Machine Learning for Genomics Explorations workshop at ICLR 2024

ACCELERATEDLINGAM: LEARNING CAUSAL DAGS
AT THE SPEED OF GPUS

Victor Akinwande J. Zico Kolter
Carnegie Mellon University Carnegie Mellon University, Bosch Center for Al
ABSTRACT

Existing causal discovery methods based on combinatorial optimization or search
are slow, prohibiting their application on large-scale datasets. In response, more
recent methods attempt to address this limitation by formulating causal discovery
as structure learning with continuous optimization but such approaches thus far
provide no statistical guarantees. In this paper, we show that by efficiently paral-
lelizing existing causal discovery methods, we can in fact scale them to thousands
of dimensions, making them practical for substantially larger-scale problems. In
particular, we parallelize the LINGAM method, which is quadratic in the num-
ber of variables, obtaining up to a 32-fold speed-up on benchmark datasets when
compared with existing sequential implementations. Specifically, we focus on the
causal ordering sub-procedure in DirectLiNGAM and implement GPU kernels to
accelerate it. This allows us to apply DirectLiNGAM to causal inference on large-
scale gene expression data with genetic interventions yielding competitive results
compared with specialized continuous optimization methods.

1 INTRODUCTION

Causal discovery or inference aims to learn causal interactions in a data-driven way (Pearl et al.,
2000; Imbens & Rubin, 2015). However, most causal discovery methods need to establish the
causal relationships between every pair of variables in the data, which results in a complexity that is
at least quadratic in the number of variables (Glymour et al.,[2019). For instance, DirectLiNGAM
Shimizu et al.| (2011); [Hyvarinen & Smith| (2013)) works by recursively performing regression and
conditional independence tests between pairs of variables to establish the causal ordering and then it-
eratively regressing each variable on other variables higher in the established causal order. Although
DirectLiNGAM allows for full determination of the causal structure under minimal assumptions of
linearity, non-Gaussian errors, acyclicity, and the absence of hidden confounders, it has a complexity
of O(d®) where d is the number of variables.

To address this scalability limitation, a recent trend in the literature has been to formulate heuristics
combined with continuous optimization or deep learning methods to learn the underlying structure
of the data (Lee et al., |2019; |[Lopez et al.| [2022; Montagna et al 2023). However, care must be
taken when ascribing any causal interpretation to such methods. While these methods enhance
computational efficiency, and allow us to apply causal discovery to large datasets, they rely on
restrictive assumptions, are sensitive to hyper-parameters and more importantly, their identifiability
guarantees are often not established. In-fact, as we show in the sections that follow, NOTEARS
Zheng et al| (2018) - a widely used method cannot recover the underlying structure in a simple
causal DAG. As such, there is a compelling need to explore other avenues to achieve scalability of
causal discovery methods.

In this paper, we describe an implementation of the LiNGAM analysis, which is accelerated by
parallelization on consumer GPUs. We focus on the DirectLiNGAM and VarLiNGAM methods,
but the ideas presented are easily applicable to other LINGAM variants. Parallelization leads to
a 32-fold speed-up over the sequential version, enabling us to apply these methods to large-scale
datasets. We apply DirectLiINGAM to gene expression data with genetic interventions (d ~ 1000).
We observe that there is still a need to explore improved ways to speed up LINGAM on GPUs,

Machine Learning for Genomics Explorations workshop at ICLR 2024

such as better I/O awareness and increasing the proportion of the algorithm that is parallelized. Our
implementation is open-sourced on GitHuﬁH

2 BACKGROUND

We provide a brief overview of Functional Causal Models based methods for learning causal DAGs,
we discuss the GPU execution model and how it is amenable to such methods, and we present the
basic LINGAM analysis and discuss recent methods in the literature that seek to learn DAGs using
heuristics and continuous optimization. See Appendix section[A.T|for introduction on causal DAGs.

2.1 CAUSAL DISCOVERY BASED ON FUNCTIONAL CAUSAL MODELS (FCM)

FCMs represent a causal effect Y as a function of direct causes X, noise ¢, and parameter sets 6,
assuming that the transformation from causes to effects is invertible e.g Eqn. [I] For instance, in
the linear, non-Gaussian acyclic model (LINGAM) |Shimizu et al.| (2006), the causal direction can
be determined when at most one of the noise term or cause is Gaussian. The post-nonlinear (PNL)
causal model extends this by considering nonlinear effects such as sensor or measurement errors,
and is identifiable in most cases |[Zhang & Hyvarinen| (2012). FCMs provide a flexible framework
for causal discovery by capturing the causal asymmetry in the data-generating process and accom-
modates various data distributions. When the exact functional form of the data-generating process
is unknown or in cases with discrete variables and small cardinality, properties of the causal process
may be obscured and precise identification of causal directions remains challenging.

Y = f(X,e61))

2.2 STANDARD LINGAM IMPLEMENTATION

LiNGAM |Shimizu et al.| (2006) is characterized by properties that enable identification of causal
relationships between variables. The observed variables z;, ¢ € {7,...m} in the dataset can be
arranged in a causal order denoted by k(4). This order implies that no later variable in the sequence
causes any earlier variable, forming a recursive structure that can be represented as a DAG. This
property also ensures there are no cyclic relationships between the variables. In addition, the value
of x; is determined linearly by the values of the variables before it in the causal order i.e. z; =
Zk(j)<k(i) 0;;x; + €; + c; where 0;; represent the strength of the causal effect of x; on x;, €; is
the noise term and ¢; is an optional constant term. The final property is that the noise terms ¢; are
mutually independent, continuous random variables with non-Gaussian distributions.

Constrained by these assumptions on the data-generating process, the independence and non-
Gaussianity of e provides valuable information needed to establish the causal direction say given
a pair of variables. This is because we can easily identify independence between the cause and the
error terms. As such, any causal model that is inconsistent with this identification is discarded. We
illustrate this principle in Figure [3] (Appendix). Given data generated according a LINGAM func-
tional causal model as in Eqn.[T} the regression residual can only be independent of the independent
variable in the correct causal direction.

In practice, datasets consist of more than two variables, so we need a general method for estimating
the causal order for datasets of arbitrary dimensions. In|Shimizu et al|(2011), DirectLiNGAM is
presented as a method to achieve this. DirectLiNGAM begins by identifying a variable not caused
by any other variable (termed exogenous) in the data through its independence from the residuals of
multiple pairwise regressions. The effects of this variable are then removed from the other variables
using least squares regression. [Shimizu et al.| (2011) showed that a LINGAM structure also holds
for the residuals of the regression, meaning that the residuals themselves can be treated as variables
in a LINGAM model. In addition, the causal ordering of the residuals corresponds to the causal
ordering of the original observed variables. DirectLiNGAM therefore iteratively applies the same
independence and removal steps to the residuals, finding the “exogenous” residual at each iteration.
By repeatedly identifying and removing the effects of exogenous variables (or residuals), the model

'https://github.com/Viktourl9/culingam

https://github.com/Viktour19/culingam

o =

A wn e W

S © o

W -

Machine Learning for Genomics Explorations workshop at ICLR 2024

Algorithm 1 Causal ordering pseudo-implementation.

X : dataset [m, dim]

U : indices of variables [dim]

_residual: computes the regression residual

_diff mutual_info: computes the difference of the mutual information

def search_causal_order (X, U):
k_list = np.zeros(len(U))
for i in U:

k =0
for j in U:
if 1 =3
xi = X[:, 1]
xj = X[:, 7]
xi_std = (xi - np.mean(xi)) / np.std(xi)
xj_std = (xj - np.mean(xij)) / np.std(x7j)
ri_j = _residual (xi_std, xj_std)
rj_i = _residual (xj_std, xi_std)
mi_diff = _diff_mutual_info(xi_std, xj_std, ri_j, rj_1i)
k += np.minimum(0, mi_diff) «*x 2
k_list[i] = -k

return U[np.argmax (k_list)]

estimates the causal order of the original variables. We show the implementation to identify the
variable at position k(i) in Algorithm|I]

2.3 GPU EXECUTION MODEL

The causal ordering procedure (Algorithm [I)) is the main computational bottleneck of the Di-
rectLiINGAM algorithm, accounting for up to 96% of the overall wall-clock time (see Figure [I).
The pseudo-implementation of the procedure also makes the limitation of DirectLiNGAM, in prac-
tice, glaring. The algorithm needs to compute statistical measures in an inner loop for each pair of
variables in the data. Such computational structure results in a complexity quadratic in the number
of variables making it difficult to apply on large-scale datasets. DirectLiNGAM takes 7 hours to
process a dataset with 1 million observations and 100 variables on a high-performance AMD EPYC
server CPU (see Figure[T).

On a second look, we observe that each variables pair computation is independent of the others.
This independence is a key characteristic that makes an algorithm suitable for parallel processing.
In-fact, based on this, successful attempts to parallelize the algorithm on a super-computer have been
made (Matsuda et al.| 2022). However, GPUs present a more accessible approach and have not be
explored. GPUs can perform the same operation on multiple data-points simultaneously (vectoriza-
tion), and also handle high arithmetic intensity computations. Operations involving accumulations
can also be efficiently parallelized on GPUs by using techniques like parallel reduction, where the
work is divided among multiple threads and then combined to get the final result. This implies vec-
torized computations like the mean and standard deviation can be done much faster and computation
of residuals and mutual information differences for different pairs can be done in parallel batches.
Finally, recent work [Shahbazinia et al.[(2023)) has demonstrated that LINGAM is amenable to GPU
acceleration, although the authors propose using a heuristic to prune the search procedure. This
effectively modifies the algorithm, and the implementation is not available for us to benchmark.

2.4 CONTINUOUS OPTIMIZATION BASED STRUCTURE LEARNING

Learning DAGs with GPUs is certainly not a new idea. Continuous optimization methods for learn-
ing DAGs are amenable to acceleration on GPUs using packages like PyTorch or Tensorflow. Al-
gorithms such as NOTEARS [Zheng et al.|(2018) and GOLEM |Ng et al.| (2020) simultaneously op-
timize over the DAGs structure and its parameters by defining a differentiable acyclicity constraint
and enabling end-to-end optimization of a score function over graph adjacency matrices. NOTEARS
minimizes the MSE between the observations and the model predictions:

1
MSEx (0) = —|| X — X0||%

Machine Learning for Genomics Explorations workshop at ICLR 2024

causal ordering %

number of samples

1000 250750 500500 7502501000000

10 12 16 21 27 35 46 59 77100

dimension

9

9

92

90

88

86

-82

wall-clock time (secs)

number of samples

00 250750 500500 7502501000000

“““““““

10 12 16 21 27 35 46 59 77100
dimension

1

25000

20000

15000

10000

- 5000

wall-clock time (secs)

number of samples

1000 250750 500500 7502501000000

10 12 16 21 27 35 46 59 77100

dimension

wall-clock time (secs)

I 400
I - 200

10 12 16 21 27 35 46 59 77100

dimension

number of samples

1000 250750 500500 7502501000000

Figure 1: Benchmark of CPU (sequential) implementation of DirectLiNGAM. Given data with
specified number of samples and dimensions, the causal ordering sub-procedure accounts for up to
96% of overall runtime (left). It takes 7 hours on a CPU to process a dataset of 1 million samples
with 100 variables (second-left). Benchmark of GPU (parallel) implementation of DirectLiNGAM
(second-right) and VarLiNGAM (right). Given data with specified number of samples and dimen-
sions, the parallel implementation achieves up to 32 times speed-up when compared to the sequential
implementation. The benchmark is obtained using an NVIDIA RTX 6000 Ada with 18 176 cores.

where || - || denotes the Frobenius norm. NOTEARS includes a constraint defined with a trace
exponential function that equals zero if and only if represents an acyclic graph, and a penalty term
A||0]|1 where A||.||1 is defined element-wise and A is a hyper-parameter.

GOLEM performs Maximum Likelihood Estimation (MLE) under the assumption of Gaussian noise
terms in the data, and includes both soft acyclicity and sparsity constraints.

Unfortunately, both methods make restrictive assumptions about the data-generating process, such
as equal noise variance across observations. Furthermore, the assumption that the marginal variance
of each variable is strictly larger than that of its ancestors in the DAG—a condition termed varsorta-
bility—has been shown to be a crucial property of the assumed data-generating process (Reisach
et al.| 2021} Ng et al., 2023)). The non-convex nature of the optimization problem in GOLEM often
necessitates careful initialization and sophisticated optimization strategies to ensure convergence to a
meaningful solution. Moreover, neither NOTEARS nor GOLEM provides identifiability guarantees;
they may not perform reliably on simulated datasets where the true underlying structure is known
(see Section @, and other such methods may not converge (Lopez et al., |2022). Furthermore,
the effectiveness of these algorithms is highly sensitive to the choice of hyper-parameters, such as
the sparsity threshold or the specific loss function employed. Selecting these hyper-parameters is
non-trivial and may require extensive cross-validation or domain expertise, potentially limiting the
practicality of these methods.

3 ACCELERATEDLINGAM: ANALYSIS, AND EXTENSIONS

In this section, we discuss the considerations that make acceleration of Algorithm [T] efficient on
GPUs. First, note that the outer loop over ¢ and the inner loop over j are independent and thus can
be parallelized. The dependency on the results of _residual and _diff_mutual_info for each pair (4, j)
however, necessitates synchronization and memory management. Therefore, we parallelize over 1,
each block handles a different ¢ value, computing k_list[:] and within each i, we parallelize over j.
We also ensure that within the inner loop, operations are ordered using GPU abstractions.

This parallelization scheme requires up to dim * (dim — 1) cores. Profiling the sequential imple-
mentation (Figure [T), Amdahl’s law suggests a theoretical speed-up of 25. In the limit of infinite
processors, speedup = 1/(1 — p), where p is the parallelizable portion of the algorithm (0.96 in
our case) but this does not account for the increase in workload size with the number of processors
(Gustafson, [1988)). Finally, we do not need synchronization for updating k list[¢] since the update
order does not matter.

3.1 EFFICIENT DIRECTLINGAM IMPLEMENTATION

We implemented Accelerated LINGAM on an NVIDIA RTX 6000 Ada. The implementation opti-
mizes for memory use by performing parallel reductions in shared memory. Shared memory refers

Machine Learning for Genomics Explorations workshop at ICLR 2024

to a fast on-chip memory space shared among the threads of a block in the GPU. The results show a
32-fold speed-up of DirectLiINGAM when compared with the sequential implementation (see Figure
[I). The basic LINGAM analysis can be extended to auto-regressive modeling such as VarLINGAM
Hyvirinen et al| (2010). See Appendix [A3|for extension of AcceleratedLINGAM to VarLINGAM.

To validate that there are no logical errors in our parallel implementation, we compare the results
of applying the sequential implementation with those of the parallel implementation on simulated
data. We report the F1 score, recall, and structural hamming distance (SHD) over 50 simulations
(different random seed) in Figure[2]

Let G = (V,E) be a DAG where V is a set of vertices representing variables and E is a set of
directed edges representing causal relationships between variables. Vertices are connected such that
each vertex v; at level [may have parents from the set of nodes at level [— 1: Vv; € V,3l; €
{0, 1} such that (v;,v;) € E = [; = l; — 1. Given G, we generate data such that the strength
of the causal effect 6 ~ N(0,1), and the noise terms ¢; ~ Uniform(0,1), fori = 1,2,...,m.
Comparison of the sequential and parallel implementation of DirectLiNGAM on this simulated data
show that they produce the exact same result, and recover the true causal graph accurately (see

Figure[2).

We evaluate NOTEARS on similarly simulated data selecting the best performance across a grid:
{0.001,0.005,0.01,0.05,0.1} of A values. We obtain an F1 score of 0.79 + 0.2, Recall of 0.69 +
0.2 and SHD of 2.52 + 1.67. This shows that even on data where the causal influences are simple,
NOTEARS does not perform well.

sequential comparison

3.0 o o
accelerated causal ordering % wall-clock time (secs)
I No 0 0
2.5 25000
. Yes Qs s QU8
[oR<] og-
2.04 o o g2 €2 20000
] @32 * o3
=3 w o wn o~
= 154 y 2 G 2 15000
g 5 = g
1.0 o8 Rl 10000
T o 5 5 Qg 0 Qg
0.54 §§ g@; - 5000
S 5 S
0.0~ © o o o S10 12 16 21 27 35 46 59 77100 210112 16 21 27 35 46 59 77100
| E— dimension dimension
F1 Recall SHD
metric

Figure 2: Comparison of parallel and sequential implementation of DirectLiNGAM. We simulate
data according to a linear FCM with 10 000 samples, and 10 variables. Both implementations pro-
duce the exact same result (left). Benchmark of CPU (sequential) implementation of VarLiNGAM.
Given data with specified number of samples and dimensions, the causal ordering sub-procedure of
DirectLiNGAM accounts for up to 96% of overall runtime (middle). It takes 7 hours on a CPU to
process a dataset of 1 million samples with 100 variables (right).

4 EXPERIMENTS

4.1 ACCELERATEDLINGAM TO GENE EXPRESSION DATA WITH GENETIC INTERVENTIONS

We experiment with the causal learning of gene regulatory networks from gene expression data,
with genetic interventions, as detailed in [Friedman et al.| (2000); [Pe er et al| (2001)); Lopez et al.
(2022). This approach is enabled by a single-cell RNA sequencing technique known as Perturb-Seq,
as described by Dixit et al.[(2016) . Perturb-Seq allows for targeted genetic interventions and the
subsequent measurement of their effects on the complete gene expression profiles in hundreds of
thousands of individual cells using single-cell RNA-seq.

Our experimental setup mirror that of [Lopez et al. (2022), where the Perturb-CITE-seq dataset
Frangieh et al.|(2021)) contains expression profiles from 218 331 melanoma (cancer) cells, after inter-
ventions targeting each of 249 genes. For each gene in the genome, measurement from a single-cell
combines the identity of the intervention (the target gene) along with a count vector, that is the ex-
pression level of a particular gene. The dataset includes patient-derived melanoma cells with the
same genetic interventions but exposed to three conditions: co-culture with T cells derived from

Machine Learning for Genomics Explorations workshop at ICLR 2024

the patient’s tumor (73 114 cells) (these can recognize and kill melanoma cells), interferon (IFN)-y
treatment (87 590 cells) and control (57 627 cells). We retain cells from 20% of the interventions as
a test set. The dimensions (samples, dim) of the train set for co-culture, IFN, and control datasets
are (65 164, 964), (75443, 964), and (50 539, 961) respectively.

We applied AcceleratedLiNGAM to each of the three datasets. Since LINGAM analysis does not
involve causal inference, after obtaining the weighted adjacency matrix, we apply standard Varia-
tional Inference (VI) methods to obtain both the interventional NLL (I-NLL) and the mean absolute
error (I-MAE) across held-out interventions. Specifically, we use Stein VI|Liu & Wang|(2016) im-
plemented in the Pyro package where we defined a model such that variables without direct causal
influence on another variable are leaf nodes and otherwise are latent nodes with priors ~ A(0,1).
We generate 200 posterior samples, and optimize for 5000 iterations. DirectLiNGAM itself is not
sensitive to the random seed.

On a high-level, Stein VI involves approximating the target distribution p(z) by iteratively updating
a set of particles. This process minimizes the KL divergence between the approximating distribution
g(z) and the target p(x), which is achieved through the application of smooth transforms. The
key insight is to apply a perturbation to the identity map, T'(x) = = + ep(x), where ¢(x) is a
smooth function that characterizes the perturbation direction, and € is a small scalar representing the
perturbation magnitude. This approach ensures 7' is an injective (one-to-one) map, maintaining the
full rank of the Jacobian of 7', and thereby guaranteeing the invertibility required for the change of
variables formula to hold.

Table 1: Comparison of DirectLiNGAM with VI and DCD-FG method on the Perturb-CITE-seq
datasets. We obtain the I-NLL (nll) and I-MAE (mae) on all three datasets. Lower values are better.

Co-culture IFN Control

nll mae nll mae nll mae

DirectLiNGAM 15 07 15 09 3 1.6
DCD-FG (=) 1.1 07 12 07 11 0.7

We compare the results from DirectLiNGAM, combined with VI, with those obtained using DCD-
FG introduced in [Lopez et al.| (2022). DCD-FG works by combining a parameterized distribution
over factor directed graphs with a hybrid likelihood model, optimized with an acyclicity constraint
and was applied to the Perturb-CITE-seq datasets. We observe the I-MAE to be lower or about the
same on the co-culture dataset (one leaf variable), and slightly higher on the IFN and control datasets
(one and two leaf variables respectively) (see Table[I] We note DCD-FG is a continuous optimization
based structure learning method and prone to many of the issues we have previously discussed but
more pertinently, the results presented in|Lopez et al.|(2022) do have quite a bit of variance. We also
observe the I-NLL of DirectLiNGAM to be slightly higher on all datasets. While this may seem like
worse performance, it is interesting to note how the control dataset (i.e., no interventions) has the
same I-NLL as the other two datasets with DCD-FG. However, with DirectLiNGAM, the I-NLL of
the co-culture and IFN datasets are similar, but the control I-NLL is much higher. Since there is no
ground truth data, it is difficult to determine if DCD-FG is overfitting but it seems likely.

5 CONCLUSION

Machine learning practitioners often encounter use-cases where predictive performance alone does
not suffice. For instance, in healthcare, accurately predicting patient outcomes is crucial, but under-
standing the causal factors behind diseases can lead to more effective treatments and health policies
(Raisdnen et al., [20006; Barros et al.l [2022). Similarly, in genomics, identifying the causal relation-
ships between genetic markers and diseases is vital for developing targeted therapies and personal-
ized medicine approaches (Burgess et al., 2018; [Lopez et al.,[2022). In all these domains, the focus
is not solely on prediction but also on uncovering the underlying causal mechanisms. By addressing
the scalability limitations of causal discovery methods with statistical guarantees, we aim to enable
the widespread application of causal inference in large-scale data analysis.

Machine Learning for Genomics Explorations workshop at ICLR 2024

REFERENCES

Vesna Barros, Itay Manes, Victor Akinwande, Celia Cintas, Osnat Bar-Shira, Michal Ozery-Flato,
Yishai Shimoni, and Michal Rosen-Zvi. A causal inference approach for estimating effects of
non-pharmaceutical interventions during covid-19 pandemic. Plos one, 17(9):¢0265289, 2022.

Stephen Burgess, Christopher N Foley, and Verena Zuber. Inferring causal relationships between
risk factors and outcomes from genome-wide association study data. Annual review of genomics
and human genetics, 19:303-327, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344-16359, 2022.

Atray Dixit, Oren Parnas, Biyu Li, Jenny Chen, Charles P Fulco, Livnat Jerby-Arnon, Nemanja D
Marjanovic, Danielle Dionne, Tyler Burks, Raktima Raychowdhury, et al. Perturb-seq: dissecting
molecular circuits with scalable single-cell rna profiling of pooled genetic screens. cell, 167(7):
1853-1866, 2016.

Chris J Frangieh, Johannes C Melms, Pratiksha I Thakore, Kathryn R Geiger-Schuller, Patricia Ho,
Adrienne M Luoma, Brian Cleary, Livnat Jerby-Arnon, Shruti Malu, Michael S Cuoco, et al. Mul-
timodal pooled perturb-cite-seq screens in patient models define mechanisms of cancer immune
evasion. Nature genetics, 53(3):332-341, 2021.

Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using bayesian networks to analyze
expression data. In Proceedings of the fourth annual international conference on Computational
molecular biology, pp. 127-135, 2000.

Daniel Y Fu, Hermann Kumbong, Eric Nguyen, and Christopher Ré. Flashfftconv: Efficient convo-
lutions for long sequences with tensor cores. arXiv preprint arXiv:2311.05908, 2023.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graph-
ical models. Frontiers in genetics, 10:524, 2019.

John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31(5):532-533, 1988.

Aapo Hyvirinen and Stephen M Smith. Pairwise likelihood ratios for estimation of non-gaussian
structural equation models. The Journal of Machine Learning Research, 14(1):111-152, 2013.

Aapo Hyvirinen, Kun Zhang, Shohei Shimizu, and Patrik O Hoyer. Estimation of a structural vector
autoregression model using non-gaussianity. Journal of Machine Learning Research, 11(5), 2010.

Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical sci-
ences. Cambridge University Press, 2015.

Hao-Chih Lee, Matteo Danieletto, Riccardo Miotto, Sarah T Cherng, and Joel T Dudley. Scaling
structural learning with no-bears to infer causal transcriptome networks. In PACIFIC SYMPO-
SIUM ON BIOCOMPUTING 2020, pp. 391-402. World Scientific, 2019.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. Advances in neural information processing systems, 29, 2016.

Romain Lopez, Jan-Christian Hiitter, Jonathan K. Pritchard, and Aviv Regev. Large-scale differen-
tiable causal discovery of factor graphs. In Advances in Neural Information Processing Systems,
2022.

Kazuhito Matsuda, Kouji Kurihara, Kentaro Kawakami, Masafumi Yamazaki, Fuyuka Yamada,
Tsuguchika Tabaru, and Ken Yokoyama. Accelerating lingam causal discovery with massive par-
allel execution on supercomputer fugaku. IEICE TRANSACTIONS on Information and Systems,
105(12):2032-2039, 2022.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
Scalable causal discovery with score matching. arXiv preprint arXiv:2304.03382, 2023.

Machine Learning for Genomics Explorations workshop at ICLR 2024

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and dag constraints
for learning linear dags. Advances in Neural Information Processing Systems, 33:17943—-17954,
2020.

Ignavier Ng, Biwei Huang, and Kun Zhang. Structure learning with continuous optimization: A
sober look and beyond. arXiv preprint arXiv:2304.02146, 2023.

Dana Pe er, Aviv Regev, Gal Elidan, and Nir Friedman. Inferring subnetworks from perturbed
expression profiles. BIOINFORMATICS-OXFORD-, 17:S215-S224, 2001.

Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
19(2):3, 2000.

Ulla Réisdnen, Marie-Jet Bekkers, Paula Boddington, Srikant Sarangi, and Angus Clarke. The
causation of disease—the practical and ethical consequences of competing explanations. Medicine,
Health Care and Philosophy, 9:293-306, 2006.

Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated dag! causal
discovery benchmarks may be easy to game. Advances in Neural Information Processing Systems,
34:27772-27784, 2021.

Amirhossein Shahbazinia, Saber Salehkaleybar, and Matin Hashemi. Paralingam: Parallel causal
structure learning for linear non-gaussian acyclic models. Journal of Parallel and Distributed
Computing, 176:114-127, 2023.

Shohei Shimizu, Patrik O Hoyer, Aapo Hyvirinen, Antti Kerminen, and Michael Jordan. A linear
non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10),
2006.

Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvarinen, Yoshinobu Kawahara,
Takashi Washio, Patrik O Hoyer, Kenneth Bollen, and Patrik Hoyer. Directlingam: A direct
method for learning a linear non-gaussian structural equation model. Journal of Machine Learn-
ing Research-JMLR, 12(Apr):1225-1248, 2011.

Kun Zhang and Aapo Hyvarinen. On the identifiability of the post-nonlinear causal model. arXiv
preprint arXiv:1205.2599, 2012.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

Machine Learning for Genomics Explorations workshop at ICLR 2024

A APPENDIX

A.1 CAUSAL DIRECTED ACYCLIC GRAPHS

Causal Directed Acyclic Graphs (DAGs) are a fundamental structure in causal inference and graph-
ical models. A causal DAG consists of nodes, each representing a random variable. These variables
can be anything of interest, such as different attributes, events, or states. The edges in a causal DAG
are acyclic, directed and represent causal relationships between the variables. An edge from variable
X; to X; implies X; has a direct causal influence on X;. Similarly, the absence of a direct edge
from X; to X indicates that, according to the model, X; does not have a direct causal effect on X;
given the other variables and edges in the model. Causal DAGs encode the assumptions about the
conditional independence of the variables meaning the joint probability distribution over all possible
values of the variables can be factorized into a product of conditional distributions given by:

P(Xy, X2, .., Xp) = [[P(Xi[Parents(X;))

=1

A.2 CAUSAL ASYMMETRY PRINCIPLE

residual
residual

X

Figure 3: Illustration of the causal asymmetry principle underpinning LINGAM. Given data gener-
ated according a LINGAM functional causal model as in Eqn. [T} the regression residual can only be
independent of the independent variable in the correct causal direction (top figure). This holds for
any distribution of the noise except Gaussian. Independence is measured using the Mutual Informa-
tion (MI).

A.3 EXTENSION: EFFICIENT VARLINGAM IMPLEMENTATION

The basic LINGAM analysis can be extended to auto-regressive modeling. In [Hyvérinen et al.
(2010), VarLiNGAM is introduced. The key idea is to combine FCMs and vector autoregressive
(VAR) models to capture both instantaneous and lagged influences among multiple time series. The
model is expressed as: x(t) = Zﬁ:o 0-x(t—7)+€(t) where x(t) is the observed time series at time
t, 6 is the matrix of causal effects with time lag 7 and €(t) is the noise term (innovation). Similar to
all LINGAM analyses, the model assumes the noise terms are mutually independent, non-Gaussian,
and the matrix 6, corresponding to instantaneous effects forms an acyclic graph.

On a high-level, VarLINGAM works by first estimating coefficients of the VAR model using stan-
dard auto-regressive modeling techniques, and then transforms the estimated VAR coefficients based
on the causal adjacency matrix estimated using DirectLiNGAM thereby accounting for the direct
causal relationships while isolating the indirect effects captured by the VAR coefficients. We refer
the reader to Hyvirinen et al.[| (2010) for more details. The key thing to note here is the same al-
gorithm in Algorithm [I] dominates the runtime of VarLiNGAM (See Figure [2) and so we obtain a
similar speed-up of 30 with the GPU implementation.

A.4 Low LEVEL CUDA IMPLEMENTATION DETAILS

All the benchmark results are run on an NVIDIA A6000 Ada GPU with 48 GB of memory, 18 176
cores and 91.1 TFLOPS single-precision performance. The register file size is 64K 32-bit registers

Machine Learning for Genomics Explorations workshop at ICLR 2024

per Streaming Multiprocessor (SM), the maximum number of registers per thread is 255, the max-
imum number of thread blocks per SM is 16, the shared memory capacity per SM is 100 KB, and
the maximum shared memory per thread block is 99 KB.

Our parallelization scheme requires up to dim (dim — 1) cores (see Algorithm . Profiling the
sequential implementation (Figure [I), Amdahl’s law suggests a theoretical speed-up of 25. In the
limit of infinite processors, speedup = 1/(1 — p), where p is the parallelizable portion of the
algorithm (0.96 in our case) but this does not account for the increase in workload size with the
number of processors (Gustafson, |1988)). Finally, we do not need synchronization for updating
k_list[7] since the update order does not matter.

A key optimization is how the kernel uses shared memory for intermediate reduction results within
each block. This pattern is sensitive to the number of threads because it assumes that the shared
memory array is fully populated, and after storing in shared memory, we perform a reduction within
the block. We set shared memory per thread block to 96 KB. We implement warp tiling (for optimal
latency, and efficient synchronization) and notice a 20% speed-up but due to the non-associative
nature of floating-point operations, naive implementation of parallel reduction may lead to rounding
errors which we observe in the residual computation. As such, we leave this optimization for future
work.

Finally, optimizing GPU implementations of machine learning methods for I/O awareness has
achieved significant success recently, especially when combined with the use of cores optimized
for fast matrix multiplication (Tensor cores) (Dao et al., 2022; |Fu et al.,[2023)). A profile of our GPU
kernels reveals that the two most time-consuming operations are poll and pthread_cond_timedwait,
both accounting for about 50% of the execution time. These operations are associated with wait-
ing for I/O operations or synchronization primitives, indicating substantial room for optimization to
enhance I/O awareness, and efficient synchronization. The remainder of the DirectLiNGAM and
VarLiNGAM implementations, which are not parallelized, involve several regression analysis. Al-
though, we utilize heavily optimized libraries like numpy and scikit-learn for these regressions, there
remains potential for speed-up through parallelism with Tensor cores.

10

	Introduction
	Background
	Causal discovery based on Functional Causal Models (FCM)
	Standard LiNGAM implementation
	GPU execution model
	Continuous optimization based structure learning

	AcceleratedLiNGAM: Analysis, and Extensions
	Efficient DirectLiNGAM implementation

	Experiments
	AcceleratedLiNGAM to gene expression data with genetic interventions

	Conclusion
	Appendix
	Causal Directed Acyclic Graphs
	Causal asymmetry principle
	Extension: Efficient VarLiNGAM implementation
	Low level CUDA implementation details

