will be given a question, the correct answer to that question (called the
"Ground Truth answer”), and a student's attempt to answer the same question
(called the "Student Written Answer”). Your task is to determine if the
Student Written Answer is correct when compared to the Ground Truth answer.

*xInstructions:x*

*  The answer should be based solely on the provided information in the
question and the Ground Truth answer.

*  An answer is correct if it contains the same information as the Ground
Truth answer, even if phrased differently.

*  Ignore minor differences in wording or phrasing that do not change the
meaning.

* If the Ground Truth answer is a number, consider the Student Written
Answer correct if it is approximately equal to the Ground Truth answer
(e.g., if the Ground Truth answer is 20.24553 and the Student Written
Answer is 20.24, it is correct). State these assumptions clearly in your
reasoning.

*  For questions involving ranges,

if the model's answer falls within the ground truth range,

consider it correct.

*  Provide a brief explanation of your reasoning within “<reasoning>" tags.

* 1 means the Student Written Answer is correct. @ means the Student Written
Answer is incorrect.

*  State your final decision (1 or @) within ~<answer>" tags.

**Example: x*

Question: "What is the color of water?”
Ground Truth answer: "Pink"”
Student Written Answer: "Final Answer: Water is colorless.”

Response: “<reasoning> The student answer does not match with the given ground
truth. As a result, the answer is wrong.</reasoning>"
“<answer> @ </answer>"

**%*Now, answer the following:**
Question: {question}

Ground Truth answer: {ground_truth?}
Student Written Answer: {student_answer}
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