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Abstract

Even though large language models (LLMs)
have demonstrated remarkable capability in
solving various natural language tasks, the ca-
pability of an LLM to follow human instruc-
tions is still a concern. Recent works (Ouyang
et al., 2022; Rafailov et al., 2023; Zhang et al.,
2023) have shown great improvements on the
instruction-following capability via additional
training for instruction-following tasks. How-
ever, the mechanisms responsible for effective
instruction-following capabilities remain inade-
quately understood. Here, we introduce a sim-
plified instruction-following task and use syn-
thetic datasets to analyze a Transformer-based
causal language model. Our findings suggest
that the model learns task-specific information
by clustering data within its hidden space, with
this clustering process evolving dynamically
during learning. We also demonstrate how this
phenomenon assists the model in handling un-
seen instances and validate our results in a more
realistic setting.

1 Introduction

Recent years have seen noteworthy progress with
large language models (LLMs) like GPT-3 (Brown
et al., 2020), GPT-4 (OpenAl, 2023), and LLaMa
(Touvron et al., 2023a), showcasing impressive ca-
pabilities across various natural language tasks. A
significant challenge with LLMs is the misalign-
ment between the training objective and users’ in-
tentions. Typically, LLMs are trained to optimize
next word prediction on large-scale language data
whereas users expect the model to follow their in-
structions in a helpful and safe manner (Zhang
et al., 2023). To address this mismatch, techniques
such as reinforcement learning from human feed-
back (RLHF) (Ouyang et al., 2022), direct prefer-
ence optimization (DPO) (Rafailov et al., 2023),
and instruction tuning (Zhang et al., 2023) have
been proposed to further train LLLMs for instruction

following, yielding seemingly great instruction-
following capabilities. Instruction-following also
harkens back to controllable language models
(Keskar et al., 2019).

Yet, the mechanisms underlying these success-
ful instruction-following capabilities are not well-
understood and require specific analysis. Since
LLMs have grown exceedingly complex in terms
of their parameters and the data they have been
trained on, their analysis is extremely challenging.
For example, it is difficult to determine which token
to focus on for analyzing a potentially lengthy and
intricate textual sequence, so as to extract meaning-
ful interpretation. To gain insights into the hidden
mechanisms of LLMs, one approach is through
carefully designed experiments. Conducting such
experiments requires meticulous control over ex-
perimental settings and this is challenging due to
the complexity of real-world language data, over
which experimenters have limited control.

This limitation inspires us to devise a simplified
instruction-following task with a synthetic dataset
that we fully control, but reflects some key proper-
ties of natural language data. This approach mirrors
practices in fields such as experimental psychology,
where researchers aim to study the complexities of
the human mind under simplified task conditions
with controlled stimuli. Since the Transformer ar-
chitecture (Vaswani et al., 2017) is commonly used
to build LLMs, we aim to perform analysis on a
Transformer-based causal language model (CLM)
trained for a simplified instruction-following task
to see if the model has any inductive bias.

More specifically, the ability to correctly rec-
ognize a learned task may be needed to success-
fully execute it. We aim to investigate how task-
specific information is encoded into the representa-
tion space of the Transformer-based CLM trained
for instruction-following. One intuitive hypothe-
sis is that the hidden states corresponding to the
same task are arranged close together to form



a task-specific cluster, reminiscent of functional
modules and topographic maps that neuroscientists
have discovered in the brain (Knudsen et al., 1987;
Chklovskii and Koulakov, 2004). The alternative is
that the hidden states are scattered without forming
clusters, and the Transformer learns mechanisms
to identify tasks via these scattered hidden states.
In Section 3, we find experimental evidence sup-
porting the former.

This leads us to further questions. First, do these
task-specific clusters emerge at a certain point dur-
ing training or gradually evolve? Second, how
might the task-specific clustering enhance task per-
formance? To dive into these, we must investigate
model learning dynamics, but in-depth analysis of
LLM training is expensive due to the long train-
ing schedule and high computational costs. Our
simplified setting reveals its advantage by allowing
us to constrain the scope of the tasks such that a
relatively small model is able to fully learn the task
in a short training schedule. Specifically, we per-
form clustering analysis on the hidden states of the
Transformer model by training it for the instruction-
following task and extend this analysis to the entire
learning process. We train the model from scratch
to isolate it from complicated and potentially noisy
pre-training, leaving studies of pre-training impacts
for future work.

In summary, we present a simplified instruction-
following task and generate a synthetic dataset
to examine a Transformer-based CLM model.
Through this simplified framework, we offer evi-
dence suggesting that the model learns task-specific
information by organizing data into clusters within
its hidden space. Moreover, we show that the
clusters evolve dynamically as the model learns.
Importantly, we illustrate how this clustering phe-
nomenon aids the model in handling previously
unseen instances. Further, we validate our findings
from the simplified task in a more realistic setting.

2 Instruction-Following

2.1 Preliminaries

We assume a task is a function f : X — ) and
each pair of its input and output (x,y) is a map-
ping. We define an instruction-following task as
anticipating an output y by giving an instruction 1
and an input x such as "given a location, state its
continent. New York City", where New York City
is the input and the output should be North Amer-
ica. Essentially an instruction serves as a prompt

that helps to identify a specific task function f. We
assume an instruction [ is sampled from an instruc-
tion distribution Z and instructions sampled from
different distributions may be associated with the
same task. However, the opposite does not hold
since this will lead to an ill-defined problem.

The input can be either integrated into the in-
struction or separated out. For simplicity, we use
a separate input. One instance is represented as a
sequence of a concatenation of an instruction, input
and output, [[; x; y|, where instruction, input and
output are represented as textual sequences. Then,
the instruction following task is formulated as a
causal language modeling task by autoregressively
predicting the next token in the sequence.

2.2 A Simplified Instruction-Following Task

For ease of analysis, we simplify the instruction-
following task by making several assumptions. To
emulate language data, we assume both alphabets
X and Y are discrete. To have a focus of analysis,
we assume the input and output are each repre-
sented by a single token. The next token prediction
task allows us to have one token representation to
evolve from the current token to the next token
across the Transformer layers. We further assume
the output token comes right after the input token
without using any template tokens, allowing us to
concentrate our study on representations of one
single token across layers (i.e. its hidden states).

To accommodate these assumptions, we synthe-
size a task function by randomly sampling a finite
number of mappings such that an input of the func-
tion is uniquely associated with an element in ).
The mapping could be made stochastic, so an in-
put could be associated to multiple different output
elements. For simplicity, we assume uniqueness.
This reflects the fact that we usually only have
a finite number of demonstrations for a task, for
model learning and for evaluation. Different task
functions may share an identical input set, but the
respective outputs could be different, so it is impor-
tant for the model to learn to correctly identify a
task to provide accurate output accordingly. Ad-
ditionally, our focus lies on the model’s ability to
generalize by identifying the correct task from un-
seen instructions, rather than the generalization of
the task itself, which is beyond the scope of this
study. Therefore, we provide all of the mappings
from a task but only a portion of instructions to the
model during the training process.

We aim to investigate the behavior of the model



when provided with sufficient data to learn the
patterns of different instructions. Given resource
constraints, it is infeasible to create a large-scale
instruction-following dataset of natural language
that enables the model to fully comprehend the
complexities inherent in natural language and then
to train a Transformer model on such a vast dataset.
Therefore, we opt to study the regularities of in-
structions simpler than those of natural languages
using regular expressions. Regular expressions are
patterns used to match character combinations in
strings. They are widely used in text processing
and search tasks, allowing for flexible and powerful
matching operations. We can also use regular ex-
pressions to synthesize as much data as needed by
sampling based on these expressions, so the model
can adequately acquire the ability to recognize reg-
ularities within the instructions. In our study, we
randomly sample a regular expression, as detailed
in Appendix A. Each sampled regular expression
is considered as a simple grammar rule. We then
sample instructions represented as sequences of
symbols based on the regular expression. We con-
struct instructions by sampling instances based on
different regular expressions to emulate different
distributions.

Another concern arises from many real-world
tasks needing to acquire external knowledge. For
instance, to learn to predict the next letter in the al-
phabet sequence, the model must possess external
knowledge of the alphabet itself. Since we syn-
thesize task functions in our approach, as outlined
earlier, we can present all information to the model
to learn how to solve a task, overcoming this lim-
itation. We associate each task with instructions
originating from distinct distributions and construct
a data instance via concatenating an instruction and
a mapping together. Each instruction will accord-
ingly have a task identity. In this context, the dif-
ferent distributions highlight instructions character-
ized by highly distinct regularities, such as varying
vocabularies and syntactic structures. Given exis-
tences of task-specific clusters as shown in Figure 1,
this treatment also allows us to examine whether
the model forms task-specific clusters based solely
on the similarities of instructions. Moreover, to
delve deeper into the Transformer model’s ability
to form task-specific clusters, we create hard exam-
ples by replacing a word within certain instructions
in the training data with another word, thereby as-
sociating these instructions with a new task. For
instance, in a realistic scenario, substituting the

word “initial” with “secondary” from “return the
initial letter from the provided letter list” indicates
a different task. To further increase the difficulty,
we introduce a new task with identical mappings
as the original task but modify the outputs. In a
realistic scenario, even a subtle change like this
would likely trigger a different task. These hard
examples can be viewed as outliers of the original
data distribution. This creates instructions that are
difficult to distinguish based solely on their appear-
ance, posing a challenging task to assess whether
the model can still effectively separate them into
distinct clusters based on task identities.

3 Experiments

3.1 Implementation Details

We construct a synthetic instruction-following in-
struction dataset based on the guidelines outlined
in Section 2.2. This dataset is then divided into
training and validation sets. For computational ef-
ficiency in subsequent clustering analysis, we ran-
domly sample a number of instances from a subset
of tasks to form the validation set and a training sub-
set for intermediate evaluations. Given full control
over the data generation process, we record meta
information such as a task identity for each data
instance. Further details regarding the hyperparam-
eters of the data generation process and statistics
of the resulting datasets are in Appendix A.

We train a six-layer Transformer model follow-
ing the GPT-2 architecture (Radford et al., 2019).
This model is optimized using an AdamW opti-
mizer (Loshchilov and Hutter, 2017) and employs
a cosine annealing learning rate schedule. We ter-
minate training based on the best task accuracy
achieved on the validation dataset. Additional
specifics about the hyperparameters of the model
and training process are in Appendix C. We per-
form all of experiments on a single NVIDIA A100
GPU.

3.2 Clustering Analysis

As detailed in Section 2.2, our study focuses on
the hidden states corresponding to the input tokens
(the last token in a sequence) within the Trans-
former model. We gather hidden states of the input
tokens from various data instances. Next, we em-
ploy the popular KMeans clustering algorithm to
uncover clusters within the data. We optionally
pre-process them using t-SNE dimension reduction
(Van der Maaten and Hinton, 2008) if it benefits
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Figure 1: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout
the training process: Different columns corresponds to uses of different identities as labels. Only shows results on
F1 score here and see results on other evaluation metrics in Figure 4. Each dot represents a data point.

the subsequent clustering performance. We con-
duct extrinsic clustering evaluation on the cluster-
ing results, utilizing task identities as labels. Our
analysis reports results on the training subset and
validation set, employing three commonly used
metrics for clustering analysis: F1 score, adjusted
rand index (ARI), and adjusted mutual informa-
tion (AMI). Further details regarding the clustering
analysis and evaluation metrics are in Appendix B.

As shown in Figures 1, on both of training and
validation splits, there exists a strong trend of im-
provement of the clustering performance based on
task identities throughout the training process until
saturating at some high values. Figure 4 in Ap-
pendix demonstrates results on all evaluation met-
rics. Especially, during late stage of the training
process, the hidden states exhibit a strong clus-
tering effect on task identities, indicated by high
values across different data splits and metrics. The
model early stops at 51th epoch, but particularly
noteworthy is the persistence and even improve-
ment of the clustering phenomenon long after the
early stopping point, indicating clustering as a

strong inductive bias of the Transformer during its
training process. In addition, the early stop point is
close to when the clustering performance starts to
saturate. After that, the model’s task performance
also saturates at high values as shown in Figure 2c,
which may indicate correlation between the task
performance and the clustering performance.

Moreover, clustering performance tends to im-
prove in higher layers of the Transformer model,
with the Oth layer serving as a baseline solely based
on input word embedding. Notably, the baseline
does not undergo much change during the training
process compared to clustering performances of
other layers. It is important to note that task iden-
tities are concealed from the training process, and
the Transformer models perform clustering during
training without explicit supervision. Besides, we
design the simplified task to have many tasks share
the same inputs by using a small task related vocab-
ulary such that the model won’t be able to identify
a task solely from the inputs.

Also, interestingly, based on our formulation
of the instruction-following task in Section 2.1,
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Figure 2: (a) Training loss, (b) Training subset task accuracy and (c) validation task accuracy throughout the training
process. Each dot represents a data point. Both (b) and (c) show dense dots with near zero accuracy for the first few

epochs.

instances with instructions from different distribu-
tions are clustered together based on their task iden-
tities. This is corroborated by the high F1 score.
Further, our analysis reveals that hard examples,
formulated as described in Section 2.2, and their
corresponding original examples are predominantly
separated into different clusters. This can be seen
from the high F1 score of over 0.9 at the late train-
ing stage on the training subset, which contains
both the hard examples and their original exam-
ples. This eliminates the possibility that the model
groups instances solely based on instruction sim-
ilarities. This underscores the model’s ability to
form clusters based on task identities. Addition-
ally, similar clustering phenomena are observed
on both the validation and testing sets, indicating
that the clustering effect generalizes to unseen in-
stances as well. These results not only provide

compelling evidence supporting the existence of
task-specific clusters but also shows that the clus-
ters evolve throughout the training process instead
of appearing spontaneously.

We have found the task-specific clusters ex-
ist within the hidden representation space of the
Transformer model. This suggests the question of
whether there are any intriguing internal structures
within these clusters. To explore this, we conduct
the same clustering analysis using the distributions
that the instructions belong to as labels. As demon-
strated in Figures 1, we found obvious clustering ef-
fects based on this setting, which reveals a possible
inner clustering structures within the task-specific
clusters. To delve deeper and uncover finer-grained
structures within this hierarchical clustering, we
conduct further analysis by considering a combina-
tion of labels, including the identities of instruction



distributions and mappings. We observe strong
clustering under this setting as well, as evidenced
by high clustering performances. See (Knudsen
et al., 1987; Chklovskii and Koulakov, 2004) for
similar clustering and mapping phenomena in the
mammalian cortex.

Figure 2 showcases the learning curve of the
model based on task accuracy. An intriguing ob-
servation is that the task accuracy remains around
zero for the first few epochs on both training sub-
sets and validation set before abruptly beginning
to rise thereafter, despite continuous improvements
in training loss as depicted in Figure 2a. We hy-
pothesize that the model initially learns task iden-
tification through the evolved clustering process
by resolving various ambiguities introduced by us
including the hard examples, enabling it to subse-
quently learn to solve different tasks successfully.
We also confirm a similar clustering phenomenon
and various trends we have discovered so far on a
smaller model with a small hidden dimension of 32
and a larger model with a large hidden dimension
of 2048. See results on this additional models in
Figures 5, 6 7 and 8 of the appendix.

3.3 Advantages of Clustering

Next, we explore potential advantages of the clus-
tering phenomenon observed earlier. We have ob-
served clustering effects on both the training subset
and unseen instances from the validation set. To
further verify if training instances and unseen in-
stances with the same task identity are close in the
hidden representation space, Figure 3a shows the
percentage of K nearest training instances of an
unseen instance belonging to the same task iden-
tity, averaged over all instances. We observe a
dramatic improvement in the percentage along the
training process, indicating that both training in-
stances and unseen instances are not only close in
the hidden space but also become more clustered as
the training proceeds. This suggests that the same
task-specific clustering structure generalizes to the
unseen instances.

Previous work (Khandelwal et al., 2019) has
demonstrated that using an inference method based
on K-Nearest Neighbors (KNN) algorithms with
pre-trained Transformer-based language models
can achieve competitive or even better next to-
ken prediction performance than inference methods
based on models’ forward pass. This inspires us to
record the task performance of our models based
on the KNN during the training process. From Fig-

ure 3b, we observe that the task accuracy based
on KNN improves consistently during training un-
til saturating at high values, providing direct evi-
dence of the advantages of task-specific clustering
by bringing instances of the same task closer to-
gether in the hidden space. More specifically, the
model clusters instances belonging to the same task
close to each other such that it is easy for making
inferences for even unseen instances by using their
nearby data instances. The KNN accuracy is also
improved across layers. This is also an apparently
working way to identify a specific task by a model
gradually moving a representation to those with the
same task over a series of layers.

3.4 Analysis of Natural Instruction-Following
Task

One further question to ask is if the clustering phe-
nomenon we discovered under the simplified set-
ting generalizes to realistic settings. Therefore,
we studied trained LLMs on a realistic instruction-
following task based on natural language to supple-
ment our analysis. We utilize tasks and their de-
scriptions in natural language from (Hendel et al.,
2023) of three categories: Knowledge, Linguistic,
and Translation. In accordance with the typical
approach of constructing instruction datasets via
LLM self-instruct (Wang et al., 2022), we build a
set of instructions for each task by using their task
descriptions as seeds to prompt ChatGPT (Liu et al.,
2023) to generate 50 different expressions. We con-
sider expressions sampled based on the same seed
as coming from the same distribution. The specifics
of the task descriptions and prompts used for query-
ing ChatGPT are in Appendix D. The subsequent
step involves linking each instruction to a task map-
ping provided by (Hendel et al., 2023) in the same
way as described in Section 2.2. We only keep
those task mappings that have inputs and outputs
of only a single word to have better focus of study.
For computational efficiency, we only use ten of
those selected task mappings for each task. We as-
sign the same task identity to tasks under the same
category due to their similarities. Actually, the
instruction-following data can be considered as a
spacial kind of language data and naturally exist in
the large-scale language data used for pre-training.
Therefore, we will perform the same clustering
analysis as in Section 3.2 on a number of different
open LLMs either instruction tuned or not: LL.aMa-
7B, LLaMa-13B (Touvron et al., 2023a), GPT-J-
6B (Wang and Komatsuzaki, 2021), LLaMa-2-7B-
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Figure 3: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same task
identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the

training process.

Model Task Distribution Distribution-Mapping
F1 ARI AMI F1 ARI AMI F1 ARI AMI
LLaMa-7B 0959 0.872 0.869 0.571 0438 0.673 0940 0.903 0.974
LLaMa-13B 0.953 0.855 0.854 0.546 0.381 0.645 0.936 0.893 0.969
GPT-J-6B 0.887 0.697 0.665 0.652 0.485 0.653 0.465 0.345 0.602
LLaMa-2-7B-Instruct 0.917 0.756 0.780 0.563 0.339 0.638 0.932 0.890 0.966
Instruct-GPT-J-6B 0.907 0.749 0.692 0471 0.290 0.516 0.170 0.084 0.342

Table 1: Clustering analysis on open LLMs with using task identity, distribution identity and distribution-mapping

identity as labels.

Instruct (Touvron et al., 2023b; Together, 2023)
and Instruct-GPT-J-6B (Cloud; Taori et al., 2023),
in which LLaMa-2-7B-Instruct and Instruct-GPT-
J-6B are fine-tuned on instruction datasets. B (bil-
lion) refers to the number of parameters. See more
details about the model sizes in Table 6 in the
appendix.

We only report measurements of the layer with
the best F1 score on clustering based on task iden-
tity. As shown in Table 1, similar to our results in
the simplified setting, all of the LLMs achieve high
clustering performances based on task identities. In
particular, a high F1 score indicates different tasks
under the same category are clustered together.
Both the LLaMa models of different sizes and the
LLaMa-2-7B-Instruct models receive high scores
on clustering instances with the same distribution-
mapping identities, which is consistent with our
results on the simplified setting. However, the GPT-
J-6B and Instruct-GPT-J-6B seem to not form clear
clusters based on the distribution-mapping iden-
tity. Besides, as we expected, the clustering phe-

nomenon appears on LLMs either instruction tuned
or not. We should note that the conclusions we
made on the simplified setting may not completely
extend to the realistic settings due to differences
of data complexity and scales. However, we can
still see some consistent results, which indicates
some universality of the clustering phenomenon.
We hope our analysis on both the simplified and
realistic settings can shed some light on understand-
ing the inductive biases of the Transformer-based
LLMs for instruction following.

4 Related Work

4.1 Instruction Following

Making LLMs follow user intention specified in
instructions is important for making them more
truthful and less toxic. Many efforts has been made
to achieve this goal (Hill et al., 2020; Zhang et al.,
2023; Ouyang et al., 2022; Rafailov et al., 2023). In
our work, we focus on studying the hidden mecha-
nism and inductive biases of the Transformer-based



CLM:s to learn instruction following in a general
and simplified setting, rather than developing a
more advanced instruction-following method.

4.2 Functional Vectors

Recent works (Todd et al., 2023; Hendel et al.,
2023) present compelling evidence of function vec-
tors that store task related information in in-context
learning. While in-context examples can be viewed
as a specific type of instructions, our work primar-
ily focuses on conducting analysis based on more
general textual instructions rather than in-context
examples. Further, our study extends to analyzing
the learning dynamics of models, rather than solely
focusing on trained models.

4.3 Mechanistic Interpretability

The primary objective of mechanistic interpretabil-
ity is to reverse engineer model behaviors (Olah
et al., 2020; Elhage et al., 2021; Nanda et al., 2023;
Meng et al., 2022; Hernandez et al., 2023; Geva
et al., 2023; Conneau et al., 2018; Ilharco et al.,
2022). Similar to many of the works in this area,
we conduct studies based on a synthetic task and
data in order to gain better controllability of the
experiments and perform more in-depth analysis.

4.4 Clustering in Transformers

Some studies also explore clustering phenomena
within the Transformer model (Chen et al., 2021;
Reif et al., 2019; Geshkovski et al., 2023; Thomp-
son and Mimno, 2020). However, they did not
specifically focus on the instruction-following set-
ting and conducted analysis mainly on trained mod-
els. Geshkovski et al. (2023) primarily concentrate
on studying clustering among tokens within a se-
quence. In contrast, our clustering analysis focuses
on identifying clustering structures among different
sequences.

5 Conclusion

In this work, we introduce a simplified instruction-
following task and construct synthetic datasets to
analyze a Transformer-based CLM model. From
the simplified setting, we provide experimental evi-
dence supporting the notion that the model encodes
task-specific information through clustering in its
hidden space, and demonstrate that this clustering
evolves continuously during the learning process.
Additionally, we highlight the advantages from the
clustering phenomenon for the model to handle un-
seen instances. We also further verify the existence

of the clustering phenomenon we discovered from
the simplified setting on a realistic setting. The
inductive biases uncovered and analyzed in this
study offer new insights into Transformer-based
CLM models and shed light on their remarkable
instruction-following capabilities. Furthermore,
this newfound understanding can inspire the devel-
opment of more advanced algorithms to enhance
LLM capability to effectively follow human instruc-
tions.

6 Limitations

At present, our study is confined to a simplified
task and synthetic dataset along with specific data
distributional assumptions. Expanding the analy-
sis to encompass a broader range of diverse and
realistic distributional assumptions on data is an
avenue for future exploration. We anticipate that
our study can provide insights into Transformer’s
hidden mechanisms and inductive biases, serving
as a foundational starting point and offering direc-
tions for analysis on larger scales. It is conceivable
that our findings may have broader applicability
and could be validated across a wider array of sce-
narios beyond our simplified instruction-following
tasks. Scaling up our analysis to encompass more
complex and realistic scenarios is an area we plan
to explore in future research endeavors.
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A Simplified Setting

To construct data for the synthetic instruction-
following task under the simplified setting, we
firstly sample a task function consisting of a num-
ber of unique mappings. For each mapping, we
sample two symbols from a task symbol vocab-
ulary to form a mapping. We enforce that no
two functions share a mapping. Next, we sam-
ple instructions for each task based on a regular
expression. Regular expressions are sequences of
characters that define a search pattern. They are
widely used in computing for tasks such as text pro-
cessing, string manipulation, and pattern matching.
Regular expressions consist of normal characters
(like letters and digits) and special characters (also
known as metacharacters) that have special mean-
ings. These metacharacters allow you to specify
rules and conditions for matching patterns within
text. We use regular expression reversely by sam-
pling a string from a search pattern. To sample a
regular expression, we first sample a number of
metacharacters and then sample normal characters
from an instruction vocabulary as their arguments
and concatenate them together as a regular expres-
sion. For computational efficiency, we build a train-
ing subset, validation set and hard examples from a
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subset of tasks by randomly selecting a number of
instructions sampled from all of the distributions
associated with each of the task. Please refer to
Table 3 for related hyperparameters. We emulate
sampling from different distributions by sampling
from different regular expressions as described in
Section 2.2.

We present the statistics of the sythetic
instruction-following dataset in Table 2.

B More on Clustering Analysis

In this work, we use extrinsic evaluation for our
clustering analysis. Extrinsic evaluation of clus-
tering refers to assessing the quality of clustering
results by comparing them to ground truth. Ground
truth data refers to labeled data that indicates the
class or cluster to which each data point belongs.
We utilizes three widely used evaluation metrics:
F1, adjusted rand index and adjusted mutual infor-
mation.

F1 Score: The F1 score combines both precision
and recall into a single value, making it a useful
measure of a model’s accuracy. The formula for

. precision xXrecall
the F1 score is 2 x preciston+recall The': Fl score
ranges from O to 1 with higher values indicating

better agreement to the ground truth.

Adjusted Rand Index (ARI): ARI is a measure
of the similarity between two clustering results. It
considers all pairs of samples and counts pairs that
are assigned to the same or different clusters in
both the true and predicted clusterings. ARI ranges
from -1 to 1, where 1 indicates perfect clustering
agreement, O indicates clustering results are ran-
dom, and negative values indicate less agreement
than expected by chance.

Adjusted Mutual Information (AMI): AMI
is another measure used to evaluate the quality of
clustering. It quantifies the amount of information
obtained about one clustering from knowing the
other, adjusting for chance. Like ARI, AMI ranges
from -1 to 1, where higher values indicate better
agreement between clusterings.

C Hyperparameters

Tables 3 shows the hyperparameters of the data
generation process. Tables 4 contain the hyperpa-
rameters of our Transformer model and its training
process. T-SNE related hyperparameters are listed
in Table 5



Setting Set Size

Simplified Training 7,300
Training subset 180
Validation 315

Realistic Testing 8,800

Table 2: Data Statistics of both simplified and realistic settings. The size of a data set is quantified by its number of
instances. Only testing set is available for the realistic setting since we use pre-trained models instead of we training
and validating a model in this setting.

Hyperparameter Value
Number of tasks 50
Maximum number of instruction distributions per task 6
Minimum number of instruction distributions per task 1
Number of instructions per distribution 10
Number of mappings per task 5
Number of tasks in training subset 5
Number of instructions per distribution in the training subset all available
Number of tasks in validation set 10
Number of instructions per distribution in the validation set 3
Number of different tasks in hard examples 5
Number of instructions per distribution in hard examples 3
Size of the task symbol vocabulary 25
Size of the instruction symbol vocabulary 35

Maximum number of metacharacters per regular expression
Minimum number of metacharacters per regular expression 1
Maximum number of characters per metacharacters 10
Minimum number of characters per metacharacters 3

Table 3: Hyperparameters used for the data generation process.

Hyperparameter Value
Learning rate 1E-4

Number of epochs 200
Optimizer AdamW

Max gradient normM 1.0

validation criterion Task accuracy
Scheduler Cosine Annealing
Number of layers 6

Number of heads 8

Hidden dimension 768
feedforwark network dimension 1024
droptout 0.2

Table 4: Hyperparameters related to our model in the main experiment and its training.

Hyperparameter Value
Number of Components 3
Perplexity 10
Number of iterations 2,000
Metric Euclidean
Initialization method PCA

Table 5: T-SNE Hyperparameters (Van der Maaten and Hinton, 2008).
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Model Hidden Dimension Parameter Count

Our model 768 768 23 million
Our model 32 32 55 thousand
Our model 2048 2048 202 million
LLaMa-7B 4096 7 billion
LLaMa-13B 5120 13 billion
LLaMa-2-7B-instruct 4096 7 billion
GPT-J-6B 4096 6 billion
Instruct-GPT-J-6B 4096 6 billion

Table 6: Sizes of models used in this work in terms of parameter counts and size of hidden dimension. The names
of our models trained in the simplified setting end with their hidden dimension sizes.

D Natural Instruction-Following Task

D.1 ChatGPT Prompt Template

We use the following prompt template to query
ChatGPT to generate different expressions of a task
descriptions: "Rewrite 50 different expressions of
XXX", where "XXX" is a task description.

D.2 Realistic Setting

See Table 7 for the task descriptions used for con-
structing the dataset for the realistic setting as de-
tailed in Section 3.4 and data statistics in Table
2.

E More Results

We present results obtained on various models here.
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Category  Task Description
Translation French to English Given a word in French, translate to English
English to French Given a word in English, translate to French
Spanish to English Given a word in Spanish, translate to English
English to Spanish Given a word in English, translate to Spanish
Italian to English Given a word in Italian, translate to English
English to Italian Given a word in English, translate to Italian
Linguistic =~ Antonyms Given an English adjective, output an antonym
plural to Singular Given an English noun in plural form, output
the singular form
Singular to plural Given an English noun in singular form, output
the plural form
Present to gerund Given an English verb in present simple tense,
output the corresponding gerund form
Present to past perfect Given an English verb in present simple tense,
output the corresponding verb in past perfect
Present to past simple  Given an English verb in present simple tense,
output the corresponding verb in past simple
Knowledge Country to Capital Given a name of a country, output the name of

Location to continent
Religion

Person to Language

the capital city

Given a name of a location, output the name of
its continent

Given a name of a location or a person, output
the associated religion

Given a name of a person, output their native
language

Table 7: Task descriptions provided by (Hendel et al., 2023)
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Figure 4: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout
the training process: Different columns corresponds to uses of different identities as labels.
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Figure 5: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout
the training process: The results are shown for the model with 32 hidden dimension. We train this model for 500
epochs due to its slow convergence. Different columns corresponds to uses of different identities as labels.
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Figure 6: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same task
identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the
training process. The results are shown for the model with 2048 hidden dimension.
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Figure 7: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout the
training process: The results are shown for the model with 2048 hidden dimension. Different columns corresponds
to uses of different identities as labels.
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Figure 8: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same task
identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the
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training process. The results are shown for the model with 32 hidden dimension.
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