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Abstract

Quantitative susceptibility maps from magnetic resonance
images can provide both prognostic and diagnostic infor-
mation in multiple sclerosis, a neurodegenerative disease
characterized by the formation of lesions in white matter
brain tissue. In particular, susceptibility maps provide ad-
equate contrast to distinguish between “rim” lesions, sur-
rounded by deposited paramagnetic iron, and “non-rim”
lesion types. These paramagnetic rim lesions (PRLs) are
an emerging biomarker in multiple sclerosis. Much effort
has been devoted to both detection and segmentation of
such lesions to monitor longitudinal change. As param-
agnetic rim lesions are rare, addressing this problem re-
quires confronting the class imbalance between rim and
non-rim lesions. We produce synthetic quantitative suscep-
tibility maps of paramagnetic rim lesions and show that
inclusion of such synthetic data improves classifier per-
formance and provide a multi-channel extension to gener-
ate accompanying contrasts and probabilistic segmentation
maps. We exploit the projection capability of our trained
generative network to demonstrate a novel denoising ap-
proach that allows us to train on ambiguous rim cases and
substantially increase the minority class. We show that both
synthetic lesion synthesis and our proposed rim lesion la-
bel denoising method best approximate the unseen rim le-
sion distribution and improve detection in a clinically inter-
pretable manner. We release our code and generated data
at https://github.com/agr78/PRLx~GAN upon
publication.

tdn2001@med.cornell.edu

yiwang@med.cornell.edu
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Figure 1. Example of MS patient with lesions depicted on qualita-
tive ToFLAIR and whole brain QSM. Lesions appearing on both
contrasts are indicated by arrows.

1. Introduction

1.1. Background

Multiple sclerosis (MS) is a debilitating neurodegenerative
disease [40] with a rising global presence [60]. MS is the
most common demyelinating disorder [62] and there is cur-
rently no cure [15], though a variety of disease-modifying
therapies exist to slow symptom progression and improve
quality of life [48].

The efficacy of these therapies is measured by the
appearance of gadolinium-enhancing lesions in brain
white matter as identified on magnetic resonance imaging
(MRI) [19]. The importance of MRI in both MS diagnosis
and prognosis [30] motivates the development of automatic
lesion detection and segmentation algorithms to address this


https://github.com/agr78/PRLx-GAN

growing clinical need [10].

1.2. Imaging techniques

Much progress on the understanding of MS has been
gained through the qualitative Tyw and ToFLAIR MRI
contrasts [13]. However, longitudinal studies increasingly
rely on quantitative susceptibility maps (QSM) as robust
biomarkers in MS disease progression [7, 14, 58, 68]. Of
critical importance is the visualization of paramagnetic rim
lesions linked to symptom severity [55].

Due to the iron depositions surrounding the rim of these
lesions [21], susceptibility contrasts like QSM are required
to differentiate between lesion subtypes [22]. Co-registered
T>FLAIR and whole brain QSM [46] are shown in an ex-
ample MS patient in Figure 1, with lesions indicated by the
white arrows. Iron is involved in a variety of neuroinflam-
matory diseases and deposition often increases with inflam-
matory response [61]. Activated immune cell microglia at
the edge of the lesion are the primary source of iron, gen-
erating contrast between the paramagnetic rim and diamag-
netic lesion core [25].

As QSM directly measures small changes in the ap-
plied magnetic field arising from paramagnetic or diamag-
netic tissue content, it is a reliable method to detect rim le-
sions [45]. Figure 2 illustrates the need for QSM to enable
rim identification as compared to ToFLAIR.

1.3. Lesion class imbalance

Though paramagnetic rim lesions differentiate between MS
and other neurodegenerative disorders with high speci-
ficity [38], only 10% of all MS lesions are estimated to be
rim lesions [43], introducing a class imbalance problem for
detection and segmentation algorithms.

Despite consensus [4] on rim lesion characteristics, am-
biguous cases remain when expert readers disagree on these
criteria. It is desirable to “denoise” such lesions in order to
make use of all possible rim lesion data.

1.4. Contributions

We present a novel sample denoising approach based on
generated synthetic quantitative susceptibility maps of para-
magnetic rim lesions. We exploit the projection capabil-
ity [8] in our trained generative network to “denoise” am-
biguous samples by recovering unambiguous synthesized
samples. We evaluate the effect of training with said data
in the rim classification problem and demonstrate improve-
ment in trained detectors when denoised synthetic data is
included. This approach enables us to train with noisy or
ambiguous labels by recovering their synthetic analog from
the trained generator network. To our knowledge, our pro-
posed method is the first to allow ambiguous or contested
rim lesion labels to augment the rare, unambiguous rim
lesion class during rim detection. Finally, we provide a
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Figure 2. Example of rim (top) and non-rim (bottom) lesion visu-
alization on ToFLAIR (left) and QSM (right). Note that rim le-
sions can only be differentiated from non-rim lesions on QSM. The
rim lesion is composed of a hypointense core (black arrow) and
hyperintense rim (white arrow), contrast to a hyperintense non-
rim lesion.

multi-contrast extension to enable generation of suscepti-
bility maps, ToFLAIR images, and probabilistic rim lesion
segmentations, broadening the utility of our framework.

2. Related Works
2.1. Synthetic MRI

Synthetic MRI data ranges from classical representations
generated via signal models [2, 5] to more recent deep
learning approaches aiming to estimate mappings over syn-
thetic data that are applicable to ¢n vivo data [17, 42] and
across various contrasts and resolutions [24]. Given pre-
trained models and approximate source and target distri-
butions [63], transfer learning approaches can address the
challenges of gathering sufficient MRI data [33, 39, 57].

Another subset of solutions focus on generating syn-
thetic data for small datasets [53] and label scarcity aris-
ing from new [59] or lethal [1] pathologies. Rim segmenta-
tion efforts have addressed the class imbalance problem by
oversampling the minority class in the latent space [9, 66],
included in our comparison.

Synthetic lesions in multiple sclerosis have been gen-



erated [49] using a variational autoencoder on qualitative
TFLAIR. Like our work, this model aims to generate syn-
thetic MS lesions, differing in that the whole brain learned
mapping is between healthy cases and MS patients on qual-
itative ToFLAIR.

We train a generative adversarial network [16] (GAN)
with the goal of learning the mapping from random noise
initializing the generator model to synthetic, quantitative,
paramagnetic rim lesions. We do this using susceptibility
images as rim lesions are differentiable from non-rim le-
sions only on QSM.

2.2. Latent projection denoising

From our choice in architecture arises an opportunity to re-
cover ambiguous or “noisy” rim lesions by projecting their
latent vectors into the latent space of a pretrained GAN
synthesizing only unambiguous rim lesions, closely related
to GAN inversion [64]. Namely, these ambiguous cases
are lesions where expert raters disagree on the label. The
presence of label noise has been addressed by conditional
GANSs [41, 54] (¢cGAN), which are trained on both majority
and minority class labels.

Given the data imbalance between rim and non-rim le-
sions, we focus on the minority class rather than the ma-
jority class and we show its inclusion nearly doubles the
required training time. We seek to make use of ambiguous,
noisy real rim lesions by training the generator only the un-
ambiguous rim lesion minority class. We use the projection
into the learned latent space from unambiguous (or noise-
less) rim lesions to recover denoised lesions. Other works
related to this effort include modeling label noise as a latent
space shift [23], a technique applied to correct classifica-
tions rather than augment data.

Also related is estimation of the noise transition ma-
trix [3] to calibrate classifiers trained on noisy labels, which
requires some understanding of the noise distribution. Per-
haps most relevant is the use of GAN inversion for under-
sampled MRI reconstruction [31], which deals with the
presence of instrument noise rather than mitigation of more
subjective label noise.

3. Method

3.1. Dataset

A group of 256 MS subjects (mean age, 46.2 £ 11.8 years,
79 men (30.8%), 177 women (69.2%)) were imaged on
a 37 Magnetom Skyra scanner. An axial 3D multi-echo
GRE sequence was used to acquire phase data for QSM
with FOV = 24.0 cm, ZEL = 6.28/4.06 ms, 8 echos,
Tr = 40 ms, voxel size 0.4 x 0.4 x 1 mm?3.

QSM was reconstructed using referenced morphology-
enabled dipole inversion (MEDI+0) [34, 35]. The dataset

was prepared as follows [37]. Each lesion on QSM was

cropped to an image patch of 64 x 64 x 24 voxels. Two ex-
pert readers independently created rim lesion ground truth
labels according to the recent consensus statement [4].

Lesions were classified as “rim” only if both readers
agreed on their paramagnetic rim lesion status, otherwise
they were classified as “non-rim”. Hyperintense rim areas
of each identified lesion were manually traced and checked
by the same two readers. Critical to our denoising approach
is the definition of an ambiguous rim lesion, where only
one of the two expert raters described the lesion as a para-
magnetic rim lesion, and the label is noisy.

3.2. Radiologist assessment

An expert radiologist guided by the recent rim lesion con-
sensus [4] reviewed 110 uncurated example slices of real
and synthetic paramagnetic rim lesions. In two separate
experiments, the lesions were classified as “real” or “syn-
thetic” and categorized as “rim” or “non-rim”.

3.3. Classifier network

To evaluate the improvement in classification with added
synthetic data, a simple convolutional neural network clas-
sifier for binary classification was implemented [32]. The
network consisted of 6 convolutional layer units including
pooling and batch normalization operations, followed by a
rectified linear unit (ReLU) activation function. The classi-
fier was trained for 25 epochs with the Adam optimizer with
learning rate 10~ using the cross-entropy loss function.

3.4. Generative network

StyleGAN2 with adaptive discriminator augmentation
(StyleGAN2-ADA, shortened in this work for brevity to
“ADA-GAN”) [28] was trained via Frechet Inception Dis-
tance [20] (FID) minimization with the Adam optimizer
(learning rate 2.5 x 1073, first and second moment decay
rates 1 = 0.9, B2 = 0.99, respectively) using overfitting
heuristic 7; = 0.6. The training dataset contained 200 rim
lesions and 400 non-rim lesions. For testing, 60 rim le-
sions and 120 non-rim lesions were withheld from both the
generator and classifier. Training required 32 hours with
8 NVIDIA GeForce RTX 2080 graphics cards to generate
25,000 synthetic rim lesions. An overview of the architec-
ture is given in Figure 3.
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Figure 3. Schematic of the GAN with adaptive discriminator aug-
mentation blocks used to generate synthetic rim lesion data from
limited datasets. The architecture consists of generative and dis-
criminative networks g(z,0) and d(., ¢) and receives inputs real
images x and latent variable z ~ A(0, 1). Adapted from [28].

3.5. Denoising approach

We exploit the projection capability of the chosen net-
work [27] to create synthetic denoised samples from am-
biguous or noisy samples X. We note that this particular
application is not aiming to remove instrument or random
noise within the image, but noise in the labeling process that
results in ambiguous lesions where raters disagree. As such,
the ambiguous rim lesion image is transformed to be un-
ambiguous and the label is “denoised”. Denoised samples
x = s(w*, %) are computed from the synthesis network s
module in the generator network g. The latent projection
w* is the “closest” intermediate latent space vector to noisy
image X features, wx, supported by trained generator g, de-
scribed in Figure 4. This optimal latent space vector w* is
obtained as in [29]

w* = argmin,, Lp(X, s(w,05)) + « Z Ln(ni,n;) (1)
3
Where Lp is the perceptual loss [67] over extracted fea-
tures [51] at each layer and Ly is the noise regulariza-
tion term (scaled by parameter ) from added noise vec-
tor n at original resolution ¢ and downsampled resolution j,
n; ~ N(O, I), and nj.

Equation 1 is solved using the Adam optimizer over 1000
iterations with regularization o = 10°, first and second mo-
ment decay rates 51 = 0.9, 82 = 0.99, and a scheduled
learning rate initialized at 10~!. Rather than augmenting
the dataset with synthetic rim lesions x’ mapped from ran-
dom noise, we augment with the denoised projections X of
noisy samples X, related by X = s(w™*, 0%) from the gener-
ator g with weights 8*. An overview is depicted in Figure 5.
We term this augmentation to increase the minority sample
class via latent projection denoising as “ADA-GAN-LD”.

Training on
noiseless
labels

Unambiguous
rim lesions

Improved rim
lesion
detection

Classifier

Projection of
ambiguous rim
lesion features
Ambiguous rim wy to
lesion unambiguous
(noisy labels) latent space W
after training

Augmentation

with denoised,

unambiguous
rim labels

Figure 4. Outline of denoising approach, beginning with genera-
tive model training on unambiguous rim lesion x. After training,
features of ambiguous rim lesions (with noisy labels) are extracted
to latent variable wx and projected onto the unambiguous latent
space W. Finally, the real rim lesion training data is augmented
with these ”denoised” rim lesions and the classifier performance is
seen to improve.

3.6. Ambiguous rim lesion denoising

We apply the aforementioned denoising projection in the la-
tent space of ADA-GAN to transform 100 ambiguous rim
lesions - after training only on unambiguous rim lesions.
We compare the resulting ADA-GAN-LD dataset to a num-
ber of other possible augmentations described in later sec-
tions. We also combine synthetic data and denoised rim
lesions in an augmentation referred to as “ADA-GAN+LD.

3.7. Conditional generative network

The standard network was retrained with a conditional
GAN with “rim” and “non-rim” labels. The training dataset
above was expanded to include 400 non-rim lesions and re-
quired 48 hours of computing time with 8 NVIDIA GeForce
RTX 2080 graphics cards to generate 25, 000 synthetic rim
and non-rim lesions.

3.8. Augmentation comparison

The generative model, ADA-GAN, was compared to
simple affine transformation augmentation (“Affine”) and
the learned synthetic minority oversampling technique,
“DeepSMOTE” [9] by training separate classifier networks
on each augmentation. An ablation study was also per-
formed to find the optimal combination of synthetic, con-
ditioned synthetic and/or denoised data. The FID was com-
puted between each augmented training dataset distribution
and the unseen test rim lesion distribution.

3.9. Clinical interpretation

To improve detection explainability, we produce class acti-
vation maps [50, 69] (CAMs) from the unaugmented classi-
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Figure 5. A simplified representation (adapted from [27]) of the
mapping m and synthesis s modules used to enable denoising via
the trained generative network g. Given an ambiguous rim X le-
sion, denoising occurs via latent projection P after feature extrac-
tion by pretrained network f. The denoised projection w* results
from minimizing the perceptual loss Lo term (Lp) with added
noise regularization (Equation 1). After training with the archi-
tecture in Figure 3, the synthesis module s decodes the denoised
projection x corresponding to the ”closest” unambiguous rim le-
sion in the latent space }V, enabling the augmentation in Figure 4.

fier and the classifier augmented with our proposed denois-
ing method.

3.10. Multi-contrast generalization

As paramagnetic rim lesion detection methods often rely on
both susceptibility contrasts and ToFLAIR [36], we extend
the generative model and denoising approach with a con-
trast dimension comprised of susceptibility, rim mask, and
T>FLAIR channels.

In particular, the inclusion of a rim lesion mask or prob-
abilistic map allows the synthetic and denoised data to
be used in training segmentation algorithms. The stan-
dard network was retrained with this extension and re-
quired 34 hours of computing time with 8 NVIDIA GeForce
RTX 2080 graphics cards to generate 25, 000 multi-contrast
maps.

4. Results

4.1. Lesion distribution

From the cohort, a total of 260 rim lesions (3.3%) and 7720
non-rim lesions (96.7%) were identified. Another 177 le-
sions were identified as “rim” by merely one of the two
expert readers. Cohen’s kappa agreement between the two
readers is 0.73 (substantial agreement). Out of 256 patients,
92 (35.9%) had at least one rim lesion - 35 (13.7%) had
1 rim lesion, 18 (7%) had 2 rim lesions, and 36 (14.1%)
had from 3 to 12 rim lesions. The ambiguous rim lesions
were defined as the 177 paramagnetic rim lesions identified

Dataset Rim lesion fraction Real image fraction
Real rims 0.31 0.55
Synthetic rims 0.4 0.29

Table 1. Our expert radiologist estimated nearly half (0.4) of the
synthetic rim lesions to be a true rim lesion as opposed to about
one third (0.31) of the real rim lesions. In a separate experiment,
and nearly a third (0.29) of the uncurated synthetic lesions were
estimated to be real images alongside 0.55 of the real rim lesions.

Augmentation FID from test rim lesions
Real non-rim only 46.35
DeepSMOTE rims 36.48
Real rim only 34.49
ADA-GAN rims 34.36
ADA-GAN+LD rims (ours) 34.24
ADA-GAN-LD rims (ours) 34.17

Table 2. Computed FID between each training dataset distribu-
tion after augmentation and the unseen test rim lesion distribution.
As expected, the majority non-rim lesion distribution is the fur-
thest from the minority test rim lesion distribution. Real rim le-
sions, DeepSMOTE augmentation, and ADA-GAN augmentation
all bring the training dataset of rim lesions closer to the unseen
test rim lesion distribution, with our denoising approach minimiz-
ing the FID.

where one of the two expert raters classified the lesion as a
rim lesion.

4.2. Radiologist grading

From 55 real and 55 synthetic lesions, an expert radiologist,
estimated nearly half (0.4) of the synthetic rim lesions to
be true rim lesions as opposed to about one third (0.29) of
the real rim lesions. In a separate experiment, nearly a third
(0.31) of the uncurated synthetic lesions were estimated to
be real images alongside just over half (0.55) of the real rim
lesions. We remark that the overall fraction of rim lesions
identified is a result of grading lesions over a single slice
rather than the entire 3D volume.

We interpret these findings to suggest that convincing
synthetic rims capture the less ambiguous features in rim
definition, leading to a higher fraction of synthetic cases
being classified as rim lesions. An example of an realis-
tic synthetic rim (identified as real by an expert radiologist)
and a similar real rim lesion is given in Figure 6.

4.3. Rim lesion denoising

Our denoising method allowed us to recover 177 additional
rim lesions to expand the minority class from 260 to 437
cases. This augmentation increased our minority class la-
bels by 68%. We projected 100 noisy rim lesions X into
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Figure 6. Typical real rim lesions compared to examples of syn-
thetic rim lesions classified as real rim lesions.

the latent space W of the generator g trained on only unam-
biguous rim lesions x. We augment the classifier rim lesion
training data with these denoised rim lesion samples and see
optimal performance. Denoised example rim lesions X are
given in Figure 7.

We notice clinically interpretable changes to the de-
noised image X when decoded from the unambiguous la-
tent space by the synthesizer module s, such as defined hy-
pointense lesion cores and the removal of obscuring arti-
facts.

4.4. Classifier performance

Evaluating the FID in Table 2 reveals the intuitive result
that the majority non-rim lesion distribution is the furthest
from the minority test rim lesion distribution. Real rim le-
sions without augmentation, DeepSMOTE augmentation,
and ADA-GAN augmentation draw the training distribution
of rim lesions closer to the unseen test rim lesion distribu-
tion, with our denoising augmentation approach minimizing
the FID. Augmenting the training data with 100 synthetic
rim lesions (“ADA-GAN”, “DeepSMOTE”) improved the
classifier performance as seen in Table 3. In particular, ac-
curacy and sensitivity were increased while the precision
remained comparable to the dataset with no augmentation
during training (“None”). Note that augmenting by sim-
ple random affine transformations (“Affine”) to increase the
number of rim lesions (and replace an equal number of non-
rim lesions) slightly improves classifier accuracy. We in-

Denoised rim lesion

Ambiguous “noisy” rim
lesion

Figure 7. An ambiguous, “noisy” rim lesion x and the denoised
projection x. Note the hypointensity (black arrows) at the de-
noised rim core not present in the original ambiguous rim lesion.
Hyperintense rims are annotated with white arrows.

clude our denoising approach (“ADA-GAN-LD”) to trans-
form “ambiguous rims”, which degrade classifier perfor-
mance, into the unambiguous rim latent space, resulting in
optimal classifier results.

4.5. Ablation study

We compare the standard ADA-GAN architecture to its
conditional variant (ADA-cGAN) by comparing training
loss curves to determine the effect of training the gener-
ator on both rim and non-rim lesions. We note that the
conditional generative model, ADA-cGAN, converges to a
slightly lower FID (8.79 compared to 14.20) during training
as seen in Figure 8. We also compare our denoising method
(ADA-GAN-LD) and combine the denoised and synthetic
data (ADA-GAN+LD). We find that all variations of im-
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Figure 8. Conditional and standard GAN training curves. Inclu-
sion of the non-rim label allows the training loss to converge to a
slightly smaller FID.

Augmentation Accuracy Precision Sensitivity
Ambiguous rims 0.78 0.93 0.83
None 0.79 0.93 0.85
Affine 0.83 0.92 0.83
DeepSMOTE 0.84 0.92 0.91
ADA-GAN-LD (ours) 0.87 0.91 0.95

Table 3. Classifier performance using various training datasets. In-
cluding the noisy label ambiguous rim in the minority rim class re-
sults in a slight decrease in performance. All augmentation strate-
gies improve test results, with our denoising approach improving
accuracy and sensitivity and offering comparable precision.

Augmentation Accuracy Precision Sensitivity
None 0.79 0.93 0.85
ADA-GAN 0.85 0.91 0.93
ADA-GAN+LD (ours) 0.85 0.92 0.92
ADA-cGAN 0.86 0.91 0.93
ADA-GAN-LD (ours) 0.87 0.91 0.95

Table 4. Classifier performance during ADA-GAN ablation study.
We compare the addition of synthetic data, synthetic and denoised
data, conditional synthetic data, and our proposed denoising ap-
proach as possible classifier augmentations. All augmentations
improve classifier performance, particularly the conditional aug-
mentation and the inclusion of denoised ambiguous rim lesions.

prove classifier performance, particularly our proposed pro-
jection denoising augmentation. Including the denoised rim
lesions improves classifier accuracy and sensitivity and of-
fers comparable precision as seen in Table 4.

Input rim
lesion QSM

Unaugmented Denoising CAM
(ours)

CAM

Figure 9. Improved interpretability of class activation maps when
using the denoised rim lesion data augmentation, note the shift in
intensity from the right corner to the lesion rim (black arrow) and
an increase in intensity near the lesion rim (white arrow).

4.6. Class activation maps

Both CAMs in Figure 9 show an emphasis on surround-
ing white matter, which creates contrast in comparison to
demylinated lesions. We notice shift in intensity from the
right corner to the lesion rim and note our latent projection
denoising augmentation helps identify clinically relevant ar-
eas of the lesion. In the map from the classifier trained with
our augmentation, both the lesion itself and the hyperin-
tense rim region are highlighted.

4.7. Multi-contrast extension and segmentation

Combining the susceptibility map, ToFLAIR and param-
agnetic rim lesion mask allows realistic generation of new
samples as seen in Figure 10. We note the realistic lesion
depiction across each contrast as ToFLAIR lesions typi-
cally bound the appearance of the lesion on susceptibility
maps. Further, the ToFLAIR lesion is uniformly hyper-
intense, as expected. The generated probabilistic map cor-
rectly avoids the hypointense lesion core and correctly iden-
tifies the paramagnetic rim. Additionally, a variety of rim
lesions are well-represented - both rims encircling around
a half of the core circumference (right column) and its en-
tirety (left column) are realistically depicted in both sus-
ceptibility map and ToFLAIR images with accurate proba-
bilistic segmentation maps.
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Figure 10. Multi-contrast synthetic example including the lesion
susceptibility, probabilistic map, and ToFLAIR images.

5. Discussion

5.1. Label denoising and class imbalance

In the medical domain, prognostic tools are commonly
marred by some form of rater noise, resulting in class uncer-
tainty [26] or varied numerical outcomes [47]. The projec-
tion denoising approach we propose only requires access to
some unambiguous or noiseless cases to learn a latent space
upon which the problematic sample can be projected and
increases our minority class dataset by nearly 70%. Though
this is an active area of research [56], the variation in qual-
ity of snythesized data can require extensive curation [18].
Our latent projection denoising approach produced an aug-
mented distribution closer to the unseen test rim lesion dis-
tribution than the purely or combined synthetic augmenta-
tions, which may alleviate curation requirements. Future
investigation may focus on latent projection denoising into
the conditional latent space, which demonstrated improved
convergence during training.

5.2. Class rebalancing

We supplement training datasets here with 100 additional
lesions for each augmentation method compared but note
that the optimal extent of rebalancing with synthetic data
is a current topic of interest [65]. Future investigation may
focus on the optimal fraction of synthetic training data for
the rim lesion detection problem.

5.3. Multi-constrast extension

Jointly generating susceptibility, ToFLAIR, or other con-
trasts alongside probabilistic segmentation masks is bene-
ficial beyond the imbalanced class problem. When used
in conjunction with augmentation techniques, our method
can enable deep learning approaches on small and/or in-
complete medical imaging datasets where data collection is
slow, laborious and expensive.

5.4. Applications

Other susceptibility contrasts such as source separa-
tion [12], myelin imaging [70], and oxygen extraction frac-
tion [52] have clinical value in the treatment of multiple
sclerosis. We note that extension to these maps using our
proposed multi-contrast method is feasible. Our proposed
framework can be generalized into higher dimensions to ac-
commodate additional spatial and/or temporal data, and fu-
ture work should focus on addressing the need [6, 11, 44]
for additional training data required for such applications.

6. Conclusion

We examine the quality of synthetic samples via ex-
pert radiologist assessment and show that realistic rim
lesions can be acquired from generative modeling on
multiple contrasts. We demonstrate the effectiveness
of our proposed latent projection denoising of ambigu-
ous rim lesions by comparing the FID between dif-
ferent training and unseen test datasets. We further
show the improvement in paramagnetic rim lesion detec-
tion on QSM with the inclusion of this denoised data
and observe increased interpretability of the classifier
class activation maps, indicating clinically relevant predic-
tions resulting from augmentation with realistic synthetic
data.
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