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Abstract

Even though large language models (LLMs)001
have demonstrated remarkable capability in002
solving various natural language tasks, the ca-003
pability of an LLM to follow human instruc-004
tions is still a concern. Recent works (Ouyang005
et al., 2022; Rafailov et al., 2023; Zhang et al.,006
2023) have shown great improvements on the007
instruction-following capability via additional008
training for instruction-following tasks. How-009
ever, the mechanisms responsible for effective010
instruction-following capabilities remain inade-011
quately understood. Here, we introduce a sim-012
plified instruction-following task and use syn-013
thetic datasets to analyze a Transformer-based014
causal language model. Our findings suggest015
that the model learns task-specific information016
by clustering data within its hidden space, with017
this clustering process evolving dynamically018
during learning. We also demonstrate how this019
phenomenon assists the model in handling un-020
seen instances and validate our results in a more021
realistic setting.022

1 Introduction023

Recent years have seen noteworthy progress with024

large language models (LLMs) like GPT-3 (Brown025

et al., 2020), GPT-4 (OpenAI, 2023), and LLaMa026

(Touvron et al., 2023a), showcasing impressive ca-027

pabilities across various natural language tasks. A028

significant challenge with LLMs is the misalign-029

ment between the training objective and users’ in-030

tentions. Typically, LLMs are trained to optimize031

next word prediction on large-scale language data032

whereas users expect the model to follow their in-033

structions in a helpful and safe manner (Zhang034

et al., 2023). To address this mismatch, techniques035

such as reinforcement learning from human feed-036

back (RLHF) (Ouyang et al., 2022), direct prefer-037

ence optimization (DPO) (Rafailov et al., 2023),038

and instruction tuning (Zhang et al., 2023) have039

been proposed to further train LLMs for instruction040

following, yielding seemingly great instruction- 041

following capabilities. Instruction-following also 042

harkens back to controllable language models 043

(Keskar et al., 2019). 044

Yet, the mechanisms underlying these success- 045

ful instruction-following capabilities are not well- 046

understood and require specific analysis. Since 047

LLMs have grown exceedingly complex in terms 048

of their parameters and the data they have been 049

trained on, their analysis is extremely challenging. 050

For example, it is difficult to determine which token 051

to focus on for analyzing a potentially lengthy and 052

intricate textual sequence, so as to extract meaning- 053

ful interpretation. To gain insights into the hidden 054

mechanisms of LLMs, one approach is through 055

carefully designed experiments. Conducting such 056

experiments requires meticulous control over ex- 057

perimental settings and this is challenging due to 058

the complexity of real-world language data, over 059

which experimenters have limited control. 060

This limitation inspires us to devise a simplified 061

instruction-following task with a synthetic dataset 062

that we fully control, but reflects some key proper- 063

ties of natural language data. This approach mirrors 064

practices in fields such as experimental psychology, 065

where researchers aim to study the complexities of 066

the human mind under simplified task conditions 067

with controlled stimuli. Since the Transformer ar- 068

chitecture (Vaswani et al., 2017) is commonly used 069

to build LLMs, we aim to perform analysis on a 070

Transformer-based causal language model (CLM) 071

trained for a simplified instruction-following task 072

to see if the model has any inductive bias. 073

More specifically, the ability to correctly rec- 074

ognize a learned task may be needed to success- 075

fully execute it. We aim to investigate how task- 076

specific information is encoded into the representa- 077

tion space of the Transformer-based CLM trained 078

for instruction-following. One intuitive hypothe- 079

sis is that the hidden states corresponding to the 080

same task are arranged close together to form 081
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a task-specific cluster, reminiscent of functional082

modules and topographic maps that neuroscientists083

have discovered in the brain (Knudsen et al., 1987;084

Chklovskii and Koulakov, 2004). The alternative is085

that the hidden states are scattered without forming086

clusters, and the Transformer learns mechanisms087

to identify tasks via these scattered hidden states.088

In Section 3, we find experimental evidence sup-089

porting the former.090

This leads us to further questions. First, do these091

task-specific clusters emerge at a certain point dur-092

ing training or gradually evolve? Second, how093

might the task-specific clustering enhance task per-094

formance? To dive into these, we must investigate095

model learning dynamics, but in-depth analysis of096

LLM training is expensive due to the long train-097

ing schedule and high computational costs. Our098

simplified setting reveals its advantage by allowing099

us to constrain the scope of the tasks such that a100

relatively small model is able to fully learn the task101

in a short training schedule. Specifically, we per-102

form clustering analysis on the hidden states of the103

Transformer model by training it for the instruction-104

following task and extend this analysis to the entire105

learning process. We train the model from scratch106

to isolate it from complicated and potentially noisy107

pre-training, leaving studies of pre-training impacts108

for future work.109

In summary, we present a simplified instruction-110

following task and generate a synthetic dataset111

to examine a Transformer-based CLM model.112

Through this simplified framework, we offer evi-113

dence suggesting that the model learns task-specific114

information by organizing data into clusters within115

its hidden space. Moreover, we show that the116

clusters evolve dynamically as the model learns.117

Importantly, we illustrate how this clustering phe-118

nomenon aids the model in handling previously119

unseen instances. Further, we validate our findings120

from the simplified task in a more realistic setting.121

2 Instruction-Following122

2.1 Preliminaries123

We assume a task is a function f : X → Y and124

each pair of its input and output (x, y) is a map-125

ping. We define an instruction-following task as126

anticipating an output y by giving an instruction I127

and an input x such as "given a location, state its128

continent. New York City", where New York City129

is the input and the output should be North Amer-130

ica. Essentially an instruction serves as a prompt131

that helps to identify a specific task function f . We 132

assume an instruction I is sampled from an instruc- 133

tion distribution I and instructions sampled from 134

different distributions may be associated with the 135

same task. However, the opposite does not hold 136

since this will lead to an ill-defined problem. 137

The input can be either integrated into the in- 138

struction or separated out. For simplicity, we use 139

a separate input. One instance is represented as a 140

sequence of a concatenation of an instruction, input 141

and output, [I;x; y], where instruction, input and 142

output are represented as textual sequences. Then, 143

the instruction following task is formulated as a 144

causal language modeling task by autoregressively 145

predicting the next token in the sequence. 146

2.2 A Simplified Instruction-Following Task 147

For ease of analysis, we simplify the instruction- 148

following task by making several assumptions. To 149

emulate language data, we assume both alphabets 150

X and Y are discrete. To have a focus of analysis, 151

we assume the input and output are each repre- 152

sented by a single token. The next token prediction 153

task allows us to have one token representation to 154

evolve from the current token to the next token 155

across the Transformer layers. We further assume 156

the output token comes right after the input token 157

without using any template tokens, allowing us to 158

concentrate our study on representations of one 159

single token across layers (i.e. its hidden states). 160

To accommodate these assumptions, we synthe- 161

size a task function by randomly sampling a finite 162

number of mappings such that an input of the func- 163

tion is uniquely associated with an element in Y . 164

The mapping could be made stochastic, so an in- 165

put could be associated to multiple different output 166

elements. For simplicity, we assume uniqueness. 167

This reflects the fact that we usually only have 168

a finite number of demonstrations for a task, for 169

model learning and for evaluation. Different task 170

functions may share an identical input set, but the 171

respective outputs could be different, so it is impor- 172

tant for the model to learn to correctly identify a 173

task to provide accurate output accordingly. Ad- 174

ditionally, our focus lies on the model’s ability to 175

generalize by identifying the correct task from un- 176

seen instructions, rather than the generalization of 177

the task itself, which is beyond the scope of this 178

study. Therefore, we provide all of the mappings 179

from a task but only a portion of instructions to the 180

model during the training process. 181

We aim to investigate the behavior of the model 182
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when provided with sufficient data to learn the183

patterns of different instructions. Given resource184

constraints, it is infeasible to create a large-scale185

instruction-following dataset of natural language186

that enables the model to fully comprehend the187

complexities inherent in natural language and then188

to train a Transformer model on such a vast dataset.189

Therefore, we opt to study the regularities of in-190

structions simpler than those of natural languages191

using regular expressions. Regular expressions are192

patterns used to match character combinations in193

strings. They are widely used in text processing194

and search tasks, allowing for flexible and powerful195

matching operations. We can also use regular ex-196

pressions to synthesize as much data as needed by197

sampling based on these expressions, so the model198

can adequately acquire the ability to recognize reg-199

ularities within the instructions. In our study, we200

randomly sample a regular expression, as detailed201

in Appendix A. Each sampled regular expression202

is considered as a simple grammar rule. We then203

sample instructions represented as sequences of204

symbols based on the regular expression. We con-205

struct instructions by sampling instances based on206

different regular expressions to emulate different207

distributions.208

Another concern arises from many real-world209

tasks needing to acquire external knowledge. For210

instance, to learn to predict the next letter in the al-211

phabet sequence, the model must possess external212

knowledge of the alphabet itself. Since we syn-213

thesize task functions in our approach, as outlined214

earlier, we can present all information to the model215

to learn how to solve a task, overcoming this lim-216

itation. We associate each task with instructions217

originating from distinct distributions and construct218

a data instance via concatenating an instruction and219

a mapping together. Each instruction will accord-220

ingly have a task identity. In this context, the dif-221

ferent distributions highlight instructions character-222

ized by highly distinct regularities, such as varying223

vocabularies and syntactic structures. Given exis-224

tences of task-specific clusters as shown in Figure 1,225

this treatment also allows us to examine whether226

the model forms task-specific clusters based solely227

on the similarities of instructions. Moreover, to228

delve deeper into the Transformer model’s ability229

to form task-specific clusters, we create hard exam-230

ples by replacing a word within certain instructions231

in the training data with another word, thereby as-232

sociating these instructions with a new task. For233

instance, in a realistic scenario, substituting the234

word “initial” with “secondary” from “return the 235

initial letter from the provided letter list” indicates 236

a different task. To further increase the difficulty, 237

we introduce a new task with identical mappings 238

as the original task but modify the outputs. In a 239

realistic scenario, even a subtle change like this 240

would likely trigger a different task. These hard 241

examples can be viewed as outliers of the original 242

data distribution. This creates instructions that are 243

difficult to distinguish based solely on their appear- 244

ance, posing a challenging task to assess whether 245

the model can still effectively separate them into 246

distinct clusters based on task identities. 247

3 Experiments 248

3.1 Implementation Details 249

We construct a synthetic instruction-following in- 250

struction dataset based on the guidelines outlined 251

in Section 2.2. This dataset is then divided into 252

training and validation sets. For computational ef- 253

ficiency in subsequent clustering analysis, we ran- 254

domly sample a number of instances from a subset 255

of tasks to form the validation set and a training sub- 256

set for intermediate evaluations. Given full control 257

over the data generation process, we record meta 258

information such as a task identity for each data 259

instance. Further details regarding the hyperparam- 260

eters of the data generation process and statistics 261

of the resulting datasets are in Appendix A. 262

We train a six-layer Transformer model follow- 263

ing the GPT-2 architecture (Radford et al., 2019). 264

This model is optimized using an AdamW opti- 265

mizer (Loshchilov and Hutter, 2017) and employs 266

a cosine annealing learning rate schedule. We ter- 267

minate training based on the best task accuracy 268

achieved on the validation dataset. Additional 269

specifics about the hyperparameters of the model 270

and training process are in Appendix C. We per- 271

form all of experiments on a single NVIDIA A100 272

GPU. 273

3.2 Clustering Analysis 274

As detailed in Section 2.2, our study focuses on 275

the hidden states corresponding to the input tokens 276

(the last token in a sequence) within the Trans- 277

former model. We gather hidden states of the input 278

tokens from various data instances. Next, we em- 279

ploy the popular KMeans clustering algorithm to 280

uncover clusters within the data. We optionally 281

pre-process them using t-SNE dimension reduction 282

(Van der Maaten and Hinton, 2008) if it benefits 283
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(a) Training subset

(b) Validation set

Figure 1: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout
the training process: Different columns corresponds to uses of different identities as labels. Only shows results on
F1 score here and see results on other evaluation metrics in Figure 4. Each dot represents a data point.

the subsequent clustering performance. We con-284

duct extrinsic clustering evaluation on the cluster-285

ing results, utilizing task identities as labels. Our286

analysis reports results on the training subset and287

validation set, employing three commonly used288

metrics for clustering analysis: F1 score, adjusted289

rand index (ARI), and adjusted mutual informa-290

tion (AMI). Further details regarding the clustering291

analysis and evaluation metrics are in Appendix B.292

As shown in Figures 1, on both of training and293

validation splits, there exists a strong trend of im-294

provement of the clustering performance based on295

task identities throughout the training process until296

saturating at some high values. Figure 4 in Ap-297

pendix demonstrates results on all evaluation met-298

rics. Especially, during late stage of the training299

process, the hidden states exhibit a strong clus-300

tering effect on task identities, indicated by high301

values across different data splits and metrics. The302

model early stops at 51th epoch, but particularly303

noteworthy is the persistence and even improve-304

ment of the clustering phenomenon long after the305

early stopping point, indicating clustering as a306

strong inductive bias of the Transformer during its 307

training process. In addition, the early stop point is 308

close to when the clustering performance starts to 309

saturate. After that, the model’s task performance 310

also saturates at high values as shown in Figure 2c, 311

which may indicate correlation between the task 312

performance and the clustering performance. 313

Moreover, clustering performance tends to im- 314

prove in higher layers of the Transformer model, 315

with the 0th layer serving as a baseline solely based 316

on input word embedding. Notably, the baseline 317

does not undergo much change during the training 318

process compared to clustering performances of 319

other layers. It is important to note that task iden- 320

tities are concealed from the training process, and 321

the Transformer models perform clustering during 322

training without explicit supervision. Besides, we 323

design the simplified task to have many tasks share 324

the same inputs by using a small task related vocab- 325

ulary such that the model won’t be able to identify 326

a task solely from the inputs. 327

Also, interestingly, based on our formulation 328

of the instruction-following task in Section 2.1, 329
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(a) Training Loss

(b) Trainsub Task Accuracy

(c) Validation Task Accuracy

Figure 2: (a) Training loss, (b) Training subset task accuracy and (c) validation task accuracy throughout the training
process. Each dot represents a data point. Both (b) and (c) show dense dots with near zero accuracy for the first few
epochs.

instances with instructions from different distribu-330

tions are clustered together based on their task iden-331

tities. This is corroborated by the high F1 score.332

Further, our analysis reveals that hard examples,333

formulated as described in Section 2.2, and their334

corresponding original examples are predominantly335

separated into different clusters. This can be seen336

from the high F1 score of over 0.9 at the late train-337

ing stage on the training subset, which contains338

both the hard examples and their original exam-339

ples. This eliminates the possibility that the model340

groups instances solely based on instruction sim-341

ilarities. This underscores the model’s ability to342

form clusters based on task identities. Addition-343

ally, similar clustering phenomena are observed344

on both the validation and testing sets, indicating345

that the clustering effect generalizes to unseen in-346

stances as well. These results not only provide347

compelling evidence supporting the existence of 348

task-specific clusters but also shows that the clus- 349

ters evolve throughout the training process instead 350

of appearing spontaneously. 351

We have found the task-specific clusters ex- 352

ist within the hidden representation space of the 353

Transformer model. This suggests the question of 354

whether there are any intriguing internal structures 355

within these clusters. To explore this, we conduct 356

the same clustering analysis using the distributions 357

that the instructions belong to as labels. As demon- 358

strated in Figures 1, we found obvious clustering ef- 359

fects based on this setting, which reveals a possible 360

inner clustering structures within the task-specific 361

clusters. To delve deeper and uncover finer-grained 362

structures within this hierarchical clustering, we 363

conduct further analysis by considering a combina- 364

tion of labels, including the identities of instruction 365
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distributions and mappings. We observe strong366

clustering under this setting as well, as evidenced367

by high clustering performances. See (Knudsen368

et al., 1987; Chklovskii and Koulakov, 2004) for369

similar clustering and mapping phenomena in the370

mammalian cortex.371

Figure 2 showcases the learning curve of the372

model based on task accuracy. An intriguing ob-373

servation is that the task accuracy remains around374

zero for the first few epochs on both training sub-375

sets and validation set before abruptly beginning376

to rise thereafter, despite continuous improvements377

in training loss as depicted in Figure 2a. We hy-378

pothesize that the model initially learns task iden-379

tification through the evolved clustering process380

by resolving various ambiguities introduced by us381

including the hard examples, enabling it to subse-382

quently learn to solve different tasks successfully.383

We also confirm a similar clustering phenomenon384

and various trends we have discovered so far on a385

smaller model with a small hidden dimension of 32386

and a larger model with a large hidden dimension387

of 2048. See results on this additional models in388

Figures 5, 6 7 and 8 of the appendix.389

3.3 Advantages of Clustering390

Next, we explore potential advantages of the clus-391

tering phenomenon observed earlier. We have ob-392

served clustering effects on both the training subset393

and unseen instances from the validation set. To394

further verify if training instances and unseen in-395

stances with the same task identity are close in the396

hidden representation space, Figure 3a shows the397

percentage of K nearest training instances of an398

unseen instance belonging to the same task iden-399

tity, averaged over all instances. We observe a400

dramatic improvement in the percentage along the401

training process, indicating that both training in-402

stances and unseen instances are not only close in403

the hidden space but also become more clustered as404

the training proceeds. This suggests that the same405

task-specific clustering structure generalizes to the406

unseen instances.407

Previous work (Khandelwal et al., 2019) has408

demonstrated that using an inference method based409

on K-Nearest Neighbors (KNN) algorithms with410

pre-trained Transformer-based language models411

can achieve competitive or even better next to-412

ken prediction performance than inference methods413

based on models’ forward pass. This inspires us to414

record the task performance of our models based415

on the KNN during the training process. From Fig-416

ure 3b, we observe that the task accuracy based 417

on KNN improves consistently during training un- 418

til saturating at high values, providing direct evi- 419

dence of the advantages of task-specific clustering 420

by bringing instances of the same task closer to- 421

gether in the hidden space. More specifically, the 422

model clusters instances belonging to the same task 423

close to each other such that it is easy for making 424

inferences for even unseen instances by using their 425

nearby data instances. The KNN accuracy is also 426

improved across layers. This is also an apparently 427

working way to identify a specific task by a model 428

gradually moving a representation to those with the 429

same task over a series of layers. 430

3.4 Analysis of Natural Instruction-Following 431

Task 432

One further question to ask is if the clustering phe- 433

nomenon we discovered under the simplified set- 434

ting generalizes to realistic settings. Therefore, 435

we studied trained LLMs on a realistic instruction- 436

following task based on natural language to supple- 437

ment our analysis. We utilize tasks and their de- 438

scriptions in natural language from (Hendel et al., 439

2023) of three categories: Knowledge, Linguistic, 440

and Translation. In accordance with the typical 441

approach of constructing instruction datasets via 442

LLM self-instruct (Wang et al., 2022), we build a 443

set of instructions for each task by using their task 444

descriptions as seeds to prompt ChatGPT (Liu et al., 445

2023) to generate 50 different expressions. We con- 446

sider expressions sampled based on the same seed 447

as coming from the same distribution. The specifics 448

of the task descriptions and prompts used for query- 449

ing ChatGPT are in Appendix D. The subsequent 450

step involves linking each instruction to a task map- 451

ping provided by (Hendel et al., 2023) in the same 452

way as described in Section 2.2. We only keep 453

those task mappings that have inputs and outputs 454

of only a single word to have better focus of study. 455

For computational efficiency, we only use ten of 456

those selected task mappings for each task. We as- 457

sign the same task identity to tasks under the same 458

category due to their similarities. Actually, the 459

instruction-following data can be considered as a 460

spacial kind of language data and naturally exist in 461

the large-scale language data used for pre-training. 462

Therefore, we will perform the same clustering 463

analysis as in Section 3.2 on a number of different 464

open LLMs either instruction tuned or not: LLaMa- 465

7B, LLaMa-13B (Touvron et al., 2023a), GPT-J- 466

6B (Wang and Komatsuzaki, 2021), LLaMa-2-7B- 467
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(a) KNN Percentage (b) KNN Accuracy

Figure 3: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same task
identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the
training process.

Model Task Distribution Distribution-Mapping
F1 ARI AMI F1 ARI AMI F1 ARI AMI

LLaMa-7B 0.959 0.872 0.869 0.571 0.438 0.673 0.940 0.903 0.974
LLaMa-13B 0.953 0.855 0.854 0.546 0.381 0.645 0.936 0.893 0.969
GPT-J-6B 0.887 0.697 0.665 0.652 0.485 0.653 0.465 0.345 0.602
LLaMa-2-7B-Instruct 0.917 0.756 0.780 0.563 0.339 0.638 0.932 0.890 0.966
Instruct-GPT-J-6B 0.907 0.749 0.692 0.471 0.290 0.516 0.170 0.084 0.342

Table 1: Clustering analysis on open LLMs with using task identity, distribution identity and distribution-mapping
identity as labels.

Instruct (Touvron et al., 2023b; Together, 2023)468

and Instruct-GPT-J-6B (Cloud; Taori et al., 2023),469

in which LLaMa-2-7B-Instruct and Instruct-GPT-470

J-6B are fine-tuned on instruction datasets. B (bil-471

lion) refers to the number of parameters. See more472

details about the model sizes in Table 6 in the473

appendix.474

We only report measurements of the layer with475

the best F1 score on clustering based on task iden-476

tity. As shown in Table 1, similar to our results in477

the simplified setting, all of the LLMs achieve high478

clustering performances based on task identities. In479

particular, a high F1 score indicates different tasks480

under the same category are clustered together.481

Both the LLaMa models of different sizes and the482

LLaMa-2-7B-Instruct models receive high scores483

on clustering instances with the same distribution-484

mapping identities, which is consistent with our485

results on the simplified setting. However, the GPT-486

J-6B and Instruct-GPT-J-6B seem to not form clear487

clusters based on the distribution-mapping iden-488

tity. Besides, as we expected, the clustering phe-489

nomenon appears on LLMs either instruction tuned 490

or not. We should note that the conclusions we 491

made on the simplified setting may not completely 492

extend to the realistic settings due to differences 493

of data complexity and scales. However, we can 494

still see some consistent results, which indicates 495

some universality of the clustering phenomenon. 496

We hope our analysis on both the simplified and 497

realistic settings can shed some light on understand- 498

ing the inductive biases of the Transformer-based 499

LLMs for instruction following. 500

4 Related Work 501

4.1 Instruction Following 502

Making LLMs follow user intention specified in 503

instructions is important for making them more 504

truthful and less toxic. Many efforts has been made 505

to achieve this goal (Hill et al., 2020; Zhang et al., 506

2023; Ouyang et al., 2022; Rafailov et al., 2023). In 507

our work, we focus on studying the hidden mecha- 508

nism and inductive biases of the Transformer-based 509
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CLMs to learn instruction following in a general510

and simplified setting, rather than developing a511

more advanced instruction-following method.512

4.2 Functional Vectors513

Recent works (Todd et al., 2023; Hendel et al.,514

2023) present compelling evidence of function vec-515

tors that store task related information in in-context516

learning. While in-context examples can be viewed517

as a specific type of instructions, our work primar-518

ily focuses on conducting analysis based on more519

general textual instructions rather than in-context520

examples. Further, our study extends to analyzing521

the learning dynamics of models, rather than solely522

focusing on trained models.523

4.3 Mechanistic Interpretability524

The primary objective of mechanistic interpretabil-525

ity is to reverse engineer model behaviors (Olah526

et al., 2020; Elhage et al., 2021; Nanda et al., 2023;527

Meng et al., 2022; Hernandez et al., 2023; Geva528

et al., 2023; Conneau et al., 2018; Ilharco et al.,529

2022). Similar to many of the works in this area,530

we conduct studies based on a synthetic task and531

data in order to gain better controllability of the532

experiments and perform more in-depth analysis.533

4.4 Clustering in Transformers534

Some studies also explore clustering phenomena535

within the Transformer model (Chen et al., 2021;536

Reif et al., 2019; Geshkovski et al., 2023; Thomp-537

son and Mimno, 2020). However, they did not538

specifically focus on the instruction-following set-539

ting and conducted analysis mainly on trained mod-540

els. Geshkovski et al. (2023) primarily concentrate541

on studying clustering among tokens within a se-542

quence. In contrast, our clustering analysis focuses543

on identifying clustering structures among different544

sequences.545

5 Conclusion546

In this work, we introduce a simplified instruction-547

following task and construct synthetic datasets to548

analyze a Transformer-based CLM model. From549

the simplified setting, we provide experimental evi-550

dence supporting the notion that the model encodes551

task-specific information through clustering in its552

hidden space, and demonstrate that this clustering553

evolves continuously during the learning process.554

Additionally, we highlight the advantages from the555

clustering phenomenon for the model to handle un-556

seen instances. We also further verify the existence557

of the clustering phenomenon we discovered from 558

the simplified setting on a realistic setting. The 559

inductive biases uncovered and analyzed in this 560

study offer new insights into Transformer-based 561

CLM models and shed light on their remarkable 562

instruction-following capabilities. Furthermore, 563

this newfound understanding can inspire the devel- 564

opment of more advanced algorithms to enhance 565

LLM capability to effectively follow human instruc- 566

tions. 567

6 Limitations 568

At present, our study is confined to a simplified 569

task and synthetic dataset along with specific data 570

distributional assumptions. Expanding the analy- 571

sis to encompass a broader range of diverse and 572

realistic distributional assumptions on data is an 573

avenue for future exploration. We anticipate that 574

our study can provide insights into Transformer’s 575

hidden mechanisms and inductive biases, serving 576

as a foundational starting point and offering direc- 577

tions for analysis on larger scales. It is conceivable 578

that our findings may have broader applicability 579

and could be validated across a wider array of sce- 580

narios beyond our simplified instruction-following 581

tasks. Scaling up our analysis to encompass more 582

complex and realistic scenarios is an area we plan 583

to explore in future research endeavors. 584
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A Simplified Setting740

To construct data for the synthetic instruction-741

following task under the simplified setting, we742

firstly sample a task function consisting of a num-743

ber of unique mappings. For each mapping, we744

sample two symbols from a task symbol vocab-745

ulary to form a mapping. We enforce that no746

two functions share a mapping. Next, we sam-747

ple instructions for each task based on a regular748

expression. Regular expressions are sequences of749

characters that define a search pattern. They are750

widely used in computing for tasks such as text pro-751

cessing, string manipulation, and pattern matching.752

Regular expressions consist of normal characters753

(like letters and digits) and special characters (also754

known as metacharacters) that have special mean-755

ings. These metacharacters allow you to specify756

rules and conditions for matching patterns within757

text. We use regular expression reversely by sam-758

pling a string from a search pattern. To sample a759

regular expression, we first sample a number of760

metacharacters and then sample normal characters761

from an instruction vocabulary as their arguments762

and concatenate them together as a regular expres-763

sion. For computational efficiency, we build a train-764

ing subset, validation set and hard examples from a765

subset of tasks by randomly selecting a number of 766

instructions sampled from all of the distributions 767

associated with each of the task. Please refer to 768

Table 3 for related hyperparameters. We emulate 769

sampling from different distributions by sampling 770

from different regular expressions as described in 771

Section 2.2. 772

We present the statistics of the sythetic 773

instruction-following dataset in Table 2. 774

B More on Clustering Analysis 775

In this work, we use extrinsic evaluation for our 776

clustering analysis. Extrinsic evaluation of clus- 777

tering refers to assessing the quality of clustering 778

results by comparing them to ground truth. Ground 779

truth data refers to labeled data that indicates the 780

class or cluster to which each data point belongs. 781

We utilizes three widely used evaluation metrics: 782

F1, adjusted rand index and adjusted mutual infor- 783

mation. 784

F1 Score: The F1 score combines both precision 785

and recall into a single value, making it a useful 786

measure of a model’s accuracy. The formula for 787

the F1 score is 2 × precision×recall
precision+recall . The F1 score 788

ranges from 0 to 1 with higher values indicating 789

better agreement to the ground truth. 790

Adjusted Rand Index (ARI): ARI is a measure 791

of the similarity between two clustering results. It 792

considers all pairs of samples and counts pairs that 793

are assigned to the same or different clusters in 794

both the true and predicted clusterings. ARI ranges 795

from -1 to 1, where 1 indicates perfect clustering 796

agreement, 0 indicates clustering results are ran- 797

dom, and negative values indicate less agreement 798

than expected by chance. 799

Adjusted Mutual Information (AMI): AMI 800

is another measure used to evaluate the quality of 801

clustering. It quantifies the amount of information 802

obtained about one clustering from knowing the 803

other, adjusting for chance. Like ARI, AMI ranges 804

from -1 to 1, where higher values indicate better 805

agreement between clusterings. 806

C Hyperparameters 807

Tables 3 shows the hyperparameters of the data 808

generation process. Tables 4 contain the hyperpa- 809

rameters of our Transformer model and its training 810

process. T-SNE related hyperparameters are listed 811

in Table 5 812

10



Setting Set Size
Simplified Training 7,300

Training subset 180
Validation 315

Realistic Testing 8,800

Table 2: Data Statistics of both simplified and realistic settings. The size of a data set is quantified by its number of
instances. Only testing set is available for the realistic setting since we use pre-trained models instead of we training
and validating a model in this setting.

Hyperparameter Value
Number of tasks 50
Maximum number of instruction distributions per task 6
Minimum number of instruction distributions per task 1
Number of instructions per distribution 10
Number of mappings per task 5
Number of tasks in training subset 5
Number of instructions per distribution in the training subset all available
Number of tasks in validation set 10
Number of instructions per distribution in the validation set 3
Number of different tasks in hard examples 5
Number of instructions per distribution in hard examples 3
Size of the task symbol vocabulary 25
Size of the instruction symbol vocabulary 35
Maximum number of metacharacters per regular expression 3
Minimum number of metacharacters per regular expression 1
Maximum number of characters per metacharacters 10
Minimum number of characters per metacharacters 3

Table 3: Hyperparameters used for the data generation process.

Hyperparameter Value
Learning rate 1E-4
Number of epochs 200
Optimizer AdamW
Max gradient normM 1.0
validation criterion Task accuracy
Scheduler Cosine Annealing
Number of layers 6
Number of heads 8
Hidden dimension 768
feedforwark network dimension 1024
droptout 0.2

Table 4: Hyperparameters related to our model in the main experiment and its training.

Hyperparameter Value
Number of Components 3
Perplexity 10
Number of iterations 2,000
Metric Euclidean
Initialization method PCA

Table 5: T-SNE Hyperparameters (Van der Maaten and Hinton, 2008).
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Model Hidden Dimension Parameter Count
Our model 768 768 23 million
Our model 32 32 55 thousand
Our model 2048 2048 202 million
LLaMa-7B 4096 7 billion
LLaMa-13B 5120 13 billion
LLaMa-2-7B-instruct 4096 7 billion
GPT-J-6B 4096 6 billion
Instruct-GPT-J-6B 4096 6 billion

Table 6: Sizes of models used in this work in terms of parameter counts and size of hidden dimension. The names
of our models trained in the simplified setting end with their hidden dimension sizes.

D Natural Instruction-Following Task813

D.1 ChatGPT Prompt Template814

We use the following prompt template to query815

ChatGPT to generate different expressions of a task816

descriptions: "Rewrite 50 different expressions of817

XXX", where "XXX" is a task description.818

D.2 Realistic Setting819

See Table 7 for the task descriptions used for con-820

structing the dataset for the realistic setting as de-821

tailed in Section 3.4 and data statistics in Table822

2.823

E More Results824

We present results obtained on various models here.825
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Category Task Description
Translation French to English Given a word in French, translate to English

English to French Given a word in English, translate to French
Spanish to English Given a word in Spanish, translate to English
English to Spanish Given a word in English, translate to Spanish
Italian to English Given a word in Italian, translate to English
English to Italian Given a word in English, translate to Italian

Linguistic Antonyms Given an English adjective, output an antonym
plural to Singular Given an English noun in plural form, output

the singular form
Singular to plural Given an English noun in singular form, output

the plural form
Present to gerund Given an English verb in present simple tense,

output the corresponding gerund form
Present to past perfect Given an English verb in present simple tense,

output the corresponding verb in past perfect
Present to past simple Given an English verb in present simple tense,

output the corresponding verb in past simple
Knowledge Country to Capital Given a name of a country, output the name of

the capital city
Location to continent Given a name of a location, output the name of

its continent
Religion Given a name of a location or a person, output

the associated religion
Person to Language Given a name of a person, output their native

language

Table 7: Task descriptions provided by (Hendel et al., 2023)
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(a) Training subset

(b) Validation set

Figure 4: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout
the training process: Different columns corresponds to uses of different identities as labels.
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(a) Training subset

(b) Validation set

Figure 5: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout
the training process: The results are shown for the model with 32 hidden dimension. We train this model for 500
epochs due to its slow convergence. Different columns corresponds to uses of different identities as labels.
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(a) KNN Percentage (b) KNN Accuracy

Figure 6: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same task
identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the
training process. The results are shown for the model with 2048 hidden dimension.
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(a) Training subset

(b) Validation set

Figure 7: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout the
training process: The results are shown for the model with 2048 hidden dimension. Different columns corresponds
to uses of different identities as labels.
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(a) KNN Percentage (b) KNN Accuracy

Figure 8: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same task
identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the
training process. The results are shown for the model with 32 hidden dimension.
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